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Abstract (250 words) 
 
To enable effective interaction with the environment, the brain combines noisy sensory information 

with expectations based on prior experience. There is ample evidence showing that humans can 
learn statistical regularities in sensory input and exploit this knowledge to improve perceptual 

decisions and actions. However, fundamental questions remain regarding how priors are learned 

and how they generalise to different sensory and behavioural contexts. In principle, maintaining a 
large set of highly specific priors may be inefficient and restrict the speed at which expectations 

can be formed and updated in response to changes in the environment. On the other hand, priors 
formed by generalising across varying contexts may not be accurate. Here we exploit rapidly 

induced contextual biases in duration reproduction to reveal how these competing demands are 
resolved during the early stages of prior acquisition. We show that observers initially form a single 

prior by generalising across duration distributions coupled with distinct sensory signals. In contrast, 
they form multiple priors if distributions are coupled with distinct motor outputs. Together, our 

findings suggest that rapid prior acquisition is facilitated by generalisation across experiences of 

different sensory inputs, but organised according to how that sensory information is acted upon.  

 

Significance (120 words) 
 

When sensory information is uncertain, humans rely on prior knowledge of the environment when 

making perceptual judgments and planning actions. Humans can rapidly learn new priors, but the 
rules governing how recent experiences are grouped together are unknown. Here we show that 

observers initially form single priors by generalising across distinct sensory signals, but form 

multiple priors when they are coupled with different motor outputs. Thus, our results reveal that 
internal models of temporal statistics are initially organised not according to the nature of the 

sensory input, but the way it is acted upon.  

 
 

\body 
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Like all complex animals, humans rely on their senses to extract information about the environment 

and guide decision making and behaviour. Often however, sensory information is ambiguous. 
Signals transmitted to the senses can be weak or degraded, such as patterns of reflected light 

under low illumination or speech sounds in noisy environments. Moreover, sensory representations 
of even the most high-fidelity signals tend to be variable (1) and are insufficient to completely 

disambiguate different distal causes (2). Mounting empirical evidence indicates that when forming 

decisions and planning actions, the brain combines uncertain sensory information with 
expectations based on prior knowledge (3-6). For example, a variety of biases in visual perception 

have been shown to be consistent with reliance on prior knowledge regarding statistical regularities 
in the environment, such as the distribution of local orientations (7) and speeds (8) in natural 

scenes and the positioning of light sources (9). In many studies, perception and behaviour have 
been shown to be well described by near-optimal integration of sensory evidence and prior 

knowledge according to the principles of statistical decision theory.  
 

Prior knowledge can be acquired over a range of different timescales. Priors specifying stable 
statistical characteristics of the environment are typically thought to be either innate or the 

consequence of life-long implicit learning (5,7). However, context-specific priors can also be 

formed based on recent experiences. Studies using simple sensorimotor tasks suggest that human 
participants are adept at learning the distribution of sets of stimuli and integrating this acquired 

knowledge with sensory evidence when making decisions and planning actions (e.g. 4, 10-13). For 
example, a classic finding in temporal reproduction experiments is that judgments converge 

towards a central value - participants consistently overestimate shorter durations and 
underestimate longer ones (14-15). The centre of convergence at which there is no constant 

reproduction error (termed the ‘indifference point’) is not fixed, but rather shifts depending on the 
set of durations presented (16-17). Recent studies have demonstrated that these central tendency 

biases can be parsimoniously explained by the integration of noisy sensory estimates with 
acquired knowledge of the stimulus distribution in a manner that maximises reproduction precision 

(17-19).  

 
Considerable advances have been made toward understanding how priors are learned and 

updated over time (20-23) and the degree of complexity in stimulus distributions that can be 
represented (19, 23-25). However, our understanding of how prior knowledge is organised by the 

brain remains limited. Recent research indicates that participants provided with extended training 
are able to learn multiple priors for stimuli presented in different contexts. For example, Kerrigan 

and Adams (26) demonstrated that distinct light position priors can be learned for different 
coloured illumination in a few hours. Similarly, Gekas and colleagues (24) showed that distinct 

priors for motion direction can be learned for sets of dot stimuli of different colours. Multiple prior 
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learning has also been demonstrated using stimulus sets demarcated by way of spatial location 

(27) and symbolic visual cues (28), suggesting that sensory specificity may be a key organising 
principle for representations of prior knowledge. 

 
In principle, maintaining high levels of prior specificity should ensure that expectations about 

different objects and events in the external environment remain accurate, even when they are 

characterised by distinct statistical properties. However, application of this strategy in complex 
real-world environments poses fundamental challenges. In a typical sensorimotor experiment, 

subjects are presented with stimuli that vary along a small number of dimensions and asked to 
perform a single task. In contrast, people encounter a wide range of sensory inputs outside the 

laboratory and use this information to interact with the environment in a variety of ways. Trying to 
learn a specific prior for every combination of stimulus and behavioural context would be 

unfeasible, since no two situations are ever identical. Moreover, increased specificity in prior 
representations has the negative side-effect of limiting the rate at which priors can be learned and 

updated in response to changes in the environment.  
 

Here we exploit central tendency biases in duration reproduction to investigate how these 

competing demands are resolved during the early stages of prior acquisition. We first demonstrate 
that individuals can rapidly form priors that approximate the distribution of stimulus durations 

presented within a single testing session. To reveal the rules governing the initial structuring of 
prior knowledge, we then interleave stimuli from duration distributions that result in distinct central-

tendency biases when presented in separate sessions. Across a series of experiments, we 
manipulate the sensory characteristics of each set of stimuli as well as the nature of the motor 

response required.  
 

Results 
 

Rapidly induced central tendency biases in duration reproduction.  

 

Observers were asked to reproduce the duration of a simple visual stimulus (isotropic Gaussian 

patch) by pressing and holding a key for an equivalent interval of time. Within each 70-trial testing 
block, stimuli were presented for one of 7 different durations, sampled from a log-uniform 

distribution. Filled symbols in Figure 1A show mean reproduction durations for six different 
distributions of varying range and central tendency. Compared to the dashed diagonal lines 

denoting veridical performance, clear evidence of a compressive bias can be seen in each 
condition. To summarise the pattern of biases observed, we fitted each dataset with a power 
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function and derived two statistics: the magnitude of the compressive bias (1 minus the exponent 

of the power function) and the indifference point (the duration at which the fitted power function 
intersects the diagonal, see Supporting Information for details). Both metrics were systematically 

affected by short-term manipulation of the stimulus distribution, albeit in different ways. The 
magnitude of compression was dependent on the variability of durations presented within a given 

testing block, with greater mean compression observed for smaller duration ranges than larger 

ones (Figure 1B). Indifference points were pulled towards the mean duration encountered in the 
associated testing block (Figure 1C).  

 
In keeping with recent suggestions (18-19), we found that these biases can be well described by a 

Bayesian ideal observer model in which acquired knowledge of the stimulus distribution is used to 
support inferences made about stimulus duration when available sensory measurements are 

imprecise. Rather than learning the discrete physical stimulus distribution, we assumed that 
observers acquire a smoothed approximation of the distribution (see Supporting Information). 

Figure 1D shows simulated datasets for each duration distribution condition, along with the best-
fitting priors. Differences in the magnitude of compression between conditions are captured by a 

change in the width of the prior, consistent with previous evidence showing that observers can 

implicitly learn the variance of a stimulus distribution (22-23, 29). Changes in the indifference point 
are consistent with a lateral shift in the prior distribution towards recently presented stimulus 

values. While extensive training can result in priors that accurately approximate the stimulus 
distribution (17), the limited opportunity afforded by each of our brief testing blocks resulted in 

partial prior recalibration - note how indifference points fall close to the mid-point between the 
mean of the relevant duration distribution and that of the entire stimulus set. Critically however, the 

fact that quantifiable changes in the pattern of bias can be induced over this short timescale 
provides us with a means of probing the characteristics of the underlying prior-updating 

mechanisms.   
 

Generalisation across distributions paired with distinct sensory inputs. 

 
To investigate generalisation during rapid prior formation, we took the approach of interleaving 

stimuli drawn from duration distributions that produce distinct patterns of reproduction bias when 
presented in separate blocks. The filled black symbols in Figure 2A show mean duration 

reproductions for two such stimulus sets, which have been replotted from the left panel of Figure 
1A. Indifference points for these short (S) and long (L) duration distributions are significantly 

different (open black symbols), confirming that prior expectations differed between testing blocks. 
A contrasting pattern of results was obtained when the two distributions were randomly intermixed 

within a testing block (red symbols). Interleaving increased the overestimation bias in reproduction 
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of short durations and underestimation bias in long durations, resulting in indifference points which 

converge towards a point of central tendency for the combined stimulus range. These results are 
consistent with the formation of a single composite prior distribution, and can be parsimoniously 

modeled using the same prior as previously inferred from results with a wide continuous duration 
range (Figure 2B). This convergence of indifference points provides a useful marker of when prior 

formation generalises across the two interleaved stimulus sets; if observers formed separate priors 

for each stimulus set, no difference in the pattern of biases would be expected between blocked 
and interleaved conditions.  

 
Since observers did not have a means of distinguishing the different stimulus sets in the random 

interleaving condition, it perhaps unsurprising that acquired prior expectations were formed by 
generalising across them. Interestingly however, we found that the same pattern of results holds 

even if the stimuli used for the two interleaved duration distributions are clearly discriminable. 
Figure 3A shows results obtained when short and long visual stimuli where presented at different 

spatial locations (left and right of fixation) and alternated from trial to trial to remove any spatial and 
temporal uncertainty regarding set membership. Despite these changes to the stimulus sequence, 

indifference points in the interleaved condition again converged towards a common central 

duration, suggesting that observers’ prior expectations did not distinguish between the two clearly 
demarcated stimulus sets. Even more striking evidence for generalisation across stimulus type 

was found when sets of visual and auditory stimuli were interleaved within a single session. As 
shown in Figure 3B, reproduction of short visual (circular symbols) and long auditory (triangular 

symbols) produced compressive biases around distinct indifference points when tested in separate 
blocks (black symbols), but converged towards a common point when alternated within a single 

testing session (red symbols). This finding demonstrates that observers do not automatically form 
separate priors for stimuli presented to different sensory modalities.  

 
To confirm the statistical robustness of the results in Figures 2 and 3, we computed participants’ 

mean reproduction times across the seven durations in each duration range and carried out a 2-

way repeated measures ANOVA. In each case we found a significant interaction between 
presentation condition (blocked or interleaved) and duration range (short or long) (Random 

interleaving: F(1,8)=17.75, p<0.05; Spatial segregation/alternation: F(1,8)=13.84, p<0.05); Bimodal 
alternation: F(1,8)=9.47, p<0.05). Decomposition of these significant interactions into simple 

effects revealed that interleaving significantly increased reproduction times for the short range 
condition in each experiment (see Table S1). Interleaving had a more modest, contracting effect on 

reproduction times in the long range, which reached statistical significance in one of the three 
conditions. Together, these results demonstrate a clear tendency for rapidly acquired duration 
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priors to generalise across different stimulus types, even when they are clearly discriminable and 

are characterised by distinct temporal statistics.   
 

Our results differ from previous studies, where participants have been shown to acquire stimulus-
specific priors when provided with more extensive training (24, 26-27). To check that this also 

occurs in our experimental paradigm, we conducted an additional experiment in which observers 

completed repeated testing sessions with alternative presentation of short and long stimulus sets 
at different spatial locations (Figure 4A). In early sessions (red symbols), biases converged 

towards a common central duration, replicating the reliance on a single, generalised prior in Figure 
3A. However, indifference points systematically diverged with further training (blue symbols), 

consistent with the gradual employment of stimulus-specific priors over time. This transition is 
clearly illustrated in Figure 4B, which plots changes in the ratio of indifference points for short and 

long stimulus sets over the course of testing. 
 

No generalisation across distributions paired with different motor responses 

 

In striking contrast to the results obtained when interleaving different stimulus types, we found no 

evidence of prior generalisation when stimulus sets were paired with different types of motor 
response. Figure 5A shows results obtained when observers were only required to make a 

duration reproduction for one of the two interleaved stimulus sets. Short and long visual stimuli 
were alternatively presented to the left and right of fixation and observers were instructed to 

reproduce the duration of stimuli presented on one side, whilst passively observing stimuli 
presented at the other spatial location. Reproduction data for both short and long duration 

distributions was obtained by reversing the mapping between spatial location and response in 
different sessions. Despite the stimulus sequences being identical to that described previously 

(e.g. Figure 3A), biases obtained in interleaved conditions were indistinguishable from those 
obtained with blocked presentation (condition x duration range interaction: F(1,8)=0.60, p>0.05, 

see Table S2). This result demonstrates that prior formation is not a simple function of sensory 

history. Rather, it is only the set of previously reproduced stimuli that determines observers’ prior 
expectations on subsequent reproduction trials; passive trials do not contribute.     

 
A potential limitation of asking observers to passively view a set of stimuli is that it is difficult to 

know with any certainty how well these stimuli were attended. To address this concern, we 
conducted a control experiment in which observers made binary judgments about the duration of 

stimuli presented to one side of fixation (‘is this stimulus shorter or longer than the average 
duration seen at that location?’), alternated with reproductions of the duration of stimuli presented 

to the other. As shown in Figure 5B, responses on binary judgment trials were sufficient to allow 
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construction of systematic psychometric functions for duration discrimination, confirming that 

observers attending to the non-reproduced stimuli, forming estimates of stimulus duration and 
maintaining an accurate internal representation of the mean. As was the case for passive 

presentation however, the duration of these stimuli did not systematically impact upon the pattern 
of biases in interleaved reproduction trials (condition x duration range interaction: F(1,8)=0.99, 

p>0.05). Thus, we can be confident that the lack of generalisation across stimulus sets reflects the 

fact that they were paired with different types of response. 
To further test the limits of response-specificity during rapid prior formation, we also investigated 

the effects of interleaving duration reproduction trials requiring different motor responses. 
Observers were asked to reproduce the duration of some stimuli by making a vocal utterance (‘ba’) 

into a microphone for a corresponding length of time. The duration of speech segments was 
extracted from audio recordings of each trial using an automated speech detection algorithm (see 

Experimental Procedures).  As shown in Figure 5C, the duration of observers’ vocal reproductions 
(square symbols) showed compressive biases in blocked conditions comparable to those observed 

with button press responses (circular symbols). In interleaved conditions (red symbols), observers 
reproduced the stimulus duration on every trial, but alternated between vocal and keypress 

methods (paired with stimuli presented to the left and right of fixation respectively). Again, we 

found no systematic difference in the pattern of biases observed with blocked and interleaved 
presentation (condition x duration range interaction: F(1,8)=0.26, p>0.05), indicating an absence of 

generalisation across experiences of stimuli paired with different types of reproduction response. 
This experimental result is important for two reasons. First, it indicates that it is not simply the 

types of judgement made by observers that is critical for driving response-specificity in prior 
expectations, but also the specific motor actions involved in executing those judgements. It also 

provides a strong demonstration that observers concurrently maintain multiple motor-specific priors 
in interleaved conditions because, unlike passive and binary discrimination experiments, 

reproduction data for both short and long duration distributions was collected within the same 
session. 

 

Discussion 
 

Generalisation is an essential ingredient in the formation of prior expectations within complex 
environments. In everyday life we encounter a diverse range of sensory stimuli, making it 

impossible to learn statistical regularities without grouping experiences together in some 
meaningful way. Our results indicate that recent experiences of stimulus duration are initially 

routed into separate prior representations not according to the type of sensory input, but according 
to the way in which observers act upon this input. Observers consistently formed single priors by 
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generalising across stimulus distributions with distinct statistics, even when they were clearly 

distinguished by way of spatial location, temporal sequence or sensory modality. We propose that 
this broad generalisation across sensory inputs is a default mode which acts to widen the data 

acquisition ‘net’ for initial prior acquisition, allowing approximations of stimulus distributions to be 
rapidly learned and modified. This strategy is not fixed however - in line with previous findings (24, 

26-27), we find that observers are able to learn stimulus-specific priors with extended training. 

Together, this work indicates that the structuring of prior knowledge is dynamic and that emphasis 
shifts from flexibility to specificity as learning progresses. Characterising the dynamics of this 

transition provides a challenge for future behavioural studies, as well as computational models 
describing how priors are learned and updated over time (20-23). An appealing idea is that the 

brain performs a type of cluster analysis, partitioning sensory inputs into groups with different 
statistical properties. The emergence of prior specificity may reflect the accumulation of sufficient 

evidence to justify clustering.     
 

In contrast to the generalisation observed across different sensory inputs, interval duration priors 
appear to be specific to motor response from the outset of learning. We found no evidence of 

generalisation across passive and active trials, trials requiring different forms of duration 

judgement, or trials requiring reproduction judgements involving different motor systems. In these 
experiments, we were careful to use identical stimulus sequences to those that produced 

generalisation when paired with a consistent manual reproduction response. Accordingly, we can 
be confident that the dissociation between stimulus and response generalisation is not an artefact 

of changes in the experimental design, such as the complexity of the duration distributions (19; 23-
25) or discriminability of the stimulus sets. Whether this strategy provides any functional advantage 

is not yet clear. One possibility is that the multi-dimensional nature of sensory input heightens the 
chance of forming redundant prior representations based on uninformative distinctions between 

stimulus characteristics. Initially grouping prior experiences according to a smaller set of goal-
directed actions may be less problematic in this regard. 

 

At present, our understanding of the neural substrates of prior knowledge is limited. Priors 
specifying long-term structural regularities in the environment have been suggested to be implicitly 

encoded in sensory representations, via inhomogeneities in the number, distribution and/or 
bandwidth of tuning curves (7, 30) or patterns of spontaneous firing activity (31-32). In contrast, 

recent functional neuroimaging results suggest that recently acquired priors are represented in 
distinct brain regions to sensory likelihoods (33). But why should actions be used to partition prior 

knowledge of interval duration? 
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There is growing evidence indicating that the encoding of temporal information relies upon brain 

areas that are involved in motor control, most notably the basal ganglia, cerebellum and 
supplementary motor area (SMA) (34-35). In many instances there appears to be a tight coupling 

between sensory processing and motor planning. For example, it has been proposed that the SMA 
can be subdivided into two structurally and functionally distinct areas: a rostrally located pre-SMA 

involved in encoding of temporal structure and a more caudally positioned SMA-proper, which 

uses this information to implement motor actions (36). Interestingly, groups of neurons in SMA 
have been shown to exhibit interval tuning that is invariant to sensory modality (37) and activity 

that is action selective (38). Recruitment of neuronal populations with similar properties during 
early prior acquisition could potentially underlie the pattern of specificity and generalisation found 

in the present study. To test this hypothesis, future studies could take a similar approach to 
characterise the selectivity of rapidly acquired priors in non-temporal tasks. Central-tendency 

biases provide a particularly useful testbed for examining these issues; robust effects have been 
reported across a wide range of magnitude estimation tasks including length, distance and 

loudness (16, 39). 
 

If motor-specificity proves to be a general property of prior acquisition in temporal and non-

temporal domains, it would imply broader integration of sensory analysis and motor control in the 
brain. In Bayesian models of magnitude estimation, perceptual decision making and action 

planning are typically implemented in serial stages: likelihoods and priors are first combined to 
obtain a posterior probability distribution over the possible states of the world; an estimate is then 

formed taking into account the relative costs and benefits associated with alternative choices; and 
finally an appropriate motor action is planned and executed (17, 18, 20). However, an alternative 

suggestion is that the brain continuously processes sensory information to specify several potential 
actions in parallel (40-42). According to this ‘intentional’ framework of information processing, 

perceptual decision making and motor planning are intrinsically linked. In support of this view, 
activity consistent with accumulation of evidence for a decision has been identified in a variety of 

neural populations tuned for motor output parameters (42-43). Moreover, decision-related activity 

has been shown to occur in parallel in areas associated with different motor responses (44-46). 
Motor specificity could arise naturally if signals used to form and update prior representations are 

distributed in a similar manner.   

 

Materials and Methods 
 

Observers.  
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A total of 27 observers participated in the study, comprising one of the authors (NWR) and 26 

participants who were naive to the specific purpose of the experiments (age range 19-36). All had 
normal, or corrected visual acuity and no history of hearing difficulties. 6-9 observers completed 

each of the sub-experiments (see Table S4 for complete break down), collecting a minimum of 140 
trials per combination of duration distribution and condition (total trials >30,000). All experiments 

were conducted with the written consent of each observer and in accordance with the School of 

Psychology Ethics Committee at the University of Nottingham.    
 
Stimuli.  
Visual stimuli were isotropic Gaussian patches (sigma = 1 deg.) generated in Matlab using 

PsychoPhysics Toolbox extensions (47-48) and presented on a linearised 22 inch NEC MultiSync 
FP1370 monitor (100Hz framerate, 47 cd/m2 background luminance). Viewing distance was fixed 

via headrest at 103cm at which 1 pixel subtended 1 arcmin of visual angle. In different experiments 
visual stimuli were centered either at fixation or 3.33 deg. to the left or right of fixation. Auditory 

stimuli were 500Hz tones with 5ms cosine on and off ramps, generated at a sampling rate of 
44.1KHz and presented diotically via Sennheiser HD-265 headphones at approximately 60 dB 

SPL.  

 
Procedure.  
Stimulus durations were sampled from discrete log-uniform distributions, each comprising 7 levels. 
For the three distributions shown in Figure 1A, the median durations (i.e. 4th levels) were 320ms, 

640ms and 1280ms respectively and duration levels were each separated by 0.05 log units. For 
Figure 1B the distributions were centered on 480ms and 960ms with a step size of 0.1 log unit, and 

Figure 1C depicts a distribution centered on 640ms with a 0.15 log unit step size. For blocked 
conditions, each of the 7 stimulus durations were presented 10 times in a pseudo-random order.  

For the experiments depicted in Figures 2-5, only the small step size distributions (0.05 log units) 
centered on 320ms (short) and 1280ms (long) were used. Interleaved sessions comprised 140 

trials, 70 for each duration range. The order of presentation was either pseudo-randomised (Figure 

2A) or else alternated from trial to trial (all other experiments). For all conditions, the delay between 
a response and the presentation of the next stimulus was jittered between 500ms and 1200ms. 

Observers were not informed as to the nature of the duration distributions and no feedback was 
provided.  

 
On manual reproduction trials, observers were instructed to press and hold a button on the 

keyboard with their index finger to indicate the perceived duration of the stimulus. Vocal 
reproduction was achieved by asking observers to make vocalisations of the speech sound /ba/ 

which were recorded using a Coles 4104 Ribbon Microphone. The duration of vocal reproductions 
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was extracted using an automated voice activity detection algorithm from the VOICEBOX speech 

processing toolbox (49).  On binary discrimination trials, observers judged whether a stimulus was 
longer or shorter than the mean duration seen at that location by pressing one of two keyboard 

buttons (method of single stimuli, 50). To provide observers the opportunity to build up a stable 
internal representation of the mean, the first seven trials consisted of one presentation of each of 

the duration level in the set and responses from these trials were discarded.    

 
Bayesian model.  
To simulate patterns of reproduction bias, we assumed that observers combine sensory estimates 
of stimulus duration with a learned approximation of the stimulus distribution. A full description of 

the model and procedures for parameter setting can be found in Supporting Information.  
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Figure legends 

 

Figure 1. Rapidly induced central tendency biases in human and Bayesian model observers. (A) 

Mean reproduction durations as a function of stimulus duration (filled symbols) for six stimulus 

distributions presented in separate testing blocks. Error bars show ±1SEM calculated across 
observers. Solid lines show best fitting power functions for each dataset, whereas the dotted 

diagonal line denotes veridical (unbiased) performance. Unfilled symbols in this and subsequent 
figures represent the estimated indifference points (centre of compressive bias) along with 

bootstrapped 95% confidence intervals. (B) Mean compression magnitude (1 - power exponent), 
plotted as a function of duration range (error bars show 95% CIs). The color of data points 

indicates associated conditions in Figure 1A and 1B. The right hand ordinate scale shows the ratio 

of prior standard deviation to likelihood standard deviation (both log-scaled) required to produce 

equivalent levels of bias in the Bayesian model. (C) Estimated indifference points as a function of 

the mean duration for a given stimulus distribution (error bars show 95% CIs). The solid horizontal 
line indicates the global mean calculated across all conditions. (D) Simulated data for a Bayesian 

observer-actor that combines sensory evidence with acquired knowledge of the stimulus 
distribution (for details see Supporting Information). Inset distributions represent inferred 

approximations of the prior distribution for each condition (see Supporting Information for more 
details). 

 
Figure 2. Generalisation across interleaved duration distributions. (A) Stimulus durations sampled 

from short (S) and long (L) distributions were either presented in blocks (black) or randomly 
interleaved (red). Interleaving altered the pattern of biases, producing a convergence of 

indifference points (unfilled symbols) towards a common duration. (B) Simulated performance of 

the Bayesian observer-actor model for blocked (black) and interleaved (red) conditions. In the 
interleaved condition, a singular prior distribution was implemented by generalising across both 

stimulus distributions. 
 

Figure 3. Rapidly learned priors generalise across distributions paired with distinct sensory inputs. 
(A) Mean reproduced durations for interleaved presentation in which short (S) and long (L) 

distributions were presented at different locations and alternated from trial-to-trial to remove spatial 
and temporal uncertainty (red symbols). For comparison black symbols show data obtained when 

stimulus distributions were presented in separate blocks (replotted from Figure 1A).  (B) Mean 
reproduced durations of visual (circular symbols) and auditory (triangular symbols) under blocked 

(black) and alternated (red) presentation conditions. Error bars for mean reproductions show 

±1SEM, whereas error bars for indifference points show bootstrapped 95% CIs.  
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Figure 4. Emergence of stimulus-specificity with extended training. (A) Observers were 
required to manually reproduce the duration of short (S) and long (L) visual stimuli 
presented alternatively to the right and left of fixation. Each observer completed 8 
sessions, each comprising 140 trials. Mean reproduced durations in the first session (red 
filled symbols) replicate the pattern of compressive bias shown in Figure 3A. Indifference 
points (unfilled red symbols) for the two duration distributions converge towards a common 
duration, consistent with reliance on a single generalised prior. However by the final 
session, mean reproduced durations for short and long stimuli (blue filled symbols) were 
compressed around distinct indifference points (blue unfilled symbols). Error bars for mean 
reproductions show ±1SEM, whereas error bars for indifference points show bootstrapped 
95% confidence intervals.  (B) Ratio of indifference points for short and long duration 
distributions, plotted as a function of testing session. The systematic divergence of 
indifference points suggests that observers’ prior expectations become increasingly 
location-specific over time. Error bars indicate bootstrapped 95% confidence intervals.   
 
Figure 5. Rapidly learned priors distinguish between distributions paired with different motor 

responses. (A) Mean reproduction durations for short (S) and long (L) distributions when presented 
in separate blocks (black symbols) or when reproduction trials for one stimulus set were alternated 

with passive presentation of the other stimulus set (red symbols). In contrast to the data shown in 
Figure 2, there is no systematic convergence of indifference points (open symbols) in the 

interleaved condition. (B) The left panel shows mean reproduction durations for a control 
experiment in which reproduction trials for one stimulus set were alternated with trials requiring  

binary duration discrimination judgments on the other stimulus set (red symbols).  For comparison 
black symbols show reproduction data obtained when short and long duration distributions were 

presented in separate blocks. The right panel shows the group-mean psychometric functions for 

the binary judgments trials, along with the best-fitting logistic functions. The proportion of trials on 
which stimuli were judged to be longer than the mean duration of the stimulus set is plotted as a 

function of stimulus duration. (C) Mean reproduced durations using button press (circular symbols) 
and vocalisation (square symbols) methods, measured in separate blocks (black symbols) or 

interleaved presentation (red symbols).  Error bars for mean reproductions and binary choice 
probability show ±1SEM, whereas error bars for indifference points show bootstrapped 95% CIs. 
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