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Abstract: The rise in demand for customised products and lower costs has generated the need
for incorporating intelligence in production systems. Intelligence is the main driver for enabling
intelligent control in production systems to meet feature, part and conditional variations. It
also promotes solutions that offer higher functionalities and lower costs. The research presented
in this paper focuses on integrating intelligence into testing processes within a production
system. A novel method of controlling the testing functionality is presented by deploying and
using the asset administration shell approach. A means of controlling the process with the
asset administration shell guided by simulation is demonstrated. An architecture for controlling
the execution behaviour in testing process by services is conceptualised offering a modular
and low-cost solution. A validation by using an experimental use-case of leak-testing is presented.
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1. INTRODUCTION

Advances in computer engineering, communication, and
information technologies are making a significant impact
on manufacturing. “Intelligent manufacturing” is the term
used to describe the next generation of production where
production systems make intelligent decisions about them-
selves. It is expected that the use of intelligent manufac-
turing will expand significantly in the years ahead (Kostal
et al. (2019)).

Intelligent manufacturing requires the application of tech-
nologies such as machine learning (Sharp et al. (2018)),
reinforcement learning (Aggour et al. (2019)) and cloud
computing (Rehman et al. (2021c)) to enable devices and
machines to adjust their behaviour in response to diverse
circumstances and requirements, based on previous expe-
riences and learning capabilities (McFarlane et al. (2003)).
These technologies can be integrated to make intelligent
decisions in production processes (Zhong et al. (2017)).
Some reconfiguration frameworks that incorporate this
integration are proposed to meet product change require-
ments (Rehman et al. (2021D)).

The Reference Architectural Model Industrie 4.0 (RAMI
4.0) (Schweichhart (2016)), a reference model for Industry
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4.0 (I4.0), recommends that manufacturing “assets” can be
represented by digital objects called “Asset Administration
Shell (AAS)”, that enables standardised interaction with
other digital systems without requiring low-level access to
sensors and actuators. The goal of 14.0 AAS is to offer a
minimum but sufficient description of each Industry 4.0
asset, that can then be manipulated and influenced to
achieve an objective.

This concept of AAS is at its initial stage in the 14.0
paradigm and needs validation through industrial use-
cases to demonstrate that it can be successful in pro-
duction process control. This validation is also vital to
elaborate on the needs of production process control that
must be fulfilled by an AAS. To date, three types of AAS
can be defined based on the active/proactive behaviour of
the desired solution:

e Type 1 Asset Administration Shells are serialised
files, e.g., XML, or JSON files, that contain static
information.

e Type 2 Asset Administration Shells exist as run-
time instances. They are hosted on servers, contains
static information, and may also interact with other
components.

e Type 3 AAS extend type 2 AAS by implementing an
active behaviour, i.e., they can start to communicate
and to negotiate autonomously, much like an agent
system.



This research work presents a demonstration case for the
potential of Type 2 AAS on production systems, guidance
on integration with 14.0 technologies and the objectives
to be fulfilled in an AAS to achieve control. It addresses
the practical aspect of AAS by demonstrating the imple-
mentation of AAS on a testing process in a production
system. A testing process is a manufacturing process where
a part or product is subjected to conditions it might
encounter during service, to ensure correct functionality.
Examples include functional testing of electrical circuits,
stress testing of assemblies, and gas or liquid leak testing of
volumes. Testing processes are particularly important for
small to medium enterprises (SMEs), who often provide
low-volume, highly bespoke products. Testing processes
are highly dependent on the part or product being tested,
and this can become difficult for companies to manage for
small batches of variable products. This motivates a call to
digitalise and control these processes with low-cost, simple,
and standards-compliant solutions.

In this research work, it is assumed that a serialised file of
Type 1 AAS is present (in JSON or XML) to represent
the asset and can be instantiated as run-time instance
(registered in AAS registry, hosted on server, and can load
data). This research work focuses on behaviour change on
the asset, by utilising services that use the AAS to direct
control behaviour of a production process.

2. BACKGROUND

As depicted in Figure 1, an administrative shell is com-
posed of four major components (Wenger et al. (2018)),
namely: component manager, manifest, header section and
body section.
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Fig. 1. Asset Administration Shell representation of an
asset with its main components for 14.0 compliant
communication with IoT infrastructure within a pro-
duction facility.

e The DF (digital factory) Header Section con-
tains the globally unique identifiers for an AAS and
its represented asset.

e The DF Body Section is composed of multiple
submodels, each representing a distinct part of the
asset’s operation.

¢ Component Manager links the administration
shell to a repository of submodels, their description
and their functions. It administers the submodels of
the assets. The Component Manager manages and
provides access to the IoT network of the production
facility using a service-oriented architecture.

e Manifest is present in both header and body section
of AAS. Tt can be considered as the directory of data
content. Specifically, it contains the meta-information
serving to provide meaning to the data from AAS.

Submodels depict the various facets of an asset, rep-
resented as per the standard discussed in Bedenbender
et al. (2017). These submodels contain the information
encapsulating the asset’s functionality, i.e., an asset can
have submodels for maintenance, operation, and security
among others. In a production facility, the AAS can be
connected to a network that acts as a bridge between the
physical world and the digital. Compatible AAS protocols
and channels can be queried through services, and these
services can then use the AAS to execute behaviour (Wag-
ner et al. (2017); Cavalieri and Salafia (2020b)).

Although the structure of AAS is becoming standardised,
the method by which they are used remains variable. In
Cavalieri and Salafia (2020a), a standard method to realise
AAS is studied, formulating an AAS model capable of
representing TEC 61131-3 programmes, their interactions
with Programmable Logic Controllers (PLCs), and other
components in the controlled plant. In Tantik and Anderl
(2017) a framework for connecting existing equipment to
external networks is introduced; the asset management
shell serves as a bridge simplifying network communica-
tion. In Pethig et al. (2017), an AAS approach is proposed
that integrates with a condition monitoring service. In
Wenger et al. (2018), when considering the possible impact
on PLC operation, a distributed AAS is utilised to enhance
performance. There are several ways to use the AAS, as
discussed in the work by Locklin et al. (2021).

AAS is a key enabler of the digitalisation of processes,
and do so in a low-cost, modular, and standards-compliant
way that can be adopted by SMEs. Currently, AAS has
some limitations, particularly a lack of a standardised
approach for direct adoption of AAS into production pro-
cesses (Tantik and Anderl (2017)). A lack of examples
of their application in controlling production processes in
production systems also hinders adoption. This research
work addresses this lack of applications and standardisa-
tion in production processes by targeting testing processes
in a production system in manufacturing.

3. SERVICE BASED CONTROL OF ASSET
ADMINISTRATION SHELL

To intelligently control testing processes, a service-based
control framework is used that integrates asset administra-
tion shells. This framework would support the standard-
ised application of AAS to manufacturing systems. This
framework requires interaction between five components;
the testing system, asset administration shell, simulation
service, client services and orchestration service. The or-
chestration service drives and controls the asset by a
statement received from the simulation service acting on a
goal provided by the user. The simulation service result is
sent to the orchestration service at the start of each test,
and the orchestration service executes the testing process
through client services.The client services interact with
AAS to execute testing functionality. The client services
receive the instructions from the orchestration service,
loads required information from the AAS, makes changes



to the production system as desired and executes the skills
through API (Application Programming Interface) calls
retrieved from the AAS functionality submodel. These
calls act as instructions to the asset to execute a skill
(corresponding to a step of the testing operation). An
overview of the asset administration components and their
interaction is given in the following subsections.

3.1 Component Descriptions of the Asset Administration
Shell and Services in the Approach for testing Process

A brief overview dealing AAS integration with the testing
process for skill execution is presented in figure 2. The
services drive the functionality of the production system
by coordinating among themselves and by interacting with
information from the asset administration shell. Individual
components and their functionalities of the services and
the AAS are detailed as follows;
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Fig. 2. Elaborated representation of asset administration
shell integration for testing process in production
system.

Testing Process  As defined in the introduction, the test-
ing process subjects a part to operational conditions to
check functionality. Part, feature, and conditional varia-
tion (i.e., changing priorities and requirements) can impact
the operation of testing processes. Further, tests need to
be carried out in a certain sequence with specific condi-
tions. The sequence includes steps such as adjusting the
configuration and executing the test, but may also include
aspects such as establishing connections with other assets
and accessing data. Conditions act as parameters for each
of the steps in the sequence. This may include how to
set and change testing parameters (e.g., within a certain
range), the number of iterations for the testing, or the
address of data sets for comparison.

Asset Administration Shell —~ The server shell contains
all the information about the physical asset. It includes
the related parameters, expressions, configurations, and
settings that represent the physical entity. It also contains
the API calls necessary for executing the skills. It is the
digital representation of the asset.

As the AAS is instantiated, it is registered in the registry
(if present for deployment) and hosts its submodels man-
aged by the Component Manager (figure 3 and 6).
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Fig. 3. Generic asset administration shell representation
(left). Skill submodel is developed, submodel elements
contains the skill API calls along with pertaining data
that can be used by the client services. Component
manager is deployed when the submodels are listed

(right).

Simulation Service The simulation service connects to
the simulation model. External or local servers can host
the simulation model, connected to a storage or a Machine
Learning pipeline. The model consists of a clearly, defined
goal as well as start and intermediary states. The model
simulates the path to reach the goal in the optimum
manner. The simulation service takes the decision to move
between intermediary states to reach goal states (figure 4).
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Fig. 4. Generating the simulation statement by simulation
service. The model operates to reach the goal provided
dependent on the outcome required. The intermedi-
ate states are stored and combined to formulate a
simulation statement that is sent to the orchestration
service.

A reward function uses performance metrics to determine
if the action taken moves the state towards the goal. The
metrics used could include time, cost, energy consumption,
and quality.

The actions defined within the simulation service act on
the model to reach the goal guided by the reward function.
Simulation continues until an end point is reached, namely
the provided conditions or goal become true. The efficacy
of the simulation depends on the design of the reward
function.



Orchestration Service  The orchestration service guides
the execution of skills on the asset through client services
(figure 5). It receives the simulation statement and trans-
forms it to an orchestration statement. The statements are
expressions that contain the information the services need
for execution of a skill. The process of developing these,
the governing rules, and their behaviour are explained in
Rehman et al. (2021a). The Orchestration service passes
the orchestration statement through its two main compo-
nents, the condition check and the skill execution.

(1) Condition Check: For each individual skill re-
quested, the service establishes the availability of that
particular skill for the testing process. This is queried
from the asset administration shell by the orchestra-
tion service. A sequence of executable skills are sent
to the next component of the orchestration service.

(2) Skill Execution: The skills are executed in the
presented sequence. This execution is carried out by
the client service for each skill. The skill execution
component finds and instructs the respective client
service to execute the skill for the testing process.

imulati o i R [Skill execution) Client
statement statment check instructs services
true or false
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Fig. 5. Orchestration service description with its compo-
nents.

Client Services The client services encapsulate the skill
execution and the manner of skill execution. The client
services requests from the AAS the API calls needed to
execute the skills. These are contained within the corre-
sponding property of skill submodel along with the per-
taining data values from the submodel settings (figure 3).
Client services execute these skill APT calls. They can also
change the settings on an asset and update them as needed
in the AAS and the production system, ensuring real-time
representation of the settings of the production system in
the AAS. Client services offer a way to control the be-
haviour of skill execution. These are called “client services”
as they act as a liaison between the execution functionality
of the testing process and the asset administration shell.
Client services are separate software components that in-
teract with the AAS to execute test functionality as per
guidance from the orchestration service. The stand-alone
nature of client services ensure modularity and versatility
in terms of services being offered.

3.2 Owverview of Skill Execution in testing Processes

The execution of skills in a testing process by using AAS
and services can be presented as follows;

Skill Representation  Each of the skills (corresponding
to a step of the testing operation) is encapsulated as a
property of the “Skill” submodel of the AAS. These skills
are operations that an asset can be requested to perform
in the testing process. The properties of the AAS in the
submodel represent the skill of the asset that could be
executed in the form of API calls. It also contains the

information about the data on skill that could be executed,
present in the manifest.

Skill Selection  The skill order is controlled by the orches-
tration service through a statement received by the simula-
tion service. The client services get the API calls through
the property of the skill submodel and the related data
values and use them to execute behaviour requested by
the orchestration service. Each client service is responsible
for one skill per asset. These client services also contain
information about behaviour of the particular skill. An
overview of the AAS integration architecture is presented
in figure 6.
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Fig. 6. Asset administration shell integration approach for
testing processes. Control is guided through services,
through Skill and Simulation submodels containing
APT calls and simulation data respectively

Skill Execution  The client services execute skills through
APT calls retrieved from the skill submodel. System func-
tionality is achieved through this execution. The AAS
contain a set of skills that are available to execute. Client
services load instances of these skills as required. The client
service, instructed by the orchestration service, requests
the execution of skill using the API on the production
system and waits until the execution is completed. After
the event of skill execution, the production system updates
the status of skill execution in the property of the skill
submodel. This terminates the client skill request and
orchestration service proceeds to the next skill execution
through a corresponding client service. This integration
of AAS submodels and client services ensures modularity,
scalability and extensibility. For a single asset there is
a single AAS but many client services where each client
service represents a skill that could be triggered by loading
the API calls from the AAS. Each client service, however,
can trigger only one skill.

The orchestration service, operating as a standalone ser-
vice, executes the skills through client services, updating



Table 1. Asset administration shell and ser-
vices description for testing process in produc-
tion system

Component Description

Simulation Ser- | Simulates the desired goal behaviour. Send
vice simulation statement.

Orchestration Receives orchestration statement. Checks and
Service executes the skill functionality through client
services.

Receives instruction to execute from the or-
chestration service and loads in the required
settings in the desired manner. Executes the
skill API calls from the asset administration
shell.

Client Services

Contains the data and information about the
asset. Hosts the skill API calls. This shell acts
as a digital twin for the asset.

Asset Adminis-
tration Shell

regularly to account for different requirements. These re-
quirements can be a change in sequence of skill execution
or the manner of skill execution, such as skill execution
with a value change. This update can be done manually
by the user or received as a result from simulation service.

Scenarios such as part variation, feature, and conditional
variation can be addressed by this approach. Figure 7
illustrates the AAS and the services in each scenario and
the manner in which they co-ordinate for skill execution

during operation.
>"Inform" of Skill
Execution

‘ ’ >"Executes”
Production System |API Calls for|
exectting
skills based >"Checks" the
on orchestration statement
statement / I

Scenario 2: Acknowledge >"Inserts” j:

Part Variation | {jsgr | Shiates” the | Orchesration service
>lntroducing "part” / \ the statement
Scenario f: into test producton Interfaceh. | simulation
Feature Variation o [\ Retme'
etums

>"Instructs” the client
services to execute skills

system

Scenario 3; X
Conditional Variation Inform Client Services| >"Returns"
\\  [the data and
——\\ | APlcals
>oAsksthe |\ | aboutthe
|data and APl \\ | asset

>"Returns”
the ke

orchestration|Smulation service

statement 14

| calls about

|
>"Starts” the ‘\ | the asset
simulation || >Returmns" the

>Set "Goal"
for the testing
process

P W L statement Asset administration shell
R\
3 .
v- \\%
¥ /L
)

Fig. 7. Role of AAS integration approach in functionality
execution with changing scenarios; part variation,
feature variation and conditional variation

The AAS and services interact at different stages of the
testing process, depending on the requirements that need
to be fulfilled. These requirements, as fulfilled, can be
witnessed as the result of the testing or as the change in
the values in settings.

4. INTEGRATION APPROACH DEPLOYMENT FOR
A LEAK TESTING USE CASE

The demonstration for the asset administration shell inte-
gration is carried out on an industrial dry-air leak testing
system (Micro-Application Leak Test System — MALT) de-
veloped by an SME (TQC Ltd.). The industrial production
system consists of a testing system connected to a Rasp-
berry Pi that acts as a gateway device. A JAVA based AAS

development and deployment framework (BaSyx (BaSyx
(2022))) is used for to demonstrate the approach.

In the process of leak testing, the leakage flow rate in
the part under test is determined. Parameters for leak-
testing, connection settings for the production system and
calibration settings for the connected instrumentation are
configured through a user interface. The testing process
is initialised with filling the part under observation with
testing medium or put in a state of vacuum. The part is
stabilised over time under pressure or vacuum. The change
in pressure is measured and is used to calculate the leakage
flow rate in the part being tested. Pressure change or its
proportional leakage flow rate value is used to determine
pass or fail for the part.

The goal of the test is provided by the user to the simula-
tion service that generates the simulation statement. This
statement is fed to the orchestration service. An example
of simulation statement from the simulation service is:

Simulation statement =< basic : 192.168.115.200 :
5000 > . < condition : MaxTestPressure 15500 > .
< stab : 2000 > . < f4ll : 3000 > .
< param : measure : 8000 > . < execute > (1)

In leak testing, we provide the goal to “execute” a test.
Conditions were provided to the simulation. The manner
or sequence of execution are followed by the combination
passed from the simulation statement. The orchestration
statement acts as a soft controller that guides it to execute
the skills, moving from one state to another.

Orchestration Statement = [basic|.[condition].
[stab].[fill].[param].[execute] (2)

The “basic” client service starts the connection with the
testing system, the “condition” service uses conditions
to change the testing parameters, and stabilisation time
is adjusted through “stab” client service. The “fill” and
“param” client service change the fill time and any pa-
rameters (taken as argument) respectively. The “execute”
client service executes the test on the target part. Giving
a client service responsibility for individual skills gives the
capability to define testing for different parts depending
on the statement; presented by the simulation service.

The client services contain the information on the manner
in which each skill for the leak testing needs to be executed.
The client service take in leak testing data from AAS
submodel and produce change as desired. The desired
change in settings by each client service is loaded through
an API call from the AAS skill submodel, execution of the
leak testing skill is instantiated. The leak testing process
is carried out until the orchestration service reaches the
complete state. The execution interface for testing process
is given in figure 8.

This approach provides a control mechanism for executing
testing processes controlled through services. The services
utilise the Type 2 AAS representation to produce be-
havioural change, directing control of the testing process.
The AAS deployed for leak testing follows the AAS stan-
dard, making it extensible and modular. As the approach
uses a single AAS, so it makes the approach modular and
cost-effective as multiple individual component require-
ments need not be addressed.
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Fig. 8. The leak testing setup: (a) the cylinder volumes
under testing (b) MALT testing system, a part of test
bench for general leak testing (c) Interface for leak
testing; asset administration shell drives the execution
through client services.

5. CONCLUSION AND FUTURE WORK

Testing processes are highly variable depending on the
part or product being tested. Successful testing is typically
dependent on human experts and manual changes due
to the complex process sequences and conditions. This
makes testing processes prime candidates for digitalisation
and automation to reduce set-up time, costs, and errors.
Many SMEs are highly dependent on testing processes to
validate their low batches of high-value and bespoke parts
or products. Any digital solutions must therefore be low-
cost to maximise impact, especially for SMEs. AAS is the
coming standard for digitalising manufacturing assets and
maximising modularity and interoperability. A static AAS
is inadequate for adapting to changing testing needs, the
type 2 is required.

This research presents an application case for integration
approach towards Type 2 AAS with testing process. The
research contributes towards controlling the functionality
of a testing process in production systems by using services
and AAS. The presented approach significantly reduces
the time required to set up a new testing process and
requires less expert time to control the testing operation.

Three different types of services were presented in this re-
search: simulation service, orchestration service and client
services. The simulation service takes in a goal from the
user and acts on a model to define the best possible
decision for the orchestration service in terms of skills
that need to be executed to reach the goal state. The
orchestration service is responsible for executing the skills
by instantiating the client services. The client service inter-
acts with the AAS to execute the skills. The development
and deployment approach for AAS is presented, along with
integration with services.

Future work for this approach involves expanding the
submodel architecture to incorporate other service com-
ponents. Reinforcement Learning and Machine Learning
techniques can be explored for achieving multiple goals as
desired. Service negotiation behaviour and transition ap-
proach from Type 2 AAS to Type 3 AAS will be explored.
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