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We show that a massless canonical scalar field minimally coupled to general relativity can become a
tachyonic ghost at low energies around a background in which the scalar’s gradient is spacelike. By
performing a canonical transformation we demonstrate that this low energy ghost can be recast, at the level
of the action, in a form of a fluid that undergoes a Jeans-like instability affecting only modes with large
wavelength. This illustrates that low energy tachyonic ghosts do not lead to a catastrophic quantum vacuum
instability, unlike the usual high-energy ghost degrees of freedom.
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I. INTRODUCTION

Motivated by the observation of accelerated expansion
[1,2], there has been an increasing interest towards alter-
native gravity theories with the goal of sourcing the late
time acceleration by introducing an IR modification to
general relativity (GR).1 However, apart from a handful of
exceptions (e.g., unimodular gravity [4–6]), these theories
contain additional dynamical degrees of freedom on top of
the two tensor modes of GR. The stability of the extra
modes around flat, cosmological, and spherically symmet-
ric backgrounds is a powerful way in determining the
consistency of the theories. Particularly, one often comes
across ghost modes around these backgrounds, e.g., the
self-accelerating branch of the Dvali-Gabadadze-Porrati
model [7], linear massive gravity in de Sitter spacetime
[8], and generic nonlinear massive gravity [9], to name
a few.
In the context of field theory, a ghost is a degree of

freedom which has a negative kinetic energy (see Ref. [10]
for a review). Consider the Lagrangian

L ¼ ∂μϕ∂μϕþ μm2ϕ2 − ∂μψ∂μψ − fðϕ;ψÞ; ð1Þ

where ϕ has the wrong sign kinetic term and is coupled to
some nonghost fields represented by ψ. (We employ the
mostly positive metric signature.) Let us first discuss the
situation where μ > 0. In the absence of the coupling to
other fields (such as ψ), the ghost does not lead to any
instability either classically or quantum mechanically, since

up to an overall sign, the theory is equivalent to a regular
massive free field. On the other hand, the coupling fðϕ;ψÞ
allows a rapid energy transfer from the ghost to nonghost
sector, rendering the vacuum hϕi ¼ 0 unstable. Quantum
mechanically, the phase space available for decay is of
infinite measure, leading to a divergent decay rate [11]. On
the other hand, the instability can be mild in effective field
theories (EFT) where some UV completion takes over at a
cutoff scale. If the mass of the ghost is above the cutoff
scale, it will not be excited within the regime of validity of
the EFT; thus, is not a physical degree of freedom but an
artifact of the low energy truncation (see Ref. [12] for an
example in the context of cosmology).
Let us now turn to the opposite regime μ < 0, where the

ϕ field is a tachyonic ghost and even the noninteracting
theory is classically unstable due to the exponential growth
with the imaginary mass. In this case, the EFT picture is
also prone to the instability, as making the mass parameter
m large corresponds to a faster decay (up to the EFT
cutoff). For these reasons, a tachyonic ghost appears to be
harder to “exorcise” and is typically not considered in the
literature.
A tachyonic instability occurs when the mass term of the

field has the wrong sign and can actually correspond to a
physical phenomenon. For instance, self-gravitating con-
figurations have been long known to be unstable. The
tendency of dust to clump together was observed more than
a century ago by Jeans in Ref. [13], in the context of
Newtonian gravity. This trend is also a feature present in
GR, and most notably, its application to cosmology
provides the current understanding of large scale structure1See Ref. [3] for a review.
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formation in the Universe [14–16]. In the field theory

framework, Jeans instability is a tachyonic instability,
which can be traced back to a negative squared-mass
contribution to the matter dispersion relation that dominates
over the usual momentum piece in the region k < kJ, where
kJ is the characteristic wave number for the mode with a
vanishing dispersion relation. In Minkowski background, it
leads to an exponential growth of perturbations, while in an
expanding background, the Hubble friction slows it down
to a power-law evolution (see, e.g., [17]). This classical
instability is conceptually well understood; it is physical
and can be kept under control.
The goal of the present paper is to argue that a tachyonic

ghost that emerges only far in the IR should not be cause of
concern for quantum stability. It admits a classically
equivalent ghost-free representation and the only persistent
feature is a classical tachyonic instability. To illustrate this
point in the simplest possible setting, we will focus on a
very conservative matter sector consisting of a canonical
scalar field minimally coupled to GR. We will first show in
Sec. II that the scalar field perturbations can become
ghostlike in the IR around simple (nontrivial) backgrounds.
We will then introduce in Sec. III a fluid description and in
Sec. IVa canonical transformation that leads to a ghost-free
reformulation in which velocity perturbations exhibit a
classical tachyonic instability. Finally, we will demonstrate
that this instability is equivalent to a Jeans instability.
Section V contains a discussion of our results. In particular
we argue there that certain types of modified gravity
theories are expected to exhibit apparently ghostlike
instabilities of the type we identify here.

II. IR GHOST FROM MATTER COUPLED TO GR

In order to illustrate our previous arguments in a concrete
theory, we consider the Einstein-Hilbert action, along with
a massless canonical scalar field coupled minimally to
gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

p

2
ðR − 2ΛÞ − 1

2
∂μϕ∂νϕgμν

�
: ð2Þ

Within the context of this theory, the effect that we are after
occurs only in special background configurations where the
gradient of the scalar field is spacelike. This can be
achieved by the background value

ϕ ¼ Mpσx; ð3Þ

where σ has a mass dimension 1 and as it corresponds to a
constant gradient along the x̂ direction, it acts as a source of
shear. Thus, the background metric needs to be anisotropic.
The simplest such metric is the Bianchi type I background
with residual axisymmetry,

ds2 ¼ −dt2 þ aðtÞ2dx2 þ bðtÞ2ðdy2 þ dz2Þ: ð4Þ

By varying the action with respect to gμν and ϕ, the
background equations of motion can be calculated as

ðiÞ 3H2 ¼ 3h2 þ σ2

2a2
þ Λ;

ðiiÞ 2 _H ¼ −6h2 −
σ2

3a2
;

ðiiiÞ _h ¼ −3hH þ σ2

3a2
; ð5Þ

where we defined the average expansion rate and the shear
scalar as

H ≡ 1

3

�
_a
a
þ 2

_b
b

�
; h≡ 1

3

�
_a
a
−

_b
b

�
; ð6Þ

respectively. We remark that Eq. (5) is connected through
the contracted Bianchi identities:

∂tðiÞ − 3HðiiÞ þ 6hðiiiÞ ¼ 0: ð7Þ

Our goal is to verify the perturbative stability of this
background. We thus introduce perturbations around the
axisymmetric background, by

g00¼−1−2Φ; g0x ¼ a∂xχ; g0I ¼ bð∂IBþ ϵJI∂JBoddÞ;
gxx¼ a2ð1þψÞ; gxI ¼ ab∂xð∂Iβþ ϵJI∂JβoddÞ;
gIJ ¼ b2½δIJð1þ τÞþ∂I∂JEþ∂ðIϵKJÞ∂KEodd�; ð8Þ

while the scalar field is decomposed as

ϕ ¼ Mpσðxþ ∂xφÞ: ð9Þ

In the following, we exploit the diffeomorphism invariance
to fix the gauge as τ ¼ β ¼ E ¼ Eodd ¼ 0.
The perturbations fall into two categories: odd modes

which transform as a 2D vectors under rotations around the
x̂ axis, and even modes which transform as 2D scalars.
After fixing the gauge, the odd sector consists of 2 degrees
of freedom, Bodd and βodd. Out of these, Bodd does not have
any time derivatives and its equation of motion can be
immediately solved. Reducing the action by using the
solution, then using the rescaled field βodd=ðbpÞ for
canonical normalization, the dispersion relation for the
odd mode can be found as

ω2
odd ¼ p2 −

9p2
Tð2p2 − 3p2

TÞh2
p4

þ p2
Tσ

2

p2a2
; ð10Þ

where the physical momenta in the longitudinal and
transverse directions are defined as
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px ≡ kx
a
; pT ≡ kT

b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
b

; ð11Þ

while the amplitude of the physical momentum is simply

p2 ≡ p2
x þ p2

T: ð12Þ

Although there can be regimes where the frequency is
complex, the kinetic coefficient of this mode is manifestly
positive.
Let us turn now to the even sector. After fixing the gauge,

there are 5 even degrees of freedom. Out of theseΦ, χ and B
are nondynamical, which can be integrated out. The
resulting reduced action now contains 2 dynamical degrees

of freedom, ψ and φ, although they are coupled to each
other. For this discussion, we only study the kinetic
coupling. The relevant terms of the quadratic action in
Fourier space are

S ¼ M2
p

2

Z
d3k dt a b2½K11j _ψ j2 þ K22j _φj2

þ K12ð _φ⋆ _ψ þ _ψ⋆ _φÞ þ…�; ð13Þ

where Kmn can be seen as the components of a 2 × 2
matrix. To obtain the information about the signs of the
coefficients of the kinetic terms in the diagonal basis, it is
sufficient to look at the following combinations:

κeven1 ¼ detK
K11

¼ p4
Tp

2
xσ

2a2

p4
T þ 2p2σ2

a2

;

κeven2 ¼ K11 ¼
ðh −HÞ2½p4

T þ 2p2ðσ2=a2Þ�
2½ðp2

T − 2p2
xÞhþ 2p2H�2 þ 4ðσ2=a2Þ½ðp2

T − 3p2
xÞh2 þ 4p2

ThH þ ð4p2
T þ 3p2

xÞH2� : ð14Þ

Although the first eigenvalue is manifestly positive, the
second one can be negative depending on the evolution and
the value of the momentum for the mode. The negative
contribution becomes important when the mode is aligned
with the gradient of the scalar, i.e. pT ≪ jpxj≃ p. In this
regime, the kinetic term is

κeven2 jp≃px
¼ ðh −HÞðσ2=a2Þ

4p2
xðh −HÞ − 6ðhþHÞðσ2=a2Þ ; ð15Þ

which indicates that for p≃ px, the mode is a ghost if

k2x <
3ðhþHÞσ2
2ðh −HÞ : ð16Þ

Thus, if the evolution allows ðhþHÞ=ðh −HÞ > 0 to
hold, there are always ghost modes with momenta
p2
T ≪ p2

x < σ2=a2. Noting that the kinetic coefficient
κeven2 has the same sign as the quantity H2 − h2 at low
momenta, we see from the first of Eq. (5) that the only
option to open up this regime of evolution is to have a
sufficiently negative cosmological constant that can domi-
nate over the energy density of the matter field.2 In this
branch of evolution the shear h is positive whereas the
average expansion rate H eventually becomes negative,

with h > −H > 0. In terms of the evolution of individual
coordinates, the x direction undergoes an accelerated
expansion while the y and z directions contract. Thus, as
the matter contribution in the Friedmann equation redshifts
away, the difference h2 −H2 converges to a constant
determined by Λ, leading to an ever decreasing ratio
ðh −HÞ=ðhþHÞ. The latter behavior indicates that as
evolution goes on, fewer modes satisfy the inequality (16).
Similarly, as the y and z directions contract, the physical
momentum corresponding to these directions increases and
the x component of the physical momentum dominates for
fewer modes.
Thus, for a very conventional example of a canonical

scalar field minimally coupled to general relativity, we have
shown that the scalar field perturbations can be ghostlike.

III. FLUID ANALOGUE

In the previous section, we have shown that the matter
perturbation can appear to be a ghost in the infrared. As we
will show shortly, this is an artifact of choosing the field
perturbation as the variable. Before choosing a variable
with physical interpretation, we will change our perspective
to a fluid description in this section.
The stress-energy tensor of a massless, canonical scalar

field is

Tμν ¼ ∂μϕ∂νϕ −
1

2
ðgαβ∂αϕ∂βϕÞgμν: ð17Þ

For an analogue fluid description, the stress-energy tensor
is instead

2In the absence of a cosmological constant, the system under
consideration allows for exact solutions (see, e.g., [18,19]).
Repeating these studies with a negative cosmological constant
may allow us to determine the fate of the instability in a nonlinear
setup. We thank John Barrow for pointing out to us these
references and the possibility of a nonperturbative solution.
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Tμν ¼ ρuμuν þ Pðgμν þ uμuνÞ þ Πμν; ð18Þ

where ρ, P and Πμν are the energy density, pressure and
shear tensor, respectively. The future-directed timelike
vector uμ satisfying uμuμ ¼ −1 is an eigenvector of the
stress-energy tensor with the corresponding eigenvalue −ρ,
and can be uniquely determined at nonlinear level. The
shear tensor is defined to be transverse and traceless, i.e.,

Πμνuν ¼ Πμνgμν ¼ 0: ð19Þ

At the background level, we find the nonzero quantities as

ρ¼M2
pσ

2

2a2
; P¼ −

ρ

3
; Πx

x ¼
4ρ

3
; ΠI

J ¼ −
2ρ

3
δIJ:

ð20Þ

Considering perturbations of the scalar field, one will
inevitably generate perturbations in the energy-density,
pressure, and diagonal components of shear

δρ

ρ
¼ δP

P
¼ δΠx

x

Πx
x
¼ δΠI

I

ΠI
I

����
no sum

¼ 2∂2
xφ − ψ ; ð21Þ

along with the spatial off-diagonal components

δΠI
x ¼

M2
pσ

2

b2
∂I∂xφþM2

pσ
2δgxI; δΠx

I ¼
M2

pσ
2

a2
∂I∂xφ:

ð22Þ

Defining the perturbed four-velocity as3

uμ ¼ ð1 − Φ; v; 0; 0Þ; ð23Þ

the transverse condition for the shear tensor (19) also
generates perturbations of the following off-diagonal com-
ponents:

δΠx
0 ¼ −Πx

xv; δΠ0
x ¼ Πx

xa2
�
vþ 1

a
∂xχ

�
;

δΠ0
I ¼ ΠJ

Ibð∂JBþ ϵKJ ∂JBoddÞ; ð24Þ

where the velocity perturbation can be found to be

v ¼ −∂x∂0φ: ð25Þ

IV. CHANGE OF VARIABLE

We now reconsider the model in Sec. II and perform a
canonical transformation.4 Our goal is to change the nature
of the ghost instability by defining a new variable. In order
to identify a physical variable that is suitable for this task,
we notice that the only perturbation in the fluid description
that involves a time derivative of the scalar field perturba-
tion is the velocity perturbation (25). For later convenience,
we choose the x component of δuμ to build our new
variable:

δux ¼ −a∂xða _φ − χÞ: ð26Þ

After using the decomposition (8), the Lagrangian quad-
ratic in even perturbations contains the following term:

L ∋ M2
pσ

2b2

2a
½∂xða _φ − χÞ�2; ð27Þ

which is the only term that contains _φ or its derivatives.
Using the Fourier series to expand the modes, we introduce
the auxiliary variable U by substituting

jða _φ − χÞj2 ⇔ Uða _φ − χÞ⋆ þ U⋆ða _φ − χÞ − jUj2: ð28Þ

The new field’s equation of motion trivially gives U ¼
ða _φ − χÞ and it is related to the velocity perturbation
through δux ¼ −a∂xU. However, instead of using this
solution, we can now integrate out the variable φ which
has become nondynamical. This process is equivalent to the
canonical transformation

U¼ 2Πφ

M2
pσ

2a2b2p2
x
; ΠU¼−

1

2
M2

pσ
2a2b2p2

xφ−
2ðH−hÞ
ap2

Πφ;

ð29Þ

where the momentum conjugates of φ⋆ and U⋆ are

Πφ ¼ M2
pσ

2a2b2p2
x

2
ða _φ − χÞ;

ΠU ¼ M2
pσ

2b2p2
x

4p2
ðΦ − ψ þ 2a _UÞ: ð30Þ

We can then proceed to integrate out the nondynamical
fields B, χ and Φ and finally obtain an action with
dynamical variables ðψ ; UÞ. Doing a further field
redefinition,

3We remark that a velocity component on the y − z plane does
not contribute to the stress-energy perturbations at linear order;
hence, it is taken to be zero without any effect on the result. This
property can be traced back to the fact that the stress-energy
tensor in the ðt; y; zÞ directions, TA

B, is proportional to δAB up to
linear order in uy;z, where A, B ¼ 0, 2, 3.

4One could perform a canonical transformation in the Hamil-
tonian formalism and then come back to the Lagrangian formalism
by a Legendre transformation. In the present paper, we shall
instead employ the technical procedure introduced in Appendix B
of Ref. [20]. This makes it possible for us to perform the canonical
transformation within the Lagrangian formalism. Needless to say,
the two procedures are equivalent to each other.
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S1 ¼
p2
T

p2
ψ ; S2 ¼ U −

p2
T

2a½ð2p2
x − p2

TÞh − 2p2H�ψ ;

ð31Þ

the action reduces to

S ¼ M2
p

2

Z
d3k dt ab2½κ1j _S1j2 þ κ2j _S2j2 −m2

1jS1j2

−m2
2jS2j2 −m12ðS1S⋆2 þ S⋆1S2Þ�; ð32Þ

where

κ1 ¼
p4ðH − hÞ2

2½2p2H − ð2p2
x − p2

TÞh�2
; κ2 ¼

p2
xσ

2

p2
: ð33Þ

In other words, both kinetic terms are now manifestly
positive. Although the 2 degrees of freedom are generically

coupled in this field basis, they do decouple in the limit
p≃ px ≫ pT , where we have

κ1 ¼
1

8
þO

�
p2
T

p2
x

�
; κ2 ¼ σ2 þO

�
p2
T

p2
x

�
;

m2
1 ¼

p2
x

8
þO

�
p2
T

p2
x

�
; m12 ¼ O

�
p2
T

p2
x

�
;

m2
2 ¼ σ2

�
p2
x − 2ðh −HÞð5hþHÞ − 2ð2hþHÞσ2

a2ðh −HÞ

−
σ4

2a4ðh −HÞ2
�
þO

�
p2
T

p2
x

�
: ð34Þ

In this limit, since the kinetic terms are time independent,
the dispersion relations can be obtained simply by taking
the ratio of the mass and kinetic terms:

ω2
1jpx≫pT

¼ p2
x; ω2

2jpx≫pT
¼ p2

x −
�
2ðh −HÞð5hþHÞ þ 2ð2hþHÞσ2

a2ðh −HÞ þ σ4

2a4ðh −HÞ2
�
: ð35Þ

We now see that in the regime of evolution discussed at the
end of Sec. II where we observed the ghost, i.e., h > jHj,
the square-mass term becomes manifestly negative and the
IR instability turns into a tachyonic instability. Just like
Jeans instability, this growth affects only modes below a
critical momentum.

V. DISCUSSION

We have considered a simple canonical massless scalar
field theory minimally coupled to general relativity, in
a special configuration where the scalar has a constant
spacelike gradient. The metric solution compatible with this
setup is an axisymmetric Bianchi-I metric. We focused on a
special branch of evolution which exists in the presence of
a negative cosmological constant, where the Universe
overall rapidly contracts, while the direction coinciding
with the gradient of the scalar expands. Studying the
perturbations, we found that the kinetic term for the scalar
perturbation becomes negative in the IR for modes with
momenta parallel to the expanding direction. In short, the
scalar field appears to be a ghost around this background.
Encountering a ghost at high energies around sensible

solutions is usually seen as an indication that the vacuum
decays very rapidly. Finding a low energy ghost in our
setting is by no means a sign of pathology for the theory.
On the contrary, we demonstrated above that the ghost
instability for the field perturbation actually has a physical
interpretation. The scalar matter corresponds to an ana-
logue fluid with constant energy density, pressure and
shear. By performing a canonical transformation and
changing the variable to the velocity perturbation, the

ghost instability becomes classically equivalent at the level
of the action to a Jeans instability for the new variable,
effective below a characteristic wave number. This is
another realization of the well-known instability of constant
matter distributions against gravity. This demonstrates
clearly our initial claim, that the appearance of a tachyonic
ghost in the far infrared is not an indication for a
catastrophic quantum instability.
In our example, the spacelike gradient of the background

scalar field plays an essential role in changing the sign of
the original kinetic term. This allows usually suppressed
couplings to survive at the level of the quadratic action and
after all constraints are used, the negative contribution to
the scalar field kinetic term can be seen to arise from the
coupling between δg00 and δg0x components, which is
usually harmless for matter field with a timelike gradient. In
particular, the constraints now allow δg00 to depend on the
time derivative of the scalar field perturbation.
Even though the instability here is limited to a finite

duration of the evolution, and to an anisotropic back-
ground, the technical observation above indicates that
similar situations can be encountered in more general
setups where fields with spacelike gradients are natural.
First of all, the anisotropy of our background is solely due
to the presence of a single scalar field, which will always
pick a single direction. A natural construction to look for
this effect would be modified gravity theories with broken
diffeomorphism symmetry, where the gravitational ana-
logue of the Stückelberg trick [21] can be reversed by
giving nonzero gradients to several scalar fields in the so-
called unitary gauge. As a result, one ends up with multiple
scalar fields each with nonzero gradients along different
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directions, thus retaining the isotropy of the space. In the
context of these theories, our result indicates that a ghost
instability constrained to the IR should be interpreted
classically. Moreover, in theories where the constraint
structure of GR is modified, a seemingly harmless,
“canonical” matter field can have a dramatic impact.
Although the behavior of matter perturbations in these
types of theories is not completely understood due to the
large number of degrees of freedom, we expect that there
exist sensible backgrounds around which IR ghosts are
present. Our study reveals that such IR ghosts can be as
harmless as the classical Jeans instability and have a
reasonable physical interpretation.
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