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Abstract

Harvey and Leybourne (2015) construct confidence sets for the timing of a break in level and/or
trend, based on inverting sequences of test statistics for a break at all possible dates. These are
valid, in the sense of yielding correct asymptotic coverage, for I(0) or I(1) errors. In constructing
the tests, location-dependent weights are chosen for values of the break magnitude parameter such
that each test conveniently has the same limit null distribution. By not imposing such a scheme,
we show that it is generally possible to significantly shorten the length of the confidence sets, whilst
maintaining accurate coverage properties.
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1 Introduction

Harvey and Leybourne (2015) [HL] propose methods for constructing confidence sets for the date of
a break in level and/or trend that are robust to both I(0) and I(1) errors. These are based on the
approach of Elliott and Müller (2007) [EM] which involves inverting a sequence of tests for a break at
all possible dates. HL derive locally best invariant [LBI] tests separately for when the model errors
are I(0) and I(1), with resulting confidence sets providing correct asymptotic coverage regardless of
the magnitude of the break. They then suggest using a unit root pre-test procedure to select between
the I(0)- and I(1)-based confidence sets.

The individual test statistics considered by HL are constructed to maximize an average power
criterion, subject to a chosen probability measure for the break magnitude at each date. Following
EM, HL use a probability measure that, while not indefensible, is essentially chosen for its expediency,
in that under the null of a correct break date, each of the statistics has the same limit null distribution,
so that the same asymptotic critical value applies for every assumed break location. Kurozumi and
Yamamoto (2015) [KY], in the context of an I(0) model similar to that considered by EM where a
break occurs in the coeffi cients on stationary regressors, argue that this is unnatural in that such a
weighting scheme is not motivated by power considerations. Moreover, the EM probability measure
for the break magnitude implicitly attributes different weights to breaks occurring at different timings.
KY adopt a more natural probability measure that does not enforce such an artificial structure on
the testing problem, and find that this can deliver power gains relative to the EM approach, which
translates into a reduction in confidence set length. The HL method for constructing confidence sets
for the date of a break in level and/or trend in the presence of I(1) errors relies on first differencing,
and bears a close resemblance to the EM and KY model framework. It would be expected, therefore,
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that use of a KY-type probability measure might result in increased test power and shorter confidence
sets, at least in the I(1) context. In this paper, we pursue such a modification of HL. The new
weighting scheme results in new limit distributions for both the I(0)- and I(1)-based tests, and hence
new critical values, which are now location dependent. Using finite sample Monte Carlo simulations,
we then show that this new weighting scheme, while having little effect on coverage rates, can yield
a significant shortening of the confidence intervals, particularly when the errors are I(1), or are I(0)
but exhibit a reasonable degree of persistence.

2 The model and confidence sets

As in HL we consider a model for yt that permits a level and/or a trend break in the presence of I(0)
or I(1) errors:

yt = β1 + β2t+ δ11(t > bτ0T c) + δ2(t− bτ0T c)1(t > bτ0T c) + εt, t = 1, ..., T (1)

εt = ρεt−1 + ut, t = 2, ..., T, ε1 = u1 (2)

with bτ0T c ∈ {2, ..., T − 2} ≡ ΛT the level and/or trend break point with (unknown) associated break
fraction τ0 (‘b·c’denoting integer part). In (1), a level break occurs at time bτ0T c when δ1 6= 0;
likewise, a trend break occurs if δ2 6= 0. In (2) |ρ| ≤ 1 and ut is I(0).

For an assumed break point bτT c ∈ ΛT , we test the null hypothesis H0 : bτ0T c = bτT c against
the alternative H1 : bτ0T c 6= bτT c. Then, following EM, a (1 − α)-level confidence set for τ0 is
constructed by inverting a sequence of α-level tests of H0 for bτT c ∈ ΛT , with the resulting confidence
set comprised of all bτT c for which H0 is not rejected. Provided the test of H0 has size α for all bτT c,
the confidence set will have correct coverage, as the probability of excluding τ0 from the confidence set
is α. The more powerful a test is under H1 (other things equal), the shorter the resulting confidence
set should be.

3 LBI tests

Under an assumption of ut ∼ NIID(0, σ2
u), HL derive LBI tests of H0 for the cases where ρ = 0 and

ρ = 1. These tests are invariant to the unknown parameters β1, β2, δ1 and δ2 under the null, and can
be written as follows, for I(d) errors, d = 0, 1:

Sd(τ) =
∑

bηT c∈ΛT ,bηT c6=bτT c
û′dDd,ηHd,bηT cD

′
d,ηûd (3)

where D0,η and D1,η are matrices with tth row d0,η,t = [1(t > bηT c) (t − bηT c)1(t > bηT c)] and
d1,η,t = [1(t = bηT c + 1) 1(t > bηT c)] respectively, and where û0 and û1 denote the OLS residuals
from the regressions

yt = β1 + β2t+ δ11(t > bτT c) + δ2(t− bτT c)1(t > bτT c) + u0,t, t = 1, ..., T

and
∆yt = β2 + δ11(t = bτT c+ 1) + δ21(t > bτT c) + u1,t, t = 2, ..., T

respectively. The LBI tests maximize an average power criterion, using a probability measure of
N(0, b2Hd,bηT c) for the break magnitude, with the tests maximizing average power with respect to b2

in the locality of b2 = 0 for a given Hd,bηT c; see HL for more details.
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3.1 Selection of Hd,bηT c

As is clear from (3), the form of the LBI test will depend on the specific choice of Hd,bηT c. HL specify
Hd,bηT c separately for d = 0 and d = 1, using

Hd,bηT c =

{
diag(bτT c−(2−d) , bτT c−2(2−d)) if bηT c < bτT c
diag((T − bτT c)−(2−d), (T − bτT c)−2(2−d)) if bηT c > bτT c .

(4)

This yields the two statistics

Sd(τ) = bτT c−(2−d) pd,1,T + bτT c−2(2−d) pd,2,T + (T − bτT c)−(2−d)p′d,1,T + (T − bτT c)−2(2−d)p′d,2,T

where

p0,1,T =
∑bτT c−1

t=2

(∑t
s=1 û0,s

)2
p0,2,T =

∑bτT c−1
t=2

(∑t
s=1(s− t)û0,s

)2
p′0,1,T =

∑T−2
t=bτT c+1

(∑t
s=bτT c+1 û0,s

)2
p′0,2,T =

∑T−2
t=bτT c+1

(∑t
s=bτT c+1(s− t)û0,s

)2

and
p1,1,T =

∑bτT c−1
t=2 û2

1,t+1 p1,2,T =
∑bτT c−1

t=2

(∑t
s=2 û1,s

)2
p′1,1,T =

∑T−2
t=bτT c+1 û

2
1,t+1 p′1,2,T =

∑T−2
t=bτT c+1

(∑t
s=bτT c+1 û1,s

)2
.

The standardisations in terms of d-dependent powers of T embodied in (4) is unequivocal, as they
are the scalings necessary for S0(τ) and S1(τ) to be well-behaved in the limit when |ρ| < 1 and ρ = 1,
respectively, under H0. The use of τ -dependent break magnitude probability measure weights, which
(essentially) corresponds to scaling T by τ or (1− τ), is simply a convenience measure adopted by HL,
adapting from EM, to obtain null limiting distributions that do not depend on τ , making tabulation of
asymptotic null critical values straightforward. However, there is no other compelling reason to adopt
the τ -dependent specification of (4). In particular, (4) is not chosen with any regard to the subsequent
power properties of the tests under H1. Furthermore, the dependence of the break magnitude weights
on the break location seems hardly justified, and in a related context, KY demonstrate that such
dependence can reduce test power. We therefore consider an alternative simpler specification for
Hd,bηT c, along the lines of KY, where break location dependence is not featured:

Hd,bηT c = diag(T−(2−d), T−2(2−d)) ∀ bηT c .

This specification gives rise to two new statistics

S∗d(τ) = T−(2−d)pd,1,T + T−2(2−d)pd,2,T + T−(2−d)p′d,1,T + T−2(2−d)p′d,2,T .

4 Asymptotic distribution of tests

The statistics considered in the previous section are the LBI tests for ρ = 0 and ρ = 1. It is important
to stress, however, that S∗0(τ) will be also be a suitable statistic for any |ρ| < 1, cf. the classic
Grenander and Rosenblatt (1957) result demonstrating the asymptotic equivalence of OLS and GLS
estimators of coeffi cients on deterministic terms in an I(0) series. Moreover, as we show below, S∗0(τ)
has the same null limit distribution for any |ρ| < 1.

For our asymptotic results, we adopt the two assumptions from HL, which pertain to the I(0) case
of |ρ| < 1, and the I(1) case of ρ = 1, and permit serial correlation in ut. Under H0, we have:

(a) I(0): Let |ρ| < 1, ut = C(L)ζt, C(L) =
∑∞

i=0CiL
i, C0 = 1, with C(z) 6= 0 for all |z| ≤ 1

and
∑∞

i=0 i|Ci| <∞, and where ζt is an IID sequence with mean zero, variance σ2 and finite fourth
moment. Let ω2

u = limT→∞ T
−1E(

∑T
t=1 ut)

2 = σ2C(1)2 and ω2
ε = ω2

u/(1− ρ)2. Then

ω−2
ε S∗0(τ)

d→ τ2

∫ 1

0
B2(r)2dr+ τ4

∫ 1

0
K(r)2dr+ (1− τ)2

∫ 1

0
B′2(r)2dr+ (1− τ)4

∫ 1

0
K ′(r)2dr ≡ L∗0(τ).
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(b) I(1): Let ρ = 1 with ut defined as in (a) and σ2
u = E(u2

t ). Then

ω−2
u {S∗1(τ)− σ2

u}
d→ τ2

∫ 1

0
B1(r)2dr + (1− τ)2

∫ 1

0
B′1(r)2dr ≡ L∗1(τ).

Here B1(r) = B(r) − rB(1), B2(r) = B1(r) + 6r (1− r) {1
2B(1) −

∫ 1
0 B(s)ds} and K(r) = −r2(1 −

r)B(1) −
∫ r

0 B(s)ds + r2(3 − 2r)
∫ 1

0 B(s)ds, with B(r) a standard Brownian motion process; B′1(r),
B′2(r) andK ′(r) take the same forms as B1(r), B2(r) andK(r), respectively, but with B(r) replaced by
B′(r), with B′(r) a Brownian motion independent of B(r). Proofs of these limits are straightforward
modifications of those in HL. Notice the centering to S∗1(τ) is σ2

u, as opposed to 2σ2
u for S1(τ) in HL;

this arises since T−1p1,1,T + T−1p′1,1,T = T−1
∑T−2

t=2 û2
1,t+1 − T−1û2

1,bτT c+1

p→ σ2
u.

4.1 Response surface critical values

Clearly, L∗0(τ) and L∗1(τ) depend on τ . Hence, as in KY, we use a response surface to provide
asymptotic null critical values. To accomplish this we simulated (upper tail) α-level critical values
for the limit distributions L∗0(τ) and L∗1(τ). These were obtained by direct simulation of the limiting
distributions above for the grid of values τ ∈ {0.01, 0.02, ..., 0.99}, approximating the Brownian motion
processes using NIID(0, 1) random variates, and with the integrals approximated by normalized sums
of 2000 steps, and using 50,000 Monte Carlo replications. Denoting a simulated critical value as cv(τ)
we then ran the discretised OLS regression

cv(τ) = b0 + b1{h(τ) + 1}−1 + b2h(τ) + b3h(τ)2 + b4h(τ)3 + error

with h(τ) = |τ − 0.5|, adopting the functional form used in KY. The parameter estimates are shown
in Table 1 for L∗0(τ) and L∗1(τ) and α = 0.01, 0.05, 0.10 and for each regression we find R2 > 0.9995.
Hence, if the fitted critical values are applied to each of the sequence of tests ω−2

ε S∗0(τ) under I(0)
errors, and ω−2

u {S∗1(τ) − σ2
u} under I(1) errors across τ , the corresponding confidence set based on

inverting these tests will have asymptotically correct coverage.

Table 1. Response surface parameter estimates

L∗0(τ) L∗1(τ)
α 0.01 0.05 0.10 0.01 0.05 0.10
b0 −2.9691 −0.9281 −0.4327 −13.1047 −5.0587 −1.7865
b1 3.0526 0.9904 0.4860 13.3702 5.2467 1.9390
b2 3.0554 0.9877 0.4777 13.3837 5.1849 1.8939
b3 −1.9424 −0.3988 −0.0632 −9.3322 −2.9697 −0.5644
b4 0.9882 0.2333 0.0787 4.5264 1.3809 0.2931

5 Feasible tests and confidence set selection

Feasible variants of S∗0(τ) and S∗1(τ) require an estimator of ω2
ε for the former, and ω

2
u and σ

2
u for

the latter. We employ the same estimators as favoured by HL in the context of S0(τ) and S1(τ).
These are the estimators ω̂2

ε,P (τ̂Dm), ω̂2
u,P (τ̂Dm) and σ̂2

u(τ̂Dm) of that paper. The first two are Berk-
type parametric autoregressive spectral density estimators. Each of the three estimators is based
on residuals from a regression that incorporates a level/trend break fitted at same estimated break
fraction τ̂Dm , where τ̂Dm is the estimator of τ0 suggested by Harvey and Leybourne (2014). More
detail of the construction of this estimator can be found in HL, section 3.2. The feasible tests are then

Ŝ∗τ̂0,P (τ) = ω̂−2
ε,P (τ̂Dm)S∗0(τ), Ŝ∗τ̂1,P (τ) = ω̂−2

u,P (τ̂Dm){S∗1(τ)− σ̂2
u(τ̂Dm)}.
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In practice, the order of integration of the errors is unknown, and therefore a method is required
to be able to choose between the I(0)-based confidence set associated with Ŝ∗τ̂0,P (τ) and the I(1)-based

confidence set for Ŝ∗τ̂1,P (τ). In line with HL, section 4, we employ a pre-test for the null of ρ = 1
against the alternative of |ρ| < 1, which is robust to the possible presence of a break in level and
trend. Practically, this involves running the left-tailed unit root single break MDF test of Harvey et
al. (2013), then selecting the Ŝ∗τ̂0,P (τ) confidence set if MDF < cvα and the Ŝ∗τ̂1,P (τ) confidence set
if MDF ≥ cvα, where cvα denotes the asymptotic α-level unit root null critical value of MDF. We
denote this pre-test based procedure as Ŝ∗τ̂pre,P (τ).

6 Finite sample comparisons

We now examine how confidence sets which are based on Ŝ∗τ̂pre,P (τ) compare with those of Ŝ τ̂pre,P (τ), its
counterpart from HL. In terms of their construction, it is important to remember the only difference
between the new tests and their forebears in HL lies in the modification to Hd,bηT c (and the consequent
change to the σ̂2

u(τ̂Dm) centering in Ŝ∗τ̂1,P (τ)). As regards other settings relevant to both sets of tests,
the number of lagged difference terms in the fitted autoregressions that underpin ω̂2

ε,P (τ̂Dm) and
ω̂2
u,P (τ̂Dm) is selected via the BIC with maximum value `max =

⌊
12(T/100)1/4

⌋
. The same value

`max is employed by the MAIC procedure of Perron and Qu (2007) to determine the length used by
the unit root test MDF. We adopt a 0.10 trimming for allowable break locations such that bτT c ∈
{b0.1T c , ..., b0.9T c}; this same trimming is also imposed when constructing τ̂Dm and MDF. Each test
(including MDF ) is conducted at the 0.05-level using the appropriate asymptotic critical value.

We simulate the DGP (1)-(2) with β1 = β2 = 0 (without loss of generality) using ut ∼ NIID(0, 1).
The values of ρ we consider for εt are ρ ∈ {0.00, 0.50, 0.80, 0.90, 0.95, 1.00} to encompass a range of I(0)
processes and an I(1) process. As regards the break timings we use τ0 ∈ {0.3, 0.5, 0.7}, corresponding
to early, middle and late sample breaks. The constellations we adopt for break magnitudes are
(δ1, δ2) ∈ {(3c1, 0.3c2), (4c1, 0.4c2), (5c1, 0.5c2), (6c1, 0.6c2)} with c1 = c2 = 1 representing a break in
both level and trend (Table 2); c1 = 1, c2 = 0 a break in level alone (Table 3); c1 = 0, c2 = 1 a break
in trend alone (Table 4). Sample sizes are set at T = 150 and T = 300.

All simulations are performed using 10,000 Monte Carlo replications, and we report results for
confidence set coverage (the proportion of replications for which the true break date is contained in
the confidence set) and confidence set length (in each replication, length is calculated as the number
of dates included in the confidence set as a proportion of the sample size; we then report the average
length over Monte Carlo replications). In what follows, we adopt a shorthand notation using S and
S∗ to denote Ŝ τ̂pre,P (τ) and Ŝ∗τ̂pre,P (τ), respectively.

Consider first the coverage rates of S and S∗. Tables 2-4 show that there is very little to choose
between S and S∗ in terms of their levels of accuracy, and in general, both tests deliver coverage rates
either close to the nominal level or higher. When ρ = 1.00 and a break of small magnitude is present,
both tests suffer from some degree of under-coverage, particularly when only a trend break occurs.
Here, S∗ can exhibit slightly more under-coverage than S when τ0 = 0.50, although for T = 300 the
differences are small. The reverse pattern is true when ρ = 0.00 and only a trend break occurs, with
S often being slightly under-sized while S∗ retains coverage close to 0.95. Overall, the picture is one
of decent coverage across the different settings, with little difference between S and S∗.

We now turn to comparing the confidence set lengths. In Table 2, when T = 150 and ρ = 0.00 or
ρ = 0.50, S∗ generally yields the shorter lengths for τ0 = 0.3 and τ0 = 0.5, while S yields the shorter
lengths for τ0 = 0.7. The differences are small, however, as both procedures give short confidence
sets for these values of ρ. For ρ > 0.50, a systematic ranking emerges, whereby the shorter lengths
are always associated with S∗. Moreover, we observe that the improvements afforded by S∗ can
be substantial. When ρ > 0.80, it is common that S∗ produces confidences sets with lengths some
0.15-0.20 shorter than those of S. Moving on to T = 300, as we might predict, there is a general
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overall shortening of all the confidence sets since the individual tests reject more frequently under H1.
Here, we now see that S∗ provides systematically shorter confidence sets than S for ρ > 0.80. The
improvements afforded by S∗ are now commonly in the range of 0.05-0.10, which is obviously a lower
range than for T = 150, but still not insubstantial.

In Table 3 the lengths for both S and S∗ are generally larger than in Table 2, as would be expected
since the trend break is now absent, lowering rejection frequencies under H1. What is also evident is
that when ρ = 1.00, shorter lengths are obtained with T = 150 than with T = 300, due to the fact
that a fixed magnitude level break is asymptotically undetectable in an I(1) process. We see a similar,
but less emphasized, phenomenon with ρ = 0.95, which might be considered a “near I(1)”process
in the current context. Comparing S and S∗, the two are similar for ρ = 0.00 or ρ = 0.50, while S∗

always yields the shorter confidence set for ρ > 0.50 for T = 150 and T = 300. Shortenings of up to
about 0.25 are seen when T = 150, with many in the range 0.15-0.20. When T = 300, the shortenings
are less pronounced, but can still comfortably exceed 0.10 in some cases.

The same broad comparison between S and S∗ also pertains to Table 4, with S∗ generally providing
the shorter lengths for ρ > 0.50. Interestingly, despite overall lengths here tending to exceed those in
Table 2 due to the absence of the level break, the extent to which S∗ reduces length appears rather
less substantial, although gains in the range of 0.05-0.10 do still frequently occur.

In summary then, it is clear that the new procedure S∗ can result in shorter confidence sets than the
original procedure S. While there is some ambiguity as to whether any gains from S∗ are meaningful
for small values of ρ, for the larger values of ρ they can be considerable (particularly in a model which
contains both a level and trend break). From an empirical perspective, that the better gains are made
for moderately persistent I(0) processes to highly persistent I(1) processes is of some relevance, as
these kinds of persistent series are often encountered in applied macroeconomic and financial time
series analysis. At the slight expense of introducing location dependent asymptotic critical values
(which are easily made accessible via a response surface), use of S∗ compared to S can improve length
with little impact on coverage rates, and we therefore recommend the modified procedure for empirical
work.
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Table 2. Finite sample coverage and length of nominal 0.95-level confidence sets.

ρ = 0.00 ρ = 0.50 ρ = 0.80 ρ = 0.90 ρ = 0.95 ρ = 1.00

T τ0 δ1 δ2 S S∗ S S∗ S S∗ S S∗ S S∗ S S∗

Panel A. Coverage

150 0.3 3 0.3 0.944 0.955 0.963 0.963 0.979 0.980 0.983 0.988 0.967 0.978 0.929 0.938
4 0.4 0.945 0.954 0.968 0.962 0.987 0.984 0.991 0.994 0.982 0.990 0.946 0.953
5 0.5 0.945 0.953 0.971 0.961 0.992 0.983 0.995 0.995 0.987 0.993 0.956 0.962
6 0.6 0.946 0.952 0.971 0.960 0.993 0.983 0.996 0.995 0.989 0.994 0.958 0.963

0.5 3 0.3 0.950 0.951 0.965 0.966 0.981 0.982 0.982 0.983 0.976 0.974 0.935 0.934
4 0.4 0.948 0.950 0.968 0.970 0.991 0.992 0.992 0.993 0.989 0.990 0.954 0.961
5 0.5 0.948 0.950 0.967 0.968 0.994 0.995 0.997 0.998 0.994 0.995 0.962 0.969
6 0.6 0.947 0.949 0.968 0.969 0.995 0.996 0.998 0.999 0.995 0.996 0.964 0.971

0.7 3 0.3 0.941 0.955 0.964 0.960 0.982 0.965 0.976 0.973 0.968 0.975 0.931 0.931
4 0.4 0.943 0.954 0.968 0.961 0.991 0.975 0.988 0.983 0.981 0.988 0.949 0.951
5 0.5 0.946 0.953 0.969 0.960 0.993 0.979 0.994 0.990 0.987 0.992 0.958 0.959
6 0.6 0.946 0.951 0.969 0.960 0.993 0.979 0.996 0.991 0.990 0.995 0.961 0.960

300 0.3 3 0.3 0.946 0.949 0.957 0.955 0.982 0.965 0.991 0.981 0.992 0.994 0.941 0.942
4 0.4 0.947 0.949 0.959 0.954 0.984 0.965 0.995 0.981 0.996 0.995 0.951 0.954
5 0.5 0.947 0.948 0.960 0.953 0.985 0.963 0.996 0.981 0.998 0.996 0.955 0.956
6 0.6 0.947 0.949 0.960 0.953 0.985 0.963 0.996 0.981 0.998 0.996 0.956 0.956

0.5 3 0.3 0.948 0.950 0.960 0.962 0.978 0.980 0.989 0.990 0.992 0.992 0.943 0.944
4 0.4 0.947 0.949 0.959 0.961 0.980 0.983 0.993 0.994 0.997 0.997 0.954 0.958
5 0.5 0.947 0.949 0.958 0.960 0.980 0.983 0.994 0.995 0.998 0.998 0.959 0.964
6 0.6 0.946 0.948 0.958 0.960 0.980 0.983 0.995 0.996 0.999 0.999 0.959 0.964

0.7 3 0.3 0.943 0.949 0.958 0.956 0.980 0.963 0.992 0.976 0.990 0.986 0.939 0.942
4 0.4 0.944 0.948 0.960 0.954 0.983 0.964 0.993 0.978 0.996 0.991 0.950 0.952
5 0.5 0.946 0.947 0.960 0.953 0.983 0.965 0.995 0.981 0.997 0.993 0.955 0.956
6 0.6 0.946 0.946 0.959 0.952 0.983 0.964 0.996 0.981 0.998 0.994 0.956 0.956

Panel B. Length

150 0.3 3 0.3 0.094 0.086 0.179 0.174 0.368 0.352 0.608 0.560 0.636 0.578 0.585 0.520
4 0.4 0.054 0.047 0.142 0.133 0.289 0.254 0.467 0.356 0.493 0.371 0.459 0.350
5 0.5 0.031 0.029 0.113 0.102 0.219 0.189 0.300 0.197 0.320 0.191 0.315 0.182
6 0.6 0.021 0.022 0.088 0.077 0.177 0.152 0.192 0.114 0.196 0.089 0.198 0.076

0.5 3 0.3 0.086 0.070 0.167 0.149 0.348 0.301 0.591 0.500 0.637 0.528 0.591 0.484
4 0.4 0.045 0.037 0.128 0.114 0.278 0.210 0.470 0.281 0.503 0.295 0.470 0.295
5 0.5 0.026 0.023 0.097 0.086 0.209 0.156 0.304 0.136 0.322 0.123 0.314 0.127
6 0.6 0.018 0.018 0.073 0.063 0.161 0.129 0.175 0.078 0.171 0.051 0.172 0.046

0.7 3 0.3 0.075 0.104 0.156 0.162 0.343 0.310 0.582 0.505 0.622 0.534 0.579 0.490
4 0.4 0.039 0.068 0.116 0.134 0.266 0.220 0.448 0.297 0.476 0.316 0.445 0.305
5 0.5 0.023 0.042 0.086 0.114 0.194 0.167 0.273 0.151 0.288 0.141 0.277 0.138
6 0.6 0.017 0.027 0.063 0.096 0.146 0.142 0.144 0.089 0.138 0.060 0.138 0.051

300 0.3 3 0.3 0.065 0.064 0.102 0.107 0.173 0.175 0.337 0.307 0.580 0.503 0.540 0.491
4 0.4 0.045 0.042 0.087 0.089 0.142 0.145 0.238 0.220 0.380 0.308 0.396 0.336
5 0.5 0.030 0.027 0.075 0.075 0.123 0.127 0.177 0.176 0.228 0.211 0.259 0.205
6 0.6 0.020 0.019 0.065 0.062 0.112 0.114 0.149 0.146 0.165 0.145 0.165 0.120

0.5 3 0.3 0.060 0.055 0.098 0.093 0.167 0.154 0.318 0.265 0.559 0.439 0.536 0.451
4 0.4 0.038 0.034 0.082 0.078 0.137 0.128 0.234 0.187 0.379 0.250 0.394 0.284
5 0.5 0.023 0.021 0.069 0.065 0.119 0.112 0.177 0.146 0.241 0.151 0.261 0.149
6 0.6 0.015 0.014 0.057 0.053 0.107 0.102 0.146 0.122 0.167 0.092 0.163 0.066

0.7 3 0.3 0.051 0.073 0.094 0.102 0.165 0.162 0.322 0.285 0.560 0.471 0.537 0.472
4 0.4 0.029 0.057 0.075 0.088 0.134 0.136 0.234 0.204 0.382 0.289 0.392 0.311
5 0.5 0.017 0.041 0.061 0.079 0.116 0.120 0.175 0.161 0.239 0.185 0.252 0.181
6 0.6 0.012 0.027 0.048 0.071 0.103 0.109 0.141 0.134 0.156 0.122 0.148 0.096
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Table 3. Finite sample coverage and length of nominal 0.95-level confidence sets.

ρ = 0.00 ρ = 0.50 ρ = 0.80 ρ = 0.90 ρ = 0.95 ρ = 1.00

T τ0 δ1 δ2 S S∗ S S∗ S S∗ S S∗ S S∗ S S∗

Panel A. Coverage

150 0.3 3 0 0.939 0.959 0.960 0.958 0.947 0.928 0.951 0.936 0.954 0.960 0.912 0.919
4 0 0.943 0.959 0.969 0.964 0.977 0.961 0.976 0.967 0.971 0.976 0.936 0.943
5 0 0.944 0.960 0.971 0.965 0.991 0.975 0.990 0.985 0.983 0.987 0.951 0.956
6 0 0.944 0.961 0.972 0.965 0.994 0.980 0.996 0.992 0.987 0.992 0.956 0.960

0.5 3 0 0.954 0.955 0.967 0.968 0.958 0.960 0.965 0.964 0.971 0.967 0.921 0.915
4 0 0.955 0.957 0.971 0.973 0.985 0.986 0.983 0.984 0.982 0.983 0.946 0.950
5 0 0.957 0.959 0.971 0.972 0.994 0.995 0.994 0.995 0.991 0.992 0.957 0.964
6 0 0.957 0.959 0.971 0.973 0.995 0.996 0.998 0.998 0.995 0.996 0.963 0.970

0.7 3 0 0.939 0.961 0.961 0.959 0.948 0.929 0.951 0.944 0.959 0.965 0.920 0.918
4 0 0.941 0.960 0.969 0.965 0.975 0.959 0.975 0.968 0.972 0.976 0.938 0.939
5 0 0.944 0.959 0.970 0.964 0.991 0.976 0.990 0.985 0.984 0.988 0.953 0.952
6 0 0.944 0.959 0.971 0.963 0.994 0.981 0.995 0.990 0.989 0.992 0.960 0.957

300 0.3 3 0 0.943 0.953 0.958 0.957 0.960 0.942 0.950 0.926 0.969 0.957 0.927 0.927
4 0 0.944 0.954 0.960 0.959 0.977 0.958 0.976 0.955 0.983 0.975 0.940 0.940
5 0 0.943 0.955 0.961 0.958 0.983 0.963 0.991 0.971 0.994 0.987 0.950 0.951
6 0 0.943 0.957 0.961 0.957 0.985 0.964 0.996 0.978 0.997 0.991 0.954 0.954

0.5 3 0 0.954 0.956 0.965 0.966 0.961 0.963 0.951 0.952 0.975 0.975 0.933 0.931
4 0 0.956 0.958 0.965 0.967 0.977 0.979 0.976 0.978 0.986 0.987 0.946 0.949
5 0 0.958 0.960 0.965 0.967 0.980 0.983 0.991 0.992 0.995 0.995 0.955 0.960
6 0 0.959 0.961 0.964 0.967 0.981 0.983 0.996 0.996 0.998 0.999 0.958 0.964

0.7 3 0 0.940 0.954 0.959 0.957 0.962 0.944 0.953 0.931 0.971 0.962 0.925 0.925
4 0 0.941 0.954 0.960 0.959 0.977 0.960 0.974 0.955 0.984 0.975 0.938 0.939
5 0 0.942 0.954 0.961 0.958 0.982 0.964 0.989 0.972 0.993 0.986 0.948 0.947
6 0 0.943 0.955 0.961 0.958 0.983 0.965 0.993 0.977 0.997 0.990 0.954 0.952

Panel B. Length

150 0.3 3 0 0.066 0.078 0.296 0.277 0.654 0.611 0.729 0.714 0.736 0.726 0.682 0.648
4 0 0.046 0.050 0.147 0.145 0.586 0.528 0.709 0.659 0.707 0.648 0.644 0.557
5 0 0.035 0.035 0.078 0.082 0.493 0.417 0.649 0.526 0.637 0.492 0.565 0.400
6 0 0.029 0.026 0.051 0.055 0.387 0.294 0.545 0.348 0.525 0.301 0.452 0.230

0.5 3 0 0.064 0.060 0.228 0.172 0.632 0.571 0.732 0.707 0.744 0.724 0.691 0.644
4 0 0.048 0.041 0.108 0.084 0.557 0.469 0.714 0.643 0.723 0.643 0.662 0.550
5 0 0.038 0.029 0.066 0.055 0.459 0.341 0.663 0.505 0.667 0.487 0.595 0.396
6 0 0.031 0.022 0.049 0.040 0.353 0.216 0.566 0.328 0.564 0.302 0.491 0.231

0.7 3 0 0.069 0.081 0.297 0.278 0.648 0.604 0.725 0.710 0.734 0.723 0.684 0.649
4 0 0.048 0.051 0.148 0.147 0.581 0.523 0.703 0.652 0.702 0.642 0.644 0.554
5 0 0.035 0.034 0.077 0.081 0.490 0.415 0.642 0.520 0.633 0.485 0.564 0.395
6 0 0.028 0.025 0.049 0.054 0.384 0.293 0.541 0.344 0.520 0.295 0.449 0.227

300 0.3 3 0 0.039 0.047 0.134 0.143 0.588 0.538 0.713 0.677 0.765 0.757 0.722 0.715
4 0 0.030 0.033 0.064 0.075 0.460 0.413 0.687 0.646 0.765 0.756 0.712 0.690
5 0 0.026 0.025 0.045 0.051 0.328 0.298 0.648 0.599 0.754 0.734 0.688 0.633
6 0 0.021 0.019 0.034 0.038 0.221 0.207 0.593 0.532 0.729 0.666 0.641 0.524

0.5 3 0 0.045 0.044 0.097 0.087 0.549 0.467 0.704 0.658 0.765 0.755 0.724 0.712
4 0 0.035 0.030 0.062 0.056 0.397 0.309 0.670 0.610 0.764 0.749 0.717 0.686
5 0 0.029 0.021 0.045 0.038 0.257 0.188 0.621 0.547 0.756 0.721 0.698 0.626
6 0 0.025 0.015 0.035 0.029 0.163 0.117 0.563 0.465 0.739 0.646 0.662 0.519

0.7 3 0 0.051 0.060 0.137 0.147 0.592 0.541 0.712 0.675 0.764 0.756 0.722 0.714
4 0 0.036 0.038 0.066 0.077 0.463 0.416 0.686 0.643 0.762 0.753 0.712 0.691
5 0 0.028 0.026 0.045 0.052 0.330 0.300 0.645 0.596 0.752 0.733 0.687 0.631
6 0 0.023 0.019 0.034 0.038 0.223 0.209 0.589 0.528 0.727 0.667 0.641 0.525
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Table 4. Finite sample coverage and length of nominal 0.95-level confidence sets.

ρ = 0.00 ρ = 0.50 ρ = 0.80 ρ = 0.90 ρ = 0.95 ρ = 1.00

T τ0 δ1 δ2 S S∗ S S∗ S S∗ S S∗ S S∗ S S∗

Panel A. Coverage

150 0.3 0 0.3 0.928 0.954 0.952 0.956 0.968 0.962 0.965 0.973 0.943 0.962 0.881 0.881
0 0.4 0.930 0.956 0.955 0.960 0.978 0.974 0.977 0.983 0.951 0.970 0.891 0.893
0 0.5 0.931 0.954 0.958 0.960 0.985 0.978 0.983 0.988 0.959 0.977 0.902 0.905
0 0.6 0.935 0.957 0.961 0.962 0.987 0.982 0.986 0.992 0.964 0.982 0.912 0.915

0.5 0 0.3 0.948 0.945 0.958 0.955 0.971 0.971 0.975 0.970 0.958 0.940 0.886 0.847
0 0.4 0.948 0.947 0.962 0.959 0.980 0.981 0.986 0.981 0.968 0.953 0.898 0.864
0 0.5 0.951 0.949 0.965 0.964 0.985 0.986 0.990 0.987 0.975 0.963 0.907 0.881
0 0.6 0.951 0.950 0.966 0.965 0.988 0.989 0.993 0.990 0.979 0.970 0.917 0.895

0.7 0 0.3 0.925 0.950 0.950 0.957 0.965 0.960 0.963 0.968 0.946 0.968 0.883 0.883
0 0.4 0.925 0.952 0.954 0.958 0.976 0.970 0.974 0.979 0.956 0.975 0.894 0.896
0 0.5 0.928 0.953 0.956 0.960 0.982 0.974 0.981 0.987 0.962 0.981 0.904 0.907
0 0.6 0.929 0.955 0.959 0.962 0.985 0.977 0.985 0.990 0.968 0.986 0.913 0.918

300 0.3 0 0.3 0.934 0.952 0.957 0.958 0.981 0.965 0.989 0.977 0.989 0.989 0.920 0.922
0 0.4 0.936 0.953 0.956 0.959 0.984 0.966 0.994 0.981 0.993 0.992 0.928 0.929
0 0.5 0.935 0.953 0.957 0.960 0.985 0.966 0.995 0.983 0.995 0.994 0.934 0.935
0 0.6 0.936 0.954 0.958 0.960 0.986 0.967 0.996 0.984 0.996 0.995 0.936 0.938

0.5 0 0.3 0.955 0.953 0.963 0.965 0.975 0.976 0.987 0.988 0.991 0.991 0.920 0.907
0 0.4 0.956 0.954 0.965 0.967 0.978 0.978 0.991 0.992 0.995 0.995 0.930 0.920
0 0.5 0.957 0.955 0.966 0.967 0.980 0.981 0.995 0.995 0.997 0.997 0.937 0.928
0 0.6 0.959 0.957 0.967 0.968 0.982 0.982 0.996 0.996 0.998 0.998 0.942 0.935

0.7 0 0.3 0.931 0.953 0.956 0.957 0.980 0.964 0.989 0.977 0.987 0.987 0.921 0.920
0 0.4 0.931 0.954 0.959 0.960 0.982 0.966 0.992 0.981 0.992 0.992 0.927 0.928
0 0.5 0.932 0.954 0.960 0.960 0.983 0.967 0.994 0.983 0.993 0.993 0.933 0.936
0 0.6 0.931 0.954 0.959 0.961 0.983 0.968 0.995 0.983 0.995 0.994 0.938 0.939

Panel B. Length

150 0.3 0 0.3 0.130 0.134 0.187 0.188 0.385 0.370 0.624 0.602 0.659 0.627 0.605 0.565
0 0.4 0.105 0.109 0.152 0.154 0.329 0.301 0.559 0.493 0.586 0.520 0.539 0.486
0 0.5 0.089 0.094 0.128 0.133 0.271 0.244 0.464 0.378 0.489 0.409 0.464 0.404
0 0.6 0.079 0.084 0.113 0.119 0.222 0.208 0.360 0.299 0.388 0.321 0.386 0.330

0.5 0 0.3 0.136 0.118 0.186 0.167 0.362 0.335 0.608 0.572 0.653 0.602 0.604 0.548
0 0.4 0.111 0.096 0.152 0.137 0.311 0.266 0.546 0.453 0.581 0.483 0.536 0.459
0 0.5 0.092 0.083 0.128 0.118 0.263 0.214 0.455 0.333 0.484 0.365 0.458 0.370
0 0.6 0.078 0.074 0.111 0.105 0.217 0.181 0.355 0.255 0.383 0.278 0.379 0.294

0.7 0 0.3 0.133 0.135 0.189 0.189 0.380 0.363 0.614 0.587 0.651 0.618 0.606 0.564
0 0.4 0.108 0.110 0.153 0.154 0.324 0.297 0.548 0.487 0.578 0.518 0.539 0.484
0 0.5 0.091 0.095 0.129 0.133 0.270 0.244 0.458 0.381 0.487 0.414 0.463 0.402
0 0.6 0.080 0.084 0.113 0.118 0.222 0.206 0.364 0.303 0.394 0.329 0.386 0.327

300 0.3 0 0.3 0.067 0.072 0.097 0.103 0.174 0.174 0.344 0.313 0.589 0.518 0.545 0.502
0 0.4 0.056 0.061 0.080 0.087 0.140 0.143 0.258 0.234 0.425 0.352 0.429 0.384
0 0.5 0.049 0.053 0.069 0.076 0.118 0.123 0.198 0.193 0.292 0.268 0.322 0.288
0 0.6 0.044 0.048 0.062 0.068 0.105 0.110 0.166 0.166 0.225 0.217 0.241 0.223

0.5 0 0.3 0.072 0.065 0.098 0.091 0.168 0.155 0.331 0.284 0.570 0.474 0.539 0.475
0 0.4 0.056 0.054 0.080 0.077 0.136 0.126 0.252 0.208 0.416 0.309 0.421 0.348
0 0.5 0.048 0.047 0.070 0.067 0.116 0.110 0.195 0.169 0.290 0.226 0.314 0.251
0 0.6 0.043 0.043 0.062 0.061 0.103 0.098 0.163 0.144 0.222 0.181 0.235 0.189

0.7 0 0.3 0.072 0.075 0.098 0.103 0.174 0.173 0.342 0.314 0.580 0.517 0.550 0.506
0 0.4 0.059 0.062 0.080 0.086 0.139 0.142 0.260 0.236 0.430 0.362 0.433 0.386
0 0.5 0.051 0.054 0.070 0.076 0.118 0.123 0.199 0.193 0.300 0.271 0.325 0.289
0 0.6 0.045 0.049 0.062 0.068 0.104 0.110 0.166 0.166 0.228 0.218 0.243 0.223
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