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Abstract  

Yttrium Aluminium Garnet (YAG) is an attractive candidate as thermal barrier material used 

for turbine blade in aero engines, due to its relatively low thermal conductivity, low oxygen 

diffusivity and good phase stability at high temperature. YAG has a complex crystal structure, 

in which Y
3+

 ions locate in dodecahedron and Al
3+

 ions in octahedron and tetrahedron. 

Replacing the host cations with rare earth elements can cause the structure change which 

influences the thermal properties of YAG. Because the space inside the octahedron is 

relatively small, Yb
3+

 ions which have the smallest ionic radial size in the lanthanide series, 

have been selected and attempted to be doped on dodecahedral and octahedral sites to 

investigate the effects on thermal conductivity and thermal expansion. The variation of lattice 

constant indicates that Yb
3+

 ions are located on the dodecahedron or octahedron. In addition, 

when Yb
3+

 ions replace Al
3+

 ions on octahedral sites, the thermal conductivity at room 

temperature is dramatically reduced and the coefficient of thermal expansion is over 10×10
-6

 

K
-1

 at high temperature, which results from the expansion of octahedron due to the much 

larger radius of Yb
3+

 ion compared with the host cation (Al
3+

 ion). On the contrary, replacing 

Y
3+

 ions with Yb
3+

 ions in dodecahedron, the thermal conductivity also gradually reduces to 

the similar value but the coefficient of thermal expansion is getting smaller, due to the 
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relatively smaller ionic radius of Yb
3+

 causing the contraction of the dodecahedron. Therefore, 

a dopant with much larger radius would be preferred in both dodecahedron and octahedron to 

significant reduce thermal conductivity as well as increase coefficient of thermal expansion 

of YAG, by introducing large radial difference between the dopant and the host cations. 

Keywords: Thermal Barrier Coating; Yttrium Aluminium Garnet; Thermal Conductivity; 

Coefficient of Thermal Expansion. 
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1 Introduction 

Thermal barrier coatings (TBCs) with low thermal conductivity and high coefficient of 

thermal expansion have attracted increasing interest to avoid the melting and oxidation of 

metal alloy components in gas turbine. One of the most important factors responsible for 

TBC failure is the oxidation of the metal bond coat [1], which results in the formation of a 

oxide grown layer (TGO) sandwiched between the metal substrate and the conventional yttria 

stabilized zirconia coating [2, 3]. The oxygen contributed to the TGO formation usually 

comes from two sources: one source is from the engine combustion environment, where 

oxygen can transport through the zirconia coating along the micro-cracks or pores in the 

coating; another source is from zirconia coating, in which oxygen atom can diffuse through 

oxygen vacancies within zirconia [4]. The oxygen diffusivity is a dominant factor for 

determining the thickness of TGO that is closely related to the life time of TBCs. In addition, 

a new material with good phase stability is desired to be used at high operating temperature, 

e.g. 1400
o
C, due to the poor phase stability of the conventional yttira stabilized zirconia 

(7~8YSZ) at high temperature (above 1250
o
C). And also, the coefficient of thermal 

expansion between top ceramic coating and metal alloy are quite different, which is easy to 

generate stress between the layers due to the expansion mismatch, thus it is also very 

important to increase the thermal expansion of ceramic top coat materials.   

Yttrium aluminium garnet Y3Al(1)2Al(2)3O12 (A3B2C3O12, YAG) has excellent phase/thermal 

stability up to the melting point (1970
o
C), and its oxygen diffusivity is about 10 orders of 

magnitude lower than that in zirconia. It offers a promising alternative to conventional 

zirconia to improve life time of TBCs [5-9]. YAG has the relatively high thermal 

conductivity, 3.2 W·m·K
-1

 [10] and low coefficient of thermal expansion, ~8×10
-6

 K
-1

 [11], if 

compared with the values of 7~8YSZ (1.35 W·m·K
-1

 for thermal conductivity, and ~10×10
-6
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K
-1

 for coefficient of thermal expansion) [12]. So far, the study of YGA for TBC application 

is mainly based on un-doped YAG, to construct TBC bilayer consisting of porous YSZ with 

YAG top layer [7, 13, 14]. Liu et al  found that Er doped YAG on dodecahedral site can 

reduce thermal conductivity, but also decrease coefficient of thermal expansion [15]. From 

Figure 8(a), it can be seen that YAG has three polyhedrons in a unit cell, including Y
3+

 ions 

locating in dodecahedron (A site), and Al
3+

 ions in octahedron (B site) and tetrahedron (C site) 

in the ratio of 2:3, where three dodecahedrons share their edges to each other and share the 

edges with three octahedrons shown in Figure 8 (b). The doping and doping position would 

have great influences on the crystal structure and thermal properties. But there is no report 

that studies how doping mechanism would affect thermal properties by substituting the atoms 

in dodecahedron or octahedron.  

The purpose of this work is to investigate the doping effects of dodecahedron and octahedron 

on thermal conductivity and thermal expansion of YAG. Because the space inside the 

octahedron is relatively small, Yb
3+

 ions which have  the smallest ionic radial size in the 

lanthanide series, have been selected to be doped on dodecahedral and octahedral sites to 

investigate the effects on thermal conductivity and thermal expansion. In YAG, if the doping 

site is different, the ionic radius of Yb
3+

 changes with the numbers of neighbouring oxygens, 

named coordination numbers. When the coordination number is 8 for the dodecahedron, Yb
3+

 

with ionic radius of 0.985 Å is to replace Y
3+

 ion with the relatively large  ionic radius of 

1.019 Å[16, 17]. For the octahedron, the coordination number is 6, so Yb
3+

 with much larger 

ionic radius (0.868 Å) is to replace the Al
3+

 ion (0.535 Å) [18, 19]. Therefore, it is expected 

that this radial difference will significantly influence thermal conductivity and thermal 

expansion by causing the distortion of polyhedron. 
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2 Experimental work 

2.1 Preparation of ceramic powders 

Sol-gel method was selected to synthesize un-doped Yttrium aluminium garnet (YAG, 

Y3Al5O12) and Yb doped YAG [(YbxY1-x)3Al2Al3O12 where, x=0.05, 0.15, and 0.2 and, 

Y3(YbxAl1-x)2Al3O12 where x= 0.005, 0.015 and 0.02] Ytterbium nitrate pentahydrate (Sigma-

Aldrich, 99.9%), yttrium nitrate hexahydrate (Sigma-Aldrich, 99.8%) and aluminium nitrate 

nonahydrate (Sigma- Aldrich, 98%) were chosen as raw materials and citric acid (Sigma- 

Aldrich, 99%) as organic complexing agent. Methanol (Sigma- Aldrich, 8%) was chosen as 

solvent. Firstly, certain amount of raw materials determined by stoichiometry of each 

composition was dissolved in methanol. The doping mole ratio of Yb/Y or Yb/Al and the 

descriptions of the compositions are given in Table 1. Then ytterbium nitrate pentahydrate 

and yttrium nitrate hexahydrate solutions were slowly dropped into aluminium nitrate 

nonahydrate solution under magnetic stirring at room temperature. After stirring for 30 min, 

citric acid solution was dropped, where a molar ratio of citric acid/cation ions is 1.2/1.0. The 

forerunner was stirred for 3 h at room temperature. Then the mixed solution was moved into 

a furnace at 80
o
C until the dried gel was obtained. The dried gel was placed into alumina 

crucible and heat-treated at 500
o
C by 2 

o
C/min for 4 h to remove carbon from organic 

components, then heating up to 950
o
C with 2 

o
C/min for 2 h to completely remove the left 

impurities, at 1400
o
C with 5 

o
C/min for 2 h to crystallization, and cooled down with cooling 

rate of 10 
o
C/min to room temperature. Finally, the obtained materials were ground into 

ceramic powders using a mortar. Pellets with diameters of 20 mm and 5 mm, were separately 

compressed under fixed pressure (~130 MPa for 20 mm and ~32 MPa for 5 mm) by a Pellet 

Press (Specac) and sintered at 1400
o
C for 10 h, at a heating rate of 10 

o
C/min and cooling rate 

of 15 
o
C/min.  
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2.2 Characterizations  

X-Ray Diffraction (XRD) (Bruker D8 Advance) using Cu K-alpha radiation as X-Ray source 

was used to analyse the crystalline phase at room temperature, with scanning range of 2-theta 

(2θ) from 20
o
 to 90

o
 and 85

o
 to 150

o
, and a scanning step of 0.01

o
. The voltage and current 

were 40 KV and 35 mA, respectively. The XRD results were analysed by Eva software. 

Rietveld refinement was applied to calculate the lattice constants of YAG and doped YAG by 

using the third Chu-Wan profile (CW profile) function of General Structure Analysis System 

(GSAS) software [20]. The calculative XRD database was referenced from yttrium 

aluminium garnet powder obtained from sol-gel method [21]. 

Thermal Conductivity Analyser (TCA, C-THERM Tci
TM

) was used to detect thermal 

conductivities of ceramic pellets with ~20 mm in diameter and a minimum thickness of 3 mm 

at room temperature. Wakefield solution of T120 silicone was applied between the ceramic 

pellet and a sensor as thermal joint compound for good contact. The average thermal 

conductivity was obtained from 10 measurements, and the average values were used in this 

study. The thermal conductivities of all pellets were corrected from the measured thermal 

conductivities and their porosities by equation (1) [12]: 

   
𝑘

𝑘𝑜
= 1 −

4

3
∅       (1) 

where k was the value of measured thermal conductivity using TCA equipment; ko was the 

corrected value of sample and Ø was the estimated fractional porosity of specimen.  

The porosities of pellets were obtained from the relative density calculated by equation (2). 

The measured density (𝜌) of each pellet was calculated by the weight and the volume. The 

theory density (𝜌𝑡ℎ) of each pellet was calculated using equation (3) [12]. The volume of unit 
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cell was calculated from lattice parameters as obtained from XRD results.  

∅ = 1 −
𝜌

𝜌𝑡ℎ
           (2) 

𝜌𝑡ℎ =
(𝑀𝑊)(𝑛)

𝑉𝑐𝑒𝑙𝑙𝑁𝐴
× 1027            (3) 

where 𝑀𝑊 is molecular weight; 𝑛 is formula unit per unit cell; 𝑉𝑐𝑒𝑙𝑙 is volume of the unit cell; 

𝑁𝐴 is Avogadro constant, 6.022×10
23

. All thermal conductivities discussed in this work are 

the values after correction.  

Thermal Mechanical Analysis (TMA) Q400 was used to measure the CTEs of the ceramic 

pellets. The diameters of all ceramic pellets were ~5 mm and the applied force was 0.02 N 

with preload of 0.05 N. The measurement was carried out in nitrogen atmosphere with a flow 

rate of 50 mL/min from room temperature to 950
o
C.  

The surface microstructure of the ceramic pellets was observed using a FEG XL30 ESEM 

scanning electron microscope (SEM) with an accelerating voltage of 15 kV. The as-prepared 

samples were carbon coated prior to SEM observation, and the grain sizes were obtained 

using software ImageJ.  
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3 Results and Discussion  

3.1 Phase Analysis 

The XRD patterns of un-doped and doped YAG powders are presented in Figure 9. Figure 9 

(a) demonstrates that no extra phase is observed and all materials exhibit single cubic phase 

with space group Ia3d [21]. The peak shift is much easier to be observed at high 2θ for small 

amount of Yb doped YAG, as shown in Figure 9 (b): peak (11,6,3) and (10,8,2) shift to 

higher 2θ from A1 to A3, when doping concentration x increases from 0.05 to 0.2 in (YbxY1-

x)3Al2Al3O12 solid solution, which indicates that Yb
3+

 ions locate on the dodecahedral site and 

cause shrinkage of the crystal structure, due to the replacement of Y
3+

 ions in dodecahedron 

with relatively smaller Yb
3+

 ions. On the contrary, peaks (11,6,3) and (10,8,2) slightly shift to 

lower 2θ from B1 to B3 when doping concentration x increases from 0.005 to 0.02 in 

Y3(YbxAl1-x)2Al3O12 solid solution. Therefore, it is confirmed that Yb
3+

 ions are doped on the 

octahedral site which resulted from the expansion of the crystal structure, due to the 

replacement of Al
3+

 ions in octahedron with the relatively larger Yb
3+

 ions. . 

In Figure 10, the calculated results are well fitted with experimental XRD patterns after the 

Rietveld Refinement, and the obtained lattice constant is shown in Figure 11. As YAG has 

the cubic phase, a equals to b and c. The lattice constant of un-doped YAG is 12.0116 Å in 

this work, which is slightly larger than the value (12.0089 Å) reported by Carda et al (JCPDS 

33–40) [21]. If the Yb
3+

 ions occupy sites in dodecahedron, due to the slightly small ionic 

radius compared with Y
3+

 ions, distortion would occur in the dodecahedrons, and generate 

shrinkage in order to achieve stabilized crystal structure. The lattice constant a decreases 

from 12.0088 to 11.9968 Å with the increased doping concentration, which further confirms 

that Yb
3+

 ions enter dodecahedral site (YbxY1-x)3Al2Al3O12 solid solution. Conversely, crystal 
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structure expands when the dopant is located on octahedral site due to its relatively large 

radius, and a increases from 12.0164 to 12.0220 Å, which also proves that Yb
3+

 ions are 

doped in octahedral sites for Y3(YbxAl1-x)2Al3O12 solid solution.  

For specimen B2 with 1.5 mol% doping concentration on octahedral site, its lattice constant 

slightly increases compared with the specimen with 0.5 mol% doping concentration. The 

result indicates that, a very small amount of Yb
3+

 ions may enter dodecahedral sites then 

cause the shrinkage of crystal structure, which can weaken the increase of lattice constant. 

3.2 SEM images 

The grain sizes of doped YAG pellets are investigated from their SEM images as shown in 

Figure 12. The grain sizes in all studied pellets are in the range of 100 nm to 600 nm. The 

calculated porosities from equation (2) are around 35%, and pores have been observed in 

each material. The recrystallizations (marked as the red circled regions) also occur in these 

materials, which would result from the diffusion of ions. Additionally, more recrystallization 

regions appear in the specimens with higher doping concentrations either on dodecahedral or 

octahedral sites.  

3.3 Thermal conductivity   

The thermal conductivities and theoretical densities of doped and un-doped YAG are shown 

in Figure 13. The theoretical density of un-doped YAG (4.55 g·cm
-3

)
 
is very close to the 

reported data (4.56~4.57 g·cm
-3

)
 
[11, 22]. Furthermore, the theoretical density of doped YAG 

increases with the increasing doping concentration of Yb
3+

 ions which have the relatively 

heavy atomic mass compared with Y
3+

 ions. In addition, the thermal conductivity of un-

doped YAG is 3.28 W·m·K
-1

 at room temperature, similar to the value reported by Padture 

(3.2 W·m·K
-1

) [10] and it is relatively high for thermal barrier application. When the doping 
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concentration of Yb
3+ 

ion in dodecahedron is in the range of 5 mol% to 20 mol%, the thermal 

conductivity decreases from 2.31 W·m·K
-1 

to 2.09 W·m·K
-1

, which is much lower than un-

doped YAG. Furthermore, the thermal conductivity is  reduced from 2.38 W·m·K
-1

to 2.11 

W·m·K
-1

, when doping concentration increases  from 0.5 mol% to 2 mol% in octahedron. It 

is suggested that the thermal conductivity is efficiently reduced by introducing Yb
3+

 ions in 

octahedron rather than in dodecahedron. 

In a dodecahedral site, one Y atom is surrounded by 8 oxygen atoms, so the ionic radius of 

Y
3+

 is 1.019 Å [16]; while the radius of Yb
3+

 ion with 8 coordination is 0.985 Å [16], which 

is slightly smaller than that of the host Y
3+

 ion. Because Yb
3+

 ion is relatively smaller in the 

centre of dodecahedron, it could lead the distortion of dodecahedron for the structural 

stabilization. Nevertheless, this radial difference between Yb
3+

 and Y
3+

 ions is only 0.034 Å, 

thus the distortion is indistinctive and do not have strong influence on the structures of 

neighboured dodecahedron and octahedron. Therefore, the thermal conductivity only 

decreases slightly and also the doping concentration in dodecahedron is much higher than 

that doped on octahedral site. However on octahedral site, the radial difference between Yb
3+

 

and Al
3+

 ions is 0.333 Å, which is much larger compared with the difference (0.034 Å) 

between Yb
3+

 and Y
3+

 ions. The large size difference causes the octahedron to expand 

significantly due to the relatively larger radius of Yb
3+

 ions. Moreover, this expansion can 

also compress the adjacent dodecahedron structure. Therefore, it is found that doping Yb
3+

 

ions in octahedron can effectively reduce thermal conductivity than those in dodecahedron.  

3.4 Coefficients of thermal expansion  

The coefficients of thermal expansions of un-doped and doped YAGs are plotted in Figure 

14. It is observed that the dopant does not have a significant effect on thermal expansion 
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below 300
o
C whether it is in dodecahedron or octahedron. In Figure 14 (a), the coefficient of 

thermal expansions of un-doped YAG is 7~10×10
-6

 K
-1

 from 100
o
C to 950

o
C and the CTE at 

low temperature is very similar to the value reported by Klein (~8×10
-6

 K
-1

) [11]. When 

introducing relatively smaller Yb
3+

 ions in dodecahedrons, the structure can generate 

distortion and slightly shrink simultaneously, which creates variation of the interatomic 

spacing and has a negative effect on thermal expansion of YAG. When the doping 

concentration is 5 mol%, the values of CTEs are dramatically reduced to ~8.5×10
-6

 K
-1

 at 

high temperature. With the increasing doping concentration, CTEs increase and become 

comparative to that of un-doped YAG. Additionally, it is also observed that the CTEs 

increase much quickly below 300
o
C, whereas they change very slowly from 300 to 950

o
C.  

Figure 14 (b) gives the CTEs of Yb
3+

 doped on octahedral site, which increase with the 

increase of the Yb
3+

 doping concentration. When the doping concentrations are 0.5 mol% and 

1.5 mol%, the CTE shows slightly lower values than that of un-doped YAG at high 

temperature. The CTEs of specimen B2 only slightly increase compared with specimen B1, 

which could result from some Yb
3+

 ions occupying different sites or interstitial space. 

When the doping concentration increases to 2.0 mol%, CTEs of ceramic B3 are over 10×10
-6

 

K
-1

 at temperature above 800
o
C, which is higher than that of un-doped YAG. And also, the 

doping concentration in octahedron is much lower than that in dodecahedron, but the dopants 

in octahedral sites have significant effect on increasing coefficient of thermal expansion. 

Therefore, Yb
3+

 ions as dopant in octahedron can effectively reduce thermal conductivity and 

also increase the coefficient of thermal expansion, rather than in dodecahedron. Similarly in 

future work, if doping in dodecahedral site, it is suggested to select a dopant with ionic radius 

larger than host Y
3+

 ion to effectively reduce thermal conductivity and increase the 
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coefficient of thermal expansion of YAG. 

4 Conclusions 

As having the smallest radius in the lanthanide series, Yb
3+ 

ions are introduced into 

dodecahedrons or octahedrons in YAG, and distortion could be generated in the crystal 

structure that affects the thermal properties. The shifts of XRD peaks and changes of lattice 

constant indicate that dopants are occupying dodecahedral or octahedral sites, except for 

ceramic B2, in which some Yb
3+ 

ions may occupy different sites or interstitial space. In 

addition, the thermal conductivity at room temperature can be reduced with the dopant on 

either site, though the reduction is much more remarkable when the dopant is on octahedral 

site. The decrease of CTE is observed when doping on dodecahedral site, due to the small 

radius of Yb
3+

 ions causing the contraction of dodecahedrons. However, coefficient of 

thermal expansion increases when the dopant occupies a site in octahedron. And the CTE 

value is over 10×10
-6

 K
-1

 above 800
o
C, with doping concentration at 2 mol%. Therefore, it is 

found that Yb
3+ 

ions doped on octahedral sites can efficiently reduce thermal conductivity 

and increase the coefficient of thermal expansion, which is mainly attributed to the larger 

ionic radial size of Yb
3+

 and the larger radial difference between Yb
3+ 

and Al
3+ 

ions. In future 

work, it is suggested that a dopant with larger radius occupy either dodecahedral or 

octahedral sites to further reduce thermal conductivity and increase coefficient of thermal 

expansion for YAG as thermal barrier coating material. 
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List of figure captions 

Figure 1: (a) The crystal structure of Yttrium aluminium garnet, in which there are three polyhedrons: 

dodecahedron, octahedron and tetrahedron; (b) one octahedron sharing its three edges with three 

different shared-edge dodecahedrons. 

Figure 2: XRD patterns of Yb
3+

 ions doped on dodecahedral and octahedral sites in YAG and un-

doped YAG powders (a) 2θ from 20 to 90
o
; (b) 2θ from 110 to 115

o
. 

Figure 3: Comparison between the calculative simulation results and the experimental XRD data for 

the refining unit cell of ceramics (a) A1, (b) A2, (c) A3, (d) B1, (e) B2 and (f) B3, where Diff refers 

to the difference between the calculative (Calc) and observed (Obs) data. 

Figure 4: The change of lattice constant with Yb
3+

 doping concentration in YAG. 

Figure 5: SEM images of the pellet surface:  (a) (Yb0.05Y0.95)3Al2Al3O12, A1; (b) 

(Yb0.15Y0.85)3Al2Al3O12, A2; (c) (Yb0.2Y0.8)3Al2Al3O12, A3; (d) Y3(Yb0.005Al0.095)2Al3O12, B1; (e) 

Y3(Yb0.015Al0.085)2Al3O12, B2; and (f) Y3(Yb0.02Al0.08)2Al3O12, B3. Where the red circles regions present 

the recrystallization 

Figure 6: Thermal conductivities and theoretical densities of Yb
3+

 ions doped YAG in 

dodecahedron or octahedron and un-doped YAG at room temperature. 

Figure 7: (a) The CTEs of A1, A2, A3 and YAG from 100
o
C to 950

o
C; (b) The CTEs of B1, B2 and 

B3 from 100
o
C to 950

o
C. 
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Figure 8: (a) The crystal structure of Yttrium aluminium garnet, in which there are three polyhedrons: 

dodecahedron, octahedron and tetrahedron; (b) one octahedron sharing its three edges with three 

different shared-edge dodecahedrons. 
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Figure 9: XRD patterns of Yb
3+

 ions doped on dodecahedral and octahedral sites in YAG and un-

doped YAG powders (a) 2θ from 20 to 90
o
; (b) 2θ from 110 to 115

o
. 
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Figure 10: Comparison between the calculative simulation results and the experimental XRD data for 

the refining unit cell of ceramics (a) A1, (b) A2, (c) A3, (d) B1, (e) B2 and (f) B3, where Diff refers 

to the difference between the calculative (Calc) and observed (Obs) data. 
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Figure 11: The change of lattice constant with Yb
3+

 doping concentration in YAG. 
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Figure 12: SEM images of the pellet surface:  (a) (Yb0.05Y0.95)3Al2Al3O12, A1; (b) 

(Yb0.15Y0.85)3Al2Al3O12, A2; (c) (Yb0.2Y0.8)3Al2Al3O12, A3; (d) Y3(Yb0.005Al0.095)2Al3O12, B1; (e) 

Y3(Yb0.015Al0.085)2Al3O12, B2; and (f) Y3(Yb0.02Al0.08)2Al3O12, B3. Where the red circles regions present 

the recrystallization 
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Figure 13: Thermal conductivities and theoretical densities of Yb
3+

 ions doped YAG in 

dodecahedron or octahedron and un-doped YAG at room temperature. 

 

 

 

 

 

 

 

 

The content of Yb
3+

 (mol%) 

0 5 10 15 20 25

T
h

er
m

a
l 

co
n

d
u

ct
iv

it
y
 (

W
·m

-1
·K

 -1
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
h

eo
re

ti
ca

l 
D

en
si

ty
 (

g
·c

m
-3

)

4.5

4.6

4.7

4.8

4.9

5.0

Thermal Conductivity

Theoretical Density

Dodecahedron

Octahedron



22 

 

 

Figure 14: (a) The CTEs of A1, A2, A3 and YAG from 100
o
C to 950

o
C; (b) The CTEs of B1, B2 and 

B3 from 100
o
C to 950

o
C. 
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Table 1: The stoichiometry of chemical elements in different compositions. 

Stoichiometric composition 

Chemical element [mole ratio: Y/Al(1)/Al(2)/Yb] 

Y 
Al(1) 

(in octahedron) 

Al(2) 

(in tetrahedron) 
Yb 

Y3Al2Al3O12 (YAG) 3 2 3 0 

(Yb0.05Y0.95)3Al2Al3O12 

(A1) 
2.85 2 3 0.15 

(Yb0.15Y0.85)3Al2Al3O12 

(A2) 
2.55 2 3 0.45 

(Yb0.20Y0.80)3Al2Al3O12 

(A3) 
2.40 2 3 0.60 

Y3(Yb0.005Al0.995)2Al3O12 

(B1) 
3 1.99 3 0.01 

Y3(Yb0.015Al0.985)2Al3O12 

(B2) 
3 1.97 3 0.03 

Y3(Yb0.020Al0.980)2Al3O12 

(B3) 
3 1.96 3 0.04 

 

 


