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Abstract. The aim of this paper is to propose a fractional viscoelastic and viscoplastic model of asphalt mixtures using experimental 

data of several tests such as creep and creep recovery performed at different temperatures and at different stress levels. From a best 

fitting procedure it is shown that both the creep one and recovery curve follow a power law model. It is shown that the suitable 

model for asphalt mixtures is a dashpot and a fractional element arranged in series. The proposed model is also available outside 

of the linear domain but in this case the parameters of the model depend on the stress level. 
 

Keywords: fractional calculus, asphalt mixture, viscoelasticity, viscoplasticity, rheology, mechanical models, creep test. 

 

Introduction  

The mechanical behaviour of asphalt mixtures is 

traditionally predicted by classical Kelvin-Voigt or 

Maxwell elements that are composed of spring and 

dashpot arranged in parallel or in series, respectively. In 

order to fit experimental data of asphalt mixture other 

more sophisticated models like Zener, Burger (Liu, You, 

2009) or other arrangements of elementary units of 

springs and dashpots have been used (Werkmeier et al. 

2013). Whatever the number and the arrangement of 

elementary units are, the kernel in the Boltzmann 

superposition principle has an exponential kernel. On the 

other hand Nutting (1921) observed that the creep or the 

relaxation test performed on any real material follow a 

power law kernel instead of an exponential one. Based on 

this observation the constitutive law of any real material, 

including rubber, glass, asphalt mixture, is ruled by a 

fractional operator (Koeller 1984; Bagley, Torvik 1983, 

1986; Slonimsky 1967; Smit, de Vrie 1970; Soczkiewicz 

2002; Di Paola et al. 2011). The characterization of the 

real material by means of fractional derivative and 

integrals of real order produces strong variations on the 

response with respect to the characterization involving 

derivatives (or integrals) of integer order. While the 

integer order derivative involves the knowledge of the 

state of the system at one or more previous instants, when 

the fractional operator appears the entire past history 

(hereditary materials) gives information at the given time 

instant (long tail memory). From recent literature on the 

subject for bitumen and asphalt mixture based upon 

fractional constitutive laws the readers may be referred to 

(Di Paola et al. 2009; Celauro et al. 2012; Stastna, 

Zanzotto 1994, 1996; Oeser et al. 2008). In previous 

papers the mechanical model was composed of a 

fractional element alone (usually termed as springpot in 

literature) or arranged in parallel with a spring. That is the 

Kelvin-Voigt fractional element. 

In this paper, based upon experimental tests 

performed on asphalt mixtures at several stress levels and 

various temperatures, a quite different model is proposed. 

It is a springpot in series with a dashpot element. With this 

choice the creep function, obtained by a best fitting 

procedure, gives impressive match between experimental 

results and theoretical ones. This result is obtained for any 

temperature 𝑇 and for any stress intensity. As 

experimental creep tests were performed at high stress 

levels, the nonlinear behaviour was found. This is 

confirmed by the fact that the characteristic parameters of 

both the dashpot and the springpot are different for 

different stress levels. This renders the constitutive law 

nonlinear in the sense that the characteristic coefficients 

of the dashpot and the springpot will depend not only on 

the temperature, but also on the stress level. The 

nonlinearity of response in terms of the strain also depends 

on the signum of the derivative of the stress (sign(𝜎̇)). It 

is shown that with this important modification on the 

dependence of the parameters from a physical point of 

view leads to a residual strain how it happens on the 

plasticity. Then at high stress level the behaviour of the 

asphalt mixture is viscoplastic. 

It is shown that the proposed model is fully available 

for monotonic stress history. For non-monotonic ones 

other experimental creep recovery tests are necessary for 

the complete definition of the material at hands. 

1. Fractional linear viscoelastic model 

The constitutive law of any linear viscoelastic 

material may be obtained by starting from the creep test. 

Such a test is performed by putting a constant load at time 

𝑡 = 0 and by measuring the corresponding strain in time. 

Then the creep 𝐽(𝑡) function is the strain for the stress 

history 𝑈(𝑡), 𝑈(𝑡) being the unit step function. 

Once 𝐽(𝑡) is known from the experimental test, the 

Boltzmann superposition principle gives the strain history 

𝜀(𝑡) for any stress distribution 𝜎(𝑡) in the form: 

𝜀(𝑡) = ∫ 𝐽(𝑡 − 𝜏)𝜎̇(𝜏)𝑑𝜏
𝑡

0
.                   (1) 

Equation (1) is valid for 𝜎(0) = 0. If 𝜎(0) ≠ 0, then 

in Eq. (1) the term 𝐽(𝑡)𝜎(0) has to be added. 

Another function useful in the viscoelastic theory is 

the relaxation function, in the following denoted as 𝐺(𝑡). 

This function is the stress history for an imposed strain 

history 𝑈(𝑡). Using again the Boltzmann superposition 

principle we get: 

𝜎(𝑡) = ∫ 𝐺(𝑡 − 𝜏)𝜀̇(𝜏)𝑑𝜏
𝑡

0
.                    (2) 
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If the initial condition 𝜀(0) ≠ 0, then the term  

𝐺(𝑡)𝜀(0) has to be added in Eq. (2). By making the 

Laplace Transform of Equations (1) and (2) and equating 

the ratio between the Laplace Transform of 𝜎(𝑡) and 𝜀(𝑡), 

the following fundamental relation between the Laplace 

Transform of 𝐽(𝑡) and 𝐺(𝑡) is obtained as: 

𝐺̂(𝑠)𝐽(𝑠) =
1

𝑠2 ,                          (3) 

where 𝐽(𝑠) and 𝐺̂(𝑠) are the Laplace Transform of 

𝐽(𝑡) and 𝐺(𝑡) respectively and s is the Laplace parameter 

(Christensen 1982; Flügge 1975).  

Experimental creep tests on real materials like 

polymers, rubber, bitumen and so on are well fitted by a 

power law of the type: 

𝐽(𝑡) =
𝑡𝛼

𝐶𝛼𝛤(1+𝛼)
 ,                         (4) 

where 𝛤(∙) is the Euler Gamma function and 𝛼, 𝐶𝛼 

are parameters obtained by best fitting on experimental 

data. By using Eq. (3), the corresponding relaxation 

function is readily found in the form: 

𝐺(𝑡) =
𝐶𝛼 𝑡−𝛼

𝛤(1−𝛼)
 .                           (5) 

By inserting Equations (4) and (5) into (1) and (2), 

respectively, we get: 

𝜀(𝑡) =
1

𝐶𝛼𝛤(1+𝛼)
∫ (𝑡 − 𝜏)𝛼𝜎̇(𝜏)𝑑𝜏 =

𝑡

0
   

=
1

𝐶𝛼𝛤(1+𝛼)
[(𝑡 − 𝜏)𝛼𝜎(𝜏)𝑑𝜏]0

𝑡 +      

+
1

𝐶𝛼𝛤(1+𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝜎(𝜏)𝑑𝜏 =

𝑡

0
 

1

𝐶𝛼
(𝐼0+

𝛼 𝜎)(𝑡) ,         (6) 

𝜎(𝑡) =
𝐶𝛼

𝛤(1−𝛼)
∫ (𝑡 − 𝜏)−𝛼𝜀̇(𝜏)𝑑𝜏 =

𝑡

0
𝐶𝛼( 𝐷𝑐

0+
𝛼 𝜀)(𝑡).   (7)                                

Eq. (6) is valid provided 𝜎(0) = 0. In Equation (6) 

the symbol (𝐼0+
𝛼 𝜎)(𝑡) is the Riemann-Liouville fractional 

integral and in Eq. (7) ( 𝐷𝑐
0+
𝛼 𝜀)(𝑡) is the Caputo’s 

fractional derivative. Equations (6) and (7) are the 

constitutive laws of the viscoelastic material at hand. It is 

to be emphasized that 0 ≤ 𝛼 ≤ 1. In particular if 𝛼 = 0 

then the material is purely elastic, if 𝛼 = 1 then the 

material is a pure fluid and 𝐶𝛼 is its viscosity coefficient. 

A more detailed discussion on this point may be found in 

(Di Paola, Zingales 2012; Di Paola et al. 2013). 

More complex behaviour may be obtained by 

enriching the creep function by additional terms 

(Podlubny 1999; Mainardi 2010; Di Paola et al. 2013; 

Grzesikiewicz et al. 2013; Zbiciak 2013). Equations (6) 

and (7) are the starting points to characterize the 

viscoelastic properties of materials.  

2. Experimental investigation on asphalt mixtures  

In order to investigate the viscoelastic properties of 

the asphalt mixtures a number of uniaxial creep 

compression tests have been carried out at the laboratory 

of University of Nottingham. The tests have been 

performed according to UNI EN 12697 (2005), on two 

typical bituminous mixtures (British Standards Institution 

2003). 

The first mixture is Hot Rolled Asphalt (HRA), 

generally used as wearing course in flexible pavements, 

which is characterized by a gap-graded mixture with very 

little medium-sized aggregate. Fig. 1 shows a typical 

aggregate grading curve and a cross section of a HRA 

sample.  

 

Fig. 1 A typical grading and cross section of a HRA30/14. 

The second mixture is Dense Bitumen Macadam 

(DBM), generally used as a base layer in flexible 

pavements, which is characterized by a continuously 

graded mixture. A typical grading and an idealised section 

through this mixture are shown in Fig. 2.  

 
Fig. 2 A typical grading and cross section of a 20 mm DBM. 

In order to study only the effect of different 

aggregate structures on the deformation behaviour of 

mixtures, the same bitumen (70/100 pen; softening point 

at 45°C) was used in both mixtures.  A total of 28 

specimens were prepared and tested. Uniaxial creep 

compression tests were performed at three temperatures 

(10, 20 and 40 °C) and various stress levels depending on 

the test temperature.  

3. Results and best fitting procedure  

In order to obtain the parameters of the model, a best 

fitting procedure was implemented using Wolfram 

Mathematica 9.0® software with the experimental data 

regarding creep and creep recovery tests.  
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Various candidate shapes of power law have been 

analysed. The optimum shape that has been obtained for 

both HRA and DBM is given as follows: 

𝐽(𝑡) = 𝑈(𝑡) (
𝑡

𝑐
+

𝑡𝛼

𝐶𝛼 𝛼 𝛤(𝛼)
) ,                   (8) 

where 𝑐 is the viscosity coefficient, 𝐶𝛼 and 𝛼 are 

parameters related to temperature, stiffness and viscosity.  

In all cases Eq. (8) fitted the experimental data very 

well.  

The mechanical equivalent of creep curve described 

in Eq. (8) is a dashpot (term 𝑡 𝑐⁄ ) and a so called springpot 

(term 𝑡𝛼 𝐶𝛼 𝛼 𝛤(𝛼)⁄ ) in series as shown in Fig. 3. The 

results are contrasted with the experimental creep tests. 

Figs 4 and 5 summarize the results obtained by the best 

fitting procedure whose relevant parameters are reported 

in Table 1 (other Figures and Tables can be downloaded 

from the following link *: 

https://www.dropbox.com/sh/ju3263gzsui2znx/oAQfPPt

xfI ). 

Once the creep law is fixed then as soon as we 

assume 𝑐, 𝐶𝛼 , 𝛼 independent of the stress level the linear 

law of viscoelastic asphalt mixture is given as: 

𝜀(𝑡) =
1

𝑐
 (𝐼0+

1 𝜎)(𝑡) +
1

𝐶𝛼
 (𝐼0+

𝛼 𝜎)(𝑡) .          (9) 

Eq. (9) states the strain history due to the assigned 

stress history 𝜎(𝑡) is composed by two terms: a purely 

viscous part as the first term and a fractional elastic-

viscous term ruled by the fractional operator. The latter is 

ruled by the order 𝛼 of the fractional integral. If 𝛼 = 0 

then the second term is purely elastic and Eq. (9) is a 

classical Maxwell element. If 𝛼 = 1 Eq. (9) reverts into 

two dashpots arranged in series. When 0 ≤ 𝛼 ≤ 1  the 

mechanical model is that represented in Fig. 3, where the 

fractional term is a springpot that has an intermediate 

behaviour between elastic and viscous. 

Fig. 3. Springpot element in series with a dashpot. 

It has to be emphasized that if 𝑐 → ∞, then 𝐽(𝑡) =
𝑡𝛼

𝐶𝛼 𝛤(1+𝛼)
  is a purely viscoelastic term and is the well-

known Scott-Blair model.  In Figs 4-9 in dashed line the 

results obtained by best fitting procedure are reported, 

showing that the experimental date are better fitted with 

Eq. (8). 

Once the constitutive laws have been derived from 

best fitting procedure based on experimental data some 

considerations on the physical properties of the material 

can be drawn, in particular on the role played by the 

parameters c,  Cα and α. 

As the temperature increases the value of 𝑐 highly 

decreases. This means that the deformation is mainly 

related to the fluid phase. As in fact the smaller 𝑐 the 

higher the deformation of the dashpot element represented 

in Fig. 3 is. 

As the temperature increases the values of 𝐶𝛼 and 𝛼 

moderately decrease. That is the relative weight of the 

viscoelastic component (springpot in Fig. 3) of the asphalt 

mixture, is less sensitive to the temperature. In any cases 

since the smaller  𝐶𝛼 the higher the deformation is, we can 

state that also the viscoelastic component gives an 

increasing value to the total deformation (as we expect). 

On the other hand 𝛼 decreases as the temperature 

increases.  

As a conclusion we can state that as the temperature 

increases the viscous phase, coming in part from dashpot 

and in part from the fractional element, prevails on the 

elastic component. 

 
 

 

Fig. 4. HRA Experimental data (dots) contrasted with best-fitting curves of the proposed model (continuous line) and the Scott-Blair model 

(dashed line), 20°C. 

 
 

https://www.dropbox.com/sh/ju3263gzsui2znx/oAQfPPtxfI
https://www.dropbox.com/sh/ju3263gzsui2znx/oAQfPPtxfI
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Fig. 5. DBM Experimental data (dots) contrasted with best-fitting curves of the proposed model (continuous line) and the Scott-Blair model 

(dashed line), 20°C. 

Table 1. Best fitting parameters of creep tests 987 (HRA) and 1007 (DBM). 

Test A.M. 

Air 

Voids 
Stress t1 T 

Fractional proposed model 

c*10-3 Cα*10-3 α 

[%] [kPa] [s] [°C] 
[Mpa 

s] 

[Mpa 

s^α] 
[-] 

987 HRA 4.6 1870 0.126 20 3800 230.0 0.266 

1007 DBM 5 1430 0.097 20 18500 425.0 0.265 

 

In Table 1 the symbol t1 is the time at which the 

assigned stress level is reached by the test machine. 

From data obtained from all creep tests some 

considerations can be drawn: i) for fixed stress level and 

temperature the best fitting parameters showed very close 

values to each other; ii) all 𝑐,  𝐶𝛼 , 𝛼 parameters are very 

sensitive to the temperature variations; iii) other test 

conditions being equal the DBM’s 𝐶𝛼 was higher than 

HRA’s one, as confirmed from dynamic tests carried out 

at Nottingham.  

In the next section a detailed description on the 

nonlinear behaviour of the asphalt mixture will be 

presented. 

4. Nonlinear behaviour 

It is widely recognized that linear viscoelasticity 

holds at a low stress level. In this range parameters 

𝑐,  𝐶𝛼 , 𝛼 remain constant, whereas as soon as the stress 

level increases in creep tests (at fixed temperature), the 

various parameters exhibit variations and the Boltzmann 

superposition principle fails. Detailed discussion on this 

point may be found in (Airey et al. 2003; Airey, 

Rahimzadeh 2004; Findley, Onaran 1976). For the 

particular case of asphalt mixture presented here the 

linearity strain range has to be of order 10−4 (Airey 

2004), that is much lower than the strain levels 

corresponding to the laboratory tests. This is due to the 

fact that the goal of these tests was the study of steady-

state deformation behaviour (Taherkhania 2011) or to 

evaluate mechanical parameters of the Burger 

generalized model (Huang 2004). From the experimental 

tests reported in Tables 1-2, we may affirm that the 

coefficients to describe the power law of the mixtures 

under study depend on temperature as well stress 

intensity. Because of the dependence of the stress level 

as first attempt we may suppose that the three parameters 

𝑐,  𝐶𝛼 , 𝛼 depend on the stress intensity and on the 

temperature, that is:  

𝑐 = 𝑐(𝑇, 𝜎); 𝐶𝛼 = 𝐶𝛼(𝑇, 𝜎); 𝛼 = 𝛼(𝑇, 𝜎)   (10a,b,c) 

From the data exploited in Tables 1-2, we may 

suppose that for fixed value of  T, the relevant parameter 

may be expressed in the form: 

1

𝑐
= 𝑎𝑐 + 𝑏𝑐𝜎𝛽; 

𝐶𝛼 = 𝑎𝐶𝛼
+ 𝑏𝐶𝛼

𝜎𝛾; 

𝛼 = 𝑎𝛼 + 𝑏𝛼𝜎𝜂                   (11a,b,c)  

where the various parameters 𝑎𝑐, 𝑏𝑐  , 𝑎𝐶𝛼
, 𝑏𝐶𝛼

, 𝑎𝛼, 

𝑏𝛼, 𝛽, 𝛾, 𝜂 are determined by the creep test at the various 

stress intensities. The limitation on 𝛽, 𝛾, 𝜂 is  𝛽, 𝛾, 𝜂 >
1. This limitation is due to the fact that at low stress level 

the material will behave linearly and then the various 

parameters will remain constant in proximity of 𝜎 = 0. It 

follows that the slope of the coefficients in Eq. (10) has 

to be zero as 𝜎 → 0, that is: 

𝜕𝑐(𝑇,𝜎)

𝜕𝜎
|

𝜎=0
= 0; 

𝜕𝐶𝛼(𝑇,𝜎)

𝜕𝜎
|

𝜎=0
= 0; 

𝜕𝛼(𝑇,𝜎)

𝜕𝜎
|

𝜎=0
= 0 

                                         (12a,b,c) 

Conditions (12) are satisfied only if 𝛽, 𝛾, 𝜂 > 1. In 

Fig. 6 the only trend of 1 𝑐⁄  for HRA is reported (all data 

are contained in *). The other limitations on the various 

coefficients are 𝑐 > 0, 𝐶𝛼 > 0, 0 ≤  𝛼 ≤ 1. 
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Fig. 6. Experimental trend of 1/c parameter at different temperatures 

(HRA). 

In Tables 2 and 3 the various coefficients in Eq. 

(11a,b) are reported for both HRA and DBM. 

Table 2. Coefficients in Eq. (12a,b) for HRA  

HRA 
T [°C] 

10 20 40 

1/c 

ac 1.36E-09 1.00E-07 7.27E-07 

bc 2.49E-22 2.05E-17 7.91E-11 

β 4 3 1.5 

Cα 

ac 247.7 170.6 27.3 

bc 6.65E-10 1.15E-08 9.81E-03 

γ 3.5 3 1.3 

Table 3. Coefficients in Eq. (12a,b) for DBM 

DBM 
T [°C] 

10 20 40 

1/c 

ac 1.14E-10 9.70E-10 5.95E-09 

bc 1.12E-25 3.35E-22 2.50E-16 

β 5 4.5 3 

Cα 

ac 309.0 251.6 35.3 

bc 6.43E-06 1.00E-04 4.30E-03 

γ 2.5 2 1.5 

If we suppose that 𝑐,  𝐶𝛼 , 𝛼 at a given temperature 

depend only on the stress amplitude 𝜎0, then Eq. (9) has 

to be modified in the form: 

𝜀(𝑡) = ∫
𝜎(𝜏)

𝑐(𝜎(𝜏))
 𝑑𝜏

𝑡

0
+ ∫

 (𝑡−𝜏)𝛼(𝜎(𝜏))−1 𝜎(𝜏)

𝐶𝛼(𝜎(𝜏))∙Γ(𝛼(𝜎(𝜏)))
𝑑𝜏

𝑡

0
 ,   (13a) 

because in 0 ÷ 𝑡 we suppose that the stress 𝜎(𝜏) ≡
𝜎0 , then the corresponding strain is given as:  

𝜀(𝑡) =
1

𝑐(𝜎0)
 (𝐼0+

1 𝜎)(𝑡) +
1

𝐶𝛼(𝜎0)
 (𝐼

0+
𝛼(𝜎0)

𝜎)(𝑡).   (13b) 

Unfortunately Eq. (13) remains valid only for 

constant or monotonic stress history. In order to highlight 

this concept an experimental creep recovery test was 

contrasted with the solution obtained from Eq. (13). In 

Fig. 12a we may observe that during the creep phase the 

results predicted by Eq. (13) perfectly match the 

experimental curve, but for 𝑡 > 𝑡∗, 𝑡∗ being the time of 

which the load was removed, the result of Eq. (13) is 

drastically different from experimental curve during the 

recovery phase. This means that the hypothesis that the 

coefficients depend only on 𝜎 and 𝑇 is not true when 𝜎̇ <
0. Therefore when the stress history is not monotonic the 

dependence on the various parameters has to be 

highlighted outside of the viscoelastic behaviour, that is: 

𝑐 = 𝑐(𝑇, 𝜎, 𝜎̇); 𝐶𝛼 = 𝐶𝛼(𝑇, 𝜎, 𝜎̇); 𝛼 = 𝛼(𝑇, 𝜎, 𝜎̇). 

 (14a,b,c) 

Moreover the dependence of the parameters on 𝜎̇ 

has to be neglected if 𝜎̇ > 0. In order to achieve this 

result the function sign(σ̇) will present what it happens 

in plasticity. It follows that the new attempt for modelling 

the coefficient is: 

𝑐(𝑇, 𝜎, 𝜎̇) = 𝑐(1)(𝑇, 𝜎) + 𝑠𝑖𝑔𝑛(𝜎̇)𝑐(2)(𝑇, 𝜎); 

𝐶𝛼(𝑇, 𝜎, 𝜎̇) = 𝐶𝛼
(1)(𝑇, 𝜎) + 𝑠𝑖𝑔𝑛(𝜎̇)𝐶𝛼

(2)(𝑇, 𝜎); 

𝛼(𝑇, 𝜎, 𝜎̇) = 𝛼(1)(𝑇, 𝜎) + 𝑠𝑖𝑔𝑛(𝜎̇)𝛼(2)(𝑇, 𝜎). 

(15a,b,c) 

under the conditions that in the creep phase: 

𝑐𝑐(𝑇, 𝜎) = 𝑐(1)(𝑇, 𝜎) + 𝑐(2)(𝑇, 𝜎); 

𝐶𝛼
𝑐(𝑇, 𝜎) = 𝐶𝛼

(1)(𝑇, 𝜎) + 𝐶𝛼
(2)(𝑇, 𝜎); 

𝛼𝑐(𝑇, 𝜎) = 𝛼(1)(𝑇, 𝜎) + 𝛼(2)(𝑇, 𝜎). 

(16a,b,c) 

where the apex “c” stands for creep in the sense that 

they are already evaluated during the creep test.  

These conditions guarantee that if the load history 

is monotonic then we came back to Eqs. (10-13), whereas 

when 𝜎̇ < 0 (𝑠𝑖𝑔𝑛(𝜎̇) = −1) the various parameters 

change. In order to identify the quantities 𝑐(1), 𝑐(2), 

𝐶𝛼
(1)

, 𝐶𝛼
(2)

, 𝛼(1), 𝛼(2) we need other conditions that may 

be derived from creep recovery test. When the recovery 

phase at time 𝑡∗ at which the stress is removed (𝜎̇ = −∞, 

𝑠𝑖𝑔𝑛(𝜎̇) = −1) we may identify the new set of 

parameters 𝑐𝑟(𝑇, 𝜎), 𝐶𝛼
𝑟(𝑇, 𝜎) and 𝛼𝑟(𝑇, 𝜎), where the 

apex “r” stands for recovery, with a best fitting 

performed in (𝑡∗ ÷ ∞). For the creep recovery test 

depicted in Fig. 7 and for many other tests not reported 

here for brevity, the parameters significantly depend on 

𝜎̇ are 𝑐 and 𝐶𝛼. For the test in Fig. 7b they assumed the 

following values: 

𝑐𝑟(1 𝑀𝑃𝑎, 20°𝐶) = 9140 𝑀𝑃𝑎 𝑠; 

𝐶𝛼
𝑟(1 𝑀𝑃𝑎, 20°𝐶) = 920 𝑀𝑃𝑎 𝑠𝛼  

Once the recovery coefficient is found from 

experimental data the values of 𝑐(1), 𝑐(2), 𝐶𝛼
(1)

 and 𝐶𝛼
(2)

 

in Eq. (15a,b) may be derived in the form:  

𝑐(2) =
𝑐𝑐−𝑐𝑟

2
; 𝑐(1) =

𝑐𝑐+𝑐𝑟

2
                  (17a) 
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𝐶𝛼
(2) =

𝐶𝛼
𝑐−𝐶𝛼

𝑟

2
; 𝐶𝛼

(1) =
𝐶𝛼

𝑐+𝐶𝛼
𝑟

2
          (17b) 

𝛼(2) =
𝛼𝑐−𝛼𝑟

2
; 𝛼(1) =

𝛼𝑐+𝛼𝑟

2
               (17c) 

In Fig. 7b the deformation history evaluated with 

Eq. (13) in which 𝑐(𝑇, 𝜎, 𝜎̇) and 𝐶𝛼(𝑇, 𝜎, 𝜎̇) are evaluated 

as in Eq. (15a,b) while 𝑐(1), 𝑐(2), 𝐶𝛼
(1) and 𝐶𝛼

(2) as in Eq. 

(17a,b), is contrasted with the experimental creep 

recovery test. 

 

 
Fig. 7. Creep Recovery test (2599); a) parameters evaluated by Eq. (11); b) parameters evaluated by Eqs. (16,18). 

 
Other creep recovery tests carried out in 

Nottingham were fitted using these equations. In Fig. 8 

three creep recovery tests carried out on the same stress 

level and temperature and different loading time t∗ are 

depicted; in Table 4 the respective relevant parameters 

are reported.  

 

 
Fig. 8. Experimental curves matched with theoretical laws for creep recovery tests carried out at different loading time: 𝑡∗ = 50𝑠 (a); 𝑡∗ = 25𝑠 (b); 

𝑡∗ = 8𝑠 (c).   

Table 4. Best fitting parameters (coefficients of Eq. 17) of 1669, 976 and 1666 creep recovery tests 

Test 
Asphalt 

Mixture 

Air 

Voids 
Stress t1 t* T 

Fractional proposed model 

cr Cαr α 

[%] [kPa] [s] [s] [°C] [Mpa s] [Mpa sα] [-] 

1669 HRA 5.3 1000 0.058 50 20 4280 529.0 0.215 

976 HRA 4.8 1000 0.06 25 20 2735 492.0 0.215 

1666 HRA 5.7 1000 0.036 8 20 1444 423.0 0.215 

 

From Fig. 8 some considerations may be drawn. 

First of all the residual strain at 𝑡 → ∞ is evidenced; this 

fact is easily explained by observing the mechanical 

model described in Fig. 3. During the creep phase the 

total deformation is composed by two terms: the first one 

is 𝜀𝑠(𝑡), that is the deformation of the springpot; the 

second one is 𝜀(𝑡) − 𝜀𝑠(𝑡), that is the relative strain due 

to the viscous fluid in the dashpot. The latter cannot be 

given back during the recovery phase, and that confirms 

the goodness of the mechanical model here presented. A 

second observation is: the longer the 𝑡∗, at a parity of 

stress level and temperature, the higher the residual 
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strain. This is due to the fact that during the creep phase 

the dashpot move according to the equation: 

𝜎(𝑡) = 𝑐[𝜀̇(𝑡) − 𝜀𝑠̇(𝑡)],                   (18) 

and 𝜀(𝑡∗) − 𝜀𝑠(𝑡∗) is the residual strain that cannot 

be given back during the recovery phase. 

With these observations in mind we may solve 

separately the two equilibrium equations during the creep 

phase: 

𝜀𝑠(𝑡) =
1

𝐶𝛼(𝜎0)
 (𝐼0+

𝛼 𝜎)(𝑡),                 (19) 

where 𝜎(𝑡) = 𝜎0 𝑈(𝑡) and 

𝜀(𝑡) − 𝜀𝑠(𝑡) =
1

𝑐
𝜎0 𝑈(𝑡),                 (20) 

 
In order to fully validate the model here proposed 

another test campaign will be necessary with more 

complex time histories (cyclic stress controlled). 

 
Conclusions  

In this paper a proper mechanical model of 

hereditariness on asphalt mixtures is presented. It is 

shown that the creep test, performed on two different 

asphalt mixtures at various stress levels and 

temperatures, is overlapped by the response of a 

mechanical model composed by a Maxwell element in 

which the spring is substituted by a fractional element 

(springpot). The constitutive law of the springpot is the 

Riemann-Liouville fractional integral of order 𝛼 ∈ (0,1). 

That is the element exhibits an intermediate behaviour 

between elastic (𝛼 = 0) and purely viscous Newtonian 

fluid (𝛼 = 1). 

The dependence of the three different parameters 

necessary for the definition of the constitutive law on the 

temperature and on the stress level is studied in detail so 

obtaining the nonlinear constitutive laws for the asphalt 

mixture. By the light of the experimental tests it has been 

observed that, in order to match the experimental data on 

the recovery phase (𝜎 = 0), the parameters 𝑐 and  𝐶𝛼 

have to be split in two parts. In the second part the 

dependence on 𝜎̇ has to be present. This part is very 

important in order to get a residual strain when the stress 

is removed. 

For practical applications the parameter 𝛼 ruling the 

power law trend of springpot may be assumed depending 

only on the temperature and this drastically simplifies the 

subsequent analysis since in the constitutive law the 

fractional term remains a simple linear (fractional) 

operator. 

As a concluding remark, in the authors’ opinion the 

correct way to define the proper constitutive law of a 

complex material like an asphalt mixture has to be 

validated by experimental tests. The latter have be 

performed at various temperature levels and at different 

stress intensity, starting from very small stress level in 

order to properly define the linear behaviour. Moreover 

in case of cyclic load history the only creep (or 

relaxation) test is not enough to fully characterize the 

viscoplastic behaviour. 
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