Designing an Application Program Interface to
Efficiently Handle Optimisation Problem Data

Rodrigo Lankaites Pinheiro, Dario Landa-Silva, Rong Qu, and Edson Yanaga

Abstract—Literature presents many APIs and frameworks
focusing on providing state of the art algorithms and solving
techniques for optimisation problems. The same can not be said
about APIs and frameworks focused on problem data itself and
the reason is simple: due to the peculiarities and details of
each variant of a problem, it is virtually impossible to provide
general tools that is broad enough to be useful for many people.
However there are benefits of employing such APIs, specially
in a R&D environment where we have heterogeneous teams of
researchers and developers. Therefore in this work we propose a
design methodology for tailored optimisation problems based on
a data-centric development framework. Our methodology relies
on a data parser to handle the problem specification files and
on a set of efficient data structures to handle the information
on memory in a way that it is intuitive for researchers and
efficient for the solving algorithms. Additionally, we bring three
design patterns aimed to improve the performance of the API
and techniques to improve the memory access by the user
application. Also, we present the concepts of a Solution Builder
that can manage solutions objects in memory better than built-
in garbage collectors. Finally, we describe the positive results of
employing a tailored API to a project involving the development
of optimisation solutions for workforce scheduling and routing
problems.

Keywords—optimisation problems, data API, efficient data struc-
tures, research and development projects

I. INTRODUCTION

The research on decision support systems (DSS) is a multi-
disciplinary field, widely disseminated on the literature, that
saw great improvements in the past few decades (1). One
specific type of DSS include systems focused on solving opti-
misation problems, such as workforce scheduling (2), vehicle
routing (3) and many other industry applications. In this con-
text, literature presents many application program interfaces
(API) and frameworks to help researchers and practitioners
to apply state of the art solving techniques to optimisation
problems, such as ParadisEO (4), jMetal (5) and Opt4]J (6).

These tools and APIs have in common the fact that they
provide flexible implementations of state of the art algorithms
that can be adapted to most optimisation problems, given
that the objective-function is known. However, on an applied
research and development (R&D) environment, understanding
the problem can be an important asset to solve it, because
with a comprehensive understanding of the problem one can
achieve improved tailored solutions. Thus, in this situation,

R. L. Pinheiro, D. Landa-Silva and Rong Qu are with the ASAP
Group, School of Computer Science, University of Nottingham, UK e-mail:
{rodrigo.lankaitespinheiro,dario.landasilva,rong.qu} @nottingham.ac.uk.

E. Yanaga is with Unicesumar.

having an API to handle the problem itself, including data,
features, constraints and objective function can be beneficial
to the project.

Pinheiro and Landa-Silva (7) raised the benefits of having
a R&D methodology centred on the problem data itself. The
benefits include the obtention of a greater understanding of the
problem, a higher integration between researchers and prac-
titioners and an improved environment for the development
of the solving techniques, where multiple researchers from
different backgrounds can efficiently work as a team. In that
context, including a common API to handle the problem data
can further extend the usefulness of their proposed framework
as it can increase the productivity of researchers and developers
by simplifying the data access, avoiding rework, improving
computational performance and promoting standard solution
comparison measures.

Nonetheless, there is a reason on why APIs and frameworks
focused on problems are not common: they highly depend on
the problem being tackled and a single optimisation problem
possess many variants, making it unfeasible to define a unified
model that covers all possible versions. Therefore in this work
we present a set of guidelines and instructions to design a
tailored API that can be adapted to any optimisation prob-
lem emerging from a R&D project. Our design follows the
framework proposed by Pinheiro and Landa-Silva (7), hence
in the core of the API is the data model represented by a
set of XML files. Our proposed design is composed by three
components. The first is a parser for the files that is able
to read from and write to the modelled format. The second
are the data structures containing the relevant optimisation
data kept on memory. These data structures are designed in
a way to maximise performance to access the data during the
optimisation process. Also, we bring the Object Pool, Dirty
Flag and the Data Locality design patterns and techniques
to reduce CPU cache misses in order to improve the API
computational efficiency. Lastly we propose a feature called
Solution Builder which centralises the objective-function and
provides a repository for solution objects that recycles solution
objects and aims to minimise the interference of the built-in
garbage collector and memory fragmentation, hence increasing
computational performance.

Finally we present the results of the application of this API
to an ongoing R&D project. We also present an empirical
study about the efficiency of applying the Solution Builder
in detriment of relying on the garbage collector of modern
languages.

The remaining of this paper is structured as follows. Section
IT outlines the Workforce Scheduling and Routing Problems
Project which is used to illustrate the application of the pro-

posed APIL. Section III presents the guidelines and instructions
on designing the API. Section IV presents the results obtained
and section V concludes this work.

II. THE WSRP PROJECT AND RELATED WORK

In this work we illustrate the design of the proposed API
using a Workforce Scheduling and Routing Problem (WSRP).
In general terms the WSRP is a class of problems where a set
of workers (nurses, doctors, technicians, security personnel,
etc.), each one possessing a set of skills, must perform a set
of visits. Each visit may be located in different geographical
locations, requires a set of skills and must be attended at a
specified time frame. Working regulations such as maximum
working hours and contractual limitations must be attended.
This definition is quite general and many problems can be
considered WSRPs.

This work considers a variant of this problem, the home
healthcare scheduling and routing problem. Workers in this
scenario are nurses, doctors and care workers, while the visits
represent performing activities on patients who are in their
houses. In this problem, the main objective of the optimisation
is to minimise distances and costs while maximising worker
and client preferences satisfaction and avoiding (if possible)
the violation of area and time availabilities. For more informa-
tion regarding the WSRP we recommend the works of Castillo-
Salazar et al. (8, 9, 10) and Laesanklang et al. (11).

We are engaged in a R&D project in collaboration with an
industrial partner in order to develop the optimisation engine
for tackling large WSRP scenarios. The existing information
system collects all the problem-related data and provides an
interface to assist human decision makers in the process of
assigning workers to visits. We are in charge of developing the
decision support module that couples well with the information
management system being developed and maintained by the
industrial partner. Hence the proposed API is being used by
the research team and later it integrates to the current system.

Many APIs and implementations available in the literature
focus on the solving techniques. We can highlight the Par-
adisEO (4), the jMetal (5) and the Opt4] (6). They are all
frameworks that provide several solving algorithms for both
single and multiobjective problems. They all have in common
the fact that they are built around the solving methods and
they are flexible enough to be applied for many optimisation
problems.

In the literature we can also find frameworks and APIs with
a stronger focus on the problems being solved rather than on
the solving techniques.

e Matias et al. (12) and Mestre et al. (13) propose a
web-based Java API to solve nonlinear optimisation
problems. The API incorporates a set of constrained and
unconstrained problems and gives the user the possibility
to define his own problems with custom-made objective
functions. However, as with the many works that fo-
cus on the solving techniques, defining exclusively the
objective-function may be too restricting to the research
of the solver. Hence, our API could be integrated with
this or any framework focused on the solving algorithm

as we focus on how to efficiently access the data and
build solution objects.

e In his work, Huang (14) proposes a new API for eval-
vating functions and specifying optimisation problems
at runtime. They propose a Fortran interface FEFAR for
the evaluation of objective functions and a new defini-
tion language LEFAR for the specification of objective
problems at runtime. Conceptually we differ from them
as we are not proposing a general API, but instead
conceptualising the design of a tailored API that can
help on the research and development of optimisation
solutions.

e Pinheiro and Landa-Silva (7) propose a framework to
aid on the development and integration of optimisation-
based enterprise solutions in a collaborative R&D en-
vironment. The framework is divided into three com-
ponents, namely a data model that serves as a layer
between practitioners and researchers, a data extractor
that can filter and format the data contained in the
information management system to the modelled format
and a visualisation platform to help researchers to fairly
compare and visualise solutions coming from different
solving techniques. In their work they mention the
importance of an API that extends the usefulness of the
data model, in this work we expand that concept and
describe how to design and implement key components
of such APL

III. API FOR OPTIMISATION PROBLEMS DATA

The proposed API is composed of three main components
that allow the user to decode the data files of a problem
scenario, to load the data into efficient and easy-to-access data
structures and to build and evaluate solutions in a straightfor-
ward and efficient way. Figure 1 presents an overview of the
API components.

These features facilitate the development of both experimen-
tal solving techniques and final release versions. Additionally
they provide a reliable way for the algorithms to query the
data and to compare solutions from different approaches. We
describe next the first feature of the proposed API, the data
parser.

A. XML Data Parser

Pinheiro and Landa-Silva (7) in their work proposed the use
of a data model to represent the optimisation problem features
and data. In a collaborative environment, where practitioners
work with the academia to develop a decision support system,
it is common that an information system already exists and that
the decision support system is a feature of the main software.
In that context, a data model to represent the problem was
proposed to improve several aspects of the project:

e Improved definition of the problem: the process of
defining the data model can promote discussions and
deeper understanding of the problem by both academics
and practitioners. While practitioners have a business
vision of the problem, academics are often biased to-
wards technical content found in the literature, hence

XML
Data

XML
Parser

Data Structures

C* UETgEE

SojEE _EE |
-

E‘:/

Fig. 1: Overview of the APL

divergences may arise. A clear definition of the model
can help spot such differences and the establishment of
a common ground.

Development independence: in the aforementioned sce-
nario, we assume that the R&D team, mostly composed
by academics, is not the same team that develop the main
information system. Hence, after setting the data model,
a team will require less from the other as they will
both be dealing with the data model, hence it virtually
represents a layer in which both teams can rely.

Easy integration: having a data model early in the project
helps to integrate the final solution to the current infor-
mation system. This happens because all data will be
translated to and from the data model, hence both R&D
team and main development team will be making use
of the model when adding the optimisation module to
the main system. Thus, the development is modularised
and the main system and the decision support module

only communicate through the data model, which is well
known by both teams.

Figure 2 present the overall idea of the data model. We
see that the problem features, represented by the mathematical
formulation of the optimisation problem, relates to the XML
files in a manner that it is intuitive for human beings to
understand (grouping related features in separated files).

Following this data modelling concept, the first component
of the API is a parser to read the files from the data model
and build the data structures. The parser is also responsible
for converting a solution of the optimisation problem into the
XML data file. Additionally, the parser must be implemented
in such a way to easily accommodate extensions or updates in
the data model.

For that purpose we employed a serialisation library. Since
we are using Java, we employed the XStream Java library (15),
however most high level languages have XML serialisation
mechanisms available. The advantage of such approach is that
we can create a set of classes that corresponds immediately to
the modelled data, hence the serialisation library can handle
all the file parsing. This is easy to develop and do not require
much programming time, however it is likely that the objects
in memory are not best suited for performance or for intuitive
access because the serialisation mechanism often required
intermediate classes and public access to attributes. Hence the
parser is used exclusively to translate the information from and
to the files. For efficient and easy access to the data we need
another set of data structures.

B. Internal Data Structures

The second component of the API is composed by the data
structures to hold the problem-related data. It is important to
emphasise that while the aforementioned data model is in-
tended to be a clear representation of the optimisation problem,
the internal data structures must be efficient for access during
the optimisation process.

Therefore we must ensure that the operations invoked during
the optimisation are performed on constant (O(1)) time when
possible. Additionally, the API should be flexible enough to
easily accommodate different solving techniques, as we are
not only concerned about the final product, but with the entire
process of developing the R&D project. Hence, in our work we
divided the API in arrays, following the data model orientation.

We defined arrays of workers, tasks, areas and contracts. The
advantage of using arrays is that the the random access using
indexes are very efficient (O(1)). The disadvantage is that to
load the data we must first assess its size in order to allocate
the right length for the arrays (or use dynamic arrays structures
which could also hinder the performance if the pre-allocated
size is not large enough). To increase the loading performance
we added a new XML file to the model, called *metadata.xml’
that accommodates several information and statistics of the
problem instance, such as number of workers, tasks, the date
format used in the files etc.

Using arrays may be sufficient to the decision support
system, as it allows fast random access and quick interaction
through the elements. However it may be a problem to the

v
Minimise: Z Z Z (di.jpj)él”/f,, X P?$f.g+

a§+ M(1—x7;) > af +¢; jli j + 0, «e—VcEX,Vie DUT,YVj e D'UT

1 matrices.xml c€C i€ DUT jED'UT T T solution.xml
—> > My, +n,12(ij,-)T
JET
Supject to: Z Z iy =1, € Vi e T
ceCieDUT
Sooar;= Y g, VjeT,VeeC
i€ DUT keD'UT
———— R T Vee C,VieT,3k € D
workers.xml [N contracts.xml
’ —> Z Tl > Z T < Yee C,\VieT,Ike D X
i€ DUT e DUT \
> oaf; <1) Vie D,VeeC
jep'uT
\/— Z ;lj;",j <1 W€D,.,V(J€C‘\/_
| jeDpuT
YVde d.Vie DUT,Vje T Vse S

areas.xml
af, —a§ < M(1—xf; +wj)

Z ZIEJ(SJ‘ <h’ e

af +0; —af < M(1 —xf; +w;)

J Vie T,Vce C
Yee C,\Vie DUT,NYjeT
Yee C,Vie DUTNj €T

Vee O

tasks.xml

i€DUT jUT

C c
%—) Ti sy < dy €———
wr c U <
w; < a; < w;
—>
>
—>
>

C Iy . c
Z Tig — Vi S
i€ DUT

Yee C\WjeT

Fig. 2: Representation of the XML Model.

main system, as it often handles elements using its database
identification number, which are stored in the XML, but are
not consistent with the index of the arrays. To solve this matter
we employ a second data structure, a hash table, linking the
identification numbers of the database entries to its respective
objects. In order to provide the best usability with both data
structures, we encapsulated both the hash table and the arrays,
for each type of objects, into a single class representing the
set of elements.

Finally, to improve the usability of the API, we define a
naming convention to make it clear regarding the performance
of the operations. All methods starting with the words ’get’,
’is” and ’has’ are guaranteed to perform in O(1) time. All
methods starting with the word ’calculate’ are guaranteed to
perform in O(n*) time.

Figure 3 presents a class diagram of the data structures. For
simplicity we included only the main class that defines the
optimisation problem and the classes that defines the tasks
and the set of tasks. The main class, WorkforceSchedulin-
gAndRoutingProblem, is composed by the sets of elements
included in a problem instance, namely areas, tasks, human
resources and contracts. This class provides an interface such
that the user can retrieve each set and its elements. Also, this
class allows the user to obtain the Solution Builder and the
objective function, explained in the subsequent section. Note

that the calculateMinimumNumberOfAssignments method, as
aforementioned starts with the ’calculate’ word hence it per-
forms because it performs in O(n) time while all get” methods
performs in O(1).

The Tasks, Areas, HumanResources and Contracts classes
contains both the arrays of elements and the hash table linked
by each element’s identification number. Hence, when using
these classes it is possible to interact through all elements or
retrieve a specific one given its identification number or index,
as we can find in the Tasks class. We see that from this class
it is possible to identify an ordered list of tasks /s representing
the array and the hash table hashTable containing the mapping
of identification numbers. Finally, the class Task contains all
the methods to access the data from a single task plus some
useful operations, such as isTimeConflictingWith which checks
if a second given task conflicts in time with the current task
(hence they can not be performed by the same worker).

1) Code Optimisation: McShaffry (16) evaluates that the
performance of an application can be influenced by the data
structures employed and by how the data itself is organised
and accessed by the code. Additionally, a good use of the
processor’s internal cache can potentially increase performance
by up to 50 times (17). Hence we now present some techniques
found in the literature that can improve the performance of the
data access and subsequently of the algorithms that make use
of the APL.

Task

+ getindex() : int

Task(t : TaskE, a : Areas, hrs : HumanResources, ind : int)
+ getld() : int

+ getPriority() : int

+ getDuration() : int

+ getDate() : int

+ getMinimumMNumberOfHumanResources() : int

+ getMaximumMNumberOfHumanResources() : int

+ getlLocation() : Location

+ getTimeWindow() : int[]

+ getPreferredTimeWindow() : int[]

+ getValue() : double

+ getRequiredSkills() : List<Integer>

+ getPreferredSkills() : List<Integer=

+ IsSkilRequired(skilld : int) : boolean

+ getSkilRequirementPreferencel evel(skillld : int) . double

+ getSkilRequirementProficiencylLevel(skilld : int) : double

+ getDefinedHumanResourcesList() : List<HumanResource>
+ getDeniedHumanResourcesList() : List<HumanResource=
+ getPreferredHumanResourcesList() : List<HumanResource=
+ getHumanResourcesRequirementPreferencel evel(hr : HumanResource) : double
+ getAlternativeTasksList() : List<Task>

+ getNonOverlappingTasksList() : List<Task=

+ getRequiredTaskslist() : List<Task=

+ getSynchronisedTasksList() : List<Taslk>

+ getSynchronisationData(t : Task) : int[]

- setTaskRelation(t : Tasks) : void

+ isTimeConflictingWith(t : Task) : boolean

+ isTimeConflictingWith(t : Task, travelTime : int) : boolean

{ordered} ‘Y, -ts
- hashTable

Tasks

Tasks(tf : TasksFile, areas : Areas, hrs : HumanResources)
+ getTask(index : int) : Task

+ getNumberOfTasks() : int

+ getTaskByld(id : int) : Task

+ iterator() : lterator<Task>

- tasks

WorkforceSchedulingAndRoutingProblem

+ getAreas() : Areas

+ getTasks() : Tasks

+ getHumanResources() : HumanResources

+ getContracts() : Contracts

+ getHumanSolution() : Solution

+ getMetadata() : Metadata

+ getSolutionBuilder() : SolutionBuilder

+ getObjectiveFunction() : ObjectiveFunction

+ loadProbleminstance(zipFile : File) . WarkforceSchedulingAndRaoutingPrablem
+ calculateMinimumMumberOfAssignments() : int
+ generateReport() : MultiPage

+ getinformation() : Information

Fig. 3: Class diagram for the main problem class and the tasks-related
classes.

a) Data Locality.: One of the most overlooked way to
gain (or lose) performance in an application is due to the
internal processor’s cache memory. Modern computers possess
an internal processor memory (cache memory) that bridges
the access to the main RAM memory in order to increase
the system performance. In summary, when the application
requires some data in the memory, the CPU loads an entire
section of the main memory into the faster internal cache.
When requiring the next data, it first checks if it is already
in the cache. In case it is (cache hit), the access is very fast as
the data is promptly available. In case it is not in the cache,
we have a cache miss and a section of the memory containing
the required data is loaded into the cache (18).

(17) proposes a design pattern denominated data locality
that attempts to reduce the number of cache misses in the
application. The design pattern consists of sacrificing some

abstraction and object oriented concepts in order to better
arrange the data inside of an object such that when accessing
the object attributes the number of cache misses is minimised.

Take for instance the Task class in the sample APL If we
sequentially define the variables for id, priority, duration and
date in the class and we always read them in that order (let
us say in the objective-function), we are promoting cache hits
because they are likely to be loaded altogether into the cache.

Another way to promote cache hits is to employ the use of
arrays for homogeneous data. Suppose some heavy calcula-
tions requires the costs of all tasks to be processed. Instead of
having an attribute ’cost’ inside the task, it is more efficient
to have an array containing all the costs for all tasks such
that when a calculation is performed, the sections loaded into
memory will contain the costs for multiple consecutive tasks,
hence effectively promoting multiple cache hits.

Another concern of this patter is with the use of getters
and setters. Employing such methods is considered to be a
good object oriented practice, as it promotes encapsulation,
error control and readability. However it can cause cache
misses because of the indirect referencing. Languages such
as Java have in-line optimisations which can convert a setter
or getter method into direct access to the attribute during the
compilation of the code (19), hence setters and getters can be
used without fear of hindering the performance. It is important
to know beforehand the characteristics of the programming
language used and the compiler employed before deciding
whether make use of setters and getters or not.

b) Matrices Ordering.: Still focusing on optimising the
cache memory access, another issue that may be overlooked
is the ordering of matrices in the memory (16). Optimisation
problems data often present data matrices. Accessing this data
in the correct order to avoid cache misses can outcome a huge
performance gain. Suppose the data from a matrix is stored in
row order (i.e. [0,0],[0,11,[0,2] are respectively adjacent). If we
follow the row ordering to access the data, entire sequential
sections of the memory will be loaded into the cache, hence
promoting cache hits. Now consider the opposite scenario, if
we access the matrix in column order and given that a row is
larger than the section that will be loaded into memory, we
have the worst case scenario where every access will result in
a cache miss.

Some languages such as C++ define its array in row major
order while others such as some versions of PASCAL defines
them in column order, hence it is important to be aware of how
the chosen language allocates the arrays and matrices into the
memory.

c) Memory Alignment.: (16) notes that the CPU reads
and write memory-aligned data noticeably faster than mis-
aligned data. A given data type is memory aligned if its starting
address is evenly divisible by its size (in bytes). Al aligned
chunk of data is promptly loaded into the cache while an
unaligned chunk of data must be read in parts, then shifted to
the target frame and then loaded. Figure 4a presents a diagram
of a memory mapping of aligned data. As we can see, the
mapping is direct meaning that the data is directly transferred
from the RAM memory to the internal cache memory. Figure
4b presents the copy of misaligned data. We can observe that

Memory CPU Cache

data n———

(a) Memory mapping from memory to CPU cache of an aligned chunk
of data

Load upper 4 Shift 1 byte
Memory bytes up

} data

Load lower 4 Shift 3 bytes
bytes down

CPU Cache

Combine

(b) Performance loss of a memory mapping of misaligned data.

Fig. 4: Comparison of cacheing aligned and misaligned data.

the CPU reads the two chunks containing the parts of the
required data. It then shifts each chunk to select the wanted
information and merge into a single chunk which is then copied
to the cache. Clearly the second represent a much slower
mechanism.

The best way to take advantage of this is to make sure
that the internal data types, structures and classes of the API
possess a number of bytes that is a power of 2. If a data
type has less bytes, we could add a dummy variable with the
required number of bytes in order to force it to have a desired
value. Also, it is imperative to be aware of the overhead of
space required by the programming language for classes and
data structures before computing the total size.

C. The Solution Builder

The last component of the API is the Solution Builder (SB).
The SB have two main roles:

1) Provide a standard mechanism to calculate the fitness
(objective-value) of a given solution for the optimisation
problem.

2) Provide an efficient way to handle solution objects in
the memory.

The SB provides an interface for the user to build and assess

a solution for a given problem instance. Once the problem is
loaded into a WorkforceSchedulingAndRoutingProblem object,
the user can invoke the SB to create a new solution object.
A new empty solution is created and an identification number
is returned to the user. He/she then can use this number to
access the solution and add new assignments and evaluate the
solution according to multiple criteria (preferences, objectives
or constraints). The user can also invoke the objective function
to evaluate the solution. Figure 5 presents a schematic for the
SB component.

1) Centralised Evaluation Mechanism: Attached to the SB
is the objective function. Pinheiro and Landa-Silva (7) men-
tioned in their work the importance of a mechanism to ensure
the fairness in the comparison of results between multiple
techniques implemented by different researchers. Following
that concept, having a centralised objective-function in which
everyone can rely is beneficial to the team and since the API
will be used by everyone, having the evaluation mechanism
integrated helps to avoid re-work and to keep consistency.

In that context the weights of the objective function are
initialised with standard values, however the SB allows the
user to set them according to his needs. The user then can
evaluate specific aspects of the problem (total distance, total
costs, constraints violations, preferences, etc) or obtain the
overall fitness of a given solution.

We argue that it is important to have a centralised eval-
uation mechanism because often in real world problems the
calculations of the objective function are complex and in-
volve several computational procedures. Therefore, to compare
solutions using multiple implementations is tricky as there
may be inconsistencies between the algorithms. Also, because
the results are likely to be different between distinct solving
techniques, to spot the inconsistencies may be hard, hence
having everyone making use of the same mechanism helps
avoiding this problem. Additionally, the fact that multiple
people are using the code helps on the identification of flaws
and inaccuracies in the code.

2) Solution Dispenser: Modern programming languages,
such as Java and C#, provides a convenient way to handle
objects: a garbage collector. When the user doesn’t need an
object anymore, all he have to do is to get rid of the links
and pointers to that object. At every given period of time,
the garbage collector starts processing, seeking objects that
are not linked by the user’s program and freeing the memory.
That can lead to two problems: the first is the fragmentation of
the memory, which is a problem because the defragmentation
process can be slow; the second is the extra processing time
to seek, to free the memory and later to allocate new objects
(20, 21).

Leaving the disposal of objects to the garbage collector
can lead to a decrease in performance that, aside from being
marginal on most applications, can have an unacceptable
impact on optimisation algorithms. Hence the SB not only
provide an user interface to create and handle solutions, but
also internally implements an Object Pool design pattern (17)
to recycle the objects. To do that we employ a factory object,
implemented using the Factory design pattern (22) for easy
creation of the objects. This factory is responsible for creating
new solution objects.

When a new solution request is invoked, the factory seeks
its internal solution repository (a list of disposed solutions).
If there is a solution available in the repository, it retrieves it,
clears the solution and returns it to the solution builder who
will add the solution to the active solutions list. The user now
has an empty solution that he can use. When the user does
not need the solution anymore he can dispose the solution
by invoking the specific method in the SB. The factory then
receives the disposed solution and stores it in the list.

Dispose

/ Solution Builder \

/

Solution Dispenser

Return

Solution

Clean (or

Instantiate new)
Solution

Solution

~ Active
Solutions

| I —

Add
Assignment

Evaluate

Dispenser

Constraints

Solution

-

Objectives

/

Fig. 5: Solution Builder schematics.

Potentially, the use of the the solution dispenser can provide
significant performance gains. Take for instance a population-
based algorithm that process one generation per second with a
population of 100 individuals. That means 100 solutions being
disposed per second. After ten minutes running, the algorithm
will have disposed 60000 solutions, which potentially could
fragment the memory and cause several garbage collection
calls. Now, when using the dispenser, considering the worst
case in that a new population is created before disposing the
old one, we need 100 active solutions per population, totalling
200 total solutions active that will be recycled during the
execution. Thus, in this hypothetical scenario we could have a
decrease of 99.6% on the number of objects used.

3) Code Optimisation: The SB itself is a component to
improve the efficiency of the API with the dispenser being a
specialist implementation of an Object Pool design pattern. On
the evaluation mechanism, however, programming techniques
can be applied to improve the overall evaluation performance.

a) Dirty Flag.: (17) proposes a design pattern called dirty
flag. Basically, it consists of a mechanism to avoid unnecessary
recalculations when you have nested operations, usually on
recursive calls. In the optimisation problems context, the objec-
tive function can be very costly and recursive calculations may
appear. Additionally, algorithms may require specific parts of
the objective function to be calculated in different points and in
multiple times. This pattern consists of having a flag (boolean

variable) to define if the state of an object has changed. If
so, the values that relies on that object must be re-calculated.
Thus, in a recursive operation where a value would be always
calculated, now it will be calculated only if the flag is up.
Essentially, after a solution is built, only one evaluation of its
values are made. If an algorithm calls the evaluation (or partial
evaluation) again on a same unchanged solution, baceuse the
flag is down (no changes) the last calculated value is returned.

IV. EXPERIMENTS AND RESULTS

We now present the results of the use of the API in the
WSRP project. First we show the gains of employing the
API in the project development then we perform a technical
analysis on the Solution Builder component and show how
much of a benefit it can represent.

A. Improvements on the R&D

b) Rework.: 1In our project we had multiple researchers
with different background investigating the WSRP. The prob-
lem is complex and the data model, although easy to un-
derstand, is not so easy to decode and load into appropriate
memory objects, due to its inherent complexity. Therefore,
having a centralised API containing a parser and efficient
internal data structures helped both teams to avoid performing
rework.

T T T
SB - Total

SB - new
...... SB - dispose
GC - Total

GC - new
...... GC - dispose

Time(s)

O P e

| | | | |
5 OB DS
AR B SR\

Solution Size

Y &
. &
OIS

Fig. 6: Time comparison between the Solution Builder (SB) and the Java Garbage Collector (GC) to instantiate and dispose new solutions.

c) Time saving.: Additionally, using the API meant
considerable time saving for us. New members joining the
research team were able to quickly learn how to use the
API and start implementing their methods right away, without
hassle. Also, the company’s development team were able to
easily handle the data files by using the integrated parser.

d) Solver Efficiency.: When designing the API, specially
the internal data structures, the entire team could assess its
efficiency. Thus later, when using the API, everyone was
confident that they were using the best option. This is crucial
in a scenario where researchers have multiple backgrounds,
as it was in our project, because the performance of some
technique may be hindered by an inefficient implementation
of some data structure, hence, having the best known data
structures available for everyone helps to achieve improved
efficiency in all solvers.

e) Consistency.: Pinheiro and Landa-Silva (7) in their
work stated that one of the main concerns on such development
environment is the consistency in the comparison of multiple
techniques. We managed to spot problems on early stages
of the project, where each researcher had its own fitness
calculation mechanism. After the release of the API, the use
of the integrated Solution Builder helped our team to assess
and compare the developed solvers because it guaranteed that
the fitness calculations were consistent between methods.

f) Error identification.: Having multiple people working
using a single API helps to spot code errors and bugs faster
than having each researcher to find errors alone on his own
code. During the first months of our project we had the
research team release several versions of the API until we
obtained a stable version. This increased the confidence of the
team on the tools at hand and helped us ensure that we had a
reliable component to base our research.

B. Solution Builder

When presenting the Solution Builder component we argued
that theoretically it can provide performance gains to the
final algorithms, as it helps avoiding the disadvantages of the
garbage collector. We now present an empirical analysis on
this matter.

The solution builder is responsible for holding solution
object for a given problem, hence a small problem using a large
representation consumes more memory than a larger problem
using a small representation. This is particularly true when
comparing an integer array representation (an array the size of
the number of tasks) and a binary array representation (a matrix
workers x tasks). Therefore, to test the solution builder we
used integer arrays varying from very small (25 elements) to
very large (25000 elements) representing respectively a small
problem using integer representation and a large problem using
binary representation. Note that although the decision variables
may be binary, for several reasons it not uncommon to find
these arrays implemented using complex objects (5), hence it
is reasonable to use integer variables instead of binary ones in
our experiments.

We defined our experiments as follows: for each problem
size we sequentially created and disposed 1,000,000 solution
objects. For the experiments using the garbage collector, the
dispose process merely unlink the objects to free them, while
for the SB it calls the internal dispose process and clears the
object data. We run each set up for five times and computed the
average results. Additionally, to measure time and memory we
used the integrated profiler available on Netbeans which can
accurately measure the time spent on each method and the
memory allocated during the execution of the application. The
experiments were performed on a quad-core Intel i7 machine
with 12GB memory on the Java platform. The main reason
for choosing Java is that is a mature language, multi-platform
and widely employed for optimisation problems with a large
number of optimisation algorithms implemented and available

T T T
SB Maximum
— — — SB Average
800 [~ GC Maximum
—_ — — — GC Average
/M
g 600 -
=
2
-}
> 400
Q
g
Q
= 200|
ofF

| | | | | |
5 DS S
Vv ARSI NN U

Problem Size

Fig. 7: Memory comparison between the Solution Builder (SB) and the Java Garbage Collector (GC).

4,000 []

3,000

2,000 |

Number of Generations

Solution Builder

Garbage Collector
I I | | |
N

Solution*Size

150 % |-

100 % |-

50% -

| | | |

fF & & & & 8
PSS S
SolutionSize ® O

(e}
R

Increase in the Number of Generations

(a) Number of generations of a genetic algorithm varying only the (b) Increase in the number of generation when employing the Solution

size of the solution representation.

Builder in detriment of the built-in Garbage Collector.

Fig. 8: Comparison of the Solution Builder against the Garbage Collector on a Genetic Algorithm.

for public use (4, 5, 6).

Figure 6 presents the results for the time computations. The
red lines represents the time spent in seconds on experiments
using the Java garbage collector and the blue lines represent
the time spent on experiments employing the solution builder.
The solid line is the total time, the dashed line is the time
used by the new method, which allocates a new solution object
and the dotted line represents the dispose method. We can
see that the time spent by the SB follows a constant trend
throughout all problem sizes. This happens because both the
new and dispose operations of the solution builder performs in
constant time and since there are no objects free in the memory,
the garbage collector does not need to activate. Regarding the
tests using the garbage collector, we can see that the dispose

operation performs in constant time, but the new method
requires higher time proportional to the size of the solutions.
We can clearly see how relying on the garbage collector to
dispose and allocate new objects can hinder the performance
of the application. Also, it is important to to notice that on our
experiments we did not specify any parameters for the Java
virtual machine, hence the experiments has as much memory
as it was required. In a real-world environment that might not
be the case. Many processes may be active in the machine and
the memory might be limited, which would make the garbage
collector to be active more often than it was on the tests, hence
decreasing the performance even more.

In Figure 7 we have the results for the memory alloca-
tion measurement. The red lines represents the experiments

using the garbage collector and the blue lines the solution
builder. Also, the solid lines represents the maximum memory
allocated in MB and the dashed lines the average memory
allocated. Analogously to the previous chart, we can clearly
see that the memory required by the SB, not surprisingly, is
constant throughout all experiments. Although the size of the
array changes on each experiment, only one object is allocated
in memory during the runtime. However, when relying on
the garbage collector we can see that it makes use of much
more memory, which reinforce our previous statement that in
a scenario where the memory is limited the garbage collector
will have to be activated more often.

Finally, we employed the API designed for the WSRP
Project to perform experiments using a Genetic Algorithm
(GA) Goldberg (23) to solve real-world scenarios. In order to
isolate the impact of employing the Solution Builder, we run
the experiments on a single test instance varying only the size
of the data structure used to represent a solution. Therefore
all the experiments required the same computational effort
regarding the genetic operators and solution evaluation. Also,
we used fixed seeds for the random number generators in order
to increase the fairness of the comparison. We performed eight
runs of the GA, both for the SB and the GC, and computed the
average number of generations after one minute of processing
time. Figure 8 presents the results. In (a) we see the total
number of generations for the GA as the size of the solution
representation increases. It is evident that when employing
the SB the average number of generation is roughly constant
regarding the increase on the size of the representation. It is
also noticeable that if the solution size is not large enough (in
this case the equivalent of 10000 integer values), the advantage
of using the SB is below 10% (b), but still remarkable.
However, when the size of the representation increases, the
benefit of employing the SB represented up to 150% raise in
the number of generations.

Thus we can clearly see that by employing the solution
builder we can achieve substantial improvements both in time
and memory consumption, specially on larger problems or
problems where the solution representation is larger. Also,
the idea of the solution builder of recycling objects could be
implemented in the solver algorithms themselves, specially on
population-based algorithms (because of the high number of
created and disposed solutions), to maintain their individuals
pool.

V. CONCLUSION

Several APIs and frameworks providing optimisation al-
gorithms are available in the literature. Their importance
is unquestioned as both academia and industry can benefit
of efficient implementation of state of the art optimisation
methods. Having tailored APIs to handle the problem data
can also be very beneficial in a R&D environment because
it can save time by avoiding doing rework, it can decrease
the complexity of accessing the data, increase computational
performance and raise the reliability of the solutions obtained
by different solving methods.

Because it is not possible to provide a general API that
suits all problems, we instead provided in this work a set

of guidelines and instructions to aid on the tailoring of an
API to efficiently handle the optimisation problem data and
to help increasing the performance of solving techniques.
We first stipulated a file parser that can read the modelled
format and load all pertinent information into memory. Then
we defined an intuitive and efficient approach to store this
information using efficient data structures that are clear and
computationally efficient, hence it can improve on the re-
search process and be applied to a final solver algorithm. We
applied efficiency design patterns to our model in order to
improve its effectiveness, such as the Data Locality, Dirty
Flag and Object Pool design patterns. Also, we proposed
efficient techniques to improve matrices efficiency and to avoid
cache misses during the execution of the code. Finally we
proposed a novel component called Solution Builder which
centralises the objective-function, hence promoting fairness
on the comparison of solutions arising from different solving
techniques, and provides a solution repository that handles the
memory allocation of solution objects in an improved way.
We discussed that having the API available for academics

and

practitioners greatly helped us on our project. We were

able to minimise the rework done by multiple researchers from
different backgrounds, we were able to reduce the time spent
on implementations and the assessment of solving techniques
started earlier. We were also able to increase the solvers
efficiencies and to promote a consistent mean to compare
solutions and we managed to improve the identification of
glitches and bugs in the code, raising the reliability of the
software being developed from early stages of the project.
Also, we analysed the advantages of using the Solution Builder
and presented the computational gains that can be obtained by
employing such technique.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

REFERENCES

D. Power, F. Burstein, and R. Sharda, “Reflections on the past
and future of decision support systems: Perspective of eleven
pioneers,” in Decision Support, ser. Annals of Information
Systems. Springer New York, 2011, vol. 14, pp. 25-48.

M. Pinedo, Scheduling: theory, algorithms, and systems,
ser. Prentice Hall international series in industrial and
systems engineering. Prentice Hall, 2002. [Online]. Available:
http://books.google.co.uk/books?id=FvVTAAAAMAAIJ

B. Golden, S. Raghavan, and E. Wasil, The Vehicle
Routing Problem: Latest Advances and New Challenges: latest
advances and new challenges, ser. Operations research/computer
science interfaces series. Springer, 2008. [Online]. Available:
http://books.google.co.uk/books?id=-3ta5ne3-owC

S. Cahon, N. Melab, and E. Talbi, “Paradiseo: a framework for
the reusable design of parallel and distributed metaheuristics,”
Journal of heuristics, vol. 10, pp. 357-380, 2004.

J. J. Durillo and A. J. Nebro, “jMetal: A Java framework
for multi-objective optimization,” Advances in Engineering
Software, vol. 42, pp. 760-771, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0965997811001219
M. Lukasiewycz, M. GlaB}, F. Reimann, and J. Teich, “Opt4]
- A Modular Framework for Meta-heuristic Optimization,” in
Proceedings of the Genetic and Evolutionary Computing Con-
ference (GECCO 2011), Dublin, Ireland, 2011, pp. 1723-1730.
R. L. Pinheiro and D. Landa-Silva, “A development and integra-
tion framework for optimisation-based enterprise solutions,” in

(8]

(9]

[10]

(1]

(12]

(13]

(14]

[15]
(16]

(17]

(18]

[19]

(20]

(21]

[22]

ICORES 2014 - Proceedings of the 3rd International Conference
on Operations Research and Enterprise Systems, Angers, Loire
Valley, France, March 6-8, 2014., 2014, pp. 233-240.

J. A. Castillo-Salazar, D. Landa-Silva, and R. Qu, “A survey on
workforce scheduling and routing problems,” in Proceedings of
the 9th International Conference on the Practice and Theory
of Automated Timetabling (PATAT 2012), Son, Norway, August
2012, pp. 283-302.

, “Workforce scheduling and routing problems: literature
survey and computational study,” Annals of Operations Re-
search, 2014.

, “Computational study for workforce scheduling and rout-
ing problems,” in ICORES 2014 - Proceedings of the 3rd In-
ternational Conference on Operations Research and Enterprise
Systems, 2014, pp. 434-444.

W. Laesanklang, D. Landa-Silva, and J. A. Castillo-Salazar,
“Mixed integer programming with decomposition to solve a
workforce scheduling and routing problem,” in ICORES 2015 -
Proceedings of the 4rd International Conference on Operations
Research and Enterprise Systems, 2015, pp. 283-293.

J. Matias, A. Correia, C. Mestre, P. Graga, and C. Serodio,
“Web-based application programming interface to solve non-
linear optimization problems,” in Proceedings of the World
Congress on Engineering 2010, Vol 111, 2010.

P. Mestre, J. Matias, A. Correia, and C. S., “Direct search
optimization application programming interface with remote
access,” IAENG International Journal of Applied Mathematics,
pp. 251-261, 2010.

F. Huang, “A New Application Programming Interface
and a Fortran-like Modeling Language for Evaluating
Functions and Specifying Optimization Problems at Runtime,”
International Journal of Advanced Computer Science and
Applications(IJACSA), vol. 3, no. 4, 2012. [Online]. Available:
http://ijacsa.thesai.org/

J. Walnes, “Xstream,” April 2015, http://xstream.codehaus.org/.
M. McShaftry, Game Coding Complete, Fourth Edition, ser. IT-
Pro collection. Course Technology PTR, 2012. [Online]. Avail-
able: https://books.google.co.uk/books?id=HWYKAAAAQBAJ
R. Nystrom, Game Programming Patterns. Gen-
ever — Benning, 2014. [Online]. Available:
https://books.google.co.uk/books?1d=9fIwBQAAQBAJ

J. Hennessy, D. Patterson, and K. Asanovi¢, Computer Archi-
tecture: A Quantitative Approach, ser. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann/Elsevier, 2012.
[Online]. Available: https://books.google.co.uk/books?id=v3-
1ThVwHnHwC

S. Oaks, Java Performance: The Definitive
Guide. O’Reilly Media, 2014. [Online]. Available:
https://books.google.co.uk/books?id=alhUAWA AQBAJ

F. Siebert, “Eliminating external fragmentation in a non-
moving garbage collector for java,” in Proceedings of the
2000 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, ser. CASES °00. New
York, NY, USA: ACM, 2000, pp. 9-17. [Online]. Available:
http://doi.acm.org/10.1145/354880.354883

D. F Bacon, P. Cheng, and V. T. Rajan, “Controlling
fragmentation and space consumption in the metronome,
a real-time garbage collector for java,” SIGPLAN Not.,
vol. 38, no. 7, pp. 81-92, Jun. 2003. [Online]. Available:
http://doi.acm.org/10.1145/780731.780744

M. Yener, A. Theedom, and R. Rahman, Professional Java
EE Design Patterns. Wiley, 2014. [Online]. Available:
https://books.google.co.uk/books?id=W7_IBQAAQBAJ

[23] D. Goldberg, Genetic Algorithms in Search, Optimization,

and Machine Learning, ser. Artificial Intelligence. Addison-
Wesley Publishing Company, 1989. [Online]. Available:
https://books.google.co.uk/books?id=3_RQAAAAMAAIJ

