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Abstract

In this paper we consider the problem of testing for the co-integration rank of a vector autore-

gressive process in the case where a trend break may potentially be present in the data. It is known

that un-modelled trend breaks can result in tests which are incorrectly sized under the null hypoth-

esis and inconsistent under the alternative hypothesis. Extant procedures in this literature have

attempted to solve this inference problem but require the practitioner to either assume that the

trend break date is known or to assume that any trend break cannot occur under the co-integration

rank null hypothesis being tested. These procedures also assume the autoregressive lag length is

known to the practitioner. All of these assumptions would seem unreasonable in practice. Moreover

in each of these strands of the literature there is also a presumption in calculating the tests that a

trend break is known to have happened. This can lead to a substantial loss in finite sample power

in the case where a trend break does not in fact occur. Using information criteria based methods to

select both the autoregressive lag order and to choose between the trend break and no trend break

models, using a consistent estimate of the break fraction in the context of the former, we develop

a number of procedures which deliver asymptotically correctly sized and consistent tests of the

co-integration rank regardless of whether a trend break is present in the data or not. By selecting

the no break model when no trend break is present, these procedures also avoid the potentially

large power losses associated with the extant procedures in such cases.
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1 Introduction

Macroeconomic series are typically characterized by piecewise linear (or broken) trend functions; see,

inter alia, Stock and Watson (1996, 1999, 2005) and Perron and Zhu (2005). Such breaks in the trend

function might occur following a period of major economic upheaval or a political regime change.

In the univariate setting this has spurred a large literature on testing for an autoregressive unit root

when a trend break may be present in the data. The first proper theoretical treatment of this problem

was given by Perron (1989) who showed that unit root tests which fail to account for a trend break

present in the data have non-pivotal limiting null distributions and are inconsistent under stable root

alternatives. Assuming the putative break date to be known, Perron (1989) proposed new unit root

tests which avoid these problems by modelling the trend break. However, if a break does not occur this

approach loses considerable finite sample power through the inclusion of an unnecessary trend break

regressor. Subsequent approaches have focussed on the case where the break date is unknown. Zivot

and Andrews (1992) base a test on the most negative of a sequence, taken across all possible break

dates, of the Perron (1989) statistics, while Perron (1997) first estimates the trend break location

and then uses the Perron (1989) test for the estimated break date. The limiting distributions of the

Zivot and Andrews (1992) tests depend on the magnitude of the trend break parameter which renders

them infeasible in practice. The Perron (1997) approach is also problematic in that the break point

estimator has a non-degenerate limit distribution when no break is present, with the result that the

associated unit root test has a different large sample null distribution vis-à-vis the case where a trend

break is present. Size-controlled inference can then only be achieved by using so-called conservative

critical values corresponding to the case where no break is present, with an associated loss of efficiency

where a break is present. As a result, Carrion-i-Silvestre et al. (2009), Harris et al. (2009) and Kim

and Perron (2009) advocate approaches based on the use of pre-tests for the presence of a trend break.

In the vector time series setting, un-modelled trend breaks cause similar problems for the co-

integration rank tests of Johansen (1995). For example, Inoue (1999) documents large losses in finite

sample power with the standard trace and maximum eigenvalue tests of Johansen (1995) when an

un-modelled trend break is present in the data. As we will show in the simulation results we report

in this paper, an un-modelled trend break also causes substantial over-sizing in the standard rank

tests, consistent with the findings for standard unit root tests in Perron (1989). Surprisingly then,

the literature on testing for co-integration rank in the presence of breaks in the deterministic trend

function is relatively sparse compared to the univariate case.

In the context of co-integration rank tests of the type considered in Johansen (1995), Johansen

et al. (2000) develop likelihood ratio tests, analogous to those considered in the univariate case in

Perron (1989), for the case where the break in the trend function occurs at a known point. Like Perron

(1989) they consider both level break and trend break models, and extend to allow for multiple breaks

in the trend function. Saikkonen and Lütkepohl (2000) for a level break (but no trend break) at a

known date, Lütkepohl et al. (2003) for a level break (no trend break) at an unknown point, and

Trenkler et al. (2007) for a trend break at a known date, propose further co-integration rank tests,
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in each case using the pseudo-GLS de-trending method outlined in Saikkonen and Lütkepohl (2000).

All of these procedures assume that the autoregressive lag length is known to the practitioner. The

approaches taken in the last three of these papers also differ from the approach taken in Johansen et

al. (2000) according to how the data generating process [DGP] under consideration is constructed.

While they adopt a components DGP, forming the observed process as the sum of the deterministic

variables and an indeterministic vector autoregressive [VAR] process, Johansen et al. (2000), follow

Johansen (1995) and place the deterministic variables directly into the VAR equation. Finally, Inoue

(1999), who also assumes a known autoregressive lag order, develops Zivot and Andrews (1992) type

co-integration rank tests by calculating with-break implementations of the Johansen (1995) tests over

all possible break dates and basing a test on the most positive of these.

Relative to the developments seen in the univariate case, significant drawbacks therefore still exist

with the currently available co-integration rank tests which allow for a break in the deterministic

trend. Firstly, the approach in Inoue (1999) is infeasible in practice because, like Zivot and Andrews

(1992), it cannot allow a trend break to occur under the null. In practice the co-integration rank of a

system of variables is established by the sequential procedure outlined in Johansen (1995). Here one

first tests the null hypothesis that the co-integration rank, r say, is zero against the hypothesis that

r = n, n being the dimension of the system. If this null is accepted the procedure stops. Otherwise

one sequentially tests the null hypotheses that r = 1, 2, ..., against the alternative that r = n, until

the null cannot be rejected. If the true rank is r∗, the test for r = r∗ in this procedure will not be size

controlled even asymptotically when a break is present. Second, the tests considered in Johansen et al.

(2000) and Trenkler et al. (2007) both assume that the trend break date is known to the practitioner.

Moreover, these tests essentially assume that a trend break does indeed occur and, hence, would be

expected to unnecessarily sacrifice a considerable degree of finite sample power when no break occurs.

Indeed it should be noted that Lütkepohl et al. (2003) need to impose that a break does occur

otherwise they run into the same problems outlined above for the Perron (1997) procedure where no

break is present. Finally, all of these procedures take the autoregressive lag length as fixed and known.

The aim of this paper is to address these drawbacks with the existing tests in the literature.

In order to focus attention on what we believe to be the empirically most relevant case, we follow

Trenkler et al. (2007) and consider only the leading example of the trend break case, but allowing

for the possibility of a simultaneous level break. We propose new testing procedures which in spirit

generalise the approach taken by Carrion-i-Silvestre et al. (2009), Harris et al. (2009) and Kim and

Perron (2009) to the setting of testing for co-integration rank. We consider two possible approaches

depending on whether the deterministic component is included additively as in Trenkler et al. (2007)

or directly into the co-integrated vector autoregressive [VAR] equation as in Johansen et al. (2000).

In either case the first step in the procedure is based on the use of a consistent estimator of the break

date. In the context of the component DGP of Trenkler et al. (2007), a multivariate generalisation

of the first difference trend break estimator used in Harris et al. (2009) is proposed, along with a

corresponding estimator obtained from the levels of the data, while for the Johansen et al. (2000) set-

up a maximum likelihood estimator of the break date is used. Based on these break date estimators,
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for each of the two approaches an information-based method using a Schwarz-type criterion is then

employed to select between the version of the model which includes a trend break (included at the

relevant estimated break date) and that which does not. Each of the proposed procedures also employs

a Schwarz-type criterion to select the autoregressive lag length. Conventional trace-type co-integration

rank tests are then computed appropriate to the model selected by these Schwarz-type criteria.

For each of the proposed procedures we establish that: (i) the estimator of the break fraction

is consistent for the true break fraction; (ii) the information-based methods based on this estimator

consistently select between the with-break and without-break variants of the model, and (iii) the

resulting trace tests can be validly compared to known break date critical values in trend break case

and to the without break critical values in the no break case. A consequence of our results is that,

at least in large samples, the information-based methods we propose allow us to correctly identify

whether we need to allow for a trend break in the model or not. This then implies that where a break

is not present we will not see the loss in efficiency that is incurred by including a redundant trend

break regressor in the model, and at the same time where a trend break is present we will not see the

potentially large impact on the size and power properties of the rank tests that result from omitting

the trend break. We present Monte Carlo simulation evidence which suggests that the procedure based

on the Johansen et al. (2000) set-up is preferred and generally works very well even for a relatively

small sample size such that the finite sample performance of this procedure is quite close to that

seen for the benchmark rank tests which would obtain with knowledge of whether a trend break was

present or not. The key findings of our Monte Carlo simulation exercise are presented here, while a

more detailed set of results can be found in the accompanying supplement, Harris et al. (2015).

The paper is organised as follows. Section 2 details our reference co-integrated VAR model. Section

3 outlines our new procedures for co-integration rank testing which allow for the possibility that series

under test display a trend break at an unknown point in the sample. Section 4 analyses the large

sample properties of these methods. Results from our Monte Carlo simulation study are reported in

section 5. Section 6 concludes. All proofs are contained in the Appendix. In the following d→ and
p→ are used to denote weak convergence and convergence in probability, respectively; 1(·) denotes the

usual indicator function; b·c denotes the integer part of its argument; x := y and y =: x each indicate

that x is defined by y; x ∨ y and x ∧ y indicate the maximum and minimum, respectively, of x and y;

Ik denotes the k × k identity matrix. The notation 0 is used generically in context to denote a j × k
matrix of zeroes. If a is of full column rank n < m, then a⊥ is an m× (m− n) full column rank matrix

satisfying a′⊥a = 0; for any square matrix, A, |A| denotes its determinant, and tr(A) its trace.

2 The Trend Break Co-integrated VAR Model

Following Trenkler et al. (2007), we consider the n-dimensional time series process yt := (y1t, ..., ynt)′,

t = 1, ..., T , generated according to the following DGP

yt = µ0,0d0,t (0) + µ1,0d1,t (0) + µ0,1d0,t (b) + µ1,1d1,t (b) + ut, (1)
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for which we have defined the step (or level break) dummy d0,t (b) := 1(t>b), and then for any k =

0,±1,±2, ..., also defined dk,t (b) := ∆−kd0,t (b), where ∆ := (1− L) denotes the usual first difference

filter in the lag operator, L, such that Lkyt = yt−k. Then, as special cases of this generic definition,

we have that d1,t (0) = 1 and d1,t (0) = t in (1) are the usual constant and linear trend terms, while

d1,t (b) = 0 ∨ (t− b) is a trend break dummy. The parameter vectors µi,j , i, j = 0, 1, in (1) are all

n× 1. The model in (1) is therefore generated as the sum of a constant, linear trend, level shift and

change in the trend slope at time b, together with a stochastic component ut which we specify below.

As is standard, for the purposes of the large sample results which follow, we assume that the break

date depends on the sample size such that the break occurs at a fixed fraction of the sample size; that

is, we parameterise the breakpoint in terms of the break fraction λ where 0 < λL ≤ λ ≤ λU < 1, by

b = bλT c. Notice therefore that b is constrained to lie in the set B := [bTλLc, bTλUc]. It can be seen

that a trend break exists in yt only if µ1,1 6= 0 in (1) (ie. where at least one element of the vector µ1,1 is

non-zero); unlike the previous contributions to this literature outlined in section 1, we will not assume

that µ1,1 6= 0. In this paper our focus is on trend breaks and so while we allow for a simultaneous

level break through d0,t (b) we will not explicitly consider the case where a level break but no trend

break occurs since tests appropriate for this setting have already been developed in Saikkonen and

Lütkepohl (2000), Lütkepohl et al. (2003) and Johansen et al. (2000), inter alia; that is, we will

assume that µ0,1 = 0 when µ1,1 = 0 in what follows. In contrast to Trenkler et al. (2007), we do not

assume in what follows that the break fraction λ is known. Where the distinction is important we will

distinguish between a generic possible break fraction (break point) and the true break fraction (break

point) by using λ∗ (b∗) for the latter.

The model in (1) is completed by specifying the usual pth order reduced rank VAR (or co-integrated

VAR) indeterministic version of the model of Johansen (1995) for ut; that is,

∆ut = αβ′ut−1 +
p−1∑

j=1

Γj∆ut−j + et, t = 1, ..., T (2)

where ut := (u1t, ..., unt)′, et := (e1t, ..., ent)′, and where the initial values, u1−p, ..., u0, are taken to

be fixed in the statistical analysis. The co-integration parameters α and β are (n× r)-dimensional,

while the parameters {Γi}i=1,..,p−1 on the stationary lagged dependent variables are each (n× n)-

dimensional. The innovation process {et} in (2) is taken to satisfy the following relatively weak

globally stationary martingale difference assumption taken from Cavaliere et al. (2010); see also

Davidson (1994,pp.454-455) for further discussion:

Assumption 1: The innovations {et} form a martingale difference sequence with respect to the

filtration Ft, where Ft−1 ⊆ Ft for t = ...,−1, 0, 1, 2, ..., satisfying: (i) the global homoskedasticity

condition: 1
T

∑T
t=1 E (ete′t|Ft−1)

p→ Σ, where Σ is full-rank, and (ii) E ‖et‖4 ≤ K <∞.

As is routine, we also impose the standard so-called ‘I(1, r) conditions’ of Johansen (1995) on the

parameters of (2) in order to rule out, for example, explosive processes.

Assumption 2: The following conditions hold on the parameters of (2): (i) The autoregressive lag
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order p satisfies 1 ≤ p < ∞; (ii) |(In −
∑p−1

j=1 Γjzj)(1 − z) − αβ′z| = 0 implies |z| > 1 or z = 1, and

(iii) |α′⊥Γβ⊥| 6= 0, where Γ := (In −
∑p−1

j=1 Γj).

Under Assumption 2, ut is integrated of order one (I(1)) with co-integration rank r, and the co-

integrating relations β′ut − E
(
β′ut

)
are stationary. Part (i) of Assumption 2 assumes that the lag

length parameter p is finite, but crucially does not assume that it is known to the practitioner.

An alternative formulation of (1)-(2) is considered in Johansen et al. (2000). Specifically, and

as demonstrated in Trenkler et al. (2007), multiplying (1) through by the lag polynomial (In −∑p−1
j=1 ΓjLj)∆− αβ′L and re-arranging yields the vector error correction mechanism [VECM] form

∆yt = δ0,0d0,t (0) + δ0,1d0,t (b) +
p−1∑

j=0

δ−1,jd−1,t (b+ j)

+α
(
β′yt−1 + δ′1,0d1,t−1 (0) + δ′1,1d1,t−1 (b)

)
+

p−1∑

j=1

Γj∆yt−j + et (3)

where d−1,t (b) := 1(t=b+1) is an impulse dummy; cf. Equation (5) of Trenkler et al. (2007), where

explicit formulae for the δi,j , i, j = 0, 1 and δ−1,j , j = 0, ..., p− 1, coefficient vectors are provided. As

Trenkler et al. (2007) note, the VECM representation in (3) is a re-parameterised form of equation

(6) of Johansen et al. (2000) for the special case thereof of a single break in trend. Notice that the

VECM form in (3) includes a (broken) linear trend but does so in such a way that its coefficients are

restricted to exclude the possibility of a quadratic (broken) trend in yt.

Regardless of whether we work with the components form in (1)-(2), as in Trenkler et al. (2007),

or the VECM form in (3) as in Johansen et al. (2000), our interest in this paper is focussed on the

problem of testing the usual null hypothesis that the co-integration rank is (less than or equal to) r,

denoted H (r), against H (n), but crucially without assuming any prior knowledge of whether µ1,1 = 0

or µ1,1 6= 0 in (1), and in the case where µ1,1 6= 0 without prior knowledge of the trend break location,

λ. In the next section we outline our proposed procedures for achieving this. These procedures

all employ a trend break fraction estimator in a first step and then use standard information-based

methods to select between the model with trend break and the corresponding model without.

3 Co-integration Rank Test Procedures

As discussed in the previous section, we now explore general approaches suggested by the structures

of each of (1)–(2) and (3).

The procedures which we will develop in relation to the VECM form in (3) are based on a Gaussian

(quasi) likelihood approach, in which the break date estimation, selection between the with-break

and without-break models, de-trending and co-integration rank testing are all done within the usual

reduced rank regression framework of Johansen (1995) and Johansen et al. (2000). In contrast to

Johansen et al. (2000) the (maximum) number of potential trend breaks is restricted to be one, but

the presence of a trend break is not assumed and, where a trend break is present, the break date
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is treated as unknown. The break date estimation is obtained by using (quasi) maximum likelihood

estimation [MLE] on (3) under H(r). Given this breakpoint, an adaptation of the usual Schwarz

information criterion1 [SC] is then used to select between the model with a break and the model with

break excluded (i.e. (3) with δ0,1 = 0, δ1,1 = 0), both estimated under H(r). The usual trace test for

H(r) is then performed on the selected model, using critical values appropriate to the selected model.

In what follows we will refer to this procedure as SC-VECM.

For the components form in (1)–(2) a possible breakpoint estimator to use is the least squares

(minimum residual sum of squares) estimator for the location of a level break in the first differences

of (1). From a likelihood perspective, this estimator treats ut as a simple vector random walk (i.e.

p = 1, r = 0) regardless of the actual values of p and r. This estimator can be viewed as a multivariate

generalisation of the corresponding trend break estimator used in Harris et al. (2009) which is based

on applying the univariate level break estimator proposed in Bai (1994) to the first differences of the

data. In that sense, the multivariate trend break estimator we consider here is also a special case of

the multivariate (level break) estimator considered in Qu and Perron (2007), but applied here to the

first differences. A natural SC step following this approach is to choose between the with-break and

without-break models in the simple random walk model. As in the SC-VECM procedure, the usual

trace test follows this selection. This procedure will be referred to as SC-DIFF in what follows.

The final procedure we present, referred to as SC-VAR in what follows, carries out the breakpoint

estimation and SC selection between the with-break and without-break models in an unrestricted

VAR, i.e. with r = n. This then permits a full comparison of the reasonable models in which to carry

out the break specification; that is, SC-VECM is constructed under H (r), SC-DIFF under H (0), and

SC-VAR under H (n).

Before we lay out these procedures in detail, a short discussion comparing these possible approaches

would seem useful. There is no obvious reason to predict, a priori, why one should prefer one of these

procedures over the other in practice and it is our intention to take an ambivalent stance and outline

each. We will then compare their finite sample performance using Monte Carlo methods in section

5. And indeed these results suggest that no one of these procedures dominates all of the others

in all situations, although our Monte Carlo results do suggest that the SC-VAR approach is the

least efficacious of the three. The motivation for the SC-VECM and SC-VAR approaches is perhaps

clearer and more natural in that they are based on the likelihood function throughout. The SC-DIFF

approach is more ad hoc in nature, with the break date estimation and model selection procedure

imposing r = 0, p = 1.

We now detail the SC-VECM approach in section 3.1, followed by the SC-DIFF and SC-VAR

approaches in sections 3.2 and 3.3 respectively. In each of these three procedures we outline below
1Although our focus in this paper is on the use of SC-type information criterion, analogous procedures based on any

consistent information criterion, such as the Hannan-Quinn [HQ] information criterion, would have the same asymptotic

properties as we report for the procedures in this paper. Unreported simulations suggest that the SC-type procedures

considered here display superior finite sample performance to corresponding procedures based on HQ. As in the discussion

in Remark 2 below, the HQ-type procedures showed a tendency to retain a trend break too often when it was not present.
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the autoregressive lag length, p, will be chosen from the set of candidate values p ∈ {1, ..., p̄}, where

p̄ denotes the maximum lag length considered by the practitioner. As is standard we assume in what

follows that p̄ is at least as large as the true autoregressive lag order, denoted p∗.

3.1 The SC-VECM Procedure

First define a generic reduced rank regression of the form

Z0 = Z1γα
′ +XpΨ′ + E

= (Y1 : X1)

(
β

δ1

)
α′ + (X0 : Z∆,p)

(
δ′0
Γ′

)
+ E

where δ1 :=
(
δ′1,0 : δ′1,1

)′, δ0 := (δ0,0 : δ0,1),

Z0
(T−p)×n

:=




∆y′p+1
...

∆y′T


 , Y1 :=




y′p
...

y′T−1


 , Z∆,p :=




∆y′p . . . ∆y′2
...

...

∆y′T−1 . . . ∆y′T−(p−1)


 , E :=




ε′p+1
...

ε′T




(4)

and where X0 and X1 are each matrices of deterministic terms. The idea is that X1 will contain

the broken linear trend (if included) and the linear trend, while X0 will contain the level shift (if

included) and the constant term. The maximised quasi log-likelihood associated with (3), based on

the additional assumption that et is Gaussian, is then given by the usual expression,

ˆ̀
T (r;X0, X1, p) = −T

2
log
∣∣∣∣
Z ′0P̄X,pZ0

T

∣∣∣∣

−T
2

r∑

i=1

log
(

1− νi
((
Z ′0P̄XpZ0

)−1
Z ′0P̄XpZ1

(
Z ′1P̄XpZ1

)−1
Z ′1P̄XpZ0

))
(5)

where νi (M) denotes the ith largest eigenvalues of the matrix M and P̄X := I − X (X ′X)−1X ′ is

the OLS orthogonal projection matrix on any X; see Chapter 6 of Johansen (1995) for a detailed

discussion of the general approach.

For any possible break fraction λ ∈ [λL, λU ], define the (T − p)×1 vectors ιλ := (d0,t (bλT c))Tt=p+1

and τλ := (d1,t (bλT c))T−1
t=p . The VECM in (3) with no trend break then has X1 := τ0 and X0 :=

ι0, while the VECM with a trend break has X1 := D1,λ = (τ0 : τλ) and X0 := D0,λ = (ι0 : ιλ).

The p impulse dummies included in (3) are asymptotically negligible but can be included in X0 by

defining ςλ,p := (d−1,t (bλT c) , d−1,t (bλT c+ 1) , . . . , d−1,t (bλT c+ p− 1))Tt=p+1 and redefining D0,λ :=

(ι0 : ιλ : ςλ,p).

The SC-VECM procedure can then be described as follows.

SC-VECM Procedure:

Step 1. For each of p = 1, ..., p̄, define the MLE of the breakpoint under H(r), viz.,

b̂r,p := arg max
b∈B

ˆ̀
T

(
r;D0,b/T , D1,b/T ; p

)
. (6)
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The corresponding break fraction estimator is then defined as λ̂r,p := b̂r,p/T .

Step 2. Define the SC for the model including the trend break to be

SC1 (p; r, λ) := −2ˆ̀
T (r;D0,λ, D1,λ, p) +

(
n+ r + 2 + n2p

)
log T,

with selected lag length p̂1,r := arg minp∈{1,...,p̄} SC1

(
p;n, λ̂r,p

)
, where λ̂r,p is the estimate of λ∗

obtained in Step 1. Notice therefore that p̂1,r is selected under H(n).

Step 3. Define the SC for the model excluding the trend break to be

SC0 (p; r) := −2ˆ̀
T (r; ι0, τ0; p) +

(
n2p
)

log T,

with selected lag length p̂0 := arg minp∈{1,...,p̄} SC0 (p;n). Again notice that p̂0 is selected under

H(n).

Step 4. Choose the model with trend break by setting: p̂ = p̂1,r and (X0, X1) = (D0,λ̂r,p̂
, D1,λ̂r,p̂

) if

SC-VECM : SC1

(
p̂1,r; r, λ̂r,p̂1,r

)
≤ SC0 (p̂0; r) ;

and setting p̂ = p̂0 and (X0, X1) = (ι0, τ0) otherwise.

Step 5. The trace test statistic of H(r) against H(n) is then given by

qT (X0, X1; p̂) := 2
(

ˆ̀
T (n;X0, X1, p̂)− ˆ̀

T (r;X0, X1, p̂)
)
.

�

Remark 1. Observe that the SC in Step 4 of the SC-VECM procedure can be expressed in terms

of the likelihood ratio decision rule to include the trend break if 2(ˆ̀
T (r;D0,λ̂r,p̂1,r

, D1,λ̂r,p̂1,r
, p̂1,r) −

ˆ̀
T (r; ι0, τ0; p̂0)) ≥ (n+ r + 2) log T . This is analogous for testing for the presence of a trend break at

the random fraction λ̂r,p̂1,r , and as such it is related to a sup-LR type statistic in the spirit of Andrews

(1993), but where the decision rule is based not on a fixed critical value but on a Schwarz-type penalty.

As such, Step 4 is then essentially a pre-test for the presence of a break which, by design, has size

which shrinks to zero as the sample size diverges. The same requirement is needed on the trend break

pre-tests used in the univariate testing analogue of the problem considered here in Harris et al. (2009)

and Carrion-i-Silvestre et al. (2009).

Remark 2. The part of the SC-type penalty which corresponds to the trend break in the VECM is

(n+ r + 2) log T . There are n parameters in δ0,1, r parameters in δ1,1 and the unknown breakpoint

parameter is given a penalty of 2, the latter following from the theoretical results provided in Zhang and

Siegmund (2007), Kurozumi and Tuvaandorj (2011) and Kim (2012). Consistent with the theoretical

arguments provided by these authors, we found the choice of 2 for the breakpoint parameter in the

penalty function gave better finite sample results than a penalty of 1, in that the latter did not appear

to penalise the inclusion of the break sufficiently strongly, such that the trend break was retained too
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often when no break was in fact present, resulting in correspondingly lower power in that case; see

the accompanying supplement, Harris et al. (2015).

Remark 3. In the SC-VECM procedure the lag length is selected for both the model including a

break and the model excluding a break. Although the breakpoint estimation and break selection is

done under H (r) in SC-VECM, it is necessary to select p, in both the model including a break and

the model excluding a break, under H (n) (i.e. from the VAR in levels). It is well-known that failure

to do so leads to power losses for the trace test; see Lütkepohl (2005) and Lütkepohl and Saikkonen

(1999), inter alia. This will be done for all of the procedures outlined in this paper.

Remark 4. When a trend break is present in the DGP, the lag length estimator p̂0 may be inconsistent

for the true lag length because it is based on a misspecified deterministic specification. Nevertheless,

as shown in Theorem 1 below, the selection of the trend break in step 4 is consistent, implying

that the resulting lag length estimator p̂ is consistent whether or not a trend break is present in

the DGP. An alternative approach would be to re-define the SC-VECM decision rule in step 4 as

SC1

(
p̂1,r; r, λ̂r,p̂1,r

)
≤ SC0 (p̂1,r; r), so that only the lag length estimator p̂1,r is used. The asymptotic

results in Theorem 1 would be unchanged by this, but unreported simulations found that the SC-

VECM procedure proposed above results in co-integration tests with superior finite sample properties.

The same comments apply to the SC-DIFF and SC-VAR procedures subsequently outlined in sections

3.2 and 3.3 respectively.

Remark 5. If a sequence of tests of H (r) is carried out for r = 0, 1, . . ., the lag length in SC-VECM

is re-selected for each test, noting that λ̂r,p is recomputed for each value of r. Perron and Qu (2007)

find, in a different context, that the re-selection of p for each r can produce improvements in finite

sample properties. The incorporation of their modified selection criterion would also be possible in

our context but is left for future research.

3.2 The SC-DIFF Procedure

The SC-DIFF procedure is motivated by the components form of the model (1). Taking first differences

of (1) yields

∆yt = µ1,0d0,t (0) + µ0,1d−1,t (b) + µ1,1d0,t (b) + vt, t = 2, ..., T (7)

where vt := ∆ut. Observe that (7) coincides with the VECM form in (3) if r = 0 and p = 1, in which

case vt = et. More generally, vt will be a stationary linear process disturbance. In matrix form (7)

can be written as

Z
(1)
0 =

(
ι
(1)
0 ς

(1)
λ,1 ι

(1)
λ

)



µ′1,0
µ′0,1
µ′1,1


+ V

= D
(1)
λ µ′ + V. (8)

where Z
(1)
0 := (∆y′t)

T
t=2, ι(1)

λ := (d0,t (bλT c))Tt=2, ς(1)
λ,1 := (d−1,t (bλT c))Tt=2, and V := (v′t)

T
t=2. The

(1) superscript denotes that these matrices contain observations for t = 2, . . . , T , consistent with a
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model with p = 1, as opposed to the corresponding SC-VECM matrices that contain observations for

t = p + 1, . . . , T . The idea is that the breakpoint and then the presence or absence of the break can

then both be decided in the context of (8).

The SC-DIFF procedure can then be described as follows.

SC-DIFF Procedure:

Step 1. Use b̂0,1 defined in (6) and the resulting λ̂0,1 := b̂ 0,1/T ; that is the breakpoint and break

fraction estimates are obtained setting r = 0 and p = 1.

Step 2. Choose the model with trend break by setting: (X0, X1) = (D0,λ̂0,1
, D1,λ̂0,1

) if

SC-DIFF : SC1

(
1; 0, λ̂0,1

)
≤ SC0 (1; 0) ,

where SC1 (.; ., .) and SC0 (.; .) are as defined in Steps 2 and 3, respectively, of SC-VECM; and

setting (X0, X1) = (ι0, τ0) otherwise.

Step 3. If the break is selected in Step 2, set

p̂ = p̂1,0 := arg min
p∈{1,...,p̄}

SC1

(
p;n, λ̂0,1

)
.

If the break is not selected in Step 2, set

p̂ := arg min
p∈{1,...,p̄}

SC0 (p;n) .

Step 4. The trace test statistic of H(r) against H(n) is then given by

qT (X0, X1; p̂) := 2
(

ˆ̀
T (n;X0, X1, p̂)− ˆ̀

T (r;X0, X1, p̂)
)
.

�

Remark 6. Notice that the estimator b̂0,1 is the value of b that minimises the generalised variance of

the OLS residuals from (8); that is, b̂0 = arg minb∈B
∣∣∣Σ̂1 (b/T )

∣∣∣, where Σ̂1 (λ) := T−1(Z(1)′
0 P̄

D
(1)
λ

Z
(1)
0 ).

This estimator can therefore be viewed as the multivariate extension of the trend break estimator

discussed in Harris et al. (2009) which is based on applying the univariate level break estimator

proposed in Bai (1994) to the first differences of the data.

Remark 7. The SC-DIFF approach imposes r = 0 and p = 1 for the breakpoint estimator and

break selection steps. Although based on a misspecified model when either r > 0 or p > 1, we will

demonstrate in section 4 that the SC-DIFF method is still able to consistently discriminate between

the trend break and no trend break models in such cases.

Remark 8. Notice that, in contrast to the SC-VECM procedure of section 3.1, the SC-DIFF procedure

uses only a single breakpoint estimator, b̂0,1, across all r and p. As a result, the lag length selection

is the same for every r if a sequence of H (r), r = 0, 1, ..., hypotheses are being tested in a sequential

procedure.
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3.3 The SC-VAR Procedure

The SC-VAR procedure is as follows.

SC-VAR Procedure:

Step 1. Use the breakpoint estimator b̂n,p, and corresponding break fraction estimator λ̂n,p := b̂n,p/T ,

obtained under H(n).

Step 2. Select the lag length in the model with break as

p̂1,n := arg min
p∈{1,...,p̄}

SC1

(
p;n, λ̂n,p

)
.

Step 3. Select the lag length in the model without break as

p̂0 := arg min
p∈{1,...,p̄}

SC0 (p;n) .

Step 4. Choose the model with trend break by setting: p̂ = p̂1,n and (X0, X1) = (D0,λ̂n,p̂
, D1,λ̂n,p̂

) if

SC-VAR : SC1

(
p̂1,n;n, λ̂n,p̂1,n

)
≤ SC0 (p̂0;n) ;

and setting p̂ = p̂0 and (X0, X1) = (ι0, τ0) otherwise.

Step 5. The trace test statistic of H(r) against H(n) is then given by

qT (X0, X1; p̂) := 2
(

ˆ̀
T (n;X0, X1, p̂)− ˆ̀

T (r;X0, X1, p̂)
)
.

�

Remark 9. The SC-VAR decision criterion used in Step 4 can, like the SC-VECM criterion, also be

expressed in terms of the VECM log-likelihoods defined in (5) with r = n as

2
(

ˆ̀
T

(
n;D0,λ̂n,p̂

, D1,λ̂n,p̂

)
− ˆ̀

T (n; ι0, τ0)
)
≥ (n+ r + 2) log T

and so again has a likelihood ratio pre-test interpretation; cf. Remark 1. It can also be seen that the

SC-VAR decision criterion carries out the trend break versus no trend break selection step under the

alternative hypothesis, H(n).

Remark 10. Notice that, in common with the SC-DIFF procedure but unlike the SC-VECM proce-

dure, the selected lag length used in the SC-VAR procedure is the same for every r. This results from

the fact that the breakpoint estimator in Step 1 is computed under H(n).

Remark 11. Monte Carlo simulations reported in the accompanying supplement, Harris et al. (2015),

reveal that the breakpoint estimator b̂n,p used in Step 1 yields a procedure with quite poor finite sample

properties. We found that substituting this with the breakpoint estimator b̂0,1 from the SC-DIFF

procedure led to considerable improvements in the finite sample properties of the SC-VAR procedure

relative to using b̂n,p. This change has no impact on the large sample properties of the SC-VAR

procedure.
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4 Asymptotic Analysis

In this section we establish the large sample behaviour of the SC-VECM, SC-DIFF and SC-VAR

procedures outlined in section 3. In particular we demonstrate that the break fraction estimators λ̂r,p
are consistent at rate Op(T−1) in the case where a trend break occurs. We then demonstrate that

the associated SC-VECM, SC-DIFF and SC-VAR information-based selection criteria based on these

estimators all consistently discriminate between the relevant with trend break and without trend break

models. We then establish the limiting null distributions of the resulting trace test statistics from these

procedures, highlighting where these coincide with distributions which are known and tabulated in

the literature and tabulating selected asymptotic critical values otherwise.

Before we present our main theorem, we need first to define the following functional which will

feature in the representations given for the limiting distributions of the trace statistics which obtain

from the SC-VECM, SC-DIFF and SC-VAR procedures. To that end, define

Qn−r (F,W ) := tr

(∫ 1

0
dW (s)F (s)′ ds

(∫ 1

0
F (s)F (s)′ ds

)−1 ∫ 1

0
F (s) dW (s)′

)
,

where W (·) is an (n− r)-dimensional standard Brownian motion and F (·) is a generic process derived

from W (·), the details of which are given on a case-by-case basis in the following Theorem.

Theorem 1 Let {yt} be generated according to DGP (1)-(2) under Assumptions 1 and 2. Let the

true co-integrating rank be denoted r∗. Then:

(a) If µ1,1 6= 0 in (1), so that a trend break occurs, then:

A1. The trend break fraction estimators λ̂r,p are consistent for the true break fraction, λ∗, for

any r and p ≤ p̄, and satisfy

λ̂r,p − λ∗ = Op
(
T−1

)
. (9)

A2. For any r ≤ r∗, each of the three SC criteria select the model with a trend break with

probability converging to one as T →∞; viz.,

SC-VECM : Pr
(
SC1

(
p̂1,r; r, λ̂r,p̂1,r

)
≤ SC0 (p̂0; r)

)
→ 1

SC-DIFF : Pr
(
SC1

(
1; 0, λ̂0,1

)
≤ SC0 (1; 0)

)
→ 1

SC-VAR : Pr
(
SC1

(
p̂1,n;n, λ̂n,p̂1,n

)
≤ SC0 (p̂0;n)

)
→ 1

A3. For any r ≤ r∗, λ̂ satisfying (9) and p̂1 = p̂1,r, p̂1,0 or p̂1,n, the trace tests constructed using

the estimated breakpoint and lag length are asymptotically equivalent to the trace tests based

on the true breakpoint and lag length; that is, qT
(
D0,λ̂, D1,λ̂; p̂1

)
−qT

(
D0,λ∗ , D1,λ∗ ; p∗

) p→ 0.

A4. The trace test statistics at the true breakpoint have the asymptotic null distributions

qT
(
D0,λ∗ , D1,λ∗ ; p∗

) d→ Qn−r0
(
F1,λ∗ ,W

)
(10)

where F1,λ∗ coincides with the process Fu defined in Equation (3.3) of Johansen et al.

(2000,p.223) setting their parameter q equal to 2.
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(b) If µ1,1 = 0 in (1), so that no break occurs, then:

B1. For any r ≤ r∗ each of the three SC criteria select the model without trend break with

probability converging to one as T →∞; viz.,

SC-VECM : Pr
(
SC1

(
p̂1,r; r, λ̂r,p̂1,r

)
> SC0 (p̂0; r)

)
→ 1

SC-DIFF : Pr
(
SC1

(
1; 0, λ̂0,1

)
> SC0 (1; 0)

)
→ 1

SC-VAR : Pr
(
SC1

(
p̂1,n;n, λ̂n,p̂1,n

)
> SC0 (p̂0;n)

)
→ 1

B2. The asymptotic null distribution of the trace test statistics without trend break are given by

qT (ι0, τ0; p̂0) d→ Qn−r0 (F0,W ) (11)

where F0 is given in equation (11.11) of Johansen (1995).

Some remarks are in order.

Remark 12. The result in part A1 of Theorem 1 demonstrates that the break fraction estimators

λ̂r,p are consistent for the true break fraction, λ∗ at rate Op(T−1). This rate holds regardless of the

true co-integrating rank, r∗. Moreover, it also holds regardless of the true autoregressive lag length,

p∗, since correct specification of the lag length is not necessary for the consistent estimation of the

break fraction.

Remark 13. The rate of consistency established for the break fraction estimator in part A1 is

crucial to the results in A2 and A3 which together show that where a trend break is present the trace

statistics based on these estimated trend break points are asymptotically equivalent under the null

hypothesis to the corresponding trace tests based on the true (unknown) break point for each of the

SC-VECM, SC-DIFF and SC-VAR procedures. The limiting null distribution of the trace statistic,

qT
(
D0,λ∗ , D1,λ∗ ; p∗

)
, given in (10), coincides with the limiting distribution given in Theorem 3.1 of

Johansen et al. (2000); critical values from this distribution can be obtained either from Table 1

below (calculated by direct simulation methods using 10,000 replications) or can be calculated from

the response surface given in Table 4 of Johansen et al. (2000,p.229) setting their parameter q = 2.

Remark 14. Where no trend break is present, the results in B1 and B2 show that the SC-VECM, SC-

DIFF and SC-VAR procedures all correctly select the no break model for sufficiently large samples. The

resulting no break trace statistic qT (ι0, τ0; p∗) has the usual restricted linear trend limiting distribution

given in equations (11.9) and (11.11) of Theorem 11.1 of Johansen (1995) and tabulated in Table 15.4

of Johansen (1995).

Remark 15. The results given in A4 and B2 hold when the null hypothesis H (r∗) that the co-

integration rank is r∗ is true. These results therefore imply that the trace tests from each of the

SC-VECM, SC-DIFF and SC-VAR procedures will all be asymptotically correctly sized (when using

the asymptotic critical values discussed in each procedure) regardless of whether a trend break occurs.
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Remark 16. As in Johansen (1995) and Johansen et al. (2000), under H(r), the r largest eigenvalues

included in (5), generically denoted ν̂1, . . . , ν̂r here, converge in probability to positive numbers2, while

T ν̂r+1, . . . , T ν̂p are of Op(1). This holds both for the no trend break case and for the trend break case

when evaluated at the true break fraction, λ∗. As a consequence it is straightforward to show that

the trace tests which result from the SC-VECM, SC-DIFF and SC-VAR procedures will be consistent

at rate Op(T ) when the true co-integration rank is such that r∗ > r. This result holds regardless of

whether a trend break is present in the data or not. This implies, therefore, that the usual sequential

approach to determining the co-integration rank3 outlined in Johansen (1995) can still be employed

using the trace tests which obtain from either the SC-VECM, SC-DIFF or SC-VAR procedures. In

particular, these sequential approaches will lead to the selection of the correct co-integrating rank with

probability (1− ξ) in large samples, again regardless of whether a trend break occurs or not.

5 Finite Sample Simulations

5.1 Simulation design

In this section we report on a Monte Carlo simulation exercise designed to assess the finite sample

performance of the trace co-integration tests of the SC-VECM and SC-DIFF procedures. We adopt

the following VAR(2) simulation DGP,

yt =




y
(1)
t

(n−r)×1

y
(0)
t
r×1


 =




µ
(1)
0,1

(n−r)×1

µ
(1)
1,1

(n−r)×1

µ
(0)
0,1
r×1

µ
(0)
1,1
r×1



(
d0,t(b∗)

d1,t(b∗)

)
+

(
u

(1)
t

u
(0)
t

)
(12)

where (
In −

(
a1,1In−r 0

0 a0,1Ir

)
L

)(
In −

(
a2In−r 0

0 a2Ir

)
L

)(
u

(1)
t

u
(0)
t

)
=

(
e

(1)
t

e
(0)
t

)
(13)

where the superscript (1) denotes the I (1) component under H(r) and superscript (0) the I (0)

component. Here |a0,1| < 1, |a2| < 1, while a1,1 = 1 for H(r) and |a1,1| < 1 for H(n). The disturbances

are generated by e(1)
t ∼ i.i.d.N (0, In−r) and then, to allow for cross-correlation, we specify

e
(0)
t = ρκe

(1)
t +

√
1− ρ2εt, εt ∼ i.i.d.N (0, Ir)

where κ is an r × (n− r) matrix of ones. Here ρ controls the degree of cross-correlation (where

relevant) between the I (0) and I (1) parts of the system. The deterministic specification we adopt

sets b∗ = bλ∗T c, for the set of trend break fractions λ∗ = 0.25, 0.50, 0.75, and µ
(j)
i,1 = cι, i, j = 0, 1,

where ι is a vector of ones and c is a scalar constant controlling the break magnitude. For simplicity,
2Explicit expressions for these eigenvalues are not required here, but are obtained in the proofs of part A2 of the

theorem when a break is included, and can be found from the proofs of Theorem 11.1 of Johansen (1995) when the break

is not included.
3This procedure starts with r = 0 and sequentially raises r by one until for r = r̂ the trace test statistic does not

exceed the ξ level critical value for the test.
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this specification imposes the the same magnitudes for level and trend breaks, and in the I (1) and

I (0) directions, with all breaks occurring at date b∗. The values c = 0.8, 0.4, 0.2 are used, along with

c = 0, representing the case when no breaks of any kind occur.

The DGP in (12) corresponds directly to equation (1), while (13) is a special case of the VECM for

ut given in equation (2). With a1,1 = 1 the first n− r components of ut are I (1) and the remaining r

components are I (0), implying r co-integrating vectors of the form β =
(
0r×(n−r) : Ir

)′. The diagonal

structure of (13) may appear restrictive but in fact is quite general because the DGP is invariant to

taking orthogonal linear combinations of the columns of α and β. Moreover the statistical methods

we describe are invariant to full rank linear combinations of the elements of yt, and hence ut, so that

the appearance of a restrictive structure of r pure I (0) variables and n − r pure I (1) variables is in

fact quite general.

Tables 2− 6 about here

Tables 2–5 give the empirical sizes and powers for the SC- procedures, based on our VAR(2) DGP

for the case where the dimension of the system is n = 2 (additional results for the case of n = 3 can

be found in the accompanying supplement, Harris et al., 2015). We additionally include empirical

sizes and powers for the VECM trace test which always includes the trend break with break fraction

estimated under H (r) (i.e. using λ̂r,p̂1,r defined in SC-VECM), which we denote Break-VECM. The

trace test which never includes a trend break (appropriate for c = 0) is also included and is simply

denoted as VECM. Since the SC-VECM procedure selects between these two individual tests, they

provide an informal benchmark for the performance of the SC- procedures. None of the tests assume

a priori knowledge of p, but determine its value in the manner of section 3, assuming a maximum

possible value of p̄ = 4. The simulation results are based on 10,000 Monte Carlo replications and we

report results for the tests at the nominal (asymptotic) 0.05 level, for sample sizes of T = 100 and

200.

The tables of results given here are selected to illustrate the important features of the finite sample

properties of the procedures. Nevertheless space constraints mean that results of the full experiment

cannot be reported here, but they are made available in the accompanying supplement, Harris et

al. (2015). Those results help to explain choices made in the reporting here. For example Tables

2-5 do not include results for SC-VAR because these tests were found to suffer from substantial size

distortions when compared to SC-VECM and SC-DIFF, but results for SC-VAR are given in Harris

et al. (2015). The supplement also provides finite sample evidence for the choice of 2 as the penalty

for the break fraction parameter, rather than the usual 1.

5.2 Results for r = 0

Table 2 gives the results for the trace tests when testing the null hypothesis that r = 0 in the case where

p = 1. Recall that the null (alternative) hypothesis is satisfied here when a1,1 = 1 (a1,1 < 1). The

upper portion of Table 2 shows the results for T = 100. Starting with the Break-VECM benchmark

test, we see that it has size that depends only modestly on λ∗ and c, although it does appear slightly
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over-sized in general. It has power levels that increase with decreasing a1,1, but which are also fairly

insensitive to λ∗ and c. Turning attention to the VECM benchmark test, we observe it being correctly

sized for c = 0 and it is pertinent here that the VECM test is more powerful than the Break-VECM

test. However, when c > 0, outside of the case c = 0.2, over-sizing becomes a very serious issue

for the VECM test, to the extent that we cannot consider the rejection frequencies for a1,1 < 1 as

representative of power in any meaningful sense. Examining SC-VECM when c = 0, it is immediately

clear that it behaves very like the VECM test, both in terms of size and power. When c > 0.2

it clearly avoids the serious upward size distortion problems suffered by the VECM test, with size

behaviour clearly rather more akin to that of the Break-VECM test. For c = 0.8, its power levels are

very similar to those of the Break-VECM test. For c = 0.4, 0.2 its powers are similar to the rejection

frequencies seen for the VECM test. A comparison of SC-VECM and SC-DIFF reveals very little

difference between them.

The lower portion of Table 2 shows results for T = 200; here we employ larger values of a1,1 < 1

than for T = 100 in order to avoid too many high power entries. Here, the Break-VECM test is well

size-controlled across all c; the modest over-sizing seen for T = 100 is no longer evident. However,

the problems of significant over-sizing associated with the VECM test for c > 0 are even more readily

apparent. SC-VECM is generally well sized controlled outside of λ∗ = 0.25 and c = 0.4, where it

appears slightly over-sized. It again inherits the power levels associated with the VECM test when

c = 0 and those for the Break-VECM test when c = 0.8. For c = 0.2 its powers are once more similar

to the rejection frequencies seen for the VECM test. SC-VECM and SC-DIFF again behave very

similarly.

The behaviour of the SC-VECM tests depends both on that of the underlying Break-VECM and

VECM tests (given in Table 2) and also the behaviour of the SC break selection criterion. In order

to explicitly show how the break selection is working, Table 6 presents the empirical frequencies for

which the SC selects a trend break, i.e. for which SC-VECM is set equal to Break-VECM.4 The

leftmost panels show the results for r = 0 and p = 1 corresponding to the results in Table 2. For

c 6= 0 the correct decision is to include the break so the SC step is working best when the inclusions

frequencies are close to one. Conversely, when c = 0 the correct decision is to omit the break, so

inclusion frequencies near zero are better. The r = 0, p = 1 panels of Table 6 reveal the SC step in

SC-VECM working close to perfectly for the largest break size (c = 0.8). Breaks of smaller magnitudes

are more difficult to detect in this DGP, so as expected the inclusion frequencies are reduced as the

break size is reduced through c = 0.4 and c = 0.2. When c = 0 the inclusion frequencies are close

to zero as would be hoped. These findings hold generally for both T = 100 and T = 200, with the

frequencies generally improved for T = 200, as expected.

The combination of the break inclusion frequencies in Table 6 with the size and power properties

of the benchmark Break-VECM and VECM tests can often be used to attribute variations in the

properties of the SC-VECM test. For example in Table 2 with λ∗ = 0.25 and c = 4 the SC-VECM test
4Break inclusion frequencies can be computed for SC-DIFF as well, but we focus on SC-VECM here given its overall

superior finite sample performance.

16



shows some moderate and surprising increases in size for both T = 100 and T = 200, and these can be

seen to be the product of the interaction of the SC step with the size properties of the Break-VECM

and VECM tests. In the presence of the trend break of size c = 4 at λ∗ = 0.25, the VECM tests that

ignore this break are predictably very over-sized (0.176 for T = 100 and 0.367 for T = 200). The SC

step for SC-VECM correctly includes a break with frequency 0.266 (T = 100) and 0.469 (T = 200),

implying that 73.4% (T = 100) and 53.1% (T = 200) of the time the SC-VECM procedure is using

the incorrect and badly over-sized VECM test, producing the moderate over-sizing observed in Table

2. The explanation for why this over-sizing does not occur for λ∗ = 0.5 or λ∗ = 0.75 can be found in

a similar way. For λ∗ = 0.5 the over-sizing of the VECM test is very similar to λ∗ = 0.25, but the SC

criterion correctly includes the break more often (0.426 for T = 100 and 0.706 for T = 200), as may

be expected for what is essentially a trend break pre-test, resulting in improved size properties for the

SC-VECM test. The explanation for λ∗ = 0.75 is the reverse, since the VECM test is less over-sized

in this case than for λ∗ = 0.25 or 0.5, so that even though the SC step reverts to its λ∗ = 0.25

performance, the size distortions induced by carrying out the VECM test are reduced.

Throughout the tables it is possible to explain many variations in finite sample properties by

similarly examining the interactions of the break selection and benchmark test properties. For example,

the power of the SC-VECM test for λ∗ = 0.25 and c = 0.2 appears to be unexpectedly large relative

to the powers for λ∗ = 0.5 or 0.75. This is due to the higher rejection frequencies for the VECM test

for λ∗ = 0.25 increasing the rejection frequencies for the SC-VECM test as well, while this does not

occur for λ∗ = 0.5 or 0.75. Similarly, the power of SC-VECM for λ∗ = 0.25 and c = 0.2 appears to be

unexpectedly large relative to the same break fraction with larger break sizes, especially for T = 100

when the SC-VECM power can even be slightly lower for larger break sizes. In this case it is due to

variations in the SC break selection frequencies - the high power for c = 0.2 is actually mostly due to

the SC step selecting the no break test which has higher power for λ∗ = 0.25 at this point, while for

c = 0.4 and 0.8 the SC step is selecting the correct test that includes a break. This is an unforeseen

outcome in small samples that disappears as T increases, as is evident in the T = 200 results.

The presence of stationary autocorrelation in time series can make co-integration inference more

difficult. Results for this situation are shown in Table 3 in which r = 0 but now p = 2 with a2 = 0.5.

Since estimation of the additional autoregressive components causes a significant reduction in power

levels throughout, we consider some smaller values of a1,1 < 1 than the ones used in Table 2. For

T = 100, across-the-board over-sizing is more of an issue for the Break-VECM test and also for the

VECM test when c = 0 than in Table 2. This is a reflection of the well-known size issues that can

arise for the trace test in the presence of stationary autocorrelation (see Cheung and Lai, 1993, and

Johansen, 2002, among others) and also of the fact that it is now possible to under-specify the value

of p. Not surprisingly, this also manifests itself in a slight general upward shift in the sizes of SC-

VECM, although SC-VECM has noticeably good size properties relative to the Break-VECM and

VECM tests on which it is based. Otherwise, we see the relationships between the four tests remain

much as in Table 2. The second pair of panels in Table 6 reveals that this situation, with r = 0

and stationary second order autocorrelation present, is the most difficult in which to detect the break
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accurately. Relative to a2 = 0 in the first panel, the correct break inclusion rate when c 6= 0 is lower

and the incorrect break inclusion rate when c = 0 is higher. Nevertheless, even in this worst case, the

SC-procedures provide co-integration tests with generally (albeit not uniformly) superior performance

compared to the Break-VECM test that omits the break selection step.

5.3 Results for r = 1

Tables 4–5 give results for tests for r = 1. This case differs from r = 0 in at least two important ways.

Under the null of r = 1 there is a mixture of I (0) and I (1) components in the model, which introduces

additional nuisance parameters - the autocorrelation in the I (0) component captured by a0,1 in our

data generating process, and the correlation between the I (0) and I (1) components captured by ρ.

Also the presence of the I (0) component can improve the properties of the break point estimation

and SC break selection steps because inference on a trend break will be easier in I (0) noise that it is

in purely I (1) noise. This will be demonstrated in the results that follow.

Table 4 looks at the case where r = 1, with p = 1, a0,1 = 0 and ρ = 0. The size of SC-VECM

appears well-controlled everywhere, while its powers not only mirror those (superior) levels obtained

from the VECM test when c = 0, but also those of the Break-VECM test for all c > 0 (not just

c = 0.8). The correspondence is close for T = 100, and almost one-to-one for T = 200. This behaviour

by SC-VECM is the clearest practical demonstration so far of how our procedures are intended to

perform. To help explain this, the third panel of Table 6 provides the break selection frequencies for

the SC-VECM procedure in this case, showing the SC step makes the correct selection in nearly every

case for both T = 100 and T = 200. Relative to the frequencies in the first panel of Table 6 (in which

r = 0), this also illustrates the advantage of the I (0) component in detecting the trend break.

The results for SC-DIFF in Table 4 exhibit under-sizing for c = 0.4 and 0.2, something which

appears to be inherited from the behaviour of the VECM test. In those cases where SC-DIFF is

under-sized, corresponding powers are extremely low (as are those of the VECM test). This is the

shortcoming of the SC-DIFF procedure - while it is computational convenient and performs well for

r = 0, its imposition of r = 0 when this is not true has implications for the finite sample properties,

despite its asymptotic validity. In this case the SC step of SC-DIFF omits a small to moderately sized

break much too often, resulting in relatively poor properties. It is results of this nature that lead to

our eventual suggestion that SC-VECM is the preferred procedure overall.

Table 5 gives results for r = 1, p = 1 and a0,1 = 0.5. Relative to a0,1 = 0 in Table 4, the properties

of the benchmark Break-VECM and VECM tests are not dramatically affected by this autocorrelation.

There is some deterioration in the ability of the SC step to detect a small break (see the fourth panel

of Table 6), which translates into some power losses for the SC-VECM test relative to the Break-

VECM test when the break size is small. The extent of this power loss depends considerably on the

break fraction λ∗. When λ∗ = 0.25 the power of SC-VECM remains good, which can be seen to be

primarily due to the good properties of the VECM test, even though it is not the correct test in this

case. By contrast the VECM test has very poor power properties for λ∗ = 0.5 or 0.75, which adversely
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influences the resulting power properties of the SC-VECM test. These variations are especially marked

for T = 100, with generally much better all round break selection, size and power properties evident for

T = 200. This all illustrates again how the properties of the SC- tests are the result of the interaction

of the SC step with the properties of the underlying Break-VECM and VECM tests.

Due to space constraints we omit results for the other nuisance parameters a2 and ρ, but these

are included in the supplement Harris et al. (2015). Briefly, the finite sample effect of a2 6= 0 when

r = 1 is considerably less than it is when r = 0. The finite sample effect of ρ 6= 0 is also revealed to

be relatively minor.

5.4 Summary

Drawing together all of our findings, what emerges is that while the SC-VECM and SC-DIFF tests

behave similarly for r = 0, they can behave very differently for r = 1. Here, SC-DIFF can be prone

to low size and very low power when c > 0. In contrast, SC-VECM is well size-controlled everywhere

and frequently has the ability to secure close to the better levels of power available from the VECM

and Break-VECM tests in the environments for which they are intended to operate. On this basis we

recommend the SC-VECM procedure for practical use.

The ultimate properties of the SC-VECM procedures are subject to some variations according to

various features of the data generating process. The presence of stationary autocorrelation introduces

some size distortions and power losses into all co-integration tests (the Break-VECM and VECM

tests here), and can also make the SC selection of the break more difficult. The size of the trend

break generally affects the SC break selection in predictable ways, with larger breaks easier to detect.

Variations in the break fraction λ∗, on the other hand, can produce unexpected effects on SC-VECM

through its differing effects on the SC step and the benchmark Break-VECM and VECM tests -

generally, as might be expected, a break in the middle of the sample is easiest for the SC to detect,

while the rejection frequencies of the misspecified VECM test in particular can be considerably greater

for earlier breaks than later ones, and the interactions of these effects produce variations in the

performance of the SC-VECM procedure that may appear unexpected but turn out to be somewhat

explicable in these terms.

6 Conclusions

We have focussed on the problem of testing for the co-integration rank in VAR processes of unknown lag

order when a break in the deterministic trend component may be present at an unknown point in the

sample. In order to simultaneously avoid the size and power problems which can result, even in large

samples, from an un-modelled trend break and at the same time guard against the loss of finite sample

efficiency which results from allowing for a trend break when no trend is present, we have outlined an

approach based on the use of information criteria. These criteria are used to select the autoregressive

lag length and to select between the trend break and no trend break models, using a consistent
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estimate of the break fraction in the former case. Two possible frameworks were considered depending

on whether the deterministic component was included additively in a components representation or

directly into the VAR equation, the latter referred to here as the SC-VECM procedure. In each

case these procedures were shown to deliver asymptotically correctly sized and consistent tests of the

co-integration rank regardless of whether a trend break is present in the data or not. By selecting

the no break model when no trend break is present, these procedures were also shown to avoid the

potentially large power losses associated with tests which assume that a trend break date is known

to have occurred, when in fact no break is present. Monte Carlo simulation results were presented

which suggest that the procedures generally performed well in practice with the SC-VECM procedure

preferred overall.

We conclude with some suggestions for further research. First, we have focussed attention here on

the case where a maximum of one break in the deterministic trend function can occur. In practice it

might be useful to allow for the possibility that multiple trend breaks could exist. To do so, multiple

break versions of the trend break estimators considered in section 3 would need to be developed;

the estimators considered in Qu and Perron (2007) would seem to be a useful starting point for

such an analysis. Combining such estimators with generalisations of the SC criteria in section 3,

designed to choose between no trend break, one trend break, two trend breaks and so on, should

then allow us to select the correct number of breaks in the limit, as is done in this paper for the

no break against one break case. New tables of critical values would be needed for each number of

breaks considered. Second, we have de-trended the data within the usual reduced rank regression

framework. We chose to do this so as to produce a meaningful comparison across the procedures. It

would also be possible to use pseudo-GLS de-trending in the context of tests from the components

formulation (1)-(2) as in Saikkonen and Lütkepohl (2000), Lütkepohl et al. (2003) and Trenkler et

al. (2007) and this might be expected to yield more powerful tests in both the trend break and no

trend break environments. Finally, we have focussed here on “stochastic” rather than “deterministic”

co-integration. In the former the deterministic trend is left unrestricted under co-integration, while

for the latter the co-integrating vector also eliminates deterministic non-stationarity in the data. The

latter case corresponds to imposing the restrictions that δ1,0 = 0 and δ1,1 = 0 in (3). An important

and empirically relevant example which is therefore ruled out by these restrictions is one where the

vector yt contains some trend stationary (potentially around broken trends) time series. Versions of

the co-integration rank tests proposed here which impose these restrictions could be used instead.

This could potentially result in more powerful tests where those restrictions do in fact hold on (3),

but would come at the expense of uncontrolled size where those restrictions did not hold. Indeed, for

these reasons (and others) Perron and Campbell (1993, p.778) argue that stochastic co-integration is

“... a more relevant concept of cointegration.” Alternatively, one could develop a sequential procedure

to jointly select the form of the deterministic component and the co-integrating rank, as is proposed

for the linear trend case in Johansen (1992).
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A Appendix

A.1 Preliminaries

For any X0, X1, the maximised log-likelihood and the trace co-integration test statistic are functions

of the eigenvalues of the matrix

MT (X0, X1) :=

(
Z ′0P̄X0:Z∆,p

Z0

T

)−1
Z ′0P̄X0:Z∆,p

Z1

T

(
Z ′1P̄X0:Z∆,p

Z1

T

)−1
Z ′1P̄X0:Z∆,p

Z0

T
. (A.1)

Substitution of Z1 = (Y1 : X1) and working out the subsequent partitioned inverse gives

MT (X0, X1) =

(
Z ′0P̄X0:Z∆,p

Z0

T

)−1

Z

′
0P̄X0:Z∆,p

X1

T 2

(
X ′1P̄X0:Z∆,p

X1

T 3

)−1
X ′1P̄X0:Z∆,p

Z0

T 2

+
Z ′0P̄X0:X1:Z∆,p

Y1

T

(
Y ′1P̄X0:X1:Z∆,p

Y1

T

)−1
Y ′1P̄X0:X1:Z∆,p

Z0

T


 . (A.2)

Consider a breakpoint estimator b̂ for which λ̂ = b̂/T and λ̂ − λ∗ = Op
(
T−1

)
. The existence of

such estimators is argued in Theorem 1. We will demonstrate that the asymptotic behaviour of

appropriately standardised components of MT

(
D0,λ̂, D1,λ̂

)
is the same as of MT

(
D0,λ∗ , D1,λ∗

)
, hence

showing that statistics based on the likelihoods and likelihood ratios are asymptotically unaffected

by the replacement of the unknown λ∗ by an estimator λ̂. The presence of the stationary lagged

differences does not affect the substance of the derivations or results, so for simplicity we set p = 1 in

what follows and consider

MT (D0,λ, D1,λ) =

(
Z ′0P̄D0,λ

Z0

T

)−1

Z

′
0P̄D0,λ

D1,λ

T 2

(
D′1,λP̄D0,λ

D1,λ

T 3

)−1
D1,λP̄D0,λ

Z0

T 2

+
Z ′0P̄DλY1

T

(
Y ′1P̄DλY1

T

)−1
Y ′1P̄DλZ0

T

)
,

whereDλ = (D0,λ : D1,λ). It is not enough to simply show thatMT

(
D0,λ̂, D1,λ̂

)
−MT

(
D0,λ∗ , D1,λ∗

) p→
0 since the trace test statistic depends on eigenvalues that are Op

(
T−1

)
. Therefore appropriately

standardised components of M
(
D0,λ∗ , D1,λ∗

)
are considered, as set out in the following Lemma.
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Lemma A.1 For a break fraction estimator λ̂ such that λ̂− λ∗ = Op
(
T−1

)

1. T−1
(
Z ′0P̄D0,λ̂

Z0 − Z ′0P̄D0,λ∗Z0

)
p→ 0

2. T−2
(
Z ′0P̄D0,λ̂

D1,λ̂ − Z ′0P̄D0,λ∗D1,λ∗
)

p→ 0

3. T−3
(
D1,λ̂P̄D0,λ̂

D1,λ̂ −D′1,λ∗P̄D0,λ∗D1,λ∗
)

p→ 0

4. T−1
(
Z ′0P̄Dλ̂Y1β − Z ′0P̄Dλ∗Y1β

)
p→ 0, T−1

(
β′Y ′1P̄Dλ̂Y1β − β′Y ′1P̄Dλ∗Y1β

)
p→ 0

5. T−1
(
Z ′0P̄Dλ̂Y1β⊥ − Z ′0P̄Dλ∗Y1β⊥

)
p→ 0, T−1

(
β′Y ′1P̄Dλ̂Y1β⊥ − β′Y ′1P̄Dλ∗Y1β⊥

)
p→ 0

6. T−2
(
β′⊥Y

′
1P̄Dλ̂Y1β⊥ − β′⊥Y ′1P̄Dλ∗Y1β⊥

)
p→ 0

Proof of Lemma A.1. The conclusions of the Lemma are to be expected in view of similar results

in, for example, Corollary 1 of Qu and Perron (2007) for stationary multivariate regressions and

Proposition 4 of Kim and Perron (2009) for univariate unit root regressions. Indicative details only

are therefore provided of the proof to demonstrate the steps involved when both I (1) and I (0)

components are involved.

In Part 1 of the Lemma, first suppose r∗ = 0 so that the DGP can be represented

Z0 = D0,λ∗δ
′
0 + E . (A.3)

It follows that P̄D0,λ∗Z0 = P̄D0,λ∗E , P̄D0,λ̂
Z0 = P̄D0,λ̂

D0,λ∗δ
′
0 + P̄D0,λ̂

E , and T−1(Z ′0P̄D0,λ∗Z0) =

T−1(E ′P̄D0,λ∗E)
p→ E (ete′t), so the statistic is correctly standardised. Now

Z ′0P̄D0,λ̂
Z0

T
=
E ′P̄D0,λ̂

E
T

+
E ′P̄D0,λ̂

D0,λ∗

T
δ′0 + δ0

D0,λ∗P̄D0,λ̂
E

T
+ δ0

D0,λ∗P̄D0,λ̂
D0,λ∗

T
δ′0

so that the difference between the statistics at the estimated and true breakpoints consists of

Z ′0P̄D0,λ̂
Z0

T
− Z ′0P̄D0,λ∗Z0

T
=
E ′
(
P̄D0,λ̂

− P̄D0,λ∗

)
E

T
+
E ′P̄D0,λ̂

D0,λ∗

T
δ′0 + δ0

D0,λ∗P̄D0,λ̂
E

T

+ δ0

D0,λ∗P̄D0,λ̂
D0,λ∗

T
δ′0. (A.4)

each of which can in turn be represented

E ′
(
P̄D0,λ̂

− P̄D0,λ∗

)
E

T
=
E ′D0,λ∗

T

(
D′0,λ∗D0,λ∗

T

)−1
D′0,λ∗E
T

−
E ′D′
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T

(
D′

0,λ̂
D0,λ̂

T

)−1 D′
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E
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(A.5)

E ′P̄D0,λ̂
D0,λ∗

T
=
E ′D0,λ∗

T
−
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(
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)−1 D′
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D0,λ∗
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(A.6)

D′0,λ∗P̄D0,λ̂
D0,λ∗

T
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D′0,λ∗D0,λ∗

T
−
D′0,λ∗D0,λ̂

T

(
D′

0,λ̂
D0,λ̂

T

)−1 D′
0,λ̂
D0,λ∗

T
. (A.7)
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Using D0,λ = (ι0 : ιλ) gives
(
D0,λ̂ −D0,λ∗

)′
D0,λ∗

T
=

1
T

(
0 : ιλ̂ − ιλ∗

)′ (ι0 : ιλ∗) =
1
T


 0 0

bλ∗T c −
⌊
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⌋ (

bλ∗T c −
⌊
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∨ 0


 p→ 0

since λ̂− λ∗ = Op
(
T−1

)
. Similarly
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Combining these gives T−1
(
D′

0,λ̂
D0,λ̂

)
− T−1

(
D′0,λ∗D0,λ∗

)
p→ 0. Also

D′
0,λ̂
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−
D′0,λ∗E
T

= T−1

bλ̂Tc∨bλ∗T c∑

t=(bλ̂Tc∧bλ∗T c)+1

et
p→ 0 (A.8)

by Lemma A.1 of Qu and Perron (2007). Substituting these zero limits into (A.5)–(A.7) and then

back into (A.4) shows part 1 under r∗ = 0. If r∗ > 0 then we use Z1,λ∗γ = Y1β − D1,λ∗µ
′
1β =

D0,λ∗ (µ′0β) + U1β, to find the representation

Z0 = D0,λ∗
(
µ′0β + δ′0

)
+
(
U1βα

′ + E) , (A.9)

which has the same form as (A.3) in the sense of containing the intercept and level shift and an I (0)

disturbance vector. The proof of T−1
(
Z ′0P̄D0,λ̂

Z0 − Z ′0P̄D0,λ∗Z0

)
p→ 0 therefore follows exactly the

same arguments as when r∗ = 0.

In Parts 2 and 3 of the lemma, those terms inM (D0,λ, D1,λ) involving Z ′0P̄D0,λ
D1,λ andD′1,λP̄D0,λ

D1,λ,

follow by the same arguments as Z ′0P̄D0,λ
Z0 in Part 1.

We now consider the terms in M (D0,λ, D1,λ) involving the (partially) I (1) matrix Y1, which has

representation

Y1 = Dλ∗µ
′ + U1, (A.10)

where U1 := (ut−1)Tt=2 and where P̄Dλ∗Y1 = P̄Dλ∗U1 and P̄Dλ̂Y1 = P̄Dλ̂Dλ∗µ
′ + P̄Dλ̂U1. In particular

consider Part 6, which is correctly standardised since T−2β′⊥Y
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′
1P̄Dλ∗U1β⊥ =

Op (1). The difference between estimated and true breakpoints is

β′⊥Y
′

1P̄Dλ̂Y1β⊥
T 2

− β′⊥Y
′

1P̄Dλ∗Y1β⊥
T 2

=
β′⊥U

′
1P̄Dλ̂U1β⊥
T 2

− β′⊥U
′
1P̄Dλ∗U1β⊥
T 2

+
β′⊥U

′
1P̄Dλ̂Dλ∗

T 2
µ′ + µ

D′λ∗P̄Dλ̂U1β⊥
T 2

+ µ
D′λ∗P̄Dλ̂Dλ∗

T 2
µ′.

The terms involving P̄Dλ̂Dλ∗ were addressed in Part 1, so we focus on the I (1) sum, T−2
((
Dλ̂ −Dλ∗

)′
U1β⊥

)
.

Let wt−1 be any single I (1) element of U1β⊥, so the corresponding non-zero elements of T−2
(
Dλ̂ −Dλ∗

)′
U1β⊥

can be written 
 T−2

∑T
t=2

(
d0,t

(
b̂
)
− d0,t (b∗)

)
wt−1

T−2
∑T

t=2

(
d1,t

(
b̂
)
− d1,t (b∗)

)
wt−1


 ,
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where b∗ := bλ∗T c. Clearly if the second term (involving a broken linear trend) can be shown to

disappear then the first term will as well. Using d1,t

(
b̂
)
− d1,t (b∗) =

((
t− b̂

)
∨ 0
)
− ((t− b∗) ∨ 0) =

(b∗ ∧ t)−
(
b̂ ∧ t

)
gives

T−2
T∑

t=2

(
d1,t

(
b̂
)
− d1,t (b∗)

)
wt = T−2




(b̂∨b∗)∑

t=(b̂∧b∗)+1

(
(b∗ ∧ t)−

(
b̂ ∧ t

))
wt +

(
b∗ − b̂

)
T−2

T∑

t=(b̂∨b∗)+1

wt


 .

Then ∣∣∣∣∣∣∣
T−2

(b̂∨b∗)∑

t=(b̂∧b∗)+1

(
(b∗ ∧ t)−

(
b̂ ∧ t

))
wt

∣∣∣∣∣∣∣
≤
∣∣∣b̂− b∗

∣∣∣T−2

(b̂∨b∗)∑

t=(b̂∧b∗)+1

|wt|

so it follows that
∣∣∣∣∣T
−2

T∑

t=2

(
d1,t

(
b̂
)
− d1,t (b∗)

)
wt

∣∣∣∣∣ ≤
∣∣∣b̂− b∗

∣∣∣T−2
T∑

t=(b̂∧b∗)+1

|wt|

≤
∣∣∣b̂− b∗

∣∣∣T−2
T∑

t=1

|wt| = Op

(
T−1/2

)
.

Parts 4 and 5 then follow using the same arguments.

A.2 Proof of Theorem 1

A.2.1 (a) Break is present in DGP

The consistency of lag order selection in VAR and VECM models based on the SC is well known. See

for example Proposition 8.1 of Lutkepohl (2005) for a textbook presentation of the consistency of the

SC for the selection of p, a result that also justifies other criteria such as the Hannan-Quinn criterion

(although not the Akaike criterion). The novelty in our results lies in the treatment of the trend breaks

rather than the lag length, so we abstract from the selection of the lag length by assuming it known

in these proofs, with the understanding that Pr (p̂1,j = p∗)→ 1 for a lag length p̂1,0, p̂1,r, p̂1,n selected

by SC in any of our three procedures, with true lag length p∗ that satisfies p∗ ≤ p̄. In the models that

include a break when the break is present, the lag length in the following is therefore treated as fixed.

A1. The break fraction estimator λ̂0,1 is a special case of the multivariate regression break esti-

mators of Qu and Perron (2007), and their Lemma 1 would therefore imply λ̂0,1 − λ∗ = Op
(
T−1

)
.

However when r∗ > 0, the imposition of r = 0 in the estimator imposes some over-differencing into

at least some of the series in yt, which would imply a violation of their Assumption A4(c) for some

directions e. Inspection of their proofs shows that this condition is necessary for the derivation of

the asymptotic distribution of λ̂0,1, but not its rate of convergence, which will continue to hold in the

current case. This is the multivariate extension of the argument put forward in Lemma 1(ii) of Harris

et al (2009). The estimator λ̂r,p is equal to λ̂0,1 if p = 1 and r = 0. For other values of p and r, λ̂r,p is

based on the correctly specified likelihood under the null while λ̂0,1 is not, implying the consistency

and rate of convergence properties for λ̂r,p are no worse than those of λ̂0,1. If the null is false, so
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that some co-integrating vectors are omitted from the log-likelihood, some stationary autocorrelation

remains in the disturbances of the model, but Qu and Perron demonstrate that this does not affect

the rate of convergence of the estimator, only its asymptotic distribution. Also λ̂r,p is a multivariate

version of λ̂
AO

2 in Kim and Perron (2009) which converges at rate Op
(
T−1

)
.

A2. Consider SC-VECM. The strategy of the proof is to show that the standardised log-likelihood

for the model with break converges in probability to a value greater than does the standardised log-

likelihood for the model without break. When a break is present in the DGP the lag length p̂0 selected

in the model excluding a break is not consistent. (While beyond the scope of this paper, we conjecture

that in this case Pr (p̂0 = p̄)→ 1.) In what follows we argue that Pr (SC1 (p; r, λ∗) < SC0 (p; r))→ 1

for each p = 1, . . . , p̄, so that the trend break can be selected consistently by the SC without knowl-

edge of the correct lag length, and hence it follows that Pr (minp SC1 (p; r, λ∗) < minp SC0 (p; r)) =

Pr (SC1 (p̂1,r; r, λ∗) < SC0 (p̂0; r)) → 1. The trend break is therefore correctly selected with proba-

bility approaching one, while the potentially misspecified lag length p̂0 is not used with probability

approaching one.

The maximised standardised log-likelihood when the break is included in the model is

max
δ0,δ1,α,β,Γ

T−1`T
(
β, δ1, α, δ0,Γ, r;D0,λ∗ , D1,λ∗

)
= T−1 ˆ̀

T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p) ,

but when the break is excluded we instead have the constrained maximum

max
α,β,Γ

T−1`T
(
β, 0, α, 0,Γ, r;D0,λ∗ , D1,λ∗

)
= T−1 ˆ̀

T (r; ι0, τ0, p) .

As a constrained maximisation, this obviously satisfies the relation

T−1 ˆ̀
T (r; ι0, τ0, p) ≤ T−1 ˆ̀

T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p) . (A.11)

We will show that T−1 ˆ̀
T (r; ι0, τ0, p)

p→ `0 and T−1 ˆ̀
T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p)

p→ `1 with `0 6= `1,

and hence `0 < `1 for any λ∗ and p. The SC decision rule can be expressed as

T−1 ˆ̀
T

(
r;
(
ι0 : ιλ̂r

)
,
(
τ0 : τ λ̂r

)
, p
)
− T−1 ˆ̀

T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p)

+T−1 ˆ̀
T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p)− T−1 ˆ̀

T (r; ι0, τ0, p) >
1
2

(n+ r + 2)
log T
T

.

Then, for any ε > 0, the results of Lemma A.1 imply that

Pr
(∣∣∣T−1 ˆ̀

T

(
r;
(
ι0 : ιλ̂r,p

)
,
(
τ0 : τ λ̂r,p

)
, p
)
− T−1 ˆ̀

T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p)
∣∣∣ > ε

)
→ 0

while `0 < `1 implies that there exists some M > 0 such that

Pr
(
T−1 ˆ̀

T

(
r;
(
ι0 : ιλ̂r,p

)
,
(
τ0 : τ λ̂r,p

)
, p
)
− T−1 ˆ̀

T (r; ι0, τ0, p) > M
)
→ 1.

Since T−1 log T < M for large enough T , we conclude that

Pr
(
T−1 ˆ̀

T

(
r;
(
ι0 : ιλ̂r,p

)
,
(
τ0 : τ λ̂r,p

)
, p
)
− T−1 ˆ̀

T (r; ι0, τ0, p) >
1
2

(n+ r + 2)
log T
T

)
→ 1,
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which shows that Pr
(
SC1

(
p; r, λ̂r,p

)
≤ SC0 (p; r)

)
→ 1, as required for the consistency of SC-VECM

as argued above. The corresponding result for SC-VAR follows similarly with r set to n.

We now outline how T−1 ˆ̀
T (r; ι0, τ0, p)

p→ `0 and T−1 ˆ̀
T (r; (ι0 : ιλ∗) , (τ0 : τλ∗) , p)

p→ `1. The DGP

can be written (excluding Z∆,p since nothing of substance changes in the following arguments that

rely only on the different orders of magnitude of I (1) and I (0) components, not on whether a specific

p produces white noise disturbances)

Y1 = (ι0 : τ0 : ιλ∗ : τλ∗)




µ′0,0
µ′0,1
µ′1,0
µ′1,1




+ U1 (A.12)

implying in the co-integrating direction

Y1β = (ι0 : τ0 : ιλ∗ : τλ∗)




µ′0,0β

µ′0,1β

µ′1,0β

µ′1,1β




+ U1β

and that

Y1β − (τ0 : τλ∗)

(
µ′0,1β

µ′1,1β

)
= (ι0 : ιλ∗)

(
µ′0,0β

µ′1,0β

)
+ U1β

behaves like a stationary process with a level shift. Thus in the VECM representation we find

Z0 =

(
Y1β − (τ0 : τλ∗)

(
µ′0,1β

µ′1,1β

))
α′ + (ι0 : ιλ∗)

(
δ′0,0
δ′1,0

)
+ E

=

(
(ι0 : ιλ∗)

(
δ0,1

δ1,1

)
+ U1β

)
α′ + (ι0 : ιλ∗)

(
δ′0,0
δ′1,0

)
+ E

= (ι0 : ιλ∗)

(
η′0,0
η′1,0

)
+ V (A.13)

where η′0,0 = δ0,1α
′ + δ′0,0, η′1,0 = δ1,1α

′ + δ′1,0, and V = U1βα
′ + E is mean zero and I (0) because of

the co-integration. Thus Z0 is represented in terms of a level, a level shift and an I (0) disturbance.

The maximised log-likelihood at r with break included is

ˆ̀
T (r; (ι0 : ιλ∗) , (τ0 : τλ∗)) = −T

2
log
∣∣∣∣
Z ′0P̄ι0:ιλ∗Z0

T

∣∣∣∣−
T

2

r∑

i=1

log (1− νi (MT ((ι0 : ιλ∗) , (τ0 : τλ∗))))

where

MT (X0, X1) =
(
Z ′0P̄X0Z0

T

)−1
Z ′0P̄X0 (Y1 : X1)

T

(
(Y1 : X1)′ P̄X0 (Y1 : X1)

T

)−1 (Y1 : X1)′ P̄X0Z0

T

=
(
Z ′0P̄X0Z0

T

)−1
(
Z ′0P̄X0X1

T 2

(
X ′1P̄X0X1

T 3

)−1
X ′1P̄X0Z0

T 2

+
Z ′0P̄X0:X1Y1

T

(
Y ′1P̄X0:X1Y1

T

)−1
Y ′1P̄X0:X1Z0

T

)
.
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The representation (A.13) implies the leading term in MT (X0, X1) has limit

Z ′0P̄X0Z0

T
=
Z ′0P̄ι0:ιλ∗Z0

T
=
V ′P̄ι0:ιλ∗V

T

p→ E
(
vtv
′
t

)
:= Σ00,

since Vt is I (0). Also
X ′1P̄X0Z0

T 2
=

(τ0 : τλ∗)
′ P̄ι0:ιλ∗V

T 2
= Op

(
T−1/2

)
,

since V is a zero-mean I (0) process, while standard polynomial summation results imply

X ′1P̄X0X1

T 3
=

(τ0 : τλ∗)
′ P̄ι0:ιλ∗ (τ0 : τλ∗)
T 3

→ Q,

where Q is a fixed full rank matrix, so that the first term in the second factor inMT (X0, X1) disappears

asymptotically: (T−2Z ′0P̄X0X1)
(
T−3X ′1P̄X0X1

)−1 (T−2X ′1P̄X0Z0) = Op
(
T−1

)
. In the second term we

consider the partially I (1) process Y1 in its stationary and non-stationary directions as usual:

Z ′0P̄X0:X1Y1

T

(
Y ′1P̄X0:X1Y1

T

)−1
Y ′1P̄X0:X1Z0

T

=
Z ′0P̄X0:X1Y1

(
β : T−1/2β⊥

)

T

((
β : T−1/2β⊥

)′
Y ′1P̄X0:X1Y1

(
β : T−1/2β⊥

)

T

)−1 (
β : T−1/2β⊥

)′
Y ′1P̄X0:X1Z0

T
.

From (A.12) we have P̄X0:X1Y1 = P̄ι0:τ0:ιλ∗ :τλ∗Y1 = P̄ι0:τ0:ιλ∗ :τλ∗U1, and hence that P̄X0:X1Y1β is a

zero-mean I (0) process while P̄X0:X1Y1β⊥ is a de-trended I (1) process. Standard I (1) / I (0) limit

theory therefore implies that

Z ′0P̄X0:X1Y1β

T
,
β′Y1P̄X0:X1Y1β

T
,
β′⊥Y1P̄X0:X1Y1β⊥

T 2
= Op (1)

Z ′0P̄X0:X1Y1β⊥
T 3/2

,
β′Y1P̄X0:X1Y1β⊥

T 3/2
= Op

(
T−1/2

)
.

and hence that

Z ′0P̄X0:X1Y1

T

(
Y ′1P̄X0:X1Y1

T

)−1
Y ′1P̄X0:X1Z0

T
=

Z ′0P̄X0:X1Y1β

T

(
β′Y ′1P̄X0:X1Y1β

T

)−1
β′Y ′1P̄X0:X1Z0

T
+ op (1)

p→ Σ0βΣ−1
ββΣβ0.

Taken together, these results imply that, for any r ≤ r0,

1
T

ˆ̀
T (r; (ι0 : ιλ∗) , (τ0 : τλ∗))

p→ −1
2

log |Σ00| − 1
2

r∑

i=1

log
(

1− νi
(

Σ−1
00 Σ0βΣ−1

ββΣβ0

))
=: `1. (A.14)

Now consider the maximised log-likelihood with the break excluded

ˆ̀
T (r; ι0, τ0) = −T

2
log
∣∣∣∣
Z ′0P̄ι0Z0

T

∣∣∣∣−
T

2

r∑

i=1

log (1− νi (MT (ι0, τ0))) .

The limits in this case are different because the breaks are not being regressed out. It is not necessary

to derive the complicated expression for this limiting log-likelihood, it is sufficient to demonstrate that

it differs from the case where the break is included. To begin, (A.13) implies that

P̄ι0Z0 = P̄ι0ιλ∗η
′
1,0 + P̄ι0V, (A.15)
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and, hence,

Z ′0P̄ι0Z0

T
= η1,0

ι′λ∗P̄ι0ιλ∗
T

η′1,0 + η1,0

ι′λ∗P̄ι0V
T

+
V ′P̄ι0ιλ∗

T
η′1,0 +

V ′P̄ι0V
T

p→ λ∗ (1− λ∗) η1,0η
′
1,0 + Σ00 =: Ω00.

Similarly, T−2(X ′1P̄X0Z0) = T−2(τ ′0P̄ι0ιλ∗)η
′
1,0+op (1)

p→ Ω10, while T−3(X ′1P̄X0X1) = T−3(τ ′0P̄ι0τ0)→
Ω11. The exact forms of Ω00,Ω10,Ω11 are not important, only that the both the orders and limits of

these terms is different here from the case with a break included. In the expression in MT (X0, X1)

involving Y1, we have the residuals

P̄X0:X1Y1 = P̄ι0:τ0Y1 = P̄ι0:τ0 (ιλ∗ : τλ∗)

(
µ′1,0
µ′1,1

)
+ P̄ι0:τ0U1

= P̄ι0:τ0τλ∗µ
′
1,1 + P̄ι0:τ0ιλ∗µ

′
1,0 + P̄ι0:τ0U1 (A.16)

which retain the broken trend τλ∗ . Define AT :=
(
T−1Aµ : T−1/2Aβ⊥ : Aβ

)
to be an n × n full rank

matrix of mutually orthogonal elements such that Aµ = µ1,1, and the columns of Aβ and Aβ⊥ are

spanned by the columns of β and β⊥ respectively. These latter two matrices can be obtained as

orthogonal bases for the vector spaces spanned by the columns of P̄µ1,1
β and P̄µ1,1

β⊥. Then using

(A.15) and (A.16) we find

Z ′0P̄ι0:τ0Y1Aµ
T 2

=

(
P̄ι0ιλ∗η

′
1,0 + P̄ι0V

)′
P̄ι0:τ0τλ∗

T 2
µ′1,1µ1,1 + op (1)

= η1,0

ι′λ∗P̄ι0:τ0τλ∗

T 2
µ′1,1µ1,1 + op (1)

p→ Ω0µ,

Z ′0P̄ι0:τ0Y1Aβ⊥
T 3/2

=

(
P̄ι0ιλ∗η

′
1,0 + P̄ι0V

)′
P̄ι0:τ0U1Aβ⊥

T 3/2
+ op (1) d→

∫ 1

0
U1,λ∗ (s) ds,

Z ′0P̄ι0:τ0Y1Aβ
T

=

(
P̄ι0ιλ∗η

′
1,0 + P̄ι0V

)′
P̄ι0:τ0U1Aβ

T
+ op (1)

p→ Ω0β.

Also

A′µY ′1P̄ι0:τ0Y1Aµ

T 3
=

(
µ′1,1µ1,1

)2 τ ′λ∗P̄ι0:τ0τλ∗

T 3
+ op (1)

p→ Ωµµ

A′β⊥Y
′

1P̄ι0:τ0Y1Aµ

T 5/2
=

A′β⊥U1P̄ι0:τ0τλ∗

T 5/2
µ′1,1µ1,1 + op (1) d→

∫ 1

0
U2,λ∗ (s) ds

A′βY
′

1P̄ι0:τ0Y1Aµ

T 2
=

(
P̄ι0:τ0ιλ∗µ

′
1,0Aβ + P̄ι0:τ0U1Aβ

)′
P̄ι0:τ0τλ∗

T 2
+ op (1)

p→ Ωβµ

A′β⊥Y
′

1P̄ι0:τ0Y1Aβ⊥
T 2

=
A′β⊥U1P̄ι0:τ0U1Aβ⊥

T 2
+ op (1) d→

∫ 1

0
U3 (s) ds

A′β⊥Y
′

1P̄ι0:τ0Y1Aβ

T 3/2
=

A′β⊥U1P̄ι0:τ0

(
P̄ι0:τ0ιλ∗µ

′
1,0Aβ + P̄ι0:τ0U1Aβ

)

T 3/2
+ op (1) d→

∫ 1

0
U4 (s) ds

A′βY
′

1P̄ι0:τ0Y1Aβ

T
=

(
P̄ι0:τ0ιλ∗µ

′
1,0Aβ + P̄ι0:τ0U1Aβ

)′
P̄ι0:τ0

(
P̄ι0:τ0ιλ∗µ

′
1,0Aβ + P̄ι0:τ0U1Aβ

)

T

p→ Ωββ .
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All of these limits together imply that

Z ′0P̄ι0:τ0Y1

T

(
Y ′1P̄ι0:τ0Y1

T

)−1
Y ′1P̄ι0:τ0Z0

T

=
Z ′0P̄ι0:τ0Y1

(
T−1Aµ : T−1/2Aβ⊥ : Aβ

)

T

×
((

T−1Aµ : T−1/2Aβ⊥ : Aβ
)′
Y ′1P̄ι0:τ0Y1

(
T−1Aµ : T−1/2Aβ⊥ : Aβ

)

T

)−1

×
(
T−1Aµ : T−1/2Aβ⊥ : Aβ

)′
Y ′1P̄ι0:τ0Z0

T

d→
(

Ω0µ :
∫ 1

0
U1,λ∗ (s) ds : Ω0β

)



Ωµµ

∫ 1
0 U2,λ∗ (s)′ ds Ω′βµ∫ 1

0 U2,λ∗ (s) ds
∫ 1

0 U3 (s) ds
∫ 1

0 U4 (s) ds

Ωβµ

∫ 1
0 U4 (s)′ ds Ωββ




−1

×
(

Ω0µ :
∫ 1

0
U1,λ∗ (s) ds : Ω0β

)′
.

Thus for r ≤ r0

1
T

ˆ̀
T (r; ι0, τ0) = −1

2
log
∣∣∣∣
Z ′0P̄ι0Z0

T

∣∣∣∣−
1
2

r∑

i=1

log (1− νi (MT (ι0, τ0)))

p→ −1
2

log |Ω00| − 1
2

r∑

i=1

log
(

1− νi
(

Ω−1
00 Ω0βΩ−1

ββΩβ0

))
=: `0, (A.17)

which is clearly a different limit from that given in (A.14).

The consistency for SC-DIFF is similar, but may involve some over-differencing since it is implicitly

setting r = 0 and p = 1 even when these are not true. Some relevant results are therefore added here.

The SC-DIFF criterion to include the break can be expressed as

log
∣∣∣∣
Z ′0P̄ι0Z0

T

∣∣∣∣− log

∣∣∣∣∣
Z ′0P̄ι0:ιλ̂

Z0

T

∣∣∣∣∣ ≥ (n+ 2)
log T
T

.

For general r and p we have, as an extension of (A.9), Z0 = D0,λ∗
(
µ′0β + δ′0

)
+ V , where V :=

U1βα
′ + Z∆,pΓ′ + E is I (0). First observe that part 1 of Lemma A.1 applies here since all that is

required is that (A.8) holds, which is true even when V is autocorrelated in an I (0) manner. A

standard law of large numbers then implies that T−1(Z ′0P̄ι0:ιλ∗Z0) = T−1(V ′P̄ι0:ιλ∗V )
p→ E (vtv′t).

Regressing only on the constant gives P̄ι0Z0 = P̄ι0ιλ∗ψ
′ + P̄ι0V , where ψ′ := µ′0,1β + δ′0,1 6= 0 and,

hence, T−1(Z ′0P̄ι0Z0) = T−1(V ′P̄ι0V ) +T−1(ψ(ι′λ∗P̄ι0ιλ∗)ψ
′) + op (1) = E (vtv′t) + λ∗ (1− λ∗)ψψ′. By

the same logic as the SC-VECM, it therefore follows that

Pr
(

log
∣∣∣∣
Z ′0P̄ι0Z0

T

∣∣∣∣− log
∣∣∣∣
Z ′0P̄ι0:ιλ∗Z0

T

∣∣∣∣ ≥ (n+ 2)
log T
T

)
→ 1.

A3. The asymptotic equivalence of using estimated and true break fractions follows immediately

from the results of Lemma A.1.

A4. The asymptotic null distribution of qT
(
D0,λ∗ , D1,λ∗

)
is given in Theorem 3.1 of Johansen

et al. (2000), with the extension from i.i.d. to martingale difference disturbances as specified in

Assumption 1 following from the results of Cavaliere, Rahbek and Taylor (2010).
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A.2.2 (b) Break is absent from DGP

When the break is absent from the DGP all of the lag length estimators are consistent, i.e. satisfy

Pr (p̂ = p∗)→ 1. We therefore treat the lag length as fixed here.

B1. The SC-VECM is based on the likelihood ratio process, ˆ̀
T (r; (ι0 : ιλ) , (τ0 : τλ))−ˆ̀

T (r; ι0, τ0) =

Op (1), uniformly for λ in the compact set [λL, λU ] ⊂ [0, 1]. Since this is the likelihood ratio version of a

Chow test statistic with a fixed value of r under null and alternative, standard asymptotic results apply

for any given λ to give, 2
(

ˆ̀
T (r; (ι0 : ιλ) , (τ0 : τλ))− ˆ̀

T (r; ι0, τ0)
)

d→ χ2
n+r. We can therefore con-

clude that Pr
(

supλ 2
(

ˆ̀
T (r; (ι0 : ιλ) , (τ0 : τλ))− ˆ̀

T (r; ι0, τ0)
)
> 1

2 (n+ r + 2) log T
)
→ 0. The exact

form of the asymptotic distribution of the process of these likelihood ratios over λ is not required for

the consistency property of the SC.

B2. The distribution for qT (ι0, τ0) follows immediately from Theorem 1 and Remark 3.2 of

Cavaliere, Rahbek and Taylor (2010).

Table 1. Asymptotic 5% critical values for qT
(
D0,λ∗ , D1,λ∗

)

n− r
λ∗ 1 2 3 4 5 6 7 8

0.20 17.45 34.51 55.51 80.56 109.82 142.98 180.18 221.87

0.25 18.03 35.53 56.88 82.15 111.52 145.02 182.14 224.08

0.30 18.46 36.25 57.98 83.31 112.95 146.24 183.46 225.18

0.35 18.75 36.92 58.63 84.09 113.67 147.08 184.29 225.82

0.40 18.95 37.26 59.26 84.79 114.21 147.48 184.78 226.47

0.45 19.07 37.56 59.56 84.97 114.58 147.83 184.97 226.47

0.50 19.09 37.65 59.62 85.09 114.77 147.88 185.07 226.73

0.55 19.05 37.59 59.54 84.96 114.69 147.83 185.10 226.78

0.60 18.93 37.39 59.14 84.62 114.30 147.42 184.84 226.44

0.65 18.84 36.90 58.62 84.02 113.76 146.75 184.35 225.87

0.70 18.46 36.27 57.93 83.30 112.82 146.06 183.50 224.94

0.75 17.99 35.45 56.82 82.03 111.53 144.86 182.27 223.93

0.80 17.49 34.48 55.49 80.54 109.81 142.99 180.35 221.68
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