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Summary

Ag1 resistance was initially found on the Salmonella

enetrica serovar Typhimurium multi-resistance plas-

mid pMG101 from burns patients in 1975. The puta-

tive model of Ag1 resistance, encoded by the sil

operon from pMG101, involves export of Ag1 via an

ATPase (SilP), an effluxer complex (SilCFBA) and a

periplasmic chaperon of Ag1 (SilE). SilE is predicted

to be intrinsically disordered. We tested this hypothe-

sis using structural and biophysical studies and

show that SilE is an intrinsically disordered protein

in its free apo-form but folds to a compact structure

upon optimal binding to six Ag1 ions in its holo-

form. Sequence analyses and site-directed mutagen-

esis established the importance of histidine and

methionine containing motifs for Ag1-binding, and

identified a nucleation core that initiates Ag1-medi-

ated folding of SilE. We conclude that SilE is a molec-

ular sponge for absorbing metal ions.

Introduction

Silver is a soft, shiny, lustrous and precious metal (Lans-

down, 2010) with high value as a human commodity in

jewellery and as an investment, and with wide applica-

tions in the electronics industry; approximately 24,000

tons of silver was mined and produced in 2012 (Mijnen-

donckx et al., 2013). Silver has also been highly valued

for its broad-spectrum antimicrobial properties and has

been one of the most important antimicrobial agents

prior to the discovery and introduction of antibiotics. The

rapid emergence of antibiotic resistance among many

bacteria has rejuvenated the interest in silver as a viable

alternative antimicrobial agent (Holt and Bard, 2005;

Atiyeh et al., 2007; Mijnendonckx et al., 2013).

The widespread use of silver in medical and non-

medical settings has resulted in the emergence of silver

resistant bacteria. Initial reports of silver resistance date

back to 1966 (Gupta et al., 1999; Mallard et al., 2012)

and the first silver-resistant plasmid pMG101, a large

180 kb plasmid assigned to the IncHI incompatibility

group and reportedly carrying the sil operon (conferring

silver resistance), was isolated from Salmonella enterica

serovar Typhimurium following the death from septicae-

mia of several patients treated with silver nitrate, leading

to the closure of the burn ward of the Massachusetts

General Hospital (McHugh et al., 1975). The pMG101

sil resistance allowed growth of an Escherichia coli K-12

(E. coli) strain carrying pMG101, in standard Luria-

Bertani (LB) broth containing 600 lM of Ag1, a concen-

tration over six times of that known to be tolerated by E.

coli strains K-12 strains lacking the plasmid (Gupta

et al., 1999).

However, the sil operon comprises nine genes sil-

PGABFCRSE (Silver, 2003; Mijnendonckx et al., 2013;

Hobman and Crossman, 2015; Randall et al., 2015),

organised into three transcriptional units, silCFBAGP,

silRS and silE, each controlled by a different promoter

(Silver, 2003). The corresponding proteins have been

assigned putative roles based upon homology modelling

compared with other known heavy metal resistant deter-

minants of the Pco or Cus systems (Hobman and

Crossman, 2015 and Fig. 1). silE is under the control of

its own promoter and its expression is strongly induced
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in the presence of Ag1. It codes for the 143-amino acid

long periplasmic protein SilE whose precise role in silver

resistance has not been experimentally confirmed. SilE

is an indispensable key component for the exogenous

silver resistance phenotype (Randall et al., 2015), has

been reported to bind between 5 and 38 Ag1, depend-

ing on experimental conditions (Silver et al., 1999; Mij-

nendonckx et al., 2013), and is often used as a marker

when confirming the presence of silver resistance genes

in microbes (Mirolo et al., 2012). It exhibits 48%

sequence identity to the periplasmic copper-binding pro-

tein PcoE which binds up to nine Cu1 or up to seven

Ag1 ions (Zimmerman et al., 2012). The pcoE gene is

within a cluster of seven genes (pcoABCDRSE) adja-

cent to the sil operon on the large E.coli copper resist-

ance plasmid pRJ1004. Expression of pcoE is controlled

by the chromosomally located copper resistance cusRS

system (Munson et al., 2000). The pco and sil operons

have been found together in a single locus of identical

arrangement in plasmids and on the chromosomes of

many Gram-negative bacteria (Hobman and Crossman,

2015, Hao et al., 2015, Randall et al., 2015). PcoE, is

believed to be unstructured in its apo-form but folds and

dimerizes upon Cu1 binding, with some a-helical con-

tent in its secondary structure (Zimmerman et al.,

2012). Because of its similarity to PcoE, SilE is pre-

sumed to have similar attributes as well as possess the

ability to bind copper ions (Gupta et al., 1999; Silver

et al., 1999; Silver, 2003; Zimmerman et al., 2012)

although there is no experimental data available to verify

its precise function. Both PcoE and SilE have ten histi-

dine residues that are spatially conserved (Mirolo et al.,

2012) and have been proposed to be primary candi-

dates for metal binding (Silver, 2003; Mirolo et al.,

2012). Following a change in environmental pH, these

residues could also partake in the release of Ag1 into

the periplasmic space with the SilCBA efflux pump

ejecting the toxic monovalent metal ion, out of the cell

(Mirolo et al., 2012). This, however, contradicts other

data showing increased binding of Ag1 ions to SilE

under acidic conditions (Silver et al., 1999).

In this paper, we provide experimental evidence that

apo-SilE is an intrinsically disordered protein (IDP) that

folds to a highly a-helical holo-SilE structure upon bind-

ing to Ag1 ions. SilE can bind up to eight Ag1 ions or

fewer of the harder divalent metal ions Cu21 (up to six),

Zn21 (up to five) and Ni21 (up to two), indicating a

higher capacity for complexing Ag1 compared to other

metals. We show that metal-induced folding leads to a

higher helical content with Ag1 followed by Cu21, Zn21

and Ni21, consistent with its higher selectivity for Ag1,

and confirm from mutagenesis studies that conserved

histidine and methionine residues within specific

sequence motifs are involved in Ag1 binding. We pro-

pose an Ag1-mediated nucleation folding mechanism for

SilE and suggest that SilE acts as a “molecular sponge”

and as a first line of defence against relatively low levels

of Ag1 ions that enter the periplasm. Potential conse-

quences of Ag1-mediated SilE folding relative to the

combined bacterial silver resistance mechanism are

also discussed.

Results

Significant primary sequence and structural features of
SilE

Sequence alignment of native SilE and its Cu-binding

homologue PcoE was carried out using a general multi-

purpose primary sequence alignment program for pro-

teins Omega (McWilliam et al., 2013), and amino acid

sequences were coloured according to the “Percentage

Identity” between the two proteins in Jalview (Water-

house et al., 2009), (Fig. 2A). The calculated sequence

identity between the two homologue proteins was 48%

(Zimmerman et al., 2012). SilE and PcoE are rich in

potential metal ligand-binding histidines (ten each) and

methionines (ten and fifteen, respectively). The primary

sequence identity shows that the position of the ten his-

tidine residues of the two proteins is completely con-

served (Fig. 2A), suggesting a key role in metal binding.

Fig. 1. Silver resistance operon and functions of its corresponding
proteins.
Silver resistance proteins and their suggested active roles, deduced
from homology, thought to partake in bacterial silver resistance.
SilE—periplasmic metal-binding protein, SilR and SilS—responder
and membrane sensor performing two-component transcription
regulation, SilC—outer membrane protein, SilB—membrane fusion
protein, SilA—chemi-osmotic antiporter, SilP—P-type cation
ATPase and SilG (protein not depicted) and SilF—metal-binding
chaperone protein. Dashed arrows highlight the hypothetical role of
SilE. The bottom line shows the mRNAs, indicating the genes and
open reading frames (including number of amino acids) with the
orientation of their transcription (Silver, 2003).
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SilE has been predicted to be an IDP. The SilE

sequence was analysed through DisEMBL’s and the out-

put indicated 56% loop/coil (Supporting Information Fig.

S1), suggesting that SilE has a high proportion of intrin-

sic disorder. In parallel, screening for possible regions of

secondary structure (a-helical, b-strand or random coil)

within the SilE (using Jpred, Cole et al., 2008) predicted

six a-helices across 54% of the protein sequence (Fig.

2B). Interestingly, the secondary structure predictions

through Jpred are consistent with the far-UV CD data

obtained for the holo-form of SilE (Supporting Informa-

tion Table S1). Furthermore, two characteristic motifs,

MxxHxxxxxHxxMxx (motif 1) and HxxMxxxHxxMxx

(motif 2), each repeated twice within the sequence have

conserved histidines and methionines that constitute

potential metal-binding motifs (Fig. 2C).

Structural analysis of SilE with and without Ag1 by CD
and NMR

The secondary structure of SilE was determined by far-

UV circular dichroism (CD) spectroscopy (Fig. 3A). With

strong negative signals around 200 nm, the spectrum

obtained for apo-SilE in 10 mM HEPES, 20mM NaF,

pH7.5, is typical of an unstructured, random coil poly-

peptide. Slight negative shoulders on the CD spectrum,

at 207 and 221 nm, are consistent with a minor fraction

(<20%) of a-helical secondary structure for apo-SilE

(Sreerama et al., 1999; Greenfield, 2007; Dodero et al.,

2011). However, these bands become considerably

more prominent (�54%) when bound to Ag1 in the

holo-SilE, with a strong negative band at 207 nm, a

weaker negative ellipticity at 221 nm and a strong posi-

tive band at 190 nm (Fig. 3A), consistent with the stabili-

zation of helical structure.

NMR spectroscopy was used to examine the tertiary

structure with and without Ag1 (in 10 mM HEPES,

20 mM NaF, pH 7.5). The two-dimensional 1H-15N

HSQC of apo-SilE (Fig. 3B) exhibited poorly dispersed

peaks, characteristic of an unfolded and unstructured

protein (Dyson et al., 2005), and provided further experi-

mental evidence for the largely disordered and flexible

nature of SilE under native conditions. Likewise, one-

dimensional proton NMR experiments (in 10 mM sodium

phosphate buffer) at several pH intervals between pH 9

and pH 5, showed no change in the local environment

of apo-SilE (data not shown). However, the dispersion

within the NMR backbone amide 1H chemical shifts in

the 1H-15N HSQC spectrum of holo-SilE (Fig. 3B)

increased substantially in the presence of bound Ag1
;

showing a clear signature for the induction of hydrogen

bonded secondary structure.

Fig. 2. Protein sequence analysis and evaluations.
A. Sequence alignment of E. coli PcoE with SilE from Salmonella (lacking the leader sequence, residues 1–20). The sequences, aligned using
Clustal Omega (39) have been coloured using the “Percentage Identity” colour-scheme in Jalview (40). The sequences displaying 48%
identity, the “Percentage Identity” colour-scheme has a threshold of 80% or more being conserved residues (purple) and anything below 40%
as non-conserved (white), with the colour gradient between clarifying other less conserved residues. Conserved, aligned histidine and
methionine residues have been highlighted above with either an inverted triangle or a star, respectively.
B. Repeat sequence identification and secondary structure fold, predicted on Jpred can be seen above the identification of repeat sequence
patterns with a-helical predominance (six a-helices) in the folded conformation of SilE.
C. Two repeat sequence motifs (motif 1 and 2) are evident, which include the conserved histidine and methionine residues.
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We investigated the thermal stability of the Ag-bound

SilE complex using CD by generating a melting curve

and monitoring the change in ellipticity at 207 nm. (Fig.

3C). The unfolding showed a sigmoidal transition with a

mid-point of 428C. Moreover, the relatively sharp transi-

tion from the folded to unfolded form, (Honig et al.,

2003), as the temperature increased suggested that only

two conformational states are significantly populated.

It appears that SilE folding upon binding to Ag1

occurs cooperatively, as indicated by the sigmoidal ther-

mal stability curve deduced via far-UV CD (Fig. 3C).

The monophasic, cooperative unfolding of the protein

confirmed that with Ag1 present, the protein exists as a

compact well-folded, stable structure up to a tempera-

ture of 428C. Moreover, the relatively sharp transition

from the folded to unfolded form, characteristic of two-

state proteins (Horng et al., 2003), as the temperature

increased suggested that only these two conformational

states were present to any significant extent.

SilE binds up to eight silver ions

Interactions of certain metal ions with SilE have been

reported using nano-ESI-MS (nano-Electrospray

Ionization-Mass Spectrometry) under non-denaturing

conditions in volatile 25 mM ammonium acetate buffer at

pH 7.0. Solutions of 2 mM of each metal ion: Ag1, Cu21,

Zn21 and Ni21 were added to 25 lM of apo-SilE (molar

ratio of 80:1). SilE-metal complexes were observed, in

each case with the relative bound proportions dependent

on the protein’s affinity and/or stoichiometry for the metal

ion (Fig. 4A). SilE shows a distribution of Ag-bound com-

plexes with species containing 5, 6 and 7 bound Ag1

ions particularly abundant, with a maximum number of 8

detected. Binding of other harder divalent metal ions

Cu21 and Zn21 was also evident, but with different bind-

ing stoichiometries (SilE:Cu21 of 1:6; SilE:Zn21 of 1:5,

and a lower stoichiometry with Ni21of SilE:Ni21 of 1:2).

Complementary titrations using far-UV CD (Fig. 4C)

show no further change in secondary structure content

after the addition of 6 molar equivalents of Ag1. Hence six

Ag1 appears to be the optimum for full folding of the pro-

tein, however, the MS data suggest a further two Ag1 ions

are capable of being bound by the folded protein. The Ag1

CD titration shows a very clear isodichroic point around

206 nm, which is consistent with predominantly two spe-

cies in solution, namely the apo-SilE and a predominant

single ‘fully loaded’ Ag1-bound form, rather than a hetero-

geneous mixture of different species with different binding

stoichiometries. Furthermore, plots of the CD signals at

190 and 221 nm as a function of the Ag1/SilE molar ratio

show some evidence for sigmoidal curves consistent with

co-operative uptake of Ag1 by SilE (Fig. 4D).

Fig. 3. Intrinsically disordered SilE folds upon binding monovalent
metal ion Ag1.
Folding and structure content of apo-SilE and holo-SilE (2 mM
Ag1), in 10 mM HEPES, 20 mM NaF, pH 7.5.
A. Far-UV CD spectrum obtained at a concentration of 57mM for
apo-SilE (red curve) represents very little secondary structure
(negative signal around 200 nm). Upon addition of Ag1 (blue
curve) largely negative signals are present at 207 and 221 nm
typically found in proteins with significant helical structure.
B. Chemical shifts seen in peaks when comparing the 1H/15N
HSQC spectra of apo-SilE (300 mM) (red peaks) and Ag1-bound
SilE (350 mM) (blue peaks), in the presence of 2 mM AgNO3,
confirm Ag1-induced folding.
C. The sigmoidal temperature denaturation of holo-SilE (57 mM)
suggests folding in a cooperative manner.
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Histidine and methionine residues are involved in
Ag1-binding

In order to investigate the roles of conserved histidine

and methionine residues in Ag1-binding and protein

folding, we mutated nine histidines to alanines (H38A,

H62A, H69A, H80A, H87A, H111A, H118A, H129A and

H136A) and four methionines to leucines (M72L, M83L,

M90L and M108L). The secondary structure contents of

all the mutant SilE proteins were measured in the pres-

ence of six Ag1 molar equivalents (Fig. 5A–C). H38A,

H62A, H69A, H118A, H129A and H136A gave only a

slight decrease in a-helical structure (Fig. 5A and Sup-

porting Information Table S1). In contrast, H80A, H87A

and H111A exhibited large reductions in a-helical con-

tent in comparison to wild-type holo-SilE (Fig. 5A and

Supporting Information Table S1), implying that these

residues are important for Ag1-induced folding. The

largest change in the CD spectra was seen with H111A

which exhibits only around 60% of the wild type holo

SilE secondary structure content (Supporting Informa-

tion Table S1).

Based on this data, we then made three double

mutant proteins, H80A/H87A, H80A/H111A and H87A/

Fig. 4. Determination of SilE metal
ion-binding.
After incubation with 2 mM: Ni21,
Zn21, Cu21 and Ag1.
A. native nano-ESI MS for SilE (25
lM in 25 mM ammonium acetate, pH
7.0) showing the 71 charge state.
The digits together with the metal
elemental symbol provide the number
of atoms of metal ions bound to SilE
(as deduced by the incremental mass
increases) in the labeled peak.
Apo-SilE has molecular mass of
13,271 Da.
B. Far-UV circular dichroism data (57
mM in 10 mM HEPES, 20 mM NaF,
pH 7.5) exhibiting more alpha-helical
protein content when SilE is in the
presence of Ag1 over the other
divalent metal ions, especially Ni21.
C. SilE titration in 75 mM in 10 mM
HEPES, 20 mM NaF, pH 7.5, from 0
to 16 equivalents Ag1 using far-UV
CD. No change in signal following
Ag1 addition beyond 6 Ag1

equivalents to SilE.
D. Plots of the CD signals as a
function of the Ag1:SilE molar ratios
at 190 and 221 nm produce
sigmoidal curves indicative of
co-operative uptake of Ag1 ions by
SilE.
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H111A. Far-UV CD spectra of these proteins (Fig. 5B)

showed a decrease in secondary structure content greater

than that found with the single histidine mutant proteins with

a-helical content declining to half that of the wild type. Simi-

lar measurements for the methionine mutants found that the

M108L mutant had a comparable decrease in secondary

structure content to the H111A protein (Fig. 5C). The other

three methionine mutants (M90L, M83L and M72L) showed

effects similar to those observed for the histidine mutants

(compare Fig. 5A and C).

We then measured the number of Ag1 bound to each

of the SilE proteins using inductively coupled plasma

mass spectrometry (ICP-MS). The single histidine

mutants H62A, H69A, H80A, H87A, H111A, H118A and

H129A all bound on average one Ag1 less than the

native holo-SilE (Fig. 5D). Two of the single mutants,

H38A and H136A did not exhibit a clear reduction in the

number of bound Ag1 (Fig. 5D). All three double histi-

dine mutants showed a reduction of two bound Ag1

(Fig. 5E) whereas all the methionine mutants showed a

reduction of one bound Ag1 (Fig. 5F).

Collectively our data show that a number of con-

served histidines and methionines are involved in Ag1

binding in SilE, and the ability to bind Ag1 has a direct

effect on the holo-SilE structure. The inability to bind

Ag1 to key residues results in a decrease in the amount

of folded protein, as judged by the reduction in CD ellip-

ticity in the 207-221 nm region.

Two ‘core-motifs’ central to the primary sequence of
SilE likely form the nucleation site for Ag1-induced
folding

From our studies of mutant SilE proteins it appears

that the H80A, H87A, H111A and M108L exhibited

the largest folding defects upon Ag1 binding. These

residues are located centrally within the sequence in

an apparent core comprising a motif 1 (residues A77-

M91) and a motif 2 (residues E110-F120) (Fig. 2B).

Given that the secondary structure content has a high

sensitivity to their mutation, we proposed that they

provide initial nucleation sites for Ag1-induced folding.

To test this hypothesis we engineered two truncated

SilE polypeptides, one SilE46-128 that preserves the

core region (P46 to P128) but lacks the peripheral

sequences at the N- and C-terminal regions, and a

second SilE21-98 that lacks the C-terminal region and

motif 2 from the putative nucleation core (Fig. 6A).

We then studied Ag1-mediated folding of these poly-

peptides using far-UV CD (Fig. 6B). The SilE46-128

polypeptide exhibited Ag1-mediated folding similar to

the wt SilE whereas the SilE21-98 polypeptide did not

exhibit any signs of folding upon Ag1 binding. These

data are consistent with a model where a nucleation

core is formed by central core motifs 1 and 2 which

then facilitates further folding as more Ag1 are bound

to the rest of the polypeptide.

Fig. 5. SilE histidine and methionine mutations affect protein Ag1 binding and folding.
A–C. Far-UV CD spectra of wild-type holo-SilE, histidine single (A) and double (B) mutants, and methionine (C) mutants with the 6 Ag1

equivalents at 75 lM in 10 mM HEPES, 20 mM NaF, pH 7.5. D-F. ICP-MS analyses of wild-type holo-SilE, histidine single (D) and double (E)
mutants, and methionine (F) mutants at 50 nM in 10 mM HEPES, 20 mM NaF, pH 7.5.
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Discussion

Many proteins are intrinsically unstructured under physio-

logical conditions, yet can fold when required to perform

their biological functions (Dyson et al., 2005; Radivojac

et al., 2007; Sibile and Bernado, 2012; Jensen et al.,

2013; Kosol et al., 2013). Previous NMR studies of the

SilE homologue protein PcoE have shown that it folds to

a predominantly a-helical structure upon binding ligand-

metals Cu1 and Ag1 (Zimmerman et al., 2012). Like-

wise, SilE is thought to be a putative IDP that binds to

Ag1 but no experimental evidence was previously avail-

able to verify its structure and metal binding properties.

The data presented in this paper show that that apo-

SilEs is an IDP lacking significant secondary structure

over a range of pH conditions (Fig. 3). However, we

were then able to demonstrate strong coupling between

folding and metal-uptake by showing that SilE binds Ag1

(Figs. 3 and 4) and folds into a moderately stable struc-

ture of high a-helical content. Despite the involvement of

multiple histidine residues in Ag1 binding, no pH induced

folding of SilE was observed, verifying that SilE folding is

specifically mediated by Ag1 binding.

Each SilE molecule can bind up to a maximum of

eight monovalent soft metal ions of Ag1 in solution (Fig.

4A) but is fully folded after binding six Ag1: the last two

Ag1 ions must therefore bind only to the fully folded pro-

tein. Cu21, Zn21 and Ni21 ions, exhibit lower stoichio-

metries, and subsequently a lower degree of folding was

seen (Fig. 4B), indicating that folding and binding are

coupled and form part of the ion discrimination

mechanism.

This use of folding and binding to enable uptake of a

specific ion gives SilE the functional role of a ‘molecular

sponge’ in the mechanism of E. coli silver resistance.

As such its relationship to the other components in the

silver resistance mechanism must be one where the

unfolded protein has a high affinity for silver, but a low

affinity for other cellular components. In contrast the

folded protein will have a high affinity for other cellular

components and as such allow SilE to off-load its Ag1

to other components in the resistance mechanism.

Accordingly, SilE may act either as a metal-ion chaper-

one to the RND effluxer SilCBA or, as many IDPs do

(Kosol et al., 2013) binds to or signals to the histidine

kinase sensor SilS and thereby activates the remainder

of the silver resistance machinery. Therefore, the the

notion that SilE binds Ag1 and then initiates the entire

mechanism of silver resistance (Sil proteins P, G, A, B,

F, C, R and S, as well as positively autoregulating its

own expression), by signalling or direct binding to SilS,

in bacteria is a highly plausible hypothesis.

Primary sequence alignment between SilE and its

homologue PcoE revealed conserved histidine and

methionine residues (Fig. 2) (Mirolo et al., 2012) which

in a-helical structures are known to be a common fea-

ture of many metal-binding proteins (Todd et al., 1991;

Tanaka et al., 2004). We have further confirmed this to

be the case in SilE by site-specific mutagenesis. Impor-

tantly, our mutagenesis studies showed that some resi-

dues—H80, H87, H111 and M108—play a much more

significant role than others in the correct Ag1-mediated

folding of SilE (Fig. 5). Secondary structure predictions

were consistent with our experimental data, suggesting

the presence of six a-helices, however, significant

helical structure was only realised in the Ag-bound

state (Fig. 2). In addition, two types of Ag1-binding

motifs, motif 1 MxxHxxxxxxHxxMxx and motif 2

HxxMxxxHxxMxx, where identified from the sequence in

which i to i13 or i14 spacing between residues ensures

that they appear on the same face of a folded helix.

This suggests that each single helical motif in itself is

unable to bind Ag1, but several of these together are

able to (co-operatively) co-ordinate multiple Ag1 ions

leading to a compact protein fold. Two of these motifs

are located at the centre of the primary SilE sequence

between residues S76-G124 (Fig. 2) and we define

them as the “core-motifs” (Fig. 6). Both H80 and H87

are located in the core-motif 2 whereas M108 and H111

are located in the core-motif 1. We suggest the possibil-

ity of an Ag1-mediated folding mechanism whereby ini-

tial Ag1 binding to these “core-motifs” induces a

Fig. 6. Putative core important for nucleation and Ag1-induced
folding of SilE.
A. Schematic diagram of wild-type (WT) SilE, after removal 20-
amino acid periplasmic signal sequence, featuring proposed
putative core motifs SilE76-124 (coloured black and labeled)
alongside truncated polypeptides SilE46-128 and SilE21-98.
B. Far-UV CD spectra of wild-type holo-SilE alongside truncated
mutants SilE46-128 and SilE21-98 with the 6 Ag1 equivalents at 45
lM in 10 mM HEPES, 20 mM NaF, pH 7.5. C. Schematic
representation of the speculative nucleation model for Ag1-
mediated folding of SilE. As SilE binds Ag1 and following initial
nucleation within the putative core motifs (highlighted) the rest of
the polypeptide folds gradually to its complete holo-structure upon
further Ag1-binding.
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nucleation site around which the rest of the SilE struc-

ture assembles facilitating further Ag1 binding (Fig. 6).

This is consistent with the sigmoidal plots of CD signals

at 190 and 221 nm as a function of the Ag1/SilE molar

ratio (Fig. 4D) which are consistent co-operative Ag1

binding and a folding nucleus rather than a simple

sequential Ag1 binding and folding model. We tested

this model by engineering truncated SilE polypeptides.

The SilE46-127 polypeptide contained both “core motifs”

and exhibited Ag1-mediated folding in a similar manner

to the native SilE whereas the SilE21-97 polypeptide lack-

ing the core-motif 1 exhibited no detectable Ag1-medi-

ated folding; a result consistent with our nucleation

model. Our double histidine mutations H80AH87,

H80H111A and H87AH111A revealed loss of two Ag1

ions and it is therefore likely that these pairs of histi-

dines coordinate different Ag1 ions.

Complexes of Ag1 with histidine and imidazole can

form with Ag1:L and Ag1:L2 stoichiometries (where L is

the ligand; histidine or imidazole) with the latter being

more stable, as indicated by higher stability constants

and enthalpies of formation (Czoik et al., 2008). Ag1:L2

complexes adopt a linear geometry (Muller et al., 2005;

Petrovac et al., 2012; Kumbhar et al., 2013) and have

been proposed to coordinate Ag1 ions in SilE (Silver,

2003). Methionine residues are reported to co-ordinate

Ag1 ions in non-linear geometries with Ag1:M2 and

Ag1:M3 stoichiometries in the multicopper oxidase

CueO via methionine-rich helices (Singh et al., 2011)

while CusF co-ordinates Ag1 ions in a manner that

employs histidine, methionine and tryptophan residues

(Loftin et al., 2007). The human copper transporter 1

(hCtr1) protein in turn co-ordinates Cu1 and Ag1 ions

via histidine, methionine and cysteine residues (Du

et al., 2013; Zhu et al., 2014; Rubino et al., 2015). It is

clear that coordination of Ag1 ions by metal binding pro-

teins can employ a diverse collection of amino acids and

variable co-ordination geometry. Our data collectively

show that the previous theoretical model of SilE binding

to five Ag1 via ten His residues (Silver, 2003) is not cor-

rect but only a high resolution structure of the holo-SilE

will reveal the molecular details of Ag1 coordination in

this protein.

Experimental procedures

Materials

Chemicals and reagents (analytical grade) were obtained

from Sigma Chemical, unless otherwise stated. All buffer

exchanges were completed either by centrifugal ultrafiltra-

tion through a high flux polyethersulphone membrane with

molecular weight cut-off at 5,000 Da on a Vivaspin 20 or 2

devices or, by three cycles of four-eight hours of dialysis

against the new buffer at 48C, using dialysis membranes

with molecular weight cut-off at 3,500 Da (Spectrum Labo-

ratories Inc.). The sources of the metal ions were always

soluble and excess ions were removed via extensive dialy-

sis or using a Vivaspin device. The metal ion salts used are

as follows:- Ag1 from silver nitrate (AgNO3), Cu21 from

cupric sulfate (CuSO4), (Zn21) from zinc chloride (ZnCl2)

and Ni21 from nickel chloride (NiCl2).

Construction of expression plasmid

The DNA sequence of the gene encoding SilE, minus the

20-amino acid peptide leader sequence, was amplified by

PCR from the E. coli plasmid pMG101 (Gupta et al., 1999).

The two primer sequences are: for the forward primer 50-

ACTGAAACCGTGAATATCCATG-30 and for the reverse

primer 50-GCCTGCACTGAGCATGCG-30. To facilitate DNA

cloning and protein expression, an Opti3CInffwd site was

incorporated in the forward primer and in the reverse

primer, an Infusion 3’ site including a stop codon were inte-

grated. The PCR product was then built-into the expression

vector pOPINF (OPPF), comprising the coding sequence of

a His-tag, by In-Fusion Reactions (Bird, 2011). The expres-

sion construct was validated to contain the correct gene

sequence insert by PCR screening, using the same cloning

primers.

PCR-based site-directed mutagenesis

The SilE-pOPINF construct served as a template for PCR-

based site-directed mutagenesis. Histidine to alanine (single

and double) mutations as well as the methionine to leucine

mutations were generated in 50 and 30 DNA fragments using

the following primer combinations, where mutant introducing

nucleotides are shown in bold, lowercase. The forward

(Fwd) primer in each case was used to generate the

mutated 50—cDNA fragment and the reverse (Rev) primer

to generate the mutated 30-cDNA fragment, in pairs with the

flanking primers SilEPpuMIF and SilEHindIIIR.

SilEH38AFwd; 50—GGCACCTGCTgccCAGATGCAGT—30

SilEH38ARev; 50—ACTGCATCTGggcAGCAGGTGCC—30

SilEH62AFwd; 50—TATGGACCAGgccGAACAGGCCAT-

TATTGCTCAT—30

SilEH62ARev; 50—CATGAGCAATAATGGCCTGTTCggc

CTGGTCCAT—30

SilEH69AFwd; 50—CATTATTGCTgccGAAACCATGAC-

GAACGG—30

SilEH69ARev; 50—CCGTTCGTCATGGTTTCggcAGCAA-

TAATG—30

SilEH80AFwd; 50—GGCGGATGCGgccCAGAAAATGG—30

SilEH80ARev; 50—CCATTTTCTGggcCGCATCCGCC—30

SilEH87AFwd; 50—GGTGGAAAGTgccCAGAGGATGAT

G—30

SilEH87ARev; 50—CATCATCCTCTGggcACTTTCCAC

C—30

SilEH111AFwd; 50—AATGAATGAGgccGAAAGAGCTGC

AGTTG—30

SilEH111ARev; 50—CAACTGCAGCTCTTTCggcCTCATT

CATT—30
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SilEH118AFwd; 50—TGCAGTTGCCgccGAATTTATGAA-

TAACG—30

SilEH118ARev; 50—CGTTATTCATAAATTCggcGGCAAC

TGCA—30

SilEH129AFwd; 50—GTCTGGCCCAgccCAGGCCATG

G—30

SilEH129ARev; 50—CCATGGCCTGggcTGGGCCAGA

C—30

SilEH136AFwd; 50—GGCCGAAGCGgccCGTCGCATG

C—30

SilEH136ARev—50—GCATGCGACGggcCGCTTCGGC

C—30

SilEM72LFwd; 50—TCATGAAACCctgACGAACGGGTC—30

SilEM72LRev; 50 – GACCCGTTCGTcagGGTTTCATGA—30

SilEM83LFwd; 50—GCACCAGAAActgGTGGAAAGTCAT-

CAG 230

SilEM83LRev; 50—CTGATGACTTTCCACcagTTTCTGGT

GC – 30

SilEM90LFwd; 50—TCATCAGAGGctgATGGGAAGTCA-

GAC 230

SilEM90LRev; 50 – GTCTGACTTCCCATcagCCTCTGAT

GA – 30

SilEM108LFwd; 50—ATTAGCGGCActgAATGAGCATGAA

AG 230

SilEM108LRev; 50 – CTTTCATGCTCATTcagTGCCGCT

AAT – 30

SilEPpuMIF; 50—ATTCCCCGGAGTTAATCCgggacctTTAA

TTC 230

SilEHindIIIR; 50—ATCACAAACTGGTCTAGAaagcttTAGC

CTGC 230

The 50 and 30 SilE mutated fragments were used as

mega primers in a PCR including the flanking primers to

generate the cDNA containing the entire translated region

of the mutated His-tagged SilE. The final cDNA constructs

were cloned into the PpuMI/HindIII site, of the prokaryotic

expression vector pOPINF. The introduction of the muta-

tions as well as the absence of undesired spontaneous

mutations was confirmed by sequencing.

Engineering of SilE truncated polypeptides

The SilE-pOPINF construct served as a template for PCR-

based production of the truncated polypeptides SilE46-128

and SilE21-98, using the following primers –

SilE46-128 F; 50—ATTCCCCGGAGTTAATCCGGGACCTT-

TAATTC – 30

SilE46-128 R; 50 – GCTAATGAAAGCTTCGGTTATTAAGG

GGAAACGG – 30

SilE21-98 F; 50—CGATCGGGGCCCGCCTGTCGGGATC-

CAGGGG – 30

SilE21-98 R; 50 – GCGCTTCAAGCTTGGCTTATTATGGG

CCAG – 30

The final cDNA constructs were cloned into the

PpuMI/HindIII site for SilE21-98 and into the ApaI/HindIII

site for SilE46-128, of the prokaryotic expression vector

pOPINF, ensuring the presence of the N-terminal His-tag

remained. Confirmation of complete cloning of truncated

polypeptides as well as the absence of undesired spon-

taneous mutations was confirmed by sequencing.

Protein overexpression and purification

All SilE over-expression plasmids (wild-type and mutants)

were maintained in E. coli DH5a cells and transformed into

E. coli BL21 Star (DE3) cells (Invitrogen) for SilE wild-type

and mutant over-expressions. Unlabelled samples of SilE

were produced from cells grown on LB medium. 15N

labelled SilE was prepared in standard minimal media sup-

plemented with 15NH4Cl. Each litre of medium, supple-

mented with 50 mg carbenicillin or 100 mg ampicillin, was

inoculated with an overnight culture (5-10 mL) of the trans-

formed E. coli cells. The cells were grown aerobically with

vigorous shaking at 200 rpm, 378C, to OD600 �0.6-0.8 and

isopropyl b-D-1-thiogalactopyranoside (IPTG) was added at

a final concentration of 1mM to induce protein expression.

After overnight induction at 378C (200 rpm) the cells were

harvested by centrifugation prior to lysis by sonication

(Soniprep 150) at an output frequency of 23 kHz 12 cycles

of 20 seconds at an amplitude of 10 microns, followed by

30 seconds of recovery were carried out in buffer contain-

ing 50 mM Tris- (tris(hydroxymethyl)aminoethane) HCl,

500 mM NaCl, pH 7.5, supplemented with 100 lg/mL lyso-

zyme and 1 mL per 20 g cells of protease inhibitor cocktail

(Sigma; for use in purification of His-tagged proteins,

DMSO solution). The cell lysate was clarified by centrifuga-

tion and the supernatant contained the soluble SilE protein.

All SilE proteins were expressed with an N-terminal His-

tag to allow purification by affinity chromatography on

nickel-chelating Sepharose (GE Healthcare) (in column

binding buffer 50 mM Tris-HCl, 500 mM NaCl, pH 7.5 with

elution in 500 mM imidazole), after which they were further

purified by size-exclusion chromatography (SEC) on a pre-

equilibrated (20 mM Tris-HCl, 200 mM NaCl, pH 7.5)

Superdex 75 column (10 mm x 300 mm) (GE Healthcare).

The His-tag was then cleaved off by incubation at 48C over-

night, with 2.5 lg HRV 3C protease per 10 mL of protein

sample and all forms of SilE finally were further purified by

a second round of affinity chromatography on nickel-

chelating Sepharose (GE Healthcare), whereby the protein

was eluted in 50 mM Tris-HCl, 500 mM NaCl, 30 mM-50

mM imidazole (with the histidine mutants and truncated

polypeptides requiring a lower concentration imidazole), pH

7.5. The purity and identity of the SilE proteins was con-

firmed by; SDS-PAGE and nano-ESI MS, which yielded a

molecular mass of 13,268 (1/-1.6) Da for wild-type (Suppl.

Fig. S2), corresponding to the values calculated from the

sequences of SilE. All the purified SilE proteins contained

no detectable metals.

Protein Concentrations

SilE lacks light absorbing tryptophan tyrosine residues and

its concentration was estimated via two alternative meth-

ods. Firstly, acquiring the Brix coefficient using an Atago

DD-7 Digital Differential Refractometer allowed us to calcu-

late the protein concentration using the following formula as

explained elsewhere (Theisen et al., 2000):
(dndc sucrose/dndc protein sample) x 7.8883 x Brix coef-

ficient 5 (0.15/0.18) x 7.8883 x Brix coefficient

Secondly, by measuring the absorbance of the peptide

bond at the ultraviolet wavelength of 205 nm on a Thermo
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Scientific NanoDrop 2000c spectrophotometer (Scopes,

1974). Both calculations gave similar concentration values

in the mg/mL range.

Circular dichroism spectroscopy

Far-UV CD was used to determine the secondary structure

of apo- and holo-SilE in solution. CD experiments were

conducted at CD1 beam line at the ASTRID2 storage ring

facility at Aarhus University, Aarhus, Denmark (Hertela and

Hoffman, 2011). Data was acquired at 258C from 50 ll apo-

and metal ligand ion (Ag1, Cu21, Zn21, Ni21) bound-SilE

protein samples at 57 or 75 lM, in a quartz suprasil cylin-

drical cell (Hellma type 121.000) in a 10 mM HEPES (4-(2-

hydroxyethyl)21-piperazineethanesulfonic acid), 20 mM

NaF buffer at pH 7.5, with either 2 mM or titrated quantities

(1-16 equiv. Ag1) of metal ions added to the holo samples.

Spectra were recorded from 170 to 280 nm, with the protein

sample being in a 0.05 cm path length cell; scan speed of

20 nm min-1 and a response time of 1 s, with each spec-

trum representing an average of three accumulations, with

an average of 15 scans per point. A scan of buffer alone

was subtracted from the protein curve. Data were con-

verted to molar CD per residue and spectra analysis was

carried out by comparing the profile of the obtained curve

to those illustrated and quantified in literature (Sreerama

et al., 1999; Greenfield et al., 2007; Dodero et al., 2011).

Secondary structure percentages were calculated using the

DichroWeb (Lobley et al., 2002) interfaces analysis pro-

gramme CONTINLL, which implements the locally linear-

ised algorithm in selecting protein sets from the reference

database (Provencher and Glockner, 1981; Van Stokkum

et al., 1990; Sreerama and Woody, 2000).

The stability of apo and holo-SilE (2 mM Ag1) to temper-

ature denaturation was tested and determined by following

changes in the CD spectra. The changes in the intensity of

the maximal negative signal at 200 nm for apo and positive

signal at 190 nm for holo- (2 mM Ag1) were recorded as a

function of increasing temperature from 18 to 808C. The

temperature was gradually increased at increments of 18C

per minute and protein samples were allowed to equilibrate

at each temperature, prior to recordings at intervals of 58C.

In each case, spectra were acquired from 100 ml protein

samples at 57 lM. The CD data was converted to a per-

centage change of the maximum CD (mdeg).

Nano-electrospray ionisation mass spectrometry

Experiments were carried out and spectra were recorded

on a SYNAPT High Definition Mass Spectrometry (HDMS)

(Waters) a hybrid quadrupole ion mobility time-of-flight MS

instrument, with travelling-wave ion mobility (TWIM) capabil-

ity, equipped with the standard z-spray source. The instru-

ment conditions were optimized to provide the highest

relative signals for apo- and 2 mM metal ligand ion (Ag1,

Cu21, Zn21, Ni21) bound-SilE complexes at a protein con-

centration of 25 lM, sprayed from 25 mM ammonium ace-

tate (C2H3O2NH4), pH 7.0. The nano-ESI capillary voltage

was 1.5 kV; cone voltage, 20 V; extraction voltage, 5 V;

transfer voltage, 5 V. Other settings were as follow: trap

and transfer collision voltage, 6 and 5 V, respectively; back-

ing pressure, 1.6–1.8 mbar; trap pressure, 2.1 3 1022

mbar; TOF region pressure, 1.5 3 1026 mbar. Instrument

control as well as data processing was carried out with the

Waters MassLynx 4.1 data system. All spectra were

acquired in ion positive mode and the TOF analyser oper-

ated on V-mode. Minimum smoothing and background sub-

traction was applied to the obtained spectra prior to

analysis.

ICP-MS

Ag1 elemental analysis of 50 nM protein diluted, with and

without Ag1 in 5 mL solutions of 10 mM HEPES, 20 mM

NaF, pH 7.5, in 1% HNO3, was undertaken by ICP-MS

(Thermo-Fisher Scientific iCAP-Q; Thermo Fisher Scientific,

Bremen, Germany). The instrument was run employing

three operational modes, including (i) a collision-cell (Q

cell) using He with kinetic energy discrimination (He-cell) to

remove polyatomic interferences, (ii) standard mode (STD)

in which the collision cell is evacuated and (iii) hydrogen

mode (H2-cell) in which H2 gas is used as the cell gas.

Samples were introduced from an autosampler (Cetac

ASX-520) incorporating an ASXpressTM rapid uptake mod-

ule through a PEEK nebulizer (Burgener Mira Mist). An

internal standard Rh (10 mg L21) in 2% trace analysis grade

(Fisher Scientific, UK) HNO3 was introduced to the sample

stream on a separate line via the ASXpress unit. External

multi-element calibration standards (Claritas-PPT grade

CLMS-2 from SPEX Certiprep Inc., Metuchen, NJ) included

Ag, Al, As, Ba, Be, Cd, Ca, Co, Cr, Cs, Cu, Fe, K, Li, Mg,

Mn, Mo, Na, Ni, P, Pb, Rb, S, Se, Sr, Tl, U, V and Zn, in the

range 0 – 100 mg L21 (0, 20, 40, 100 mg L21). A bespoke

external multi-element calibration solution (PlasmaCAL,

SCP Science, France) was used to create Ca, Mg, Na and

K standards in the range 0–30 mg L21. Phosphorus, boron

and sulphur calibration utilized in-house standard solutions

(KH2PO4, K2SO4 and H3BO3). In-sample switching was

used to measure B and P in STD mode, Se in H2-cell

mode and all other elements in He-cell mode. Peak dwell

times were 10 ms for the element with 150 scans per sam-

ple. Sample processing was undertaken using QtegraTM

software (Thermo-Fisher Scientific) utilizing external cross-

calibration between pulse-counting and analogue detector

modes when required with data being acquired in mg L21.

Protein concentrations were measured before and after the

experiment. All glassware and plasticware used for these

experiments were washed with 10% nitric acid to remove

contaminating metal.

Nuclear magnetic resonance spectroscopy

One-dimensional 1H nuclear magnetic resonance (NMR)

spectra were taken at 258C on an 800 MHz Bruker Avance

NMR machine, using 500 lM protein in 10 mM sodium

phosphate (Na2HPO4/NaH2PO4) buffer, at various pHs

ranging from 5-9. The solvent water peak was attenuated

using pulsed field gradients or by pre-saturation.

Two-dimensional NMR based 15N/1H Heteronuclear Sin-

gle Quantum Coherence (HSQC) spectra were acquired at
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258C, on an 800 MHz Bruker Avance spectrometer. Data

were collected from 0.6 mL samples of 300–350 lM 15N

labelled sample of apo- and holo-Ag1-bound SilE in

10 mM HEPES buffer, 20 mM NaF, 10% D2O buffer at pH

7.5. Due to the higher protein concentration required for

NMR experiments, Ag1 was dialysed into the holo sample

a concentration a final concentration of 500 mM and

excess ions were removed through further dialysis using.

NMR data was processed and analyzed using Topspin

package (Bruker).

Bioinformatics

Both native protein sequences (excluding their periplasm

exporting leader sequence, residues 1-20) of PcoE and

SilE were aligned, using a general multipurpose alignment

program for protein primary sequences – Clustal Omega,

which finds the best alignment over the entire length of

each sequence submitted (McWilliam et al., 2013). Their

percentage identity was then calculated in Jalview (Water-

house et al., 2009). The sequences were coloured using

the “Percentage Identity” colour-scheme in Jalview too, to

clarify the sequence similarities at a more obvious

intensity.
Based on the SilE sequence, Jpred (a secondary struc-

ture prediction server that incorporates the Jnet algorithm

to make more accurate predictions) was used to predict a-

helices, b-strands and random coil (Cole et al., 2008). Addi-

tionally, the intrinsic protein disorder predictor DisEMBL,

which utilises the PDB (Protein Data Bank), was used to

predict disordered loops in SilE (Linding et al., 2003).
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