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2School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
3Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham,

Nottingham, NG7 2RD, United Kingdom
(Received 14 November 2016; revised manuscript received 10 January 2017; published 27 January 2017)

Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium.
The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics
cannot leave, which has proved a rather stringent requirement in experiments. Recently, a proposal to seek such
transitions in highly tunable systems of cold-atomic gases offers to probe this physics and, at the same time, to
investigate the robustness of these transitions to quantum coherent effects. Here, we specifically focus on the in-
terplay between classical and quantum fluctuations in a simple driven open quantum model which, in the classical
limit, reproduces a contact process, which is known to undergo a continuous transition in the “directed percolation”
universality class. We derive an effective long-wavelength field theory for the present class of open spin systems
and show that, due to quantum fluctuations, the nature of the transition changes from second to first order, passing
through a bicritical point which appears to belong instead to the “tricritical directed percolation” class.
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I. INTRODUCTION

The dynamics of many-body systems is typically too
complex to admit a complete description. It is well known,
however, that for systems at thermal equilibrium, time-
averaged, macroscopic quantities (i.e., quantities which do not
react to fluctuations on microscopic time and length scales)
can be equivalently extracted from appropriate statistical en-
sembles [1,2]. Statistical mechanics provides a very powerful
simplification which recasts all the relevant physics in terms of
a few thermodynamic parameters and potentials independently
of the initial state of the system, although one could envision
cases in which some initial state information is kept due to
an extensive amount of symmetries, and the ensembles would
have to be generalized accordingly [3–5].

Equilibrium systems, however, are but a portion of what
nature has in store. Despite significant efforts, a thorough,
systematic understanding of nonequilibrium phenomena has
yet to be developed. As in equilibrium, though, there are cases
in which collective behaviors supersede the minute details
of the microscopic dynamics, allowing their description in
terms of few coarse-grained variables and rules. One example
is given by cooperative relaxation at the onset of glassiness
[6,7] in which, e.g., it is not possible to change the local
configuration of particles without an extensively growing
number of rearrangements in the neighborhood taking place.
Another relevant instance relies on the presence of continuous
phase transitions [8–11]. These are associated to a diverging
length in the correlations of fluctuations [8,12,13]. Hence,
fluctuations encompass larger and larger portions of the system
as the critical point is approached, so that they end up being
governed only by general features which do not depend on
the scale, such as dimensionality and symmetries. This idea
lies at the basis of the concept of universality; simply put, all
systems sharing these scale-insensitive features will display
quantitatively identical behavior at asymptotic distances, and
studying one instance will provide information on all of them.

It is therefore a relevant task to identify and study phase
transitions as they provide a natural classification scheme.

In dynamical systems, a crucial distinction must be made
depending on whether detailed balance conditions, or the
associated symmetry microreversibility [14–17], hold or not.
In the former case, the system will evolve towards a stationary
equilibrium state. Examples of this kind are systems subject
to an external thermal bath, which have been extensively
investigated and classified [18]. It is worth remarking that this
symmetry might be absent from the microscopic description,
but be effectively recovered under coarse graining at long times
and long wavelengths [19–21]. If this is not the case, the system
will instead remain out of equilibrium even in the long-time
limit, being typically described by flux equilibrium states [22].
Phase transitions in this regime will have no equilibrium coun-
terpart but are genuinely nonequilibrium in nature [11,23].

In classical physics, a paradigmatic class of systems
displaying the latter kind of transitions is given by models with
absorbing states [24]. These are stochastic processes whose dy-
namical rules are built in such a way that there is a configuration
(or set thereof) which, once reached, cannot be left under the
evolution (hence the term “absorbing”, to be contrasted with
the remainder of the phase space, dubbed “transient”). The
absorbing property of this subspace survives coarse graining
and thus prevents detailed balance from being recovered at any
scale. The most characteristic universality class in this set of
systems is probably directed percolation (originally studied in
[25], see [24] for a review) which, for our present purposes,
is more easily introduced via the so-called “contact process”
(CP) [24,26,27]. The CP is defined on a lattice of classical
Ising variables (either ↑ or ↓) with rules which mimic an
epidemic spreading: an ↑ site is active (sick) and can either
decay to ↓ with a certain rate γ or produce another active site
in its neighborhood with another rate κ . Sites in the ↓ state
are inactive (healthy) and can only be activated (infected) via
the aforementioned mechanism, which we will refer to in the
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following as branching. This can be summarized as

↑ γ−→ ↓, ↑↓ κ−→ ↑↑. (1.1)

As their name suggests, inactive sites do not produce any
dynamics. The configuration where all sites are inactive thus
cannot be left and constitutes the unique absorbing state of the
model. Note that the two processes in Eq. (1.1) are competing:
decay tends to deplete the system of ↑’s, whereas branching
tries to fill it up. In the thermodynamic limit, depending on
the ratio κ/γ between the rates, the dynamics starting from an
active configuration can end up in two distinct phases: for κ �
γ decay dominates and the system at long times invariably falls
into the absorbing state. For κ � γ , instead, a finite density of
active sites persists for arbitrarily long times and the dynamics
survives in the transient portion of the phase space. Note that
this is only strictly true in the thermodynamic limit: for any
finite size, there is always a finite probability of a (rare) fluctu-
ation trapping the system into its absorbing state. In the active
phase, however, the time required for such a fluctuation to take
place increases with the system size [28]. The active and ab-
sorbing phases are separated by a critical point κc/γc, marking
the directed percolation (DP) transition [24], with the station-
ary density n of active sites acting as an order parameter (i.e.,
n = 0 in the absorbing phase versus n > 0 in the active one).

The directed percolation class is conjectured [29,30] to en-
compass all systems featuring a one-component order param-
eter, short-range interactions, no additional symmetries, and a
unique, fluctuationless absorbing state. This last condition is
crucial; the difficulty in having a perfectly fluctuation-free state
in real systems has made it a challenge to identify experimental
setups undergoing a phase transition in this class [31]. The
first clear examples have only recently been highlighted in
two-dimensional nematic liquid crystals [32,33] and one- [34]
and two-dimensional [35] turbulent flows. In addition, a recent
numerical study links DP to the onset of turbulence in quantum
fluids (such as superfluids) [36]. Upon relaxing the other
assumptions, different transitions, alongside their universality
classes, have been identified and investigated: for instance, the
introduction of quenched spatial randomness [37–39] makes
the DP critical point unstable (it constitutes a “relevant”
perturbation in the renormalization group sense) and generates
nonuniversal power laws; the presence of multiple absorbing
states often leads to the appearance of discontinuous transitions
[40,41]; other symmetries, such as preservation of the parity of
active sites [42,43], also change the critical properties, as does
introducing long-range processes (Lévy flights) [44]. As in
equilibrium systems, multicritical behavior can emerge when
higher-order processes take over the simple ones in Eq. (1.1)
[45,46]. A simple example studied in the literature is the so-
called tricritical directed percolation [30,47,48], obtained, e.g.,
by adding processes involving pairs such as ↑↑↓ → ↑↑↑ or
↑↑ → ↓↓. Depending on the relative rates of these processes
compared to the ordinary DP ones, the transition may become
first order by crossing a bicritical point.1

1The term “tricritical directed percolation” has been established in
the literature. The critical point, however, separates two distinct stable
phases of matter and is thus according to the statistical mechanics
definition a bicritical point.

Recently, a proposal [49] has been made to realize DP with
cold-atomic gases excited to high-lying electronic orbitals (so-
called Rydberg states [50,51]). This yields greatly enhanced
dipolar or van der Waals mutual interactions [52,53], which can
easily produce strong correlations and in fact induce several
examples of collective behaviors [54–58]. In particular, they
make it possible to engineer a facilitation mechanism [59–61],
where atoms lying at a certain distance from already-excited
ones have a much higher probability of getting excited, thereby
reproducing a branching process (rate κ above) [62,63]. Spon-
taneous radiative decay provides the competing process (rate
γ above). A strong dephasing noise projects the dynamics onto
an effective classical master equation [64,65], although the mi-
croscopic dynamics is properly described by a quantum master
equation. Quantum driven-dissipative systems such as this
one currently attract great theoretical interest [17,21,66–70]
and have been investigated in a broad spectrum of exper-
imental setups, including, e.g., light-driven semiconductor
heterostructures [71], arrays of driven microcavities [72,73],
and cold atoms in optical lattices [74] and cavities [75,76].
These systems share in common that the microscopic processes
governing the driving and dissipation explicitly break detailed
balance, pushing these systems out of equilibrium [17,21].
However, as mentioned above, equilibrium conditions can be
recovered on mesoscopic time and length scales upon coarse
graining and this turns out to be indeed the case in several
instances [19,66,68,77]; from a physical perspective, this is
due to the “fast” degrees of freedom acting as an effective
thermal bath for the “slow” ones [78,79]. However, examples
have been identified in which not only the nonequilibrium
nature [80,81], but also the quantum coherent aspects [82,83]
of the dynamics persist under rescaling to arbitrarily long
wavelengths. The proposal outlined above then opens up a
new path to explore, i.e., to check the robustness of DP under
the influence of quantum fluctuations in regimes which are
not dominated by the dephasing noise. This question was
addressed in Ref. [84] via an effective action approach; it was
found that, while the nature of the transition from the absorbing
phase to the active one does not change when the quantum
terms are small compared to the classical ones, it instead
switches to discontinuous (first order) in the opposite regime.

A. Overview and key results

From the microscopic action to an effective field theory. In
order to perform the transition from the microscopic physics
described in terms of a quantum master equation for the
underlying spin model, we have devised a procedure which
incorporates the qualitatively crucial short distance physics in
terms of suitable mean field theory, and allows us to system-
atically construct the long-wavelength excitation dynamics
on top of it. An indispensable part is played in the latter by
the finiteness of the local spin Hilbert space or equivalently
by the fact that the magnetization is bounded. This constraint
is accounted for in the present approach based on noisy
Heisenberg-Langevin equations. It is a necessary requirement
for the implementation of the microscopic dynamical rules
of the contact process: when lifted, it produces strikingly
different behaviors (see, e.g., [85]). Other widely employed
approaches, such as bosonization via a Holstein-Primakoff
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FIG. 1. Mean field phase diagram of the quantum contact process.
The system can undergo a phase transition from an absorbing state
towards an active, nonzero density phase, which can be either
continuous (solid line) or first order (dashed line). The second-
and first-order lines meet at a bicritical point. The axes represent
the rescaled classical branching rate χ = zκ/γ and the quantum
branching rate ω = z�/γ and correspond to the classical (A) and
quantum (B) limits, respectively. The dotted diagonal line indicates
the competing regime (C). On the right, the corresponding evolution
of the potential as a function of the axes’ parameters is shown for (i)
the first-order transition and (ii) the second-order transition.

transformation (see, e.g., Ref. [86]), do not preserve this
constraint and thus do not constitute a viable option in our case.
Technically, we first recast the quantum master equation into
noisy Heisenberg equations for the three onsite spin operators
σ

x,y,z

i . The resulting equations of motion are decoupled at the
mean field level, which accounts for the short distance physics
of the problem. These equations feature two gapped and one
potentially gapless variable, the latter being associated with
density fluctuations. We then map the problem into a Martin-
Siggia-Rose-Janssen-de Dominicis (MSRJD) functional
integral.

After elimination of the gapped fluctuations, we end up with
a description in terms of a dynamical action for the density
variable alone. In the limit where the coherent microscopic
processes vanish, we reproduce the action governing the
DP universality class, so that our procedure represents one
of the rare instances where the DP action is derived from
a concrete microscopic model. Incorporating the “quantum
scale” associated to the coherent branching process introduces
a new relevant parameter in the problem on the microscopic
level, and leads to important structural modifications of the DP
action, among them, an interaction parameter may cross zero
and change sign, signaling a critical end point of a second-order
phase transition, which afterwards turns into a first-order one.
Moreover, the defining rapidity inversion symmetry of DP
is broken in our model. On the other hand, the second key
structural property of DP, the existence of an inactive state,
signaled by a noise level that scales to zero with the density, is
still present in our long-wavelength theory.

Structure and key properties of the phase diagram. The
phase diagram of our model is depicted in Fig. 1. The additional
quantum scale, describing coherent branching, adds a relevant
parameter to the problem and is thus expected to give rise to an
additional phase transition in the problem. Indeed, a new first-
order phase transition is found in the absence of incoherent

branching. Increasing the incoherent branching gives rise to
a critical end point, manifestly characterized by different
symmetries than DP, and therefore giving rise to a distinct
universality class. The corresponding long-wavelength action
in the vicinity of the bicritical point resembles the effective
action for the so-called “tricritical directed percolation” class.
In order to assess the physics of the new (bi)critical point and
the first-order transition, we elaborate as follows:

(i) Nature of the bicritical point phase transition. We
compute a set of critical exponents, determining the univer-
sality class, of the bicritical point. To this end, we develop
a background-field functional RG method approaching the
phase transition from the active side, based on previous work
benchmarked for the DP universality class [87]. This approach
is capable of effectively incorporating higher-loop effects,
which turns out to be crucial at the bicritical point. We
furthermore deliver an exact RG argument for the protection
from the generation of an additive Markovian noise level
term. Remarkably, this substitutes the usual symmetry-based
argument due to the presence of rapidity inversion symmetry,
which we cannot rely on in the presence of coherent branching.
Finally, we estimate the Ginzburg scale for the extent of the
critical domain near the phase transition. As expected, its range
increases substantially when lowering the dimension.

(ii) First-order transition. We investigate the properties
of the first-order nonequilibrium phase transition in a ho-
mogeneous optimal path approximation. A remarkable trait
of the analysis is that, despite the problem is manifestly
out of equilibrium due to the special nature of the noise,
we are still able to construct a stationary, non-Gibbsian
probability distribution within our approximations. The role of
the density-dependent noise is to stabilize the inactive phase
with respect to what an analogous, but field-independent, noise
would do. In addition, we estimate finite-size effects, and
find that systems of around 5000 lattice sites should suffice
to see a clear discontinuity, evidencing the first-order nature
of the phase transition. We note that this approach gives a
rough idea on the physics of the first-order transition only.
It discards explicitly instantonlike, spatially inhomogeneous
field configurations, that should play a role at least close to
the transition. Surprisingly little is known on nonequilibrium
first-order transitions, and we reserve an in-depth study of this
problem for future research.

Physical implementation. We furthermore discuss an idea
for implementing the considered physics with the help of
atomic lattice systems in which interacting Rydberg states are
excited both coherently and incoherently. This could provide
a guide for current experiments to address the competition
between classical and coherent processes in nonequilibrium
phase transitions.

This paper is structured as follows: In Sec. II we introduce
the microscopic model and derive the effective functional
integral description for its dynamical properties; in Sec. III
we analyze the phase diagram and highlight the nature of the
phase transitions encountered. The more detailed discussion
of the properties of the bicritical point can be subsequently
found in Sec. IV, while Sec. V is devoted to the features of the
first-order line. The connection with current experiments with
Rydberg atoms is finally established in Sec. VI, where we
also report a numerical study carried over with quantum-jump
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Monte Carlo techniques before providing our concluding
remarks (Sec. VII).

II. MICROSCOPIC MODEL AND DENSITY
ACTION FUNCTIONAL

We consider here the quantum contact process originally
introduced in Ref. [84], which is defined on a d-dimensional
square lattice with spacing a. For simplicity, we label the
sites with a single index l = 1. . .N ; each individual site
is a two-level quantum system which can be either active
(|↑〉l) and contribute to the dynamics or inactive (|↓〉l) and
remain inert until activated. In the Rydberg-atom language
of Ref. [49], these would correspond to an excited atom
and a ground-state one, respectively. Note that, in contrast
to the classical contact process, here we admit generic
coherent superpositions αl |↑〉l + βl|↓〉l with |αl|2 + |βl|2 = 1.
The dynamics is defined in terms of the following processes:

(i) Decay: Active sites are spontaneously inactivated at a

rate γ (|↑〉 γ→ |↓〉).
(ii) Classical branching/coagulation: To mimic the facil-

itated dynamics introduced above, we consider incoherent
activation at rate κ of sites neighboring an excitation (|↑↓〉 κ→
|↑↑〉), but we also account for the time-reversed process, i.e.,
facilitated inactivation or coagulation occurring at the same
rate (|↑↑〉 κ→ |↑↓〉). In our current conventions, the actual
rates are proportional to the number NA of active neighbors,

e.g., |↑↓↑〉 2κ←→ |↑↑↑〉.
(iii) Quantum branching/coagulation: We introduce a

Hamiltonian H (see further below) which connects precisely
the same states connected by classical branching and coag-

ulation, i.e., such that 〈a|H |b〉 = NA� if |a〉 NAκ←→ |b〉 (and,
in particular, 〈a|H |b〉 = 0 if NA = 0), � being an overall
coefficient fixing its amplitude. The example above translates
here to 〈↑↓↑|H |↑↑↑〉 = 2�.

The third process is the minimal quantum equivalent of the
second one and provides the quantum competition to the purely
classical process. It is also important to remark that (i)–(iii)
preserve the fundamental property of DP, i.e., the presence of
a unique absorbing state corresponding to the fully inactive
one |abs〉 = ⊗l|↓〉l . In order to describe the dynamics of this
quantum contact process, we will discuss the corresponding
microscopic Heisenberg-Langevin equations and derive an
effective long-wavelength nonequilibrium path-integral de-
scription. The latter is particularly well suited to describe the
dynamics close to the active-to-inactive, i.e., the absorbing
state, phase transition.

A. Microscopic model

The ideal model presented above is a driven open quantum
lattice of spin- 1

2 variables. In order to define it formally, it is
convenient to introduce here a complete set of spin operators
acting on site l,

σ̂+
l = |↑〉l〈↓|l , σ̂−

l = |↓〉l〈↑|l , and

σ̂ z
l = |↑〉l〈↑|l − |↓〉l〈↓|l (2.1)

or, equivalently,

σ̂ x
l = σ̂+

l + σ̂−
l , σ̂

y

l = −iσ̂+
l + iσ̂−

l , and

n̂l = σ̂+
l σ̂−

l = |↑〉l〈↑|l . (2.2)

In particular, n̂l is the local projector onto an active site, i.e.,
n̂l|↑〉l = |↑〉l and n̂l|↓〉l = 0. Its global expectation value n =
(1/N)

∑
l 〈̂nl〉 will constitute our order parameter. As we are

considering only Markovian processes as appropriate for these
systems [21], the time evolution of the system’s density matrix
ρ is given by a quantum master equation [88,89]

∂tρ = Sρ = −i[H,ρ] +
∑

l

L(d)
l ρ +

∑
l

L(b)
l ρ +

∑
l

L(c)
l ρ.

(2.3)

We have introduced the shorthand S for the superoperator
acting on the density matrix ρ for future reference. The
coherent part (iii) is encoded in the Hamiltonian

H = �
∑

l

�̂l σ̂
x
l with �̂l =

∑
m nn l

n̂m, (2.4)

where “nn” denotes a summation restricted to nearest neigh-
bors only. The operator �̂l “counts” the number of active
nearest neighbors of l and enforces the constraint of at
least one excitation being present for being able to flip site
l. Processes (i) and (ii) are instead accounted for via the
Liouvillians L(i), i = d,b,c, with the apices distinguishing
between those contributing to decay (d), classical branching
(b), and coagulation (c). The Liouvillians are each generated
by a set of Lindblad or quantum-jump operators L(i)

m , and take
the standard Lindblad form [88,89]

L(i)ρ =
∑
m

[
L(i)

m ρL(i)†
m − 1

2

{
L(i)†

m L(i)
m ,ρ

}]
, (2.5)

which ensures preservation of probability and positivity. For
the dissipative processes considered, the jump operators read
as

L
(d)
l,m ≡ L

(d)
l = √

γ σ̂−
l , (2.6a)

L
(b)
l,m = √

κ n̂mσ̂+
l , (2.6b)

L
(c)
l,m = √

κ n̂mσ̂−
l , (2.6c)

so that we find

L(d)
l ρ = γ

(
σ̂−

l ρσ̂+
l − 1

2 {̂nl,ρ}) (2.7)

for spontaneous decay,

L(b)
l ρ = κ

∑
m nn l

(
n̂mσ̂+

l ρn̂mσ̂−
l − 1

2
{̂nm(1 − n̂l),ρ}

)
(2.8)

for classical branching, and

L(c)
l ρ = κ

∑
m nn l

(
n̂mσ̂−

l ρn̂mσ̂+
l − 1

2
{̂nmn̂l,ρ}

)
(2.9)

for classical coagulation. We remark here that, according to
the formalism outlined in Refs. [64,65], in the presence of
strong decoherence noise (acting with a rate γdeph � �), the
evolution under the Hamiltonian (2.4) effectively reduces, up
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to leading order in �/γdeph, to a classical master equation
which can be described via a set of jump operators

L
(H )
l =

√
4�2

γdeph
�̂l (̂σ

−
l + σ̂+

l ), (2.10)

which only differ from the ones in Eqs. (2.6b) and (2.6c)
by the fact that, in the presence of NA active neighbors,
the rate of “facilitated flipping” is enhanced quadratically
(4N2

A�2/γdeph), instead of linearly (NAκ). However, at the
critical point the density of active sites n vanishes; therefore,
the critical properties are dominated by configurations in which
NA remains low on average. In particular, if 〈NA〉 � 1, then
N2

A ≈ NA, since typically it mostly takes the discrete values 0
and 1. Therefore, this difference can at most shift the critical
point and change the profile of n in the active phase, but cannot
modify the universal properties.

B. Heisenberg-Langevin equations

In order to derive a path-integral description for the current
model, we will determine the Heisenberg-Langevin equations
for the spin operators in this section. These equations represent
the equations of motion for the spins in the presence of
Hamiltonian and dissipative dynamics and by construction
preserve the local spin algebra (see Appendix A for some
general aspects of Heisenberg-Langevin equations). The latter
is crucial for the correct implementation of the contact process
dynamics in terms of local quantum operators. Afterwards,
we will perform a mean field decoupling, which approxi-
mates the spin operators by local, stochastically fluctuating
fields, obeying Langevin equations of motion. The Langevin
dynamics will then be recast in terms of a nonequilibrium path
integral, which is discussed below. One should note that a
Holstein-Primakoff approximation of the master equation and
a subsequent mapping of the master equation to a Keldysh path
integral, as e.g. performed in Ref. [86], typically replaces the
strong constraint on the spin Hilbert space via a soft constraint,
which implements the spin algebra not exactly but only on
average. This is not sufficient in order to derive a field theory
for the contact process and thus the present approach via the
Heisenberg-Langevin equations is required instead.

In order to keep our order parameter explicit, we write
the Heisenberg-Langevin equations in terms of the set (2.2)
of one-spin observables (alongside the identity, they span the
entire local Hilbert space of operators). For convenience, we
introduce the shorthand ŝl =∑m nn l σ̂

x
m and the coordination

number z = 2d of the lattice, i.e., the number of nearest
neighbors per site, where we recall that d is the number
of spatial dimensions. The equations of motion (EOM) are
derived by applying (A4), which leads to

∂t n̂l = −γ n̂l + [�σ̂
y

l − κ(2̂nl − 1)
]
�̂l + ξ̂ n

l , (2.11)

∂t σ̂
x
l = −�σ̂

y

l ŝl − κz + γ

2
σ̂ x

l − κσ̂ x
l �̂l + ξ̂ x

l , (2.12)

∂t σ̂
y

l = �σ̂x
l ŝl − κz + γ

2
σ̂

y

l + ξ̂
y

l − [2�(2̂nl − 1) + κσ̂
y

l

]
�̂l.

(2.13)

Note that Eq. (2.12) differs from Eq. (3) of Ref. [84] by the
sign of the first addend (which reads as +�σ̂

y

l ŝl there, once
translated in our present notation). This constitutes a typo
which we correct here; the discussion of the phase diagram and
critical properties, however, remains completely unaffected,
as we shall show in the following. As anticipated above, in
order to fix the noise operators we consider a system-bath
coupling which, once the bath variables are integrated out in
a Born-Markov approximation, yields the same deterministic
part of the equations (2.11)–(2.13). We assume that the spatial
correlations of the bath are much shorter than the lattice
constant a, such that noise correlations between different
lattice sites are absent and every lattice site is effectively
coupled to its own independent (but identical) environment.
This allows us to focus our subsequent analysis on a single site;
for simplicity, in the derivation of the noise we will be dropping
the position index. The discussion for the general case can
be straightforwardly recovered by adding a subscript l to all
system and bath operators. We need three terms to separately
account for decay, branching, and coagulation, which will
generate contributions ξ̂d , ξ̂b, and ξ̂c to the noise, respectively.
We thus introduce the three local Hamiltonians Hd , Hb, and
Hc. The former reads as

Hd =
∑

q

λq (̂σ+d̂q + d̂†
q σ̂

−) +
∑

q

ωqd̂
†
q d̂q , (2.14)

where the d̂q operators represent bosonic modes ([d̂q ,d̂
†
k ] =

δqk), ωq their dispersion relation, and λq their respective
coupling with the spin. Since decay corresponds to photon
emission into the vacuum, we assume these modes to be
in a state ρ0

d at zero temperature and sufficiently numerous
so that the action of the system on them can be considered
negligible (i.e., they can be approximated as a continuum of
modes). In order to reproduce the branching and coagulation
dynamics above, we actually have to impose a further con-
straint, i.e., that there are two independent baths of harmonic
oscillators for every pair of neighboring spins. The system-
bath Hamiltonians will read as, for a generic (neighboring)
pair,

Hb =
∑

k

αk n̂nn (̂σ−b̂k + b̂
†
kσ̂

+) +
∑

k

νkb̂
†
kb̂k,

Hc =
∑

k

αk n̂nn (̂σ+ĉk + ĉ
†
kσ̂

−) +
∑

k

νkĉ
†
kĉk, (2.15)

where the nn denotes a given neighbor of the site considered,
and correspondingly

Hb,nn =
∑

k

αk n̂ (̂σ−
nnb̂k,nn + b̂

†
k,nnσ̂

+
nn) +

∑
k

νkb̂
†
k,nnb̂k,nn,

Hc,nn =
∑

k

αk n̂ (̂σ+
nnĉk,nn + ĉ

†
k,nnσ̂

−
nn) +

∑
k

νkĉ
†
k,nnĉk,nn,

(2.16)

and the b̂k’s and ĉk’s are bosonic modes with equal dispersions
νk and coupling αk to the spin. These baths are initialized in
equal states ρ0

b/c, to allow excitation and deexcitation of the
spin at the same rate.
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We start by considering spontaneous decay. The (ordinary)
Heisenberg equations under the action of Hd read as

∂t σ̂
− = i[Hd,̂σ

−] = i
∑

q

λq d̂q σ̂
z, (2.17)

∂t n̂ = i[Hd,̂n] = i
∑

q

λq(d̂†
q σ̂

− − σ̂+d̂q), (2.18)

∂t d̂q = i[Hd,d̂q] = −iλq σ̂
− − iωqd̂q . (2.19)

Equation (2.19) can be formally integrated yielding

d̂q(t) = d̂q(0)e−iωq t − iλq

∫ t

0
dt ′ σ̂−(t ′)e−iωq (t−t ′). (2.20)

Inserting (2.20) into (2.18) gives

∂t n̂(t) = −
∑

q

λ2
q

∫ t

0
dt ′ [̂σ+(t ′)̂σ−(t)eiωq (t−t ′) + H.c.]

+ i
∑

q

λq(d̂†
q(0)̂σ−(t)eiωq t − σ̂+(t)d̂q(0)e−iωq t )

≈ −γ n̂(t) + i
∑

q

λq(d̂†
q(0)̂σ−eiωq t − H.c.)︸ ︷︷ ︸

ξ̂ n
d

. (2.21)

The first term of Eq. (2.21) is obtained by applying the Born-
Markov approximation for a bath, which is fluctuating rapidly
on typical system time scales [90]. The effective coupling
strength γ = 2πλ2(0)D(0) is proportional to the bath density
of states D(ω) =∑q δ(ω − ωq) and the coupling constants
λ(ω) =∑q λqδ(ω − ωq) both evaluated at zero frequency.
The second term contains information on the initial state of
the bath and is nothing but the desired noise operator. This
clarifies the meaning of the noise average 〈. . .〉ξ , which is
nothing else than the trace over the bath degrees of freedom

〈. . .〉ξ = tr
{
(. . .) ρ0

d

}
. (2.22)

Since ρ0
d is a definite-particle-number state, the noise has zero

mean 〈̂ξn
d 〉

ξ
= 0. The variance, however, does not vanish and

reads as〈̂
ξn
d (t )̂ξn

d (t ′)
〉
ξ

B-M=
∑

q

λ2
q[nqe

iωq (t−t ′)σ̂−(t )̂σ+(t ′)

+ (1 + nq)e−iωq (t−t ′)σ̂+(t )̂σ−(t ′)]
B-M= γ [Nd + n̂(t)]δ(t − t ′) (2.23)
T =0= γ n̂(t)δ(t − t ′). (2.24)

Here, we have applied the Born-Markov approximation to
commute system and bath variables at different times and
employed the shorthand nq = 〈d̂†

q d̂q〉ξ and Nd =∑q nq . The
second (approximate) equality comes, as mentioned above,
from assuming that the bath fluctuates much faster than
the typical system time scales, implying that both spectral
densities D(ω) and λ(ω) are slowly varying functions of their
arguments, such that the summation effectively yields a time-
local result. The final equality is exact and comes from the fact
that the bath is at zero temperature, hence, 〈d̂†

q d̂q〉ξ = 0 ∀ q

and Nd = 0. Equation (2.24) highlights the multiplicative

nature of the density noise (ξn
d ∼ √

n). This property leads
to a noiseless density channel for the empty state n = 0, and
ensures the absence of density fluctuations in the absorbing
state. A small but nonzero temperature of the bath T �= 0 will
instead lead to a nonvanishing bath photon number Nd ∼ T d

(valid for relativistic bosonic particles in d spatial dimensions)
and modify the absorbing state nature of the transition on time
scales τ > (γNd )−1 ∼ T −d and distances x > (γNd )−1/2 ∼
T −d/2. For sufficiently low temperatures, as achieved by
current cold-atom experiments, these scales are much larger
than the system’s and these effects can thus be ignored.

The remaining equation of motion for σ̂− can be solved in
the same spirit of Eqs. (2.21) and (2.24), which yields

∂t σ̂
−(t) = −γ

2
σ̂−(t) + i

∑
q

λq d̂q(0) σ̂ z(t) eiωq t

︸ ︷︷ ︸
ξ̂−
d (t)

. (2.25)

This defines the noise operator ξ−
d (t) and, via conjugation,

ξ+
d (t) = [ξ−

d (t)]
†
, as well as ξx

d = ξ+
d + ξ−

d and ξ
y

d = i(ξ−
d −

ξ+
d ). The complete noise correlations can be determined from

Eqs. (2.21) and (2.25), which are straightforwardly extended
to the entire lattice by reinstating the position indices. In the
(x,y,n) basis [i.e., set (2.2)] the noise correlations can be
expressed as

〈̂ξ d,l(t )̂ξ
†
d,l′ (t

′)〉ξ = γ δ(t − t ′)δl,l′

⎛⎝ 1 −i σ̂−
l

i 1 iσ̂−
l

σ̂+
l −iσ̂+

l n̂l

⎞⎠,

(2.26)

where ξ̂
†
d,l(t) = (̂ξx

d,l(t),̂ξ
y

d,l(t),̂ξ
n
d,l(t)). As pointed out above,

the noise average 〈. . .〉ξ represents a quantum mechanical
average over the bath degrees of freedom, such that the entries
in Eq. (2.26) remain operator valued. We remark again that the
noise is only additive in the σx,y channels, while it remains
multiplicative in the density channel. In the limit � � κ ,
the coupling of the density field to the σ̂ y matrix can be
eliminated and leads to a modification of the branching rate
κ , as mentioned above. In this limit, the Heisenberg-Langevin
equation for the density (2.11) has an absorbing configuration
for {nl} = 0. We will show in the following that the latter
feature persists for all values of � and that the {nl} = 0
configuration remains an absorbing state for the density
channel. Note that, due to our choice of the bath state ρ0

d , the
noise is Gaussian and therefore entirely defined in terms of its
mean expectation value and two-point correlations. Due to the
Markov approximation, the noise is white (time local) as well.

So far, we have not considered the noise contribution from
the branching and coagulation dynamics stemming from the
Hamiltonian (2.15). Interestingly, there is no need to: as long as
we are only interested in the critical properties, we can safely
neglect higher orders in n, as they will just provide subleading
corrections. Due to the factors n̂ and n̂nn in the Hamiltonians
Hb/c and Hb/c,nn, we are guaranteed that the noise terms ξ̂b

and ξ̂c will never dominate, at low densities, over the decay
noise ξ̂d . Therefore, for simplicity, we can safely neglect their
presence and set ξ ≡ ξd + ξb + ξc → ξd . For completeness,
we provide a discussion on the discarded terms in Appendix E.

014308-6



NONEQUILIBRIUM EFFECTIVE FIELD THEORY FOR . . . PHYSICAL REVIEW B 95, 014308 (2017)

Together with the noise kernel (2.26), the Heisenberg-
Langevin equations (2.11)–(2.13) represent the starting point
for our analysis of the absorbing state phase transition in
terms of a nonequilibrium path-integral framework. While the
deterministic part of the Heisenberg-Langevin equations is
exact, we have approximated the noise kernel up to leading
order in the density according to the previous discussion and
kept only the decay contribution which still generates all
relevant terms.

C. Nonequilibrium path-integral description

In order to investigate the dynamics close to the ab-
sorbing state, we derive a nonequilibrium path-integral de-
scription for the density variable n. Our method is based
on the Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD)
approach [10,91–93], a well-established mapping of Langevin
equations into effective field theory actions. In order to
do this, we therefore first need to reduce our Heisenberg-
Langevin equations (2.11)–(2.13) to semiclassical ones. This
is achieved via a mean field, site-decoupling approximation
(i.e., averages involving operators acting on different sites are
factorized, 〈OlOm〉 → 〈Ol〉〈Om〉 for l �= m), which yields a
set of (deterministic) equations

∂tnl = −γ nl + [�σ
y

l − κ(2nl − 1)
]
�l,

∂tσ
x
l = −�σ

y

l sl − κz + γ

2
σx

l − κσ x
l �l, (2.27)

∂tσ
y

l = �σx
l sl − κz + γ

2
σ

y

l − [2�(2nl − 1) + κσ
y

l

]
�l,

as we recall that both ŝl and �̂l act nontrivially only on
the nearest neighbors of l, and not on site l itself. Relying
on translational invariance to make a uniform assumption
(nl = nm ≡ n and σ

x/y

l = σ
x/y
m ≡ σx/y ∀ l,m) one can further

reduce them to

∂tn = [−γ + z[�σy − κ(2n − 1)]]n,

∂tσ
x = −

[
�zσy + κz + γ

2
+ κzn

]
σx, (2.28)

∂tσ
y = �z(σx)2 − κz + γ

2
σy − zn[2�(2n − 1) + κσ y].

The stationary solutions are found by setting the time deriva-
tives to 0. Introducing the dimensionless constants χ = zκ/γ

and ω = z�/γ , we find that the stationary density of active
sites obeys

n
[
(4ω2 + 2χ2)n2 − 2(ω2 − χ )n + 1

2 (1 − χ2)
] = 0. (2.29)

The solution n = 0 corresponds to the absorbing state, which
is always present, but is only dynamically stable for χ < 1 (see
Appendix F). For χ > 1, instead, any perturbation away from
it will grow to reach one of the other solutions, marking the
active phase. For χ < 1, the nonabsorbing solutions still exist
as long as the discriminant is positive [ω4 + χ4 + 2ω2(χ2 −
χ − 1) � 0]. If additionally ω2 > χ , a saddle-node bifurcation
takes place, corresponding to a first-order phase transition to
a coexisting, bistable regime.

The mean field equations (2.27) constitute our starting
point. We stress here again that the present approach respects
the constrained nature of the local spin Hilbert space, which

is crucial for the correct description of the contact process.
This is advantageous over a bosonic Holstein-Primakoff
[94] approximation, which introduces a much larger bosonic
Hilbert space and does not preserve the local spin constraint,
i.e., it allows for an arbitrary number of bosonic excitations
being present on each site. In the classical case, it turns out
that the latter produces a completely different behavior [85],
e.g., if the branching and decay rates are equal, the average
density of excitations remains constant. As a consequence,
the representation of the spins in terms of Holstein-Primakoff
bosons excludes any absorbing dark state, unless the local
Hilbert space has a strict upper bound on the number of bosons
per lattice site. It is therefore important to keep the “hard core”
(or “exclusion”) as a fundamental property of the dynamics.
This hard-core constraint promotes any bosonic field theory to
a formidable problem to solve and is conveniently avoided by
the present approach. Furthermore, the fluctuations induced
by the environment must be taken into account in a way that
is consistent with the discussion above. In particular, it is
crucial to maintain the multiplicative nature of the noise on
n. The variables nl , σ

x/y

l are now real valued and the noise
must be as well. We thus introduce a Gaussian, white noise
ξ

ᵀ
l = (ξx

l ,ξ
y

l ,ξn
l ) with vanishing mean and a covariance matrix

extracted from the Hermitian part of the operator valued one
in Eq. (2.26) [see Eq. (2.34) below].

Since continuous phase transitions involve collective
modes, we can adopt at this point a mesoscopic description for
our system, i.e., we take the continuum limit. This corresponds
to sending the lattice spacing a → 0 while appropriately
rescaling the coupling constants. We thus replace our quantities
by the corresponding local densities

nl(t) → nX, σ x/y(t) → σ
x/y

X , (2.30)

where we denote X ≡ (�x,t), �xᵀ = (x1,x2,. . .,xd ) being the
continuous spatial coordinate. In the spirit of a low-frequency
effective field theory, the corrections introduced by fluc-
tuations over the site-decoupling approximation are taken
into account by terms which contain higher powers of the
variables or derivatives. Close to a (second-order) phase
transition, this procedure becomes particularly efficient, as
each of the coupling constants can be classified according to
canonical power counting, and both higher-order derivatives
and densities lower the degree of relevance of the couplings.
With this in mind, we discard higher-order spatial derivatives
and set �l(t) → (a2∇2 + z)nX, sl(t) → (a2∇2 + z)σx

X. For
simplicity, we also rescale time according to t → γ t and
define the dimensionless couplings χ = zκ/γ , ω = z�/γ and
the diffusion constant D = χa2/z. The continuum Langevin
equations now read as

∂tnX = (χ − 1 + D∇2)nX +
(

ω

χ
σ

y

X − 2nX

)
× (D∇2 + χ )nX + ξn

X, (2.31)

∂tσ
x
X = −χ + 1

2
σx

X − ω

χ
σ

y

X(D∇2 + χ )σx
X

− σx
X(D∇2 + χ )nX + ξx

X, (2.32)
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∂tσ
y

X = −χ + 1

2
σ

y

X − σ
y

X(D∇2 + χ )nX

+ ω

χ
σx

X(D∇2 + χ )σx
X −

[
2ω

χ
(2nX − 1)

]
× (D∇2 + χ )nX + ξ

y

X, (2.33)

with Markovian noise kernel

〈ξXξ
†
Y 〉 = δ(X − Y )

2

⎛⎝ 2 0 σx
X

0 2 σ
y

X

σ x
X σ

y

X 2nX

⎞⎠ ≡ MXY . (2.34)

We note that, in Eq. (2.31), the linear term in nX changes
sign at χ = 1. This indicates a closing gap and corresponds,
at the mean field level, to a continuous phase transition taking
place at this point. Conversely, at χ = 1 the equations for σx/y

remain gapped, and these variables play the role of spectator
modes at the transition, which will allow us to integrate them
out in the MSRJD path-integral framework.

Due to its Gaussian nature, the properties of the noise are
entirely determined by the matrix (2.34); the full distribution
can be expressed as

p[ξ ] = N e− 1
2 ξ †∗M−1∗ξ (2.35)

with N a suitable normalization ensuring∫
D[ξ ] p[ξ ] = 1, (2.36)

D[ξ ] = D[ξx,ξy,ξn] a suitable functional measure, and “∗”
denoting convolution over the spatial and temporal coordi-
nates, i.e.,

A ∗ B =
∫

dX AXBX ≡
∫

ddx dt A(�x,t)B(�x,t). (2.37)

In Eq. (2.35), M depends on σx/y and n. These are to be
interpreted here as the solutions σ

x/y

ξ and nξ of the Langevin
equations (2.31)–(2.33) at fixed realization ξ of the noise. By
definition, we have 〈. . .〉ξ = ∫ Dξ (. . .)p[ξ ].

We proceed now with the standard MSRJD construction
[10]: we shall introduce here the vectorial shorthand σᵀ =
(σx,σ y,n) for the variables and σ

ᵀ
ξ = (σx

ξ ,σ
y

ξ ,nξ ) for the
solutions at fixed ξ . In principle, all correlation and response
properties of the system are encoded in the system’s generating
functional

Z[h̃n,h̃x,h̃y] ≡ 〈eh̃∗σ ξ 〉ξ = 〈eh̃n∗nξ +h̃x∗σx
ξ +h̃y∗σ

y

ξ

〉
ξ
, (2.38)

where h̃ᵀ
X = (h̃x

X,h̃
y

X,h̃n
X) are the conjugated fields (sources)

to the variables. Generic correlations can then be found via
functional differentiation:〈

nX1 . . .nXk
σ x

Xk+1
. . .σ x

Xm
σ

y

Xm+1
. . .σ x

Xq

〉
ξ

=
k∏

in=1

δ

δh̃n
Xin

m∏
ix=k+1

δ

δh̃x
Xix

q∏
iy=m+1

δ

δh̃
y

Xiy

Z[h̃n,h̃x,h̃y] |h̃=0.

(2.39)

We recall that the average in the definition of the generating
functional (2.38) can be expressed as

Z[h̃] =
∫

D[ξ ] eh̃∗σ ξ p[ξ ]. (2.40)

We multiply the integrand by

1 =
∫

D[σ ] δ(σ − σ ξ )

=
∫

D[σx,σ y,n] δ
(
σx − σx

ξ

)
δ
(
σy − σ

y

ξ

)
δ(n − nξ ),

(2.41)

where δ denotes here a functional Dirac delta function such
that, e.g., ∫

D[n] F (n)δ(n − nξ ) = F (nξ ) (2.42)

for every test functional F . Assuming that the integrations over
σ and ξ can be exchanged, this yields

Z[h̃] =
∫

D[σ ] eh̃∗σ

∫
D[ξ ] δ(σ − σ ξ )p[ξ ]. (2.43)

Note that the generating exponential factor does not depend
now on the noise ξ ; correspondingly, the integral over σ

is performed over all possible trajectories for the variables,
while it is the δ function which ensures that only those which
represent valid solutions of the Langevin equations actually
contribute to its result. Denoting now for brevity the right-hand
side of Eqs. (2.31)–(2.33) with Rᵀ

X = (Rx
X,Ry

X,Rn
X), such that

∂tnX = Rn
X, ∂tσ

x
X = Rx

X, ∂tσ
y

X = Ry

X, (2.44)

we can rewrite the δ functions as

δ(σ − σ ξ ) = J δ(∂tσ − R), (2.45)

where J is the Jacobian accounting for the corresponding
change of variables. This Jacobian is a functional of the
integration variables σᵀ = (σx,σ y,n) and in principle it could
not be neglected. However, it can be shown [10] that it produces
a term ∝θ (0), where

θ (t) =
{

1 (t > 0),
0 (t < 0) (2.46)

is the Heaviside step function, and its role is exactly to remove
the ambiguity in the definition of θ (0) in expectation values.
Setting θ (0) = 0, we can thereby proceed as if J = 1. The
integration over σ now takes the form∫

D
[
nX,σ x

X,σ
y

X

]
eh̃∗σ δ

(
∂tnX − Rn

X

)
× δ
(
∂tσ

x
X − Rx

X

)
δ
(
∂tσ

y

X − Ry

X

)
=
∫

D
[
nX,σ x

X,σ
y

X,ñX,σ̃ x
X,σ̃

y

X

]
eh̃∗σ e−ñ∗(∂t n−Rn)

× e−σ̃ y∗(∂t σ
y−Ry )e−σ̃ x∗(∂t σ

x−Rx ),

where we have introduced the imaginary response fields σ̃
ᵀ
X =

(σ̃ x
X,σ̃

y

X,ñX) and applied the integral representation of the δ

function δ(x) = ∫
y
dy e−iyx/2π where the “response variable”

x̃ would correspond in this case to iy. The denomination
“response fields” comes from the fact that, if one introduces
source terms in the Langevin equations RX → RX + hX, not
to be confused with the effective sources h̃ which appear in
the definition of Z, one sees that the linear response of any
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observable O to one of these fields is (with the slight abuse of
notation σn ≡ n)

δ〈O〉ξ
δhi

X

∣∣∣∣
h=0

= 〈Oσ̃ i
X

〉
ξ
. (2.47)

Since (Rx,Ry,Rn) are linear in (ξx,ξy,ξn), respectively, the
integration over the noise can be now computed according to
the standard Gaussian identity

N
∫

D[ξ ]e− 1
2 ξ †∗M−1∗ξ + σ̃ †∗ξ = e

1
2 σ̃ †∗M∗σ̃ . (2.48)

The exponent above is straightforwardly reexpressed in terms
of the variable and response fields via the definition (2.34) of
the covariance matrix. Since at this point it is the only part
which comes from the noise, we shall refer to minus it as the
“fluctuating part” of the action Sfluc. It reads as

Sfluc = −1

2
σ̃ † ∗ M ∗ σ̃

= −1

2

∫
dX
[(

σ̃ x
X

)2 + (σ̃ y

X

)2
+ nXñ2

X + (σx
Xσ̃ x

X + σ
y

Xσ̃
y

X

)
ñX

]
. (2.49)

The remainder comes instead from the conservative portion of
the Langevin equations and constitutes (minus) the “determin-
istic part” of the action Sdet. The generating functional now
has the form

Z[h̃] =
∫

D[σ ,σ̃ ]eh̃∗σ−Sdet−Sfluc . (2.50)

The total action of the system is defined as the sum S = Sdet +
Sfluc. Its full expression is reported below, where we employ
the additional abbreviation PX = (D∇2 + χ ) to make it more
compact:

S =
∫

X

ñX

[
(∂t −D∇2 + 1 − χ )nX +

(
2nX − ω

χ
σ

y

X

)
PXnX

− 1

2

(
ñXnX − σ̃ x

Xσ x
X − σ̃

y

Xσ
y

X

)]
+
∫

X

σ̃ x
X

{[
∂t + χ + 1

2
+
(

ω

χ
σ

y

X + nX

)
PX

]
σx

X − 1

2
σ̃ x

X

}
+
∫

X

σ̃
y

X

[(
∂t + χ + 1

2
+ nXPX

)
σ

y

X

+ 2ω

χ
(2nX − 1)PXnX − ω

χ
σx

XPXσx
X − 1

2
σ̃

y

X

]
. (2.51)

Successively integrating over the two gapped σx,y fields by
neglecting irrelevant derivative terms, we derive the effective
microscopic action for the active site density n alone. This
procedure is detailed in Appendix B and yields

S =
∫

X

ñX

[(
(∂t − D∇2)nX + ∂�(nX)

∂nX

)
− ñ2

X�(nX)

]
.

(2.52)

In this functional, the information on the coupling to the σx,y

modes is encoded in the effective potential � and the noise
vertices �.

The potential has the form

�(nX) = �

2
n2

X + u3

3
n3

X + u4

4
n4

X, (2.53)

where � represents the gap and u3,u4 the cubic and quartic
nonlinearities. The quartic one

u4 = 8ω2

χ + 1
(2.54)

is always positive and ensures dynamical stability of the
system, i.e., it guarantees a finite steady-state solution nX <

+∞. On the other hand, the cubic nonlinearity

u3 = 2χ − 4ω2

χ + 1
(2.55)

experiences a negative correction due to the coherent coupling
ω and becomes negative for ω >

√
χ (χ + 1)/2. The existence

of the quartic coupling and the negative correction for the
cubic coupling result from coherent second-order conversion
processes

|↑〉 → �√
2

(|↑〉 + |↓〉) →
{
�2|↓〉 in u4,

�2|↑〉 in u3
(2.56)

and vice versa. Due to the permanent decay of the coherences,
such processes are suppressed by a factor 1

χ+1 .
The gap

� = 1 − χ − ω2

2(1 + χ )3
(2.57)

can be either positive or negative. In the former case (� > 0),
the decay from up-spin states exceeds the “pumping” processes
and the system is driven towards the absorbing state. For χ >

1, the gap is generally negative and the system ends up in
a finite-density phase, while for χ < 1, the strength of the
coherent conversion processes ∼ω2 determines whether the
system remains active or becomes inactive. The correction
∝ω2, coming from the coherent processes, is again suppressed
by a factor 1

χ+1 and proportional to the fluctuations in the σx

channel ∼ 1
(χ+1)2 (see Appendix B). The physics corresponding

to the potential � will be further detailed in the next section.
The noise vertices

�(nX) = μ3nX + μ4n
2
X (2.58)

with couplings

μ3 = 1

2
and μ4 = 2ω2

(χ + 1)2

(
1 + 32

(χ + 1)4

)
(2.59)

vanish for nX → 0. The linear multiplicative noise factor
∼nX, which we already discussed in the previous section,
is joined here by a quadratic term ∼n2

X, which is proportional
to the coherent coupling ω2, stemming from second-order
conversion processes. The importance of the noise vertex for
the phase transition will be discussed in Secs. IV and V.

Starting from the microscopic Langevin equations, we have
derived here the the effective density action (2.52). Its impact
on the dynamics of a Rydberg atomic setting will be analyzed
in the following sections.
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III. RESULTS

We shall now discuss in further detail the physics of the
quantum contact process, which is encoded in the effective
density (2.52). We start by analyzing some of its general
properties. Subsequently, we discuss the phase diagram,
which contains active and absorbing regimes, as well as the
corresponding first- and second-order phase transitions. In
the last part of this section, we discuss the scaling regimes
corresponding to the second-order phase transition and the
associated critical exponents.

A. The action

The action (2.52) interpolates between three structurally
different limits:

(A) Classical: ω → 0, associated to a continuous phase
transition in the DP universality class.

(B) Quantum: χ → 0, associated to a first-order phase
transition between an absorbing and an active state.

(C) Competing: u3 → 0, featuring a bicritical point which
separates between the two regimes above.

In region (A), the coupling u3 ≈ 2χ > 0 does not vanish
and one can perform the transformation nX → nX/(

√
2u3) and

ñX → ñX

√
2u3, such that the action (2.52) becomes

S = SDP + S4

=
∫

X

ñX

[
∂t − D∇2 + � +

√
u3

2
(nX − ñX)

]
nX

+
∫

X

n2
XñX

[
u4

2u3
nX − μ4ñX

]
. (3.1)

The first part, SDP, corresponds precisely to the Reggeon
field theory, which is known to describe the physics of
directed percolation [95–97]. It stands invariant under the
transformation

nX ↔ −ñX, t → −t, (3.2)

which is a characteristic symmetry of DP, known as “rapidity
inversion” [27,98]. The second term S4 represents instead the
modification to the classical action due to the coherent terms
and scales in fact as S4 ∼ ω2 → 0 for ω → 0. This term breaks
rapidity inversion, however, for ω � χ the quartic correction
is negligible in a twofold sense. First and more importantly,
loop corrections to the action stemming from the integration
over the cubic couplings are strongly infrared sensitive in di-
mensions d < 4 and, on large wavelengths, dominate over the
quartic loop corrections. Second, the microscopic parameters
μ4,u4 are much smaller than their cubic counterparts such that
even on short distances, S4 can be considered an unimportant
perturbation. The regime in which the dynamics is dominated
by SDP features a DP phase transition; its extension to values
ω > 0 will be discussed in Sec. III C.

The second important parameter region (B) features a large
and negative u3 < 0, which leads to the emergence of a second,
metastable minimum in the potential landscape. In this regime,
the transition from the absorbing to the active phase is first
order and takes place at finite gap � �= 0. In this case, no
irrelevant terms can be dropped from Eq. (2.52) and a different
approach is required. Its discussion will be covered in Sec. V.

The third region (C) is identified by u3 = 0. At this point,
coherent and classical processes determine the dynamics of
the system on equal footing, which leads to the cancellation
of the cubic coupling. Obviously, for this point (and generally
for u3 � 0) the above introduced transformation to directed
percolation type models is not well defined; this anticipates a
modified canonical power counting and a universality class
different from DP. Instead, we perform the transformation
nX → nX(u4/μ3)−1/3, ñX → ñX(u4/μ3)1/3, which yields

S = SQP − S̃4

=
∫

X

ñX

[
∂t − D∇2 + � + (u4μ

2
3

) 1
3
(
n2

X − ñX

)]
nX

−
∫

X

μ4ñ
2
Xn2

X. (3.3)

For case (C), the first part SQP determines the long-wavelength
dynamics and encodes the novel critical features of the quan-
tum contact process. The loop corrections involving the μ4

vertex, on the other hand, are subleading and may be neglected.
This will be expanded upon in Sec. IV. During the completion
of this work, we became aware that an action of the form of
SQP has been discussed in the context of generalized reaction
diffusion models with a unique absorbing state in Refs. [45,46],
and classical models falling in this class numerically analyzed
in Refs. [47,48]. In these models, as in the present case, SQP

describes the long-wavelength physics at a critical point, which
separates a continuous phase transition, corresponding to the
directed percolation universality class, from a discontinuous
first-order phase transition. The corresponding scaling regime
and dynamics has been termed “tricritical directed percolation”
although the considered systems display only two distinct,
stable thermodynamic phases. In this work, the critical point
represents the end point of a line of second-order transitions,
which separates an active from an inactive phase and represents
thus a bicritical point. Since previous analysis of the corre-
sponding dynamics in the literature is rare and inconclusive, we
perform an independent mean field and renormalization group
analysis of SQP, i.e., the tricritical directed percolation dynam-
ics, in the following sections. In the present case, this regime
is established by classical and coherent contact dynamics on
equal footing and will term it the “quantum contact process”.

B. Mean field phase diagram

In the thermodynamic limit, the steady state corresponds
either to the absorbing phase or to the active, finite-density
phase. In this section, we discuss the mean field phase diagram
and the nature of the active-to-inactive phase transition for
different parameter regimes by neglecting spatial fluctuations
at the level of the action. This corresponds to restricting to a
stationary, spatially uniform (nX → n, ñX → ñ) saddle-point
approximation of the path integral, which satisfies the Euler-
Lagrange equations

δS

δñ
= 0 ⇔ �′(n) − 2ñ�(n) = 0,

δS

δn
= 0 ⇔ ñ[�′′(n) − ñ�′(n)] = 0, (3.4)
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FIG. 2. Scaling regimes for the second-order phase transition in dimensions d = 3,2,1. In the white region, mean field scaling behavior
according to classical directed percolation (DP) is observed, while the blue region corresponds to critical scaling of the classical DP universality
class below the Ginzburg scale. In the yellow regions, the dynamics is dominated by the mean field behavior of the quantum contact process
(QP). The critical behavior of the QP corresponds to the bicritical point and is found in the red region. The black (red) dashed line indicates
the line of second- (first-) order transitions. Remarkably, in one dimension, the first-order transition is located partly in the critical regime and
experiences strong infrared corrections.

where the primes are the standard notation for differentiation
with respect to the argument. A further simplification comes
from the properties of the response fields: according to
Eq. (2.47),

ñ = 〈ñX〉ξ =
〈

δ1

δhn
X

〉
ξ

∣∣∣∣
hn=0

= 0, (3.5)

i.e., ñ is the response of the identity to an external field and
therefore trivially vanishes. Hence, one finds the intuitive result
that the properties of the system are encoded in the potential
(2.53) (reported here for convenience)

�(n) = �

2
n2 + u3

3
n3 + u4

4
n4, (3.6)

with the couplings (2.54)–(2.57). The potential � describes the
deterministic dynamics in the absence of noise and spatiotem-
poral fluctuations; in the long-time limit, this dynamics will
relax towards its global minimum, whose properties thereby
determine the thermodynamic phases and the in-between
phase boundaries. The corresponding results are reported in
the left panel of Fig. 1. Recalling that u4 is always positive,
one can distinguish three different regimes:

(I) For � < 0, � has a single minimum at finite density

nX = nMF = −u3+
√

u2
3−4u4�

2u4
. This region is thus a portion of

the active phase.
(II) For � > 0, u3 > 0, there is a single minimum of the

potential at nX = 0 and the absorbing state is the steady state
of the system.

(III) For parameters � > 0, u3 < 0, � has one local
minimum at nX = 0 and a second local minimum at nX = nMF.
In the absence of noise, the system will always relax towards
the global minimum of the potential, which is located at

nX = 0 for u3 > uc = −3
√

u4�
2 and at nX = nMF for u3 < uc.

The nature of the transition between the active and the
absorbing phases depends on the position in parameter space.

We start from the boundary separating (I) from (III),
corresponding to the regime dominated by the quantum limit
(B) discussed above: for u3 < 0, i.e., for ω >

√
χ (χ + 1)/2,

the phase transition takes place at u3 = uc. As the transition
line is crossed, the density jumps from zero to a finite
value. Furthermore, the system remains gapped (� > 0) at the
transition and keeps a finite correlation length ξ = √

D/� <

∞. These are hallmarks of a discontinuous, first-order phase
transition. Due to the finite correlation length, the theory
remains well behaved at long wavelengths (i.e., free of infrared
singularities) and the qualitative mean field picture does not
break down once fluctuations are included. The latter will
only lead to perturbative corrections of the system parameters,
which may become quantitatively substantial, but remain fi-
nite. An interesting situation appears in one spatial dimension,
where the critical region of the neighboring bicritical point, i.e.,
the region where critical fluctuations become comparable with
the mean field couplings and therefore dominate the behavior
of the system, grows to encompass part of the first-order
line (see Fig. 2). This leads to strong, infrared-dominated
corrections to the dynamics of the first-order transition. An
estimation of the extension of the critical region via the
calculation of the corresponding Ginzburg scale [99] will be
provided further below. Apart from spatial fluctuations, one
has to consider the effect of the nonequilibrium noise vertices
�. Their effect is nonperturbative and leads to a shift of the
transition line, which is discussed in Sec. V.

For u3 � 0, the transition takes place when the gap vanishes
(� = 0), corresponding to the boundary between (I) and (II)
and to the regime dominated by classical physics (B). In this
case, the density varies continuously across the transition and
the phase transition is of second order. Due to the vanishing
gap, spatial fluctuations induce infrared-divergent corrections
to the dynamics and the mean field picture is significantly
modified. The relevant scaling and the corresponding regimes
are discussed in Sec. III C.

Finally, a special role is played by the point (�,u3) =
(0,0) [lying within (C)] at which the first- and second-order
transition lines terminate. This represents a bicritical point, for
which the physics is dominated by the coherent vertex u4 ∼ ω2

alone. The corresponding scaling regime is discussed in the
subsequent section, while a renormalization group analysis is
presented in Sec. IV.
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TABLE I. Critical exponents for the directed percolation (DP)
and the quantum contact process (QP) universality classes. The
latter corresponds to the bicritical point in the phase diagram. The
corresponding scaling regimes are illustrated in Fig. 2. The critical
exponents for the DP universality class are exact numerical values,
taken from Refs. [100–102], while the estimates for the exponents
of the QP result from a functional renormalization group approach,
presented in Sec. IV.

Exponent Mean field d = 3 d = 2 d = 1

βQP 0.5 0.353 0.218
βDP 1 0.81(1) 0.584(4) 0.2764
νQP 0.5 0.521 0.545
νDP 0.5 0.581(5) 0.734(4) 1.0968
zQP 2 1.965 1.930
zDP 2 1.90(1) 1.76(3) 1.5807

C. Scaling regimes at the second-order transition

We present here the universal scaling behavior at the
second-order phase transition and identify the corresponding
regimes for which it is observable. The mean field description
of the previous section breaks down when fluctuation cor-
rections become significantly strong. The scale at which this
occurs is known as Ginzburg scale [99]; we will discuss it
together with the corresponding scaling corrections. The main
points highlighted in this section are summarized in Table I
and Fig. 2.

In the following, we shall employ the standard notation
[1,8,9,103] for the critical exponents of magnetic systems,
such that in a neighborhood of the critical point the order
parameter (density of active sites) scales as n ∼ �β with the
closing gap, the correlation length ζ diverges as ζ ∼ �−ν ,
and the dispersion relation of the frequencies � vanishes as
� ∼ qz in the limit of vanishing momenta q → 0 (IR, or
large-wavelength limit), with z the dynamical exponent, not to
be confounded with the aforementioned coordination number
of the lattice appearing, e.g., in Eqs. (2.11)–(2.13). With these
conventions, the scaling dimension dn of the field n can be
expressed via the hyperscaling relation dn = −β/ν. Within
the mean field description, � = iDq2 and ζ = √

D/�.
Consequently, zMF = 2 and νMF = 1

2 independently of the
dimensionality.

In order to determine the order-parameter exponent βMF,
one has to solve the deterministic (stationary) equation for the
density in the absence of fluctuations

∂tn = 0 = δ�

δn
= (� + u3n + u4n

2)n. (3.7)

Apart from the absorbing state solution n = 0, one finds

n = u3

2u4

[√
1 + 4�u4

u2
3

− 1

]
=
{

(�/u4)
1
2 for u3 = 0,

�/u3 for u4 = 0.

(3.8)

As a consequence, the value of the order-parameter exponent
depends on the parameter regime. For 4�u4 � u2

3 the classical
branching process dominates over the coherent process and
βMF = 1. In this limit, the theory describes the mean field
dynamics of classical directed percolation (DP).

(a) (b)

FIG. 3. Diagrammatic representation of the (a) one-loop and
(b) two-loop correction of the vertex μ3ñ

2n. Ingoing lines represent
density fields n, while outgoing lines represent response fields ñ. The
retarded propagator (3.11) corresponds to a directed line, where the
arrow points from earlier to later times [the propagator vanishes if
this order is inverted, see (3.12)].

On the other hand, for 4�u4 � u2
3, the coherent processes

dominate and the corresponding scaling behavior is that of a
φ4 theory with a nonequilibrium noise vertex � ∼ n, which
explicitly breaks the Z2 symmetry n → −n, ñ → −ñ. We
term this the quantum contact process regime (QP) and the
corresponding mean field exponent is βMF = 1

2 .
The mean field predictions remain valid as long as fluctua-

tions remain small. In order to estimate the scale (in particular,
we choose here the gap �) at which fluctuations become
sufficiently correlated to compete with the average local field,
i.e., the Ginzburg scale, we compare here the bare couplings
with the one-loop perturbative corrections induced by the
interaction terms, which read as

�S = 1

2
Tr ln S(2), with S

(2)
αβ,XY = δ2S

δnα,Xδnβ,Y

. (3.9)

Here, the indices α and β distinguish between density (n1,X =
nX) and response fields (n2,X = ñX). A detailed computation
of the loop corrections can be found in Appendix C. The
strongest infrared divergence is associated to the most relevant
nonlinearity in the action and therefore produces a correction
to the cubic coupling μ3, which can be represented as the
Feynman diagram in Fig. 3(a). It corresponds to the frequency
and momentum integral

δμ
(1)
3 = u3μ

2
3

∫
�,q

(Gq,� )2Gq,−� ≈ γ
(1)
d

u3μ
2
3

D
d
2

|�| d−4
2 ,

(3.10)

over the retarded Green’s functions

Gq,� = (−i� + Dq2 + �) (3.11)

in d dimensions and a dimension-dependent numerical pref-
actor γ

(1)
d (see Appendix C). The diagrammatic representation

of Eq. (3.10) is shown in Fig. 3(a). We recall that Gq,�

corresponds to the response function 〈nq,� ñ−q,−� 〉; indeed,
Fourier back-transforming to time coordinates yields

Gq,t =
∫

d�

2π
e−i� tGq,� = θ (t)e−t(Dq2+�), (3.12)

highlighting the causal structure G(t < 0) = 0. δμ
(1)
3 is di-

verging for � → 0 in dimensions d < 4. The Ginzburg scale
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is obtained by setting δμ
(1)
3 = μ3, which defines a threshold

�G ≈
(

D
d
2

γ
(1)
d u3μ3

) 2
d−4

(3.13)

below which (|�| < �G) the fluctuations are strong and the
system enters the critical scaling regime, and above which
(|�| > �G) fluctuations are instead small and the system
is approximated by the mean field solutions. In the critical
regime, the exponents correspond to the directed percolation
universality class below the critical dimension dc = 4 (see
Table I or Table 2 in Ref. [24]).

Approaching the bicritical point, the cubic coupling u3

vanishes, alongside all one-loop corrections to the action. The
leading-order corrections thus consist of two-loop diagrams,
of which the cubic noise correction δμ

(2)
3 turns out to

have the strongest infrared divergence. The diagrammatic
representation of this correction is shown in Fig. 3(b) and
the analytical value is determined by the integral

δμ
(2)
3 =

∫
q,p,ω,ν

G2
q,ωGp,νGp,−νGp+q,ν−ω ≈ γ

(2)
d

u4μ
3
3

Dd
�d−3.

(3.14)

This correction diverges for � → 0 only in d < 3 and the
corresponding Ginzburg scale is set by δμ

(2)
3 = μ3; it reads as

�G ≈
(

Dd

γ
(2)
d u4μ

2
3

) 1
d−3

(3.15)

and appears only in dimensions d = 2,1. Inside the associated
critical regime, the scaling behavior is determined by the
bicritical point, which represents a different nonequilibrium
universality class. In the following section, we set up a
functional renormalization group approach and determine the
relevant universal quantities.

IV. RENORMALIZATION GROUP APPROACH
TO THE BICRITICAL POINT

In the previous section, we have discussed the emergence
of a bicritical point in the phase diagram and analyzed the
associated scaling behavior. In three spatial dimensions, this
point displays mean field scaling behavior, with exponents
given in Table I. In lower dimensions, however, the exponents
experience strong infrared modifications below the Ginzburg
scale and one finds universal corrections to the mean field
exponents. Our estimates for the critical exponents have
been determined instead via a background field functional
renormalization group approach (FRG) [87,104], with results
reported in Table I. We devote this section to present the
application of this method to our case.

A. Canonical scaling dimensions

The action describing the leading-order dynamics at the
bicritical point is given by SQP in Eq. (3.3). The cubic
coupling u3 is zero at this point and the quartic noise vertex
∼μ4 represents a subleading correction. Due to causality, all
one-loop corrections of the quadratic sector vanish for u3 = 0.
On the other hand, two-loop corrections involving μ4 have a

less relevant infrared divergence ∼|�|d−2 than the corrections
involving μ3, which diverge as |�|d−3 for � → 0. In order to
give a first estimate for the critical exponents at the bicritical
point, we focus here on the leading-order action SQP.

In the absence of a quadratic noise scale ∼T ñ2
X, the

canonical scaling dimensions dn,dñ of the fields nX,ñX have
been determined on the basis of the mean field scaling
behavior and the general properties of the action. As mentioned
in the previous section, the strongest infrared divergence
in the absence of u3 appears, below d = 3, in the renor-
malization of the cubic noise vertex δμ

(2)
3 ∼ |�|d−3. This

sets the upper critical dimension of the bicritical point to
dc = 3. The hyperscaling relation β = −νdn, which is valid
in dimensions d � dc, together with the mean field exponents
βMF = νMF = 1

2 , determines the scaling dimension dn = −1
in three dimensions. This deviates from the canonical scaling
of the directed percolation universality class, which is fixed
instead by the rapidity inversion symmetry to dn = dñ = −d/2
(i.e., dn = − 3

2 in d = 3). In order to determine the canonical
power counting at the bicritical point, one requires the action
to be invariant under the canonical scaling transformation
x → bx, t → bzt . Thus, one finds z = 2, dn + dñ = −d in
the quadratic sector, as well as 2dn = dñ in the cubic and
quartic sector. This sets the canonical scaling of the fields and
couplings at the bicritical point to

dn = −d

3
, dñ = −2d

3
, d� = −2, dμ3 = du4 = 2(d − 3)

3
.

(4.1)

This result is consistent with the upper critical dimension dc =
3, below which the scaling of the nonlinearities in Eq. (4.1)
becomes relevant. It also reproduces the mean field scaling
β = ν = 1

2 in d = dc = 3.
According to the canonical scaling in Eq. (4.1), there

exist only two additional relevant couplings at the bicritical
point. The first one is the cubic coupling u3, which has
du3 = (d − 6)/3. A nonzero cubic coupling u3 �= 0 would
therefore induce a much stronger infrared divergence than
the couplings u4,μ3 and always dominate the renormalization
group flow on long wavelengths. A second relevant coupling
according to the present power counting is represented by
an additive noise scale, described by a term T ñ2

X. In this
term, T acts as an effective low-frequency temperature and
its canonical scaling dimension is as well dT = (6 − d)/3 and
would be a relevant perturbation if generated under RG (even if
absent in the microscopic model). It is thus important to show
that such terms cannot be generated in the renormalization
group flow and T remains pinned exactly to its initial value
T = 0. In the following, we will give a brief argument as
to why this is the case for the present system based on the
functional renormalization group.

For the present system, the microscopic action has the im-
portant property Sñ=0 = 0 = Sn=0. The first equality is nothing
but the causality condition and must hold for any MSRJD
action. The second is a specific property of the present system,
resulting from the fact that the microscopic action contains
no vertex consisting solely of response fields. Moreover, it
is clear that for an action with the property Sñ=0 = 0 no
such noise vertex can be generated on one-loop level. Since
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the functional renormalization group is the one-loop exact
RG evolution equation for the effective action,2 the property
Sñ=0 = 0 remains exact for each single renormalization group
step. It is thus invariant under renormalization.

This demonstrates the two necessary conditions in order to
observe the properties of this specific bicritical point. First,
one has to fine tune the coherent and classical branching ω,χ

into the scaling regime of the bicritical point, centered around
the point u3 = 0 and displayed in Fig. 2. Second, there must
not be any additive noise scale ∼T or any other pure noise
vertex in order to ensure the condition Sñ=0 = 0.

B. Functional renormalization group approach

In order to determine the critical exponents at the bicritical
point, we perform a functional renormalization group (FRG)
analysis of the effective action �eff. It is important to
remark that �eff here is not just the rescaled version of the
potential �[n] under RG, but the full generator of one-particle
irreducible (1PI) correlation and response functions [105,106].
The FRG describes the evolution of the microscopic action S

towards the effective action �eff via the Wetterich equation
[107,108]

∂k�k = 1
2 Tr ln

[(
�

(2)
k + Rk

)−1
∂kRk

]
. (4.2)

Here, k is a running momentum scale and �k interpolates
between the microscopic action S = �k=�, where � is the
ultraviolet cutoff of the theory and the effective action �eff =
�k=0. �

(2)
k is the second-order functional derivative of �k with

respect to the fields n,ñ, analogously to S(2) in Eq. (3.9), and
Rk is an optimized momentum cutoff, which is diagonal in
momentum and frequency, and has momentum-space matrix
elements [109]

Rk(q) = Dk(k2 − q2)�(k2 − q2). (4.3)

Here, Dk is the flowing diffusion constant (i.e., the value taken
by D at the scale k).

The defining property of a critical point is the scale
invariance of correlation and response functions, which is
equivalent to the scale invariance of �eff. Thus, a critical point
in parameter space corresponds to the scale invariance of the
Wetterich equation (4.2) in the limit k → 0. The present system
contains at least two different critical points, namely, the one
corresponding to the directed percolation universality at ω = 0

2For readers that prefer Dyson-Schwinger equations (DSE) over the
functional renormalization group, the argument applies in the same
way. DSE can be formulated one-loop exact as well. Alternatively,
the proof becomes particularly simple when accounting also for Sn=0:
this implies that every vertex has at least one outgoing (ñ) and one
ingoing (n) line. We look here to the possibility of generating in the
RG flow a vertex with only outgoing lines. Say that at some level of
the perturbative expansion there exists such a diagram. First, invert for
simplicity all arrows. Second, choose any vertex and start following
a directed path, always according to the arrows. Since it is impossible
to terminate such a path without going out, and that is impossible
since now all the external lines are ingoing, at some point a loop must
form. Because of the causal structure of the theory [see Eq. (3.12)],
any closed directed loop vanishes.

and the bicritical point u3 = 0. In order to ensure that the
effective action flows towards the latter, we initialize Eq. (4.3)
with �k=� = SQP and set the cubic coupling u3 to remain
zero during the entire flow. Generally, a nonzero flow of u3 is
generated when starting from a microscopic action of the form
of SQP, which is in accordance with the fact that the bicritical
point corresponds to a fine tuning of two distinct parameters
�,u3, both representing relevant directions. Strictly speaking,
setting u3 to zero during the flow thus corresponds to a
microscopic starting point in the scaling regime of the bicritical
point and an RG flow towards the bicritical point, which is
reached in the limit k → 0.

For the present approach, we consider only the most
relevant vertices at the bicritical point, which corresponds to a
truncation of the form

�k =
∫

X

ñX

[
Zk∂t + Dk∇2 + �k − μkñX + ukn

2
X

]
nX.

(4.4)

Within this truncation, the flow of �k is mapped onto the flow
of the field-independent couplings (Zk,Dk,�k,μk,uk). In the
limit k → �, the microscopic parameters are recovered and
the “wave-function” renormalization (i.e., the renormalization
factor of the composite field nñ) Z� → 1. As discussed in
the previous sections, the truncated action (4.4) does not get
renormalized at the one-loop level, and the corresponding FRG
flow is zero according to (4.2). New contributions appear,
however, in a two-loop computation, and indeed �k gets
renormalized. Thus, for the specific dynamics at the bicritical
point, the leading-order corrections are of two-loop order and
one has to modify the truncation (4.4) in order to capture this
effect.

In order to do so, we approach the bicritial point not from
the absorbing but from the active phase, such that the density
field nX → nX + ρk is expanded around a finite stationary
value ρk . This new variable ρk represents now a k-dependent
background field [87,110]. Some of us have performed the
same approach in Ref. [87] in order to determine the critical
exponents of the directed percolation (DP) universality class.
The effect of the background field is the effective inclusion of
higher-order loop corrections within a one-loop computation.
There are, however, two major differences between the setup in
[87] and the present one. First, in Ref. [87] the effective higher-
order diagrams gave a valuable correction to the leading-order
renormalization group flow, which led to a significant improve-
ment in the estimates for the critical exponents. In the present
setup, however, the effective higher-order loop corrections
represent the leading-order terms in the renormalization group
flow. Second, in Ref. [87] the background field introduced an
imbalance between the response and the density field during
the FRG flow, which had to be compensated by an additional
flowing parameter. Here, the imbalance between density and
response field is present already in the microscopic action
and no such parameter has to be introduced. The background
field approach increases the number of flowing parameters
by one and one has to determine now the flow equations for
(Zk,Dk,ρk,�k,μk,uk).

The standard procedure for obtaining these flow equations
consists in projecting Eq. (4.2) onto the different (quadratic,
cubic, . . . ) sectors [20,108]. The flow of the inverse propagator
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for instance is determined via

∂kG
−1
k (q,ω) =

(
δ2

δnq,ωδñ−q,−ω

∂k�k

)
n=ñ=0

(4.5)

and the flow of the remaining couplings is determined
accordingly. In order to identify a scale-invariant fixed point of
these equations, one has to rescale the couplings to make them
dimensionless. Moreover, the wave-function renormalization
and diffusion constants are eliminated via the transformation

(n,ñ,t) → (
nZ

− 1
3

k ,ñZ
− 2

3
k ,tZkD

−1
k

)
, (4.6)

in accordance with canonical power counting. The rescaled
couplings are

⎛⎜⎜⎜⎝
ρ̄k

�̄k

μ̄k

ūk

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
Zk

kd

) 1
3 ρk

k−2 �k

Dk(
kd−3

Zk

) 2
3 μk

Dk(
kd−3

Zk

) 2
3 uk

Dk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.7)

In these units, the anomalous dimensions read as

ηD = −k∂kDk

Dk

= 3Cdūkμ̄kρ̄k

d(1 + �̄k)3
, (4.8)

ηZ = −k∂kZk

Zk

= 2(2 + d − ηD)

(2 + d)
ηD, (4.9)

where

Cd = 2π
d
2

�(d/2)
(4.10)

is the surface of the d-dimensional unit sphere (or d-
dimensional solid angle). Employing ηZ as a shorthand, the
flow equations of the background field and the gap can be
brought as well into a simple form

k∂kρ̄k =
[
ηZ

4

(
42 + 1 + �̄k

ūkρ̄
2
k

)
− d + ηZ

3

]
ρ̄k, (4.11)

k∂k�̄k =
[
t − 2 + ηD + ηZ

2

(
3 + 1

�̄k

)]
t�̄k, (4.12)

while the ones for the nonlinear couplings show an increased
complexity

k∂kμ̄k = ( 2
3 (d − 3 + ηZ) + ηD − ηZ

[
6 − O

(
ρ̃2

k

)])
μ̄k,

(4.13)

k∂kūk = ( 2
3 (d − 3 + ηZ) + ηD − ηZ

[
21 − O

(
ρ̃2

k

)])
ūk.

(4.14)

Hence, the corresponding fixed-point equations

k∂k

⎛⎜⎝ ρ̄k

�̄k

μ̄k

ūk

⎞⎟⎠ != 0 (4.15)

have to be solved numerically. The critical exponents are
extracted from the numerical fixed-point values via the

relations

z = 2 − ηD + ηZ, β = d + ηZ

3
ν (4.16)

while ν corresponds to the inverse of the largest eigenvalue
of the flow equations’ stability matrix at the fixed point.
The results of this analysis are summarized in Table I,
which provides a quantitative estimate of the critical behavior
governed by the class of the bicritical point.

V. FIRST-ORDER TRANSITION

In Sec. III B, we have seen that in regime (III) (i.e., � > 0
and u3 < 0) the mean field prescription predicts the presence
of two stable stationary configurations in the dynamics
[corresponding to the minima of the effective potential (2.53)].
Once fluctuations are included, however, one of them becomes
metastable and eventually decays to the other one. Depending
on the parameters, different minima can become stable in
different regimes; the separatrices (i.e., all the points at which
stability switches from one solution to the other) between these
phases correspond to first-order transitions. In equilibrium, the
actual stable state is the global minimum of the free energy,
while the remaining local minima are metastable. The present
case is, however, different due to the multiplicative (∝√

n)
nature of the noise, which makes fluctuations much more
relevant in the neighborhood of the finite-density minimum
than in the one of the absorbing state. Therefore, this produces
a bias towards the latter, which must be accounted for. The
metastable dynamics takes place at a finite correlation length
ξ < ∞ and therefore is not driven by infrared-divergent spatial
fluctuations. In the following, we will thus neglect them and
discuss the first-order phase transition in the presence of
nonequilibrium noise via an optimal path approximation [98].

A. Optimal path approximation

In the coexistence region (III), the mean field solutions
found in Sec. III B read as n0 = 0 (absorbing) and nMF =√

u2
3−4u4�−u3

2u4
(active), which solve

�′[n] = ∂�

∂n
[n] = 0. (5.1)

In order to determine the stable phase of this model in
the thermodynamic limit (in the following “thermodynamic
phase” for short), we search for a “classical” trajectory in
phase space, i.e., a trajectory in the (n,ñ) space which keeps
the action stationary, which connects the two minima. This
trajectory is referred to as the optimal path and determines the
preferred minimum of the potential in the presence of noise
[98]. The stationarity of the action is ensured by enforcing the
Euler-Lagrange equations

δS

δnX

= δS

δñX

!= 0. (5.2)

The common solution ñX = 0 of vanishing noise field yields
the deterministic equation of motion

∂tnX = −�′[nX] (5.3)
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for nX and remains valid for small fluctuations around the
minima n0 and nMF, but does not account for large fluctuations
connecting one minimum to the other. We have therefore to
look for those solutions of (5.2) that do.

Neglecting spatial fluctuations and keeping only the depen-
dence on time, we replace the fields (nX,ñX) → (nt ,ñt ) with
spatially homogeneous and temporally fluctuating ones. The
action S takes the form

S = V

∫
t

[
ñt (∂tnt + �′[nt ]) − ñ2

t �[nt ]
]
, (5.4)

with V the volume of the system. This leads to the dynamical
saddle-point equations

0 = 1

V

δS

δñt

= ∂tnt + �′[nt ] − 2ñt�[nt ], (5.5)

0 = 1

V

δS

δnt

= (−∂t + �′′[nt ] − ñt�
′[nt ])ñt . (5.6)

Note that, by defining the effective Hamiltonian

H [nt ,ñt ] = ñt (ñt�[nt ] − �′[nt ]), (5.7)

these take the form of Hamilton-Jacobi equations

∂tnt = ∂H

∂ñt

, ∂t ñt = −∂H

∂nt

, (5.8)

and thus dH
dt

= 0. Consequently, trajectories in phase space
can be seen as level curves at constant H ≡ E. The stationary
solutions n0 and nMF have been identified for ñ = 0, which
implies H = 0. The remaining trajectories at zero energy are
given by either nt = 0 or

ñt = �−1�′. (5.9)

With this last choice, the equation of motion for the density
field (5.5) becomes

∂tnt = �′, (5.10)

corresponding to motion in an inverted potential −�. This
implies that the stationary solutions become unstable along
these trajectories, which are thus the right candidates to escape
from the attraction basins of the steady states and to describe
large fluctuations [98].

The exponential of the action e−S[nt ,ñt ] represents the
statistical weight of a trajectory; for optimal paths we have,
upon substitution of Eq. (5.9),

SOP = V

∫ tf

ti

ñt ∂tnt dt = V

∫ nf

ni

ñ dn = V

∫ nf

ni

�′

�
dn,

(5.11)

for a generic trajectory connecting an initial field configuration
ni = nt=ti with a final-state configuration nf = nt=tf . The
remaining expression is independent of the initial and final
time and one can thus choose ti = 0 and tf = t , such that SOP

interpolates between the initial and the current state at time
t . Fixing a given ni as a reference value, these rates can be
used to reconstruct the probability distribution to reach nf (for
details, see Appendix D) which is proportional to

e−SOP(ni ,nf ) = e−V [F(nf )−F(ni )], (5.12)

where the integralF(n) is defined (up to an irrelevant constant)
by ∂F

∂n
= 1

�
∂�
∂n

. Setting ni = 0 and normalizing the distribution
yields

P (nf ) = Z−1 e−VF(nf ), with Z =
∫

dn e−VF(n). (5.13)

We want to stress that the existence of a stationary state
probability distribution of the form (5.13) does not imply
that the system is effectively in thermal equilibrium. The
balance between noise and deterministic dynamics leads to
an effective “free energy” F for the stationary distribution.
However, detailed balance is not restored in the system, which
can be seen by the fact that the equation of motion from the
field cannot be read off the function F . Naively taking this
F as describing thermal equilibrium, the equation of motion
derived from Eq. (5.13) would read as

∂tφ = −∂F
∂φ

+ ξt with 〈ξt ξt ′ 〉 = δ(t − t ′)
V

. (5.14)

This equation is not equivalent to the correct Langevin
equation of motion for the dynamics of the field

∂tφ = −∂�

∂φ
+ ζt with 〈ζt ζt ′ 〉 = δ(t − t ′)

V
�t . (5.15)

In this sense, the existence of an effective stationary state
probability distribution does neither imply detailed balance
nor can a corresponding equation of motion be derived from
the functional F alone.

The integral F(n) can be determined by common integra-
tion with respect to n and reads as

F(n) = �l + 2u3
n − l

μ
+ u4

n(nμ − 2) + 2l

μ2
. (5.16)

Here, we defined the function l = ln(1+μn)
μ

and noise ratio μ =
μ4/μ3 = 2μ4.

In the thermodynamic limit V → ∞, the volume factor
in the exponent of P (nf ) suppresses all field configurations
except the one that minimizes F . Thus,

P (nf )
V →∞→ δ(nf − nmin), (5.17)

where nmin is the minimizing density field. One can thus
compare F(n = 0) = 0 with the value F(n = nMF) and finds
the system in the active phase for F(n = nMF) < 0 and in the
absorbing phase for F(n = nMF) > 0. The first-order phase
transition takes place at F(n = nMF) = 0.

We compare our nonequilibrium result to the more usual
case of thermal equilibrium. In the latter case, the noise kernel
is simply the temperature �t = T and the integration over
the optimal path trajectories yields the thermal distribution
according to the Boltzmann weight function

Pth(n) = Z−1
th e− V �(n)

T , (5.18)

where �(n) can be identified as the free-energy density. In this
case, the thermodynamic phase is determined by the global
minimum of the potential � independently of the thermal
noise strength T . We want to stress at this point that the
mean field value of the phase transition in the absence of
noise corresponds exactly to a finite-temperature, equilibrium
transition. In Fig. 4(b), we draw the actual phase boundary of
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(a) (b)

FIG. 4. Optimal path approximation. (a) Phase space (n,ñ)
trajectories for parameters ω = 1.6, χ = 0.5 [represented by the
dot in parameter space in (b)]. The optimal path trajectories are
displayed in red. One distinguishes between the deterministic, zero-
noise trajectory (dashed line) and the noise-dominated trajectory
(solid line). (b) Shift of the first-order transition line from the
mean field result �(nMF) = 0 (red) to the one determined by the
optimal path approachF(nMF) = 0 (blue) in the presence of temporal,
noise-induced fluctuations.

the first-order transition in the presence of nonequilibrium
noise [determined by F(nMF) = 0] and compare it to the
thermal transition line [corresponding to �(nMF) = 0] as
predicted by mean field. Crucially, the transition line is shifted
to larger values of ω in the presence of a noise kernel, which
prefers the absorbing state over any active field configuration
and pulls the system towards an empty state.

B. First-order transition at finite volume

The partition function for the density distribution evolves
into a discontinuous δ function only in the limit V → ∞
but remains a continuous function for any finite volume
V < ∞. Strictly speaking, the corresponding first-order phase
transition occurs only in the thermodynamic limit and for all
finite system sizes, macroscopic observables in the active and
absorbing phase are continuously connected.

For the previously discussed second-order transitions, the
Ginzburg scale sets the minimal system size beyond which
universal scaling behavior can be observed. For the first-order
transition, however, we have not determined such a scale and
thus we have to detect numerically at which volumes the
discontinuity at the phase transition is observable. In Fig. 5, we
discuss the density distribution P (n) and the behavior of the
average density 〈n〉, when the system crosses the first-order
transition line, as a function of the system size V . As one can
see, already for moderate system sizes of ≈5000 lattice sites,
the discontinuity at the transition is clearly visible.

A comprehensive picture of the first-order nonequilibrium
phase transition, and a more detailed and quantitative es-
timation of the nucleation events and their effects on the
first-order phase transition, would require accounting for
spatially inhomogeneous field configurations as well (nt back
to nX, see e.g. Chap. 8 of [98]). In addition, in one dimension,
there may be domain-wall defects with a nonextensive barrier
for their creation, which may act to wash out the first-order
transition. However, such an analysis is beyond the scope of
this work.

FIG. 5. First-order phase transition at a finite system size V < ∞.
The figures (a)–(c) display the density distribution function P (n) in
Eq. (5.13) as in the (ω,n) plane for fixed value of χ = 0.4 for different
system sizes V in units of the d-dimensional unit volume ad . In
the thermodynamic limit, a first-order transition occurs at ωc ≈ 1.6.
(d) The density expectation value 〈n〉 = ∫ dn nP (n) is plotted as
a function of ω for χ = 0.4. The different plots correspond to the
volume V in (a)–(c). In both rows, the discontinuity at ω = ωc is
established for increasing system size and is significant already for
moderate system sizes of V = 5000ad .

If we assume that every lattice site in our original descrip-
tion corresponds to a frozen, tightly trapped Rydberg atom,
the nonequilibrium phase transitions discussed in this work
should in principle be observable in an experimental context
as well, as detailed in the next section.

VI. EXPLORING THE NONEQUILIBRIUM PHASE
TRANSITION WITH RYDBERG ATOMS

In this section, we discuss the possibility of observing as-
pects of the nonequilibrium phase transitions discussed here in
ensembles of laser-excited cold-atomic gases. To this end, we
consider a setup in which atoms are confined to a rectangular
lattice with one atom per site at positions rl as, e.g., realized
experimentally in Refs. [74,111–113]. The internal dynamics
of the atoms is described by a two-level system where |↓〉 is an
electronic ground state and |↑〉 is a high-lying Rydberg S state
[51,52]. Atoms are excited to the Rydberg state with a laser
(Rabi frequency � and detuning �). Here, they interact with a
van der Waals potential of the form Vlm = C6/|rl − rm|6 with
C6 being the so-called dispersion coefficient that parametrizes
the interaction strength [51,53]. With this modeling, the
coherent dynamics of an ensemble of atoms in which Rydberg
states are excited is described by the Hamiltonian

HRyd = �
∑

l

σ̂ x
l + �

∑
l

n̂l + 1

2

∑
l �=m

Vlmn̂l n̂m, (6.1)

where we recall that σ̂ x
l = |↑〉l〈↓|l + |↓〉l〈↑|l and

n̂l = |↑〉l〈↑|l and a rotating-wave approximation has
been performed (i.e., a transformation to the frame rotating
with the frequency of the laser has been applied and
subsequently counter-rotating terms have been neglected).

One central aspect of the nonequilibrium physics explored
here is the presence of a facilitation mechanism, i.e., an
enhanced probability of creating an excitation right next to
an already existing one. In the context of Rydberg lattice
gases, this can be in principle achieved via the so-called
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antiblockade condition [59–63]. In order to realize it,
the laser detuning is set to cancel exactly the interaction
energy between nearest neighbors, � + V12 = 0. In this
case, transitions (in a one-dimensional chain) of the kind
|. . .↓↑↓. . .〉 → |. . .↓↑↑. . .〉 become resonant. For sufficiently
large detuning |�| � |�|, off-resonant transitions such as
|. . .↓↓↓. . .〉 → |. . .↓↑↓. . .〉 are instead suppressed; note,
however, that for any finite (albeit large) �, these processes
are not completely absent. Therefore, the absorbing property
of the “all-down” state is only an approximation. With this in
mind, we can now formulate an effective Hamiltonian which
describes only (near-) resonant transitions:

Hres = �
∑

l

�̂l σ̂
x
l + 1

2

∑
lm

′
Vlmn̂l n̂m. (6.2)

Here, the
∑′ denotes a summation excluding nearest

neighbors. The operator �̂l is a projector with support
on the nearest neighbors of the lth site. It yields 1 for
configurations that contain exactly one single excitation and
0 otherwise. In one dimension, its explicit form reads as
�̂l = n̂l−1 + n̂l+1 − 2̂nl−1n̂l+1.

The Hamiltonian (6.2) has a striking resemblance to the
one given in Eq. (2.4). Discrepancies arise in the structure
of the operators �̂l , which however differ from the operators
�̂l only through higher-order terms in the local densities n̂m.
These differences are actually irrelevant to the determination
of the critical properties, as detailed later in this section. The
second discrepancy arises from the residual interaction terms
which are a consequence of the power-law tail of the van
der Waals interaction. Clearly, the energy shifts caused by
them become more severe in higher dimensions d > 1, as
the distance between next-nearest neighbors decreases. Note
that in principle the importance of the residual long-range
interaction can be further suppressed by employing potential
shaping techniques as discussed in Ref. [49].

Before addressing further the influence of the differences
in the Hamiltonians (6.2) and (2.4) on the features of the
phase diagram, let us first discuss how the required dissipative
processes are realized within a Rydberg setting. Spontaneous
decay, e.g., the process described by Eq. (2.7), is to a good
degree of approximation realized naturally by the spontaneous
emission of photons and a subsequent deexcitation of a
Rydberg atom. In practice, such events might proceed through
a cascade, but within the two-level approximation one may
model it by Eq. (2.7), where γ is the radiative decay rate.

Processes similar to the classical branching and coagulation
described by Eqs. (2.8) and (2.9) can be introduced by exciting
Rydberg atoms with a laser source subject to strong phase
noise, with a dephasing rate �, and a spatial correlation length
that is shorter than the interatomic distance. The derivation
of such effective classical branching has been discussed
extensively in Refs. [49,61,62] and experimentally confirmed
in Ref. [63]. Here, we sketch a slightly different derivation of
the corresponding dynamics as this allows us to include both
coherent as well as incoherent branching in the equations of
motion. To this end, we introduce for each atomic position
a (bosonic) laser mode âl . Following the derivation leading
to Eq. (6.2), but without substituting âl by the classical Rabi

frequency, we obtain the atom-light interaction Hamiltonian

HAL = g
∑

l

�̂l (̂alσ̂
+
l + â+

l σ̂l), (6.3)

with coupling g. The dynamics of the atom-light density matrix
ρ̄ is now given (in the interaction picture) by

˙̄ρ = −i

[∑
l

g�̂l (̂σ
+
l âl + σ̂−

l â
†
l ),ρ̄

]

+�
∑

l

(
â
†
l âl ρ̄ â

†
l âl − 1

2

{
(̂a†

l âl)
2,ρ̄
})

. (6.4)

The final Lindblad dissipator, with rate �, describes the laser
phase noise [115].

One can now obtain an effective equation of motion for the
atoms by first performing second-order perturbation theory
in the small parameter g/� along the lines of Ref. [49] (see
also [64,65]). Taking subsequently the expectation value of the
light field, i.e., disregarding the back action of the atoms onto
the light, the effective master equation for the reduced atomic
density matrix reads as

ρ̇ =
∑

l

4g2〈̂a†
l âl〉

�

(
�̂l σ̂

+
l ρ�̂l σ̂

−
l − 1

2

{
�̂2

l σ̂
−
l σ̂+

l ,ρ
})

+
∑

l

4g2〈̂a†
l âl +1〉
�

(̂
�lσ̂

−
l ρ�̂l σ̂

+
l − 1

2

{
�̂2

l σ̂
+
l σ̂−

l ,ρ
})

.

For sufficiently high-light intensity, i.e., the photon occupation
obeying 〈̂a†

l âl〉 � 1, and a homogenous system 〈̂a†
l âl〉 =

〈̂a†
mâm〉 one can define the rate κ = 4g2〈̂a†

l âl〉/�. The resulting
dissipative dynamics thus has the form of Eqs. (2.8) and (2.9)
where �̂l is replaced by �̂l .

Adding all contributions together, we find that the dynamics
of the Rydberg lattice gas under antiblockade conditions is
approximately described by the master equation

ρ̇ = −i

[
�
∑

l

�̂l σ̂
x
l + 1

2

∑
km

′
Vkmn̂l n̂m, ρ

]

+
∑

l

κ

(
�̂l σ̂

+
l ρ�̂l σ̂

−
l − 1

2

{
�̂2

l σ̂
−
l σ̂+

l , ρ
})

+
∑

l

κ

(
�̂l σ̂

−
l ρ�̂l σ̂

+
l − 1

2

{
�̂2

l σ̂
+
l σ̂−

l , ρ
})

+
∑

l

γ

(
σ̂−

l ρσ̂+
l − 1

2
{̂σ+

l σ̂−
l , ρ}

)
. (6.5)

The projector �̂l enables the excitation of a ground-state
atom if and only if a single neighboring lattice site is excited.
On the other hand, the operator �̂l in Eq. (2.4) is “proportional”
to the number of neighboring lattice sites that are excited. The
difference between the physical projector �̂l and the operator
�̂l is thus expected to become irrelevant in the limit of small
densities, when multiple occupancies in the proximity of a
lattice site l are unlikely. This should be the case in the entire
absorbing state phase and for the active phase sufficiently close
to the transition line. As long as one stays in this parameter
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regime, the substitution �̂l → �̂l in the master equation is
justified. More rigorously, in terms of continuous density
fields, the difference

�X − �X = 2n2
X + 2D[nX∇2nX − (∇nX)2] (6.6)

or, in higher dimensions,

�X − �X = znX[1 − (1 − nX)z−1]

+ D[1 − (1 − nX)z−2(1 − znX)](∇2nX)

− 2D(1 − nX)z−3(1 − znX)|∇nX|2
+ (higher-order derivatives), (6.7)

only includes shifts to u4 and μ4 in the density action (2.52),
and therefore affects neither the qualitative features of the
phase diagram nor the universal properties.

Finally, we perform a numerical simulation of the many-
body dynamics in order to gain some insight as to whether
the predicted phases structure is also present for Rydberg
gases. The classical limit � = 0 was explored in Ref. [49]
and indeed signatures of the expected second-order phase
transition, falling in the DP universality class, have been

FIG. 6. First-order transition in the quantum limit for a one-
dimensional chain of 12 sites. The main panels are density plots of the
distribution P (n) of the excitation density n as a function of ω = �/γ .
Each inset shows an instance for fixed � = 8γ (indicated by the
white dashed line) from the corresponding panel. The four panels
correspond to (a) main model [Eq. (2.4) plus decay] in the quantum
limit κ = 0, (b) effective antiblockaded model corresponding to
Eq. (6.2) (plus decay) with Vlm set to 0, (c) Rydberg chain [Eq. (6.1)
plus decay] with nearest-neighbor interactions only, (d) Rydberg
chain with full van der Waals tails. All plots display a crossover from
an (almost) absorbing state at small � to a state with finite excitation
density. For intermediate values of � the counting statistics in the
insets feature a bimodal shape which can be regarded as a signature
of the anticipated first-order phase transition. All results are obtained
via quantum-jump Monte Carlo calculations [114] with averages
performed over 1000 runs. The simulation times are γ t = 4 (a) and
γ t = 6 (b)–(d). For the computations for the Rydberg systems [panels
(c), (d)], the remaining parameters have been set to � = 10� = −V .
Note that the color bar is bounded by 0.3, despite the peak around
the absorbing state exceeding this threshold (for lower values of �).
This was done in order to improve visibility of the finite-density
features.

identified. We will thus focus on the opposite limit in which
there is solely quantum branching and coagulation (κ = 0).
This situation is far more challenging to treat numerically and
only rather small systems can be studied. In Fig. 6, we show
the histogram of the excitation count as a function of �/γ for
the model studied in the previous sections, the Rydberg lattice
gas with and without van der Waals tails as well as for the
effective Rydberg model (6.5). All simulations are performed
on a one-dimensional chain with periodic boundary conditions
and all of them show the onset of the expected first-order phase
transition which becomes manifest in the bimodal shape of the
histogram.

Thus, we can expect the Rydberg system to reproduce
the physics in the classical and the quantum limit at least
in one dimension. In an experiment one might therefore be
able to study the competition between quantum and classical
fluctuations, and to ultimately probe the physics at the bicritical
point shown in the phase diagram (Fig. 1).

VII. CONCLUSION

We have introduced a model of driven-dissipative two-
level systems with coherent and dissipative branching and
coagulation dynamics, which features a unique absorbing state
throughout the entire parameter regime. By mapping the dis-
sipative Heisenberg-Langevin equations to a nonequilibrium
path integral for the density of the excited atomic levels, we
have shown that this model undergoes a phase transition from
the absorbing state towards an active, finite excitation density
state for sufficiently strong branching rates. In the classical
limit, i.e., in the limit of weak coherent branching, the system
corresponds to a classical contact process and the absorbing
state phase transition belongs to the universality class of
directed percolation. On the other hand, in the quantum limit,
i.e., in the limit of vanishing incoherent branching, the phase
transition is drastically modified and becomes a discontinuous
nonequilibrium first-order transition. These two regimes are
separated by a bicritical point, which features a continuous
absorbing state phase transition, which resembles the tricritical
DP class. The dynamics at this point represents the quantum
analog of the classical contact process. Performing a functional
renormalization group analysis, we have analyzed the critical
scaling behavior and characterized the universality class of this
quantum contact process below its upper critical dimension
dc = 3. By showing that the critical scaling regime of the
bicritical point is extended in parameter space, we have
demonstrated that the quantum contact universality class can
be explored experimentally for reasonably large system sizes
and with moderate parameter fine tuning. The experimental
realization of the quantum contact process with ensembles of
laser-excited Rydberg atoms opens the door for the exploration
of novel quantum and classical nonequilibrium phase transi-
tions in the framework of current cold-atom experiments.

ACKNOWLEDGMENTS

B.E., M.M., and I.L. wish to express their gratitude for the
insightful discussions with J. P. Garrahan and for access to
the University of Nottingham High Performance Computing
Facility. I.L. acknowledges that the research leading to these

014308-19



BUCHHOLD, EVEREST, MARCUZZI, LESANOVSKY, AND DIEHL PHYSICAL REVIEW B 95, 014308 (2017)

results has received funding from the European Research
Council under the European Union’s Seventh Framework
Programme (Grant No. FP/2007-2013)/ERC Grant Agreement
No. 335266 (ESCQUMA). Further funding was received
through the H2020-FETPROACT-2014 Grant No. 640378
(RYSQ) and from EPSRC Grant No. EP/M014266/1. M.B.
and S.D. acknowledge funding by the German Research
Foundation (DFG) through the Institutional Strategy of the
University of Cologne within the German Excellence Initiative
(ZUK 81), and by the European Research Council via ERC
Grant Agreement No. 647434 (DOQS).

APPENDIX A: GENERAL REMARKS ON THE
HEISENBERG-LANGEVIN EQUATIONS

The quantum master equation (2.3) is amenable to exact
numerical treatment only for very small system sizes (results
of quantum-jump Monte Carlo simulations can be found in
Sec. VI). In order to determine the properties of the system in
the thermodynamic limit, we undertake in the following an an-
alytical approach aiming at constructing a nonequilibrium path
integral. As a first step, we derive the Heisenberg-Langevin
equations [90] for the one-spin observables of our system.
For an arbitrary operator O, these are obtained by adding a
quantum noise term ξO , whose properties are briefly discussed
further below, to the conjugate master equation ∂tO = S∗O,
where S∗ is the adjoint operator to S, i.e., it satisfies

tr{O(Sρ)} = tr{(S∗O)ρ} ∀ O,ρ, (A1)

and reads as

S∗O = i[H,O] +
∑

l

L(d)∗
l O +

∑
l

L(b)∗
l O +

∑
l

L(c)∗
l O.

(A2)

The adjoint Liouvillians L∗ are defined in the same way and
it is not difficult to see from Eq. (2.5) that

L∗O =
∑
m

[
L†

mOLm − 1

2
{L†

mLm,O}
]
. (A3)

Including the quantum noise term, the evolution equation for
O thus reads as

∂tO = i[H,O] +
∑

l

L(d)∗
l O +

∑
l

L(b)∗
l O

+
∑

l

L(c)∗
l O + ξO. (A4)

From a physical point of view, the origin of the noise lies in the
coupling to the environment which is producing dissipation
upon the system; because of this, averaging over it ideally
corresponds to averaging over the action of the bath degrees
of freedom and constitutes a distinct operation from taking
the quantum expectation value 〈. . .〉 = tr{(. . .)ρ}. We shall
thereby employ a different notation 〈. . .〉ξ to indicate it. In
order to highlight the significance of the noise term, we first
remark that the evolution under S∗ alone [which we denote
for brevity by O∗(t) ≡ eS

∗tO] does not generally satisfy
(O2)

∗
(t) = O∗(t) O∗(t), due to its nonunitary character. The

noise is introduced to ensure that this condition is met again

once the average is taken, i.e.,

〈O2(t)〉ξ = 〈O(t)O(t)〉ξ , (A5)

where by O(t) we mean here the operator O evolved
according to Eq. (A4). In general, ξO is an O dependent,
operator-valued random variable whose moments are defined
via the consistency relation above. Its average must identically
vanish (〈ξO〉ξ ≡ 0), which implies that 〈O(t)〉ξ = O∗(t). In
other words, 〈O(t)〉ξ as an operator evolves under S∗. Note
that this must be the case in order to guarantee that the correct
state evolution is recovered:

〈〈O(t)〉ξ 〉 = tr{〈O(t)〉ξρ(0)}
= tr{〈O(0)〉ξ ρ(t)} = tr{Oρ(t)}, (A6)

where the last equality comes from the fact that the initial
conditions of Eq. (A4) are fixed. Now, since ρ(t) = eSt ρ(0),
we have 〈O(t)〉ξ = eS

∗t 〈O(0)〉ξ . In order to determine
higher-order correlations of ξO , one way is to enforce that
canonical (anti)commutation relations are preserved under
time evolution.

In this work, we will follow a different path and derive them
instead from the coupling of the system to an auxiliary bath of
harmonic oscillators. This is equivalent to the derivation of the
Heisenberg-Langevin equations directly from the microscopic
system-bath coupling. We will, however, choose a simplified
bath compared to the microscopic one, which produces the
same noise operators but is much more convenient and
instructive to deal with. In this approach, which preserves
the commutation relations of all operators and is therefore
physically consistent, the noise correlations turn out to be
simply the correlation functions of the bath, which is in
agreement with physical intuition.

APPENDIX B: DERIVATION OF THE
DENSITY-ONLY ACTION

Starting from Eq. (2.51), we realize that the action is at most
quadratic in σy,σ̃ y . Hence, the corresponding functional inte-
gration is Gaussian and can be carried out exactly. However,
to simplify it further, we recall that, in the quadratic sector,
the mass (χ + 1)/2 is always > 1

2 ; therefore, the propagator is
strongly gapped in the entire parameter regime and fluctuations
∼∂t ,n,ñ are negligibly small. Eliminating these terms and
grouping at the end the remaining quadratic and linear ones
yields the action

S =
∫

X

ñX

[
(∂t − D∇2 + 1 − χ )nX

+ 2nXPXnX − 1

2

(
ñXnX − σ̃ x

Xσ x
X

)]
+
∫

X

σ̃ x
X

[(
∂t + χ + 1

2
+ nXPX

)
σx

X − 1

2
σ̃ x

X

]
+
∫

X

σ̃
y

X

[
χ + 1

2
σ

y

X − 1

2
σ̃

y

X

]
+
∫

X

σ
y

X

(
−ω

χ
ñXPXnX + ω

χ
σ̃ x

XPXσx
X

)
+ σ̃

y

X

(
2ω

χ
(2nX − 1)PXnX − ω

χ
σx

XPXσx
X

)
. (B1)
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We recall that PX = (D∇2 + χ ). The σy,σ̃ y fields can now straightforwardly be integrated out. This replaces the last two lines
in the expression above with

−
∫

X

2ω2

χ2(χ + 1)

{
1

χ + 1

[
σ̃ x

XPXσx
X − ñXPXnX

]2 + [(4nX − 2)PXnX − σx
XPXσx

X

][
σ̃ x

XPXσx
X − ñXPXnX

]}
. (B2)

Collecting now the terms according to their order in the σx , σ̃ x fields we find

S =
∫

X

ñX

[
(∂t − D∇2 + 1 − χ )nX + 2

(
nXPXnX − 2ω2

χ2(χ + 1)
(PXnX)2

)
− 1

2
ñXnX

]
−
∫

X

[
2ω2

χ2(χ + 1)2
ñ2

X(PXnX)2 − 8ω2

χ2(χ + 1)
ñXnX(PXnX)2

]
+
∫

X

σ̃ x
X

[(
∂t + χ + 1

2
+ nXPX + 4ω2

χ2(χ + 1)2
ñXPXnXPX − 4ω2

χ2(χ + 1)
(2nX − 1)PXnXPX

)
σx

X − 1

2
σ̃ x

X

]
−
∫

X

[
2ω2

χ2(χ + 1)
σx

XPXσx
XñXPXnX

]
+
∫

X

[
2ω2

χ2(χ + 1)
σ̃ x

Xσ x
X(PXσX)2 − 2ω2

χ2(χ + 1)2

(
σ̃ x

XPXσX

)2]
. (B3)

At this level, we perform two manipulations. First, the elimination of negligible fluctuations in the quadratic σx,σ̃ x sector,
exploiting the presence of a gap (χ + 1)/2 > 1

2 . Second, we neglect all spatial fluctuations in cubic and quartic nonlinearities
since the corresponding terms are irrelevant in the renormalization group sense (we recall that the dynamic exponent here is
z = 2). This corresponds to substituting all PX → χ . This yields

S =
∫

X

ñX

[
(∂t − D∇2 + 1 − χ )nX + 2

(
χ − 2ω2

χ + 1

)
n2

X − 1

2
ñXnX

]
−
∫

X

[
2ω2

(χ + 1)2
ñ2

Xn2
X − 8ω2

χ + 1
n3

XñX

]
+
∫

X

σ̃ x
X

[
χ + 1

2
σx

X − 1

2
σ̃ x

X

]
−
∫

X

[
2ω2

(χ + 1)2

(
σ̃ x

Xσ x
X

)2 + 2ω2

χ + 1

(
ñXnXσx

Xσ x
X − 2σ̃ x

X

(
σx

X

)3)]
. (B4)

The only relevant coupling of the density with the σx sector is in the (σx)2 component, which is not gapped due to causality.
Therefore, this coupling has to be taken seriously. The quadratic part in this sector can be expressed as(

σx

σ̃ x

)ᵀ
∗ G−1

x ∗
(

σx

σ̃ x

)
with

(
G−1

x

)
XY

= δ(X − Y )

(− 2ω2

χ+1 ñXnX
χ+1

4

χ+1
4 − 1

2

)
(B5)

the inverse Green’s function. Since the σx field is strongly gapped, it is a good approximation to integrate it out in a quadratic
approach. We remark here that by doing this the terms generated by −�σ̂

y

l ŝl in Eq. (2.12) [the ones ∝σ̃ x in the third line
of (E35)] disappear, making the original sign (and hence the typo in Ref. [84]) irrelevant. The remaining Gaussian path
integral over σx , σ̃ x produces a factor (det G−1

x )
−1/2

which can be exponentiated and included in the action as a correction
�S = 1

2 ln det(G−1
x ) = 1

2 tr{ln(G−1
x )}. Apart from a field-independent part, which we disregard, this correction reads as

�S = 1

2

∫
X

ln

[
1 − 16ω2

(χ + 1)3
ñXnX

]
= − 8ω2

(χ + 1)3
ñXnX − 64ω4

(χ + 1)6
(ñXnX)2 + · · ·, (B6)

where the omitted terms in the Taylor expansion on the right-hand side are irrelevant in a RG sense. Collecting all terms, the
action is now cast in the form

S =
∫

X

ñX

[(
∂t − D∇2 + 1 − χ − 8ω2

(1 + χ )3

)
nX + 2

(
χ − 2ω2

χ + 1

)
n2

X + 8ω2

χ + 1
n3

X

]
−
∫

X

ñ2
X

[
1

2
nX +

(
2ω2

(χ + 1)2
+ 64ω4

(χ + 1)6

)
n2

X

]
.

(B7)

This is the density action (2.52) for the quantum contact process, with the parameters corresponding to Eqs. (2.53)–(2.58).

APPENDIX C: FIRST NONTRIVIAL CONTRIBUTIONS IN THE LOOP EXPANSION

We briefly report here the calculation of the one- and two-loop corrections represented by the Feynman diagrams in Fig. 3.
Throughout this section we assume � > 0, so that we are adding fluctuations around the absorbing solution. The one-loop
contribution δμ

(1)
3 in Fig. 3(a) comes with a combinatoric factor 8, i.e., δμ

(1)
3 = 8I

(1)
3 with

I
(1)
3 = u3(μ3)2

∫
ddq

(2π )d
d�

2π
(Gq,� )2Gq,−� (C1)
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the integral in Eq. (3.10) and Gq,� as in Eq. (3.11), which, once the substitution is performed, reads as

i3 ≡ I
(1)
3

u3μ
2
3

=
∫

ddq

(2π )d
d�

2π
[−i� + Dq2 + �]−2[i� + Dq2 + �]−1. (C2)

The frequency integration here is particularly simple, as it can be performed in the complex plane, where the structure of the
poles of the integrand is apparent. In the upper half plane, e.g., the only one is � = i(Dq2 + �). We thus find

i
(1)
3 =

∫
ddq

(2π )d
1

4[Dq2 + �]2
, (C3)

which can be then exponentiated to yield

i
(1)
3 = 1

4

∫
ddq

(2π )d

∫ ∞

0
dT T e−T (Dq2+�) = 1

4

∫ ∞

0
dT T (4πDT )−d/2e−T � = �

d−4
2 �E

(
2 − d

2

)
4(4πD)d/2

, (C4)

where �E denotes the Euler Gamma function, implying

δμ
(1)
3 = 2u3μ

2
3

�
d−4

2 �E

(
2 − d

2

)
(4πD)d/2

. (C5)

The two-loop contribution in Fig. 3(b) comes with a combinatoric factor 23 × 3! = 48. We take this factor out, so that
δμ

(2)
3 = 48I

(2)
3 = 48(μ3)3u4 i

(2)
3 with

i
(2)
3 =

∫
ddq ddp d� dν

(2π )2d+2
(Gq,� )2Gp,νGp,−νGp−q,ν−�

∫
ddq ddp d� dν

(2π )2d+2
[−i� + Dq2 + �]−2[−iν + Dp2 + �]−1

× [iν + Dp2 + �]−1[−i(ν − � ) + D( �p − �q)2 + �]−1. (C6)

The integration over the frequencies yields now

i
(2)
3 =

∫
ddq ddp d�

(2π )2d+1
[−i� + Dq2 + �]−2[2(Dp2 + �)]−1[i� + Dp2 + D( �p − �q)2 + 2�]−1

=
∫

ddq ddp

(2π )2d
[Dp2 + D( �p − �q)2 + Dq2 + 3�]−2[2(Dp2 + �)]−1. (C7)

After a translation �q → �q + �p/2 we have

i
(2)
3 =

∫
ddq ddp

(2π )2d

[
3

2
Dp2 + 2Dq2 + 3�

]−2

[2(Dp2 + �)]−1

= 1

18

�(3)

�(2)�(1)

∫ 1

0
dx

∫
ddq ddp

(2π )2d
x

[
x

(
1

2
Dp2 + 2

3
Dq2 + �

)
+ (1 − x)(Dp2 + �)

]−3

= 1

9

∫ 1

0
dx x

∫ ∞

0
dT T 2

∫
ddq ddp

(2π )2d
e−T [(1− 1

2 x)Dp2+ 2
3 xDq2+�]

= 1

9

∫ 1

0
dx x

∫ ∞

0
dT T 2e−T �(4πDT )−d

[(
1 − 1

2
x

)
2

3
x

]− d
2

= �E(3 − d)

9(4πD)d
�d−3

(
2

3

)− d
2

�d

(C8)

with

�d =
∫ 1

0
dx x1− d

2

(
1 − 1

2
x

)− d
2

=

⎧⎪⎪⎨⎪⎪⎩
π−2√

2
≈ 0.8072 for d = 1,

ln 4 ≈ 1.3863 for d = 2,

2
√

2 ≈ 2.8284 for d = 3.

(C9)

Collecting all factors, we finally find

δμ
(2)
3 = 16

(
3

32π2

) d
2

�d �E(3 − d) (μ3)3u4D
−d�d−3. (C10)
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APPENDIX D: OPTIMAL PATH APPROXIMATION

We comment here on the meaning of the optimal path ap-
proximation and how this can yield the probability distribution
of the density field n. We recall that we focus entirely on
infinite-time trajectories. This implies that only paths which
start or end at a stationary point (or both) are to be accounted.
Therefore, we separate the space of values of the density field
into a stationary subset (the solutions of �′[n] = 0)

S =
{

0,nU = −
u3 +

√
u2

3 − 4�u4

2u4
,

nMF =
−u3 +

√
u2

3 − 4�u4

2u4

}
(D1)

(with nU the unstable local maximum of �) and the remaining
set of transient values T = R+/S. We further divide it
into the two basins of attraction T0 = T ∩ {n < nU } and
TMF = T ∩ {n > nU }. In the optimal path approximation, the
statistical weights e−S can be now interpreted as rates at which
the system can switch, over extensively long times, from very
close to a stationary point (∈S) to any other value of n or
vice versa. In this way, the dynamics reduces to an effective
stochastic process (in discrete time) between different values
of n. We shall demonstrate here that this process satisfies
detailed balance, which will allow us to extract the probability
distribution p(n). Intuitively, one could argue that, since
thermal fluctuations would produce a term ∝T ñ2 in the action,
�[n] can be regarded as an effective, n-dependent temperature.
For constant � = T , one would have the ordinary Boltzmann
weights ∼e−�[n]/T = e

∫ n
�′[n]/T in terms of the energy func-

tional �. Thus, replacing T with �[n], one gets the expression
e
∫ n

�′/� introduced in the main text, which can be interpreted
as an effective thermal process with temperature Teff = 1 and
energy functional

∫ n
�′/�. In the following, we reformulate

this picture on more solid grounds. For simplicity, we will omit
here the volume factor V since it does not affect the discussion.

In Fig. 7, we display the paths the dynamics can take
to connect the various configurations. Within our scheme,
the allowed processes can be summarized as in Fig. 8.
Each allowed transition follows a given path in phase space,
as indicated by the arrow labels. One could also include
for completeness the asymptotic states at n = ±∞, but the
rates for getting there vanish, as the corresponding actions
diverge. The paths can be divided in deterministic (B and
D), which describe fluctuationless relaxation to the minima of
the effective potential �, and escape trajectories (C and D),
which allow the latter to be left. On the former, ñB = ñD = 0,
whereas on the latter ñA = ñC = �′[n]/�[n], as reported in
the main text. For example, a process going from n ∈ TMF to
nU , as in Fig. 7, the rate reads as, up to a normalization constant
which can be fixed at the very end,

w(n → nU ) = e−S(n,nU ) = exp

{
−
∫ nU

n

ñC dn

}
, (D2)

corresponding to the exponential of the shaded area. The
inverse process occurs with a trivial rate

w(nU → n) = e−S(nU ,n) = exp

{
−
∫ n

nU

ñB dn

}
= 1 (D3)

FIG. 7. Optimal trajectories at H [n,ñ] = 0 in the (n,ñ) phase
space for χ = 0.05 and ω = 0.3671. Black circles identify the
stationary points, whereas the arrows indicate the direction the
dynamics proceeds towards along each path. The dashed lines
correspond to the deterministic solution ñ = 0 (divided in paths B
and D up to n = nMF) and the irrelevant one n = 0. The solid line is
instead the escape solution ñ = �′[n]/�[n] and includes paths A and
C. The grayed area corresponds to the action S(n,nU ) which defines
the rate w(n → nU ) = e−S(n,nU ).

since ñB = 0. For later convenience, we introduce also the
functions

w(n1,n2) = e−S(n1,n2), (D4)

which would correspond to the statistical weights of trajecto-
ries going from n1 to n2 along an optimal path in a finite time,
but for our purposes merely represent an auxiliary definition.
Of course, for any allowed transition n1 → n2 among the
ones sketched in Fig. 8, w(n1,n2) = w(n1 → n2) holds. We
emphasize that these functions are path dependent. However,
the paths are uniquely determined by the direction (e.g., for
the transition between n and nU in Fig. 7, B is chosen for
going from left to right and C otherwise). Hence, as long as
the directionality is maintained, one can directly exploit the
usual integral decomposition. In other words, ∀ n ∈ [n1,n2]
one has

S(n1,n2) = S(n1,n) + S(n,n2) and also

w(n1,n2) = w(n1,n)w(n,n2). (D5)

0

T0 nU TMF

nMF

D

A

A

D

A

D

C

B

C

B

B

C

FIG. 8. Stochastic process which mimics the dynamics of large
fluctuations in the system. Small nodes in this graph indicate
stationary n field configurations, whereas larger ones denote sets
of transient values, as defined in the text. Arrows indicate allowed
transitions, with the letters referring to the trajectory being followed.
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Furthermore, for any (not necessarily ordered) pair n1, n2,
the product w(n1,n2)w(n2,n1) always corresponds to the
exponential of minus the geometric area enclosed between
the deterministic and escape curves in the interval of extrema
n1 and n2. It is important to remark that this is the geometric
area, not the signed one arising from Riemann integration (e.g.,
the shaded area in Fig. 7 is taken to be positive).

To prove that detailed balance holds, we wish to verify
Kolmogorov’s criterion, i.e., the fact that for every finite closed
sequence of (allowed) jumps

n(1) → n(2) → n(3) → · · · → n(m−1) → n(m) → n(1)

(D6)

the product of the rates along the loop
∏

j w(n(j ) → n(j+1))
is equal to its time-reversed counterpart

∏
j w(n(j+1) → n(j )).

First, we permute the m values of n to an increasing sequence
n1 � n2 � n3 � · · · � nm. For instance, if we consider, with
the same parameters as in Fig. 7, the m = 6 loop

nU ≈ 0.052 → 0.01 → 0 → 0.03 → 0 → 0.04 → nU,

(D7)
the ordered sequence would be

n1 = 0, n2 = 0, n3 = 0.01, n4 = 0.03,

n5 = 0.04, n6 = nU . (D8)

Correspondingly, we introduce the intervals Ij = [nj ,nj+1),
j = 1,. . .,m − 1 and the areas Aj enclosed between the
deterministic and escape paths on each of them, so that
w(nj ,nj+1)w(nj+1,nj ) = exp(−Aj ). The generic stochastic
jump n(j ) → n(j+1) will correspond in the ordered sequence to
a jump na → nb for some given a and b. We now decompose
this rate on all the covered intervals:

w(n(j ) → n(j+1)) = w(na → nb) = w(na,nb)

=
{∏b

k=a w(nk,nk+1) if b > a,∏b
k=a w(nk,nk−1) if b < a.

(D9)

In order for the sequence in configuration space to be closed,
i.e., to form a loop, every interval Ij must be covered an equal
number of times Mj forward and backward. For example, the
interval I3 = [0.01,0.03) in the example (D8) is covered twice
forward (in the jumps 0 → 0.03 and 0 → 0.04) and twice
backward (in the jumps nU → 0.01 and 0.03 → 0), so that
M3 = 2. Therefore, we have reduced the product of the rates
along the loop to

m∏
j=1

w(n(j ) → n(j+1)) =
m−1∏
k=1

[w(nk,nk+1)w(nk+1,nk)]Mk

= exp

{
−

m−1∑
k=1

MjAj

}
, (D10)

where we took n(m+1) ≡ n(1) for brevity. Therefore, every
interval contributes Aj to the action every time it is covered.
The extension of the intervals and their multiplicities Mj are
thereby the only elements relevant for determining the overall

rate. But, time reversing the loop changes neither. Hence,
m∏

j=1

w(n(j ) → n(j+1)) =
m∏

j=1

w(n(j+1) → n(j )) (D11)

and the process satisfies detailed balance.
Exploiting this property, we can now look for the stationary

distribution P (n). Taking P (0) as a reference, we can write

P (n) = P (0)
w(0,n)

w(n,0)
= P (0) exp{−S(0,n) + S(n,0)}.

(D12)
It is not difficult to see that the deterministic paths yield no
contribution and

S(0,n) = θ (nU − n)
∫ n

0

�′

�
[n] dn+ θ (n− nU )

∫ nU

0

�′

�
[n] dn

+ θ (n − nMF)
∫ n)

nMF

�′

�
[n] dn, (D13)

while

S(n,0) = θ (n − nU )

[
θ (nMF − n)

∫ nU

n

�′

�
[n] dn

+ θ (n − nMF)
∫ nU

nMF

�′

�
[n] dn

]
. (D14)

Summing up the two contributions simply yields

P (n) = P (0) exp

{∫ n

0

�′

�
[n] dn

}
(D15)

which, once the volume factor V is reinstated and the
normalization made explicit, exactly corresponds to Eq. (5.13)
in the main text.

APPENDIX E: BRANCHING AND COAGULATION NOISE

1. Branching noise

The Heisenberg equations for branching are

∂t σ̂
− = i[Hb + Hb,nn ,̂σ

−]

= i
∑

k

αk [̂b†kn̂nnσ̂
z − σ̂−σ̂−

nnb̂k,nn − b̂
†
k,nnσ̂

+
nnσ̂

−],

(E1a)

∂t n̂ = i[Hb + Hb,nn ,̂n] = i
∑

k

αkn̂nn(̂σ−b̂k − b̂
†
kσ̂

+),

(E1b)

∂t b̂k = i[Hb + Hb,nn ,̂bk] = −iαkn̂nnσ̂
+ − iνkb̂k. (E1c)

The equations for the variables on the neighboring (nn) site
have the same structure with the indices exchanged between
“nn” and “non-nn” operators. Substituting the integral version

b̂k(t) = e−iνk t b̂k(0) − iαk

∫ t

0
dτ σ̂+(τ )̂nnn(τ )e−iνk (t−τ ) (E2)

of the last equation in the remaining two yields after a Born-
Markov approximation on the “deterministic” part

∂t σ̂
− = −κ

2
σ̂− + ξ̂−

b (E3)
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with

ξ̂−
b (t) = i

∑
k

αk [̂b†k(0)eiνkt n̂nnσ̂
z − σ̂−σ̂−

nnb̂k,nn(0)e−iνk t − b̂
†
k,nn(0)eiνkt σ̂+

nnσ̂
−]. (E4)

Again, 〈̂ξ−
b (t)〉

ξ
= 0 and only contractions of the form 〈̂bb̂†〉ξ (with equal indices) will yield a nonvanishing result, implying, in

the Born-Markov approximation,

〈̂ξ−
b (t) ξ̂−

b (t ′)〉ξ = 〈̂ξ+
b (t) ξ̂+

b (t ′)〉ξ = 0, 〈̂ξ−
b (t) ξ̂+

b (t ′)〉ξ = κδ(t − t ′)(1 − n̂)(1 − n̂nn),

〈̂ξ+
b (t) ξ̂−

b (t ′)〉ξ = κδ(t − t ′)[̂nnn + n̂(1 − n̂nn)] (E5)

or, equivalently,〈̂
ξx
b (t) ξ̂ x

b (t ′)
〉
ξ

= 〈̂ξy

b (t) ξ̂
y

b (t ′)
〉
ξ

= κδ(t − t ′),
〈̂
ξx
b (t) ξ̂

y

b (t ′)
〉
ξ

= −iκδ(t − t ′)(1 − 2̂n − 2̂nnn + 2̂nn̂nn),〈̂
ξ

y

b (t) ξ̂ x
b (t ′)

〉
ξ

= iκδ(t − t ′)(1 − 2̂n − 2̂nnn + 2̂nn̂nn). (E6)

Similarly, one can work out the equation for the density

∂t n̂ = κ(1 − n̂)̂nnn + ξ̂ n
b (E7)

with

ξ̂ n
b = i

∑
k

αkn̂nn(̂σ−b̂k(0)e−iνk t − eiνkt b̂
†
k(0)̂σ+). (E8)

The remaining variances thus read as〈̂
ξn
b (t) ξ̂ n

b (t ′)
〉
ξ

= κδ(t − t ′)̂nnn(1 − n̂),
〈̂
ξn
b (t) ξ̂−

b (t ′)
〉
ξ

= −κδ(t − t ′)̂nnnσ̂
−,〈̂

ξn
b (t) ξ̂+

b (t ′)
〉
ξ

= 〈̂ξ−
b (t) ξ̂ n

b (t ′)
〉
ξ

= 0,
〈̂
ξ+
b (t) ξ̂ n

b (t ′)
〉
ξ

= −κδ(t − t ′)̂nnnσ̂
+ (E9)

and, in the (x,y) basis, 〈̂
ξx
b (t) ξ̂ n

b (t ′)
〉
ξ

= −κδ(t − t ′)̂nnnσ̂
+,

〈̂
ξ

y

b (t) ξ̂ n
b (t ′)

〉
ξ

= iκδ(t − t ′)̂nnnσ̂
+,〈̂

ξn
b (t) ξ̂ x

b (t ′)
〉
ξ

= −κδ(t − t ′)̂nnnσ̂
−,

〈̂
ξn
b (t) ξ̂

y

b (t ′)
〉
ξ

= −iκδ(t − t ′)̂nnnσ̂
−. (E10)

Additionally, cross correlations between neighbors develop, i.e.,

〈̂ξ−
b (t) ξ̂−

b,nn(t ′)〉ξ = κδ(t − t ′)̂σ−σ̂−
nn, 〈̂ξ+

b (t) ξ̂+
b,nn(t ′)〉ξ = κδ(t − t ′)̂σ+σ̂+

nn, 〈̂ξ+
b (t) ξ̂−

b,nn(t ′)〉ξ = 〈̂ξ−
b (t) ξ̂+

b,nn(t ′)〉ξ = 0,〈̂
ξn
b (t) ξ̂ n

b,nn(t ′)
〉
ξ

= 0,
〈̂
ξn
b (t) ξ̂+

b,nn(t ′)
〉
ξ

= −κδ(t − t ′)̂σ+
nn(1 − n̂), (E11)〈̂

ξ−
b (t) ξ̂ n

b,nn(t ′)
〉
ξ

= −κδ(t − t ′)̂σ−(1 − n̂nn),
〈̂
ξn
b (t) ξ̂−

b,nn(t ′)
〉
ξ

= 〈̂ξ+
b (t) ξ̂ n

b,nn(t ′)
〉
ξ

= 0

which, in the (x,y) basis, read as〈̂
ξx
b (t) ξ̂ x

b,nn(t ′)
〉
ξ

= κ

2
δ(t − t ′)

(
σ̂ x σ̂ x

nn − σ̂ y σ̂ y
nn

)
,
〈̂
ξ

y

b (t) ξ̂
y

b,nn(t ′)
〉
ξ

= κ

2
δ(t − t ′)

(
σ̂ y σ̂ y

nn − σ̂ x σ̂ x
nn

)
,〈̂

ξx
b (t) ξ̂

y

b,nn(t ′)
〉
ξ

= κ

2
δ(t − t ′)

(
σ̂ x σ̂ y

nn + σ̂ y σ̂ x
nn

)
,
〈̂
ξn
b (t) ξ̂ x

b,nn(t ′)
〉
ξ

= −κδ(t − t ′)̂σ+
nn(1 − n̂),〈̂

ξn
b (t) ξ̂

y

b,nn(t ′)
〉
ξ

= iκδ(t − t ′)̂σ+
nn(1 − n̂).

(E12)

As for decay, we can introduce the vectorial notation

ξ̂
†
b,l,m(t) = (̂

ξx
b,l(t),̂ξ

y

b,l(t),̂ξ
n
b,l(t),̂ξ

x
b,m(t),̂ξ y

b,m(t),̂ξ n
b,m(t)

)
, (E13)

with m denoting a neighbor of l, and write

〈̂ξ b,l,m(t )̂ξ †
b,l′,m′ (t ′)〉ξ = κδ(t − t ′)δl,l′δm,m′

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −i(2p̂l p̂m − 1) −n̂mσ̂+
l

σ̂ x
l σ̂ x

m−σ̂
y

l σ̂
y
m

2
σ̂ x

l σ̂
y
m+σ̂

y

l σ̂ x
m

2 −σ̂−
l (1 − n̂m)

i(2p̂l p̂m − 1) 1 in̂mσ̂+
l

σ̂ x
l σ̂

y
m+σ̂

y

l σ̂ x
m

2
σ̂

y

l σ̂
y
m−σ̂ x

l σ̂ x
m

2 −iσ̂−
l (1 − n̂m)

−n̂mσ̂−
l −in̂mσ̂−

l n̂m(1 − n̂l) −σ̂+
m (1 − n̂l) iσ̂+

m (1 − n̂l) 0

σ̂ x
l σ̂ x

m−σ̂
y

l σ̂
y
m

2
σ̂ x

l σ̂
y
m+σ̂

y

l σ̂ x
m

2 −σ̂−
m (1 − n̂l) 1 −i(2p̂l p̂m − 1) −n̂l σ̂

+
m

σ̂x
l σ̂

y
m+σ̂

y

l σ̂ x
m

2
σ̂

y

l σ̂
y
m−σ̂ x

l σ̂ x
m

2 −iσ̂−
m (1 − n̂l) i(2p̂l p̂m − 1) 1 in̂l σ̂

+
m

−σ̂+
l (1 − n̂m) iσ̂+

l (1 − n̂m) 0 −n̂l σ̂
−
m −in̂l σ̂

−
m n̂l(1 − n̂m)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(E14)
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with the shorthand p̂ = 1 − n̂ = |↓〉〈↓|. Keeping only the “leading” terms in the density operators, the matrix above reduces to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −i −n̂mσ̂+
l

σ̂ x
l σ̂ x

m−σ̂
y

l σ̂
y
m

2
σ̂ x

l σ̂
y
m+σ̂

y

l σ̂ x
m

2 −σ̂−
l

i 1 in̂mσ̂+
l

σ̂ x
l σ̂

y
m+σ̂

y

l σ̂ x
m

2
σ̂

y

l σ̂
y
m−σ̂ x

l σ̂ x
m

2 −iσ̂−
l

−n̂mσ̂−
l −in̂mσ̂−

l n̂m −σ̂+
m iσ̂+

m 0

σ̂ x
l σ̂ x

m−σ̂
y

l σ̂
y
m

2
σ̂ x

l σ̂
y
m+σ̂

y

l σ̂ x
m

2 −σ̂−
m 1 −i −n̂l σ̂

+
m

σ̂x
l σ̂

y
m+σ̂

y

l σ̂ x
m

2
σ̂

y

l σ̂
y
m−σ̂ x

l σ̂ x
m

2 −iσ̂−
m i 1 in̂l σ̂

+
m

−σ̂+
l iσ̂+

l 0 −n̂l σ̂
−
m −in̂l σ̂

−
m n̂l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (E15)

There are no elements which are leading with respect to those of the decay matrix. However, keeping only those of the same
order in the density, we still have a nontrivial matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −i 0 σ̂ x
l σ̂ x

m−σ̂
y

l σ̂
y
m

2
σ̂ x

l σ̂
y
m+σ̂

y

l σ̂ x
m

2 −σ̂−
l

i 1 0 σ̂ x
l σ̂

y
m+σ̂

y

l σ̂ x
m

2
σ̂

y

l σ̂
y
m−σ̂ x

l σ̂ x
m

2 −iσ̂−
l

0 0 n̂m −σ̂+
m iσ̂+

m 0

σ̂ x
l σ̂ x

m−σ̂
y

l σ̂
y
m

2
σ̂ x

l σ̂
y
m+σ̂

y

l σ̂ x
m

2 −σ̂−
m 1 −i 0

σ̂ x
l σ̂

y
m+σ̂

y

l σ̂ x
m

2
σ̂

y

l σ̂
y
m−σ̂ x

l σ̂ x
m

2 −iσ̂−
m i 1 0

−σ̂+
l iσ̂+

l 0 0 0 n̂l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (E16)

2. Coagulation noise

We repeat here the same derivation employed for branching,
adapted at the case of coagulation processes. The Heisenberg
equations of motion in this case are

∂t σ̂
− = i[Hc + Hc,nn ,̂σ

−]

= i
∑

k

αk [̂nnnσ̂
zĉk − σ̂−σ̂+

nnĉk,nn − ĉ
†
k,nnσ̂

−
nnσ̂

−],

(E17a)

∂t n̂ = i[Hc + Hc,nn ,̂n] = i
∑

k

αkn̂nn(̂c†kσ̂
− − σ̂+ĉk),

(E17b)

∂t ĉk = i[Hc + Hc,nn ,̂ck] = −iαkn̂nnσ̂
− − iνkĉk. (E17c)

The equations for the variables on the neighboring (nn) site
have the same structure with the indices exchanged between
“nn” and “non-nn” operators. Substituting the integral version

ĉk(t) = e−iνk t ĉk(0) − iαk

∫ t

0
dτ σ̂−(τ )̂nnn(τ )e−iνk (t−τ )

(E18)

of the last equation in the remaining two yields, after a Born-
Markov approximation on the “deterministic” part

∂t σ̂
− = −κn̂nnσ̂

− + ξ̂−
c (E19)

with

ξ̂−
c (t) = i

∑
k

αk[e−iνk t n̂nnσ̂
zĉk(0) − σ̂−σ̂+

nnĉk,nn(0)e−iνk t

− ĉ
†
k,nn(0)eiνkt σ̂−

nnσ̂
−]. (E20)

Again, 〈̂ξ−
c (t)〉

ξ
= 0 and only contractions of the form 〈̂ĉc†〉ξ

(with equal indices) will yield a nonvanishing result, implying,
in the Born-Markov approximation,

〈̂ξ−
c (t) ξ̂−

c (t ′)〉ξ = 〈̂ξ+
c (t) ξ̂+

c (t ′)〉ξ = 0,

〈̂ξ−
c (t) ξ̂+

c (t ′)〉ξ = κδ(t − t ′)(2 − n̂)̂nnn,

〈̂ξ+
c (t) ξ̂−

c (t ′)〉ξ = κδ(t − t ′)̂nnnn̂

(E21)

or, equivalently,〈̂
ξx
c (t) ξ̂ x

c (t ′)
〉
ξ

= 〈̂ξy
c (t) ξ̂ y

c (t ′)
〉
ξ

= 2κn̂nnδ(t − t ′),〈̂
ξx
c (t) ξ̂ y

c (t ′)
〉
ξ

= −2iκδ(t − t ′)(1 − n̂)̂nnn,〈̂
ξy
c (t) ξ̂ x

c (t ′)
〉
ξ

= 2iκδ(t − t ′)(1 − n̂)̂nnn.

(E22)

Similarly, one can work out the equation for the density

∂t n̂ = −κn̂n̂nn + ξ̂ n
c (E23)

with

ξ̂ n
c = i

∑
k

αkn̂nn(eiνkt ĉ
†
k(0)̂σ− − σ̂+ĉk(0)e−iνk t ). (E24)

The remaining variances thus read as〈̂
ξn
c (t) ξ̂ n

c (t ′)
〉
ξ

= κδ(t − t ′)̂nnnn̂,〈̂
ξn
c (t) ξ̂−

c (t ′)
〉
ξ

= 〈̂ξ+
c (t) ξ̂ n

c (t ′)
〉
ξ

= 0,〈̂
ξn
c (t) ξ̂+

c (t ′)
〉
ξ

= κδ(t − t ′)̂nnnσ̂
+,〈̂

ξ−
c (t) ξ̂ n

c (t ′)
〉
ξ

= κδ(t − t ′)̂nnnσ̂
−

(E25)
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and, in the (x,y) basis,

〈̂
ξx
c (t) ξ̂ n

c (t ′)
〉
ξ

= κδ(t − t ′)̂nnnσ̂
−,〈̂

ξy
c (t) ξ̂ n

c (t ′)
〉
ξ

= iκδ(t − t ′)̂nnnσ̂
−,〈̂

ξn
c (t) ξ̂ x

c (t ′)
〉
ξ

= κδ(t − t ′)̂nnnσ̂
+,〈̂

ξn
c (t) ξ̂ y

c (t ′)
〉
ξ

= −iκδ(t − t ′)̂nnnσ̂
+.

(E26)

Additionally, cross correlations between neighbors develop,
i.e.,

〈̂ξ−
c (t) ξ̂−

c,nn(t ′)〉ξ = 〈̂ξ+
c (t) ξ̂+

c,nn(t ′)〉ξ = 0,

〈̂ξ+
c (t) ξ̂−

c,nn(t ′)〉ξ = 0,

〈̂ξ−
c (t) ξ̂+

c,nn(t ′)〉ξ = 2κδ(t − t ′)̂σ+
nnσ̂

−,〈̂
ξn
c (t) ξ̂ n

c,nn(t ′)
〉
ξ

= 0,

〈̂
ξn
c (t) ξ̂+

c,nn(t ′)
〉
ξ

= κδ(t − t ′)̂σ+
nnn̂,〈̂

ξ−
c (t) ξ̂ n

c,nn(t ′)
〉
ξ

= κδ(t − t ′)̂σ−n̂nn,〈̂
ξn
c (t) ξ̂−

c,nn(t ′)
〉
ξ

= 〈̂ξ+
c (t) ξ̂ n

c,nn(t ′)
〉
ξ

= 0 (E27)

which, in the (x,y) basis, read as〈̂
ξx
c (t) ξ̂ x

c,nn(t ′)
〉
ξ

= 2κδ(t − t ′)̂σ+
nnσ̂

−,〈̂
ξy
c (t) ξ̂ y

c,nn(t ′)
〉
ξ

= 2κδ(t − t ′)̂σ+
nnσ̂

−,〈̂
ξx
c (t) ξ̂ y

c,nn(t ′)
〉
ξ

= −2iκδ(t − t ′)̂σ+
nnσ̂

−,〈̂
ξn
c (t) ξ̂ x

c,nn(t ′)
〉
ξ

= κδ(t − t ′)̂σ+
nnn̂,〈̂

ξn
c (t) ξ̂ y

c,nn(t ′)
〉
ξ

= −iκδ(t − t ′)̂σ+
nnn̂.

(E28)

As for decay and branching, we can introduce the vectorial
notation

ξ̂
†
c,l,m(t) = (̂

ξx
c,l(t),̂ξ

y

c,l(t),̂ξ
n
c,l(t),̂ξ

x
c,m(t),̂ξ y

c,m(t),̂ξ n
c,m(t)

)
,

(E29)
with m denoting a neighbor of l, and write

〈̂ξ c,l,m(t )̂ξ †
c,l′,m′ (t ′)〉ξ

= κδ(t − t ′)δl,l′δm,m′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2̂nm −2in̂m(1 − n̂l) n̂mσ̂−
l 2σ̂+

m σ̂−
l −2iσ̂+

m σ̂−
l σ̂−

l n̂m

2in̂m(1 − n̂l) 2̂nm in̂mσ̂−
l 2iσ̂−

l σ̂+
m 2σ̂+

m σ̂−
l iσ̂−

l n̂m

n̂mσ̂+
l −in̂mσ̂+

l n̂mn̂l σ̂+
m n̂l −iσ̂+

m n̂l 0

2σ̂+
l σ̂−

m −2iσ̂+
l σ̂−

m σ̂−
m n̂l 2̂nl −2in̂l(1 − n̂m) n̂l σ̂

−
m

2iσ̂−
m σ̂+

l 2σ̂+
l σ̂−

m iσ̂−
m n̂l 2in̂l(1 − n̂m) 2̂nl in̂l σ̂

−
m

σ̂+
l n̂m −iσ̂+

l n̂m 0 n̂l σ̂
+
m −in̂l σ̂

+
m n̂ln̂m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (E30)

where the grid is only meant as a guide to the eye, to help distinguish the various elements. Keeping only the terms which
compete with decay in terms of powers of the density operator, we have⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2σ̂+
m σ̂−

l −2iσ̂+
m σ̂−

l 0

0 0 0 2iσ̂−
l σ̂+

m 2σ̂+
m σ̂−

l 0

0 0 0 0 0 0

2σ̂+
l σ̂−

m −2iσ̂+
l σ̂−

m 0 0 0 0

2iσ̂−
m σ̂+

l 2σ̂+
l σ̂−

m 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (E31)

3. Corrections to the effective action

Here, we show what corrections to the couplings in the effective action (2.52) would ensue if we had accounted for branching
and coagulation noise as well. First, we are going to disregard all terms higher than quadratic in the σx/y , σ̃ x/y variables. This
already makes coagulation unimportant and leaves us with just branching to analyze. Neglecting derivative terms, the covariance
matrix reads as

〈ξ b,Xξ b,Y 〉ξ = κδ(X − Y )

⎛⎜⎝ 2 0 −σx
X

0 2 −σ
y

X

−σx
X −σ

y

X 2nX

⎞⎟⎠ ≡ δ(X − Y )Mb,X (E32)

and produces in the action density a correction

�Sb = − 1
2 σ̃

ᵀ
X Mb,Xσ̃ = −κ

[(
σ̃ x

X

)2 + (σ̃ y

X

)2 + ñ2
XnX − σ̃ x

XñXσ x
X − σ̃

y

XñXσ
y

X

]
. (E33)
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The latter two addends provide negligible fluctuations to the (gapped) quadratic parts of the σ fields and will be disregarded. The
simplified action thus reads as

S =
∫

X

ñX

[
(∂t − D∇2 + 1 − χ )nX + 2nXPXnX − 1 + 2χ

2
ñXnX

]
+
∫

X

σ̃ x
X

[
χ + 1

2
σx

X − 1 + 2χ

2
σ̃ x

X

]
+
∫

X

σ̃
y

X

[
χ + 1

2
σ

y

X − 1 + 2χ

2
σ̃

y

X

]
+
∫

X

σ
y

X

(
−ω

χ
ñXPXnX + ω

χ
σ̃ x

XPXσx
X

)
+ σ̃

y

X

(
2ω

χ
(2nX − 1)PXnX − ω

χ
σx

XPXσx
X

)
.

(E34)

Integration over the σy , σ̃ y modes now yields, after simplifying it again along the same lines of the discussion above (i.e.,
disregarding all fluctuations over gapped parts, the quartic nonlinearities in the σ ’s and derivatives),

S =
∫

X

ñX

[
(∂t − D∇2 + 1 − χ )nX + 2

(
χ − 2ω2

χ + 1

)
n2

X − 1 + 2χ

2
ñXnX

]
−
∫

X

[
2ω2(1 + 2χ )

(χ + 1)2
ñ2

Xn2
X − 8ω2

χ + 1
n3

XñX

]
+
∫

X

σ̃ x
X

[
χ + 1

2
σx

X − 1 + 2χ

2
σ̃ x

X

]
−
∫

X

[
2ω2(1 + 2χ )

χ + 1
ñXnXσx

Xσ x
X

]
. (E35)

Similarly, the integration over σx , σ̃ x produces

�S = 1

2

∫
X

ln

[
1 − 16ω2(1 + 2χ )2

(χ + 1)3
ñXnX

]
= −8ω2(1 + 2χ )2

(χ + 1)3
ñXnX − 64ω4(1 + 2χ )4

(χ + 1)6
(ñXnX)2 + · · ·. (E36)

The final action would thus read as

S =
∫

X

ñX

[(
∂t − D∇2 + 1 − χ − 8ω2(1 + 2χ )2

(1 + χ )3

)
nX + 2

(
χ − 2ω2

χ + 1

)
n2

X + 8ω2

χ + 1
n3

X

]
−
∫

X

ñ2
X

[
1 + 2χ

2
nX +

(
2ω2(1 + 2χ )

(χ + 1)2
+ 64ω4(1 + 2χ )4

(χ + 1)6

)
n2

X

]
, (E37)

from which we see that only the gap and the noise vertices get modified according to

� = 1 − χ − 8ω2(1 + 2χ )2

(1 + χ )3
,

�X = −1 + 2χ

2
nX − 2ω2(1 + 2χ )

(χ + 1)2

(
1 + 32(1 + 2χ )3

(χ + 1)4

)
n2

X.

(E38)

APPENDIX F: DISCUSSION OF THE FLUCTUATIONLESS
MEAN FIELD EQUATIONS

Rescaling time by the decay rate t → γ t as we have done
in the main text, the mean field equations read as

∂tn = −n + [ωσy + χ (1 − 2n)]n, (F1a)

∂tσ
x = −

[
ωσy + χ + 1

2
+ χn

]
σx, (F1b)

∂tσ
y = ω(σx)2 −

(
χ + 1

2
+ nχ

)
σy − 2nω(2n− 1). (F1c)

Due to the presence of the absorbing state, n = 0 ⇒ ∂tn =
0. Therefore, starting from n > 0 (physically meaningful
subspace) the dynamics cannot cross to n < 0 (unphysical
subspace) and we can thus safely restrict our considerations
to the physical solutions. We first prove that no stationary
solution with σx �= 0 is physically acceptable. In fact, the only
other way to make the middle equation vanish is to set

ωσy = −χ + 1

2
− χn. (F2)

Since we must require that n � 0, we have to conclude that
σy � 0. This means that, in the third equation, the first two

addends are positive. Therefore, it can only vanish if the
third one is negative, which implies 2n − 1 > 0, i.e., n > 1

2 .
However, substituting (F2) into the first equation yields

n = 1

6χ
(χ − 3) <

1

6
, (F3)

which is absurd. Hence, σx = 0 in the steady state. Apart from
the absorbing phase n = σy = σx = 0, the other solutions
read as

n ≡ n(t → ∞) = 1

4ω2 + 2χ2
[(ω2 − χ )

±
√

(ω2 − χ )2 + (χ2 + 2ω2)(χ2 − 1)], (F4a)

σy ≡ σy(t → ∞) = 2nω(1 − 2n)
χ+1

2 + nχ
= 1

ω
[1 − χ (1 − 2n)].

(F4b)

Clearly, n+ � n− always holds. The stability of the absorbing
solution is easily checked: expanding to the leading order
around it

n → nss + δn = δn, σ x/y → σx/y
ss + δσ x/y = δσ x/y,

(F5)
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one finds ∂t δσ
x = −(χ + 1)/2δσ x and

∂t

(
δn

δσ y

)
=
(

χ − 1 0
2ω −χ+1

2

)(
δn

δσ y

)
. (F6)

The eigenvalues of the stability matrix can be easily read off
from the diagonal: the second one is always stable (negative),
whereas the first one is stable for χ < 1 and unstable for χ > 1.
This latter condition identifies an active phase for the system
(the smallest fluctuations drive the dynamics away from the
empty state). We recall that the remaining solutions are real for
(ω2 − χ )2 + (χ2 + 2ω2)(χ2 − 1) � 0 (which, in particular, is
guaranteed for χ � 1). Their signs can be classified as follows:

(I) χ > 1 ⇒ n+ � 0 and n− � 0;
(II) χ < 1, ω2 < χ ⇒ n± � 0;
(III) χ < 1, ω2 > χ ⇒ n± � 0.

The stability matrix for these solutions is

M± =
(

ωσ
y
± − 1 + χ − 4χn± ωn±

−χσ
y
± + 2ω − 8ωn± −χ+1

2 − χn±

)

=
(

−2χn± ωn±
−χσ

y
± + 2ω − 8ωn± −χ+1

2 − χn±

)
, (F7)

where the second equality comes from applying Eq. (F4b) to
the first element. Again, we are only interested in the case
when the solutions are real valued and positive and therefore
M is a real matrix and has either real or complex-conjugate
eigenvalues. Its determinant reads as

det M± = 2n±[n±(2χ2 + 4ω2) + χ − ω2]

= ±2n±
√

(ω2 − χ )2 + (χ2 + 2ω2)(χ2 − 1), (F8)

while the trace is

tr{M±} = −χ + 1

2
− 3χn±. (F9)

For n− in region (III), the determinant is negative, implying
that the eigenvalues are real and one is positive, and thereby
signaling an instability. The solutions n+ in regions (I) and
(III) feature instead a positive determinant and a negative trace,
implying that both eigenvalues have negative real part, and are
consequently both stable under small perturbations. All the
remaining solutions are negative and can thus be discarded.

FIG. 9. Stationary mean field phase diagram as extracted from
Eqs. (F1a)–(F1c). The dark blue patch at χ < 1 corresponds to the
absorbing phase. The solid red line highlights where the second-order
transition occurs to the active phase, whereas the dashed yellow line
separates the domain of real solutions (RS), corresponding to the
areas labeled with “3RS” from where the (nonabsorbing) solutions
are complex [one real solution (“1RS”) regions]. This line joins
the second-order one at the bicritical point (ω,χ ) = (1,1). Its upper
branch denotes the appearance of a second, physically acceptable,
attractive solution, whose density is displayed in the upper left portion
of the diagram. The dashed-dotted, white line indicates χ = ω2

and separates regions (II) and (III) defined in this section. Finally,
the vertical dashed red line separates the region of stability of the
absorbing solution (χ < 1) from the region in which the latter is
unstable (χ > 1).

These considerations lead to the phase diagram in Fig. 9,
which includes the main features discussed in the main text,
i.e., the presence of both a second-order and a first-order
transition from the absorbing state to finite-density phases
and a bicritical point where these two lines join. The regimes
(I)–(III) discussed here correspond to the ones introduced in
Sec. III B. At this level, however, we have no way to prefer
the active solution over the absorbing one in regime (III),
highlighting one of the advantages of employing an effective
potential description.
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[23] G. Ódor, Rev. Mod. Phys. 76, 663 (2004).
[24] H. Hinrichsen, Adv. Phys. 49, 815 (2000).
[25] S. R. Broadbent and J. M. Hammersley, Math. Proc. Cambridge

Philos. Soc. 53, 629 (1957).
[26] T. E. Harris, Ann. Probab. 2, 969 (1974).
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