
Towards a Theory of Reach

Jonathan Fowler and Graham Huttom

School of Computer Science
University of Nottingham, UK

Abstract. When testing a program, there are usually some parts that
are rarely executed and hence more di�cult to test. Finding inputs that
guarantee that such parts are executed is an example of a reach problem,
which in general seeks to ensure that targeted parts of a program are
always executed. In previous work, Naylor and Runciman have developed
a reachability solver for Haskell, based on the use of lazy narrowing
from functional logic programming. Their work was focused on practical
issues concerning implementation and performance. In this paper, we lay
the groundwork for an underlying theory of such a system, by formally
establishing the correctness of a simple reach solver.

1 Introduction

A desirable goal of software testing is for every reachable expression within a
program to contribute to at least one test execution of the program. The test-
ing then exhibits program coverage. Random property testing systems such as
Quickcheck [3] often cover most of a program, but particularly hard to reach ex-
pressions may remain untested. The Reach system [12] was developed to address
this problem, by generating inputs that execute a particular target expression.
By using the Haskell Program Coverage (HPC) tool [5] to find expressions which
are not tested by Quickcheck, and Reach to generate inputs that execute these
expressions, the goal of program coverage can be achieved.

Work to date on the Reach system by Naylor and Runciman [12, 13] has fo-
cused on the implementation and performance of various underlying solvers. In
this paper, we investigate a formal definition for the reach problem, and how the
forward solver defined in their original paper [12] can be shown to be correct.
Having such a theory is important to check the correctness of more complex
solvers, such as backwards solver described in Naylor’s thesis [13]. The act of
formalisation also opens up new potential avenues for further research into al-
ternate evaluation strategies, as discussed in section 10.

The forward reach solver developed by Naylor and Runciman uses a lazy
narrowing evaluation strategy adapted from functional logic programming. Lazy
narrowing can be thought of as an extension to the semantics of a non-strict
language to include reduction rules for free variables. The basic idea is that when
the value of a free variable is required for a case analysis to proceed, we bind
the free variable to each possible alternative form that it may have. To focus on
the essence of the problem, we initially consider a minimal language (section 3)



that includes only Peano-encoded natural numbers, a target expression, and case
expressions. Abstracting away from the details of a real language such as Haskell
we keep the presentation neat and concise but still include enough detail to
express and understand the properties of the reach problem and lazy narrowing.
Within the context of this minimal language we:

– Extend the language with free variables, and give a precise definition for the
‘reach problem’ in this setting (section 4);

– Define a lazy narrowing semantics for the extended language and use the
semantics to define a forward reach solver (section 5);

– Show that the lazy narrowing semantics is sound and complete with respect
to the original semantics, and that our reach solver is correct (section 6);

– Provide a mechanical verification of our results in the Agda system, and
make the proof scripts freely available online (section 7);

– Describe how the language can be extended with a number of additional
features, and extend the Agda formalisation accordingly (section 8).

We present proofs for our main results based on a number of lemmas, but for
brevity do not provide proofs for the lemmas and refer the interested reader to
the accompanying Agda code for the details [4]. The intended audience for the
article is functional programmers with a basic knowledge of semantics. No prior
knowledge of Reach is assumed; an introduction is given in section 2.

2 The Reach Problem

Reach [12] is a tool for Haskell that can be used help achieve program coverage.
A reach problem is a Haskell program with a marked target expression and
source function. The goal is to find an input to the source function that entails
evaluation of the target expression. The target is typically placed in a rarely
evaluated expression within the program. The inputs generated from the running
of the Reach solver can then be used as test cases for these expressions.

As an example, consider a simplified version of a balance function from the
standard library Data.Map. The balance function takes a binary tree and redis-
tributes the tree when one sub-tree contains substantially more elements than
the other, in this case four times as many:

balance :: Tree a ! Tree a
balance (Leaf a) = Leaf a
balance (Node lt rt)

| size rt > 4 ⇤ size lt = balanceToL lt rt
| size lt > 4 ⇤ size rt = balanceToR lt rt
| otherwise = Node lt rt

When testing this function randomly, for example using a standard generator
for a Quickcheck property [9], the case when the tree is already balanced accord-
ing to the above definition is tested far more often than the interesting case



when the tree needs balancing. By replacing the branch of the guard requiring
the tree to be right-heavy with a target expression, indicated by •, we create a
Reach problem which will generate input trees that require balancing.

balance :: Tree a ! Tree a
balance (Leaf a) = Leaf a
balance (Node lt rt)

| size rt > 4 ⇤ size lt = •
| size lt > 4 ⇤ size rt = balanceToR lt rt
| otherwise = Node lt rt

A solution to the Reach problem with balance as the input function is a tree
which satisfies the first guard, such as the following:

Node (Leaf 0) (Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 5) (Leaf 2)))

This tree can then be used as an input to the original balance function to ensure
that the auxiliary function balanceToL is executed as part of testing. In a similar
manner, we can move the target expression to the second branch of the guard
to find a tree which ensures that balanceToR is executed.

2.1 Forward Reach

In this section we introduce the primary reach solver, Forward Reach, defined
by Naylor and Runciman [12, 13]. Forward Reach uses lazy narrowing in order
to generate inputs e�ciently. Lazy narrowing is a concept from functional logic
programming [2, 7] and can be described as the natural extension of a non-strict
semantics to a language with free variables. Free variables are only bound when
their value is required for evaluation to proceed.

To illustrate, we give an example of a lazy narrowing reach solver in action.
We show the first steps of an analysis of the balance function from the previous
section. Each state during evaluation is given by an expression and a substitution,
a mapping which is an accumulation of the free variable bindings up to the
current point of evaluation. For our example, the initial expression is balance x
and the initial substitution is the trivial mapping x 7! x from x to itself.

1) {x 7! x }
balance x

Starting with the trivial mapping rather than the traditional empty mapping
helps with the formalisation, as discussed further in section 4.1. The first step
of evaluation is to inline the definition for balance x :

2) {x 7! x }
case x of

Leaf a ! Leaf a
Node lt rt ! ...



In order for evaluation to continue the value of the free variable x is now required,
which necessitates a narrowing step. To begin with, the variable is bound to
the leaf constructor for trees by refining the substitution to x 7! Leaf x 0, and
updating the expression being evaluated accordingly.

3) {x 7! Leaf x 0}
case Leaf x 0

of

Leaf a ! Leaf a
Node lt rt ! ...

Note that the introduction of a new variable x 0 is not strictly necessary above, as
the manner in which substitutions are later formalised ensures that the variables
on the left and right sides of a substitution are independent. Hence, we could
equally well use the substitution x 7! Leaf x above, and indeed this simpler
approach – which avoids the need to generate a fresh variable name – is used in
our subsequent formalisation in section 5. Now that the form of the expression
is known, we can reduce the case expression itself:

4) {x 7! Leaf x 0}
Leaf x 0

Evaluation of this execution path terminates with the value Leaf x 0. In this
case, the target has not been evaluated so the input Leaf x 0 is not a solution to
the reach problem, independent of any value substituted for x0. Evaluation now
backtracks and x is bound to the node constructor for trees. After the narrowing
step and following reduction of the case expression we have:

5) {x 7! Node xl xr}
if size xl > 4 ⇤ size xr then • else ...

Analysis will continue with evaluation of the expression size xl > 4 ⇤ size xr.
Inputs that evaluate to the target will be collected and evaluation will continue
until a set number of solutions is found or a given termination condition is
reached, e.g. the input has been enumerated to a particular depth.

Lazy narrowing has two key e�ciency benefits over the naive approach in
which possible inputs are enumerated and evaluated from the beginning each
time. First of all, and most importantly, it allows for portions of the input
domain to be discarded or accepted if the evaluation concludes while there are
still free variables in the substitution, as the same conclusion can be drawn for
any input formed by replacing these free variables. This can greatly reduce the
search space. For example, above we were able to discard any input of the form
Leaf x 0. Secondly, some evaluation is shared between di↵erent inputs if they
have common structure. In particular, their evaluation is shared up to the point
where their di↵erences cause execution to take separate branches.

3 A Minimal Language

In this section we introduce the minimal language that we will use for the rest
of paper. The language is not suitable for actual programming, but does provide



enough structure to describe the key mechanisms of lazy narrowing. To this end
the language has only one type, Peano natural numbers, which provides the
simplest example type for showing the recursive mechanics of narrowing. The
grammar for expressions of the language is defined as follows:

Exp ::= Zero

| Suc Exp
| •
| case Exp of Exp Alt
| var Var

Alt ::= Suc Var ! Exp

Val ::= Zero | Suc Val

That is, an expression is either a natural number, a target expression •, a case
expression, or a variable from some given set Var of names. Case expressions
have the form case e of e0 f , where the first alternative is the Zero branch and
the second alternative is the Suc branch, which can depend on its argument
variable. Expressions are assumed to be closed; variables only appear within the
case expression in which they are bound. The values of the language are simply
the natural numbers. We do not regard the target expression itself as a value,
because our intended interpretation is that the values are ‘normal’ results.

Note that the language does not contain functions or recursion, as these are
not required to study the ‘essence’ of lazy narrowing. We do however provide an
additional Agda formalisation that incorporates these features, as discussed in
section 8. One might also ask why the target expression, which is specific to the
Reach problem, is already included in the above language. The reason is simply
for convenience: if the target expression was excluded we would need to extend
both the syntax and semantics when we later define the Reach problem, whereas
including it here means that we only need to extend the syntax.

The behaviour of expressions is defined as a small-step operational semantics,
! ✓ Exp ⇥Exp , by means of the following inference rules:

case • of e0 f ! •
target

case Zero of e0 f ! e0

case-z

case Suc e of e0 (Suc v ! e

0) ! e

0[v := e]
case-suc

e ! e

0

case e of e0 f ! case e

0
of e0 f

subj

Using a small-step semantics enforces a clear order of evaluation, and supports
a natural extension to lazy narrowing. If the case subject is a Zero or Suc then
the semantics are standard, where e

0[v := e] denotes the substitution of variable
v by the expression e in the expression e

0 in a capture avoiding manner. The
target expression behaves in the same way as an error value, i.e. it is always



propagates through a case expression to the top level, on the basis that once we
have found a target no further evaluation is required.

When applying the semantics in practice, we often use the reflexive transitive
closure, !⇤, which is defined in the normal manner:

e ! e

0
e

0 !⇤
e

00

e !⇤
e

00 seq

e !⇤
e

refl

The semantics can be shown by standard methods to be normalising (always
terminates in a finite number of steps) and deterministic (always produces a sin-
gle possible result). However, neither property is a requirement for the definition
of the Reach problem or the correctness result which follows.

4 Adding Free Variables

To specify the Reach problem we require a notion of free variables. One possi-
bility is to simply allow our expressions to be open, letting the existing variables
be free. Although this is the approach taken in the original Reach work [12, 13],
we choose to syntactically separate the free variables as an extension of the lan-
guage. Our reason for making this choice is that free variables are independent
of the normal variables of a language; for example, it is easy to make a similar
extension to a language that does not have any form of variables.

The extended grammar for expressions is defined below, in which each rule is
now parameterised by a set X of free variables, and expressions and values are
extended with free variables of the form fvar X . Note that we do not require
the set of variables for an expression to be minimal, i.e. the set may contain
variables that are not used in the expression.

ExpX ::= Zero

| Suc ExpX

| •
| case ExpX of ExpX AltX
| var Var
| fvar X

AltX ::= Suc Var ! ExpX

ValX ::= Zero | Suc ValX | fvar X

We will view values of type ValX as partial values, in the sense that they
may contain undefined components represented by the free variables. We can also
view the original grammars as special cases of the free variable versions in which
the free variable sets are empty, i.e. Exp ⌘ Exp;, Alt ⌘ Alt; and Val ⌘ Val;.

4.1 Substitutions

An input to an expression is a mapping from its free variables to values. In
order to define this formally, we first make a slight detour to introduce the more



general notation of a substitution, which will be used later in lazy narrowing.
A substitution of type X ! Y is a mapping from the set of free variables X to
partial values that contain free variables from the set Y :

Sub
X!Y

= X ! Val
Y

Defining substitutions in this manner rather than as a partial mapping from an
infinite set of variables results in a simpler formalisation in Agda. In particular,
incorporating the set of variables for the domain and range directly into the type
removes the need to add the variable sets as constraints later on. A second benefit
of this approach is that it yields a monadic interpretation to the composition of
substitutions. Given this representation the traditional empty map becomes the
trivial map in which each variable is mapped to itself.

Using our notion of substitution, an input to an expression can then be
viewed as a special case when the set of free variables in the result is empty:

Inp
X

= Sub
X!;

We denote substitutions by � and inputs by ⌧ . The process of applying a sub-
stitution is defined recursively in the normal way:

[ ] :: ExpX ! SubX!Y ! ExpY

Zero [� ] = Zero

Suc e [� ] = Suc (e [� ])
• [� ] = •
case e of e0 (Suc v ! e 0) [� ] = case e [� ] of e0 [� ] (Suc v ! e 0 [� ])
var v [� ] = var v
fvar x [� ] = � x

4.2 Reachability

We can now specify the meaning of reachability within our framework. Given an
expression e 2 Exp

X

with free variables X , the set of inputs reach(e) ✓ Inp
X

that reach the target expression is defined as follows:

⌧ 2 reach(e) () e[⌧ ] !⇤ •
That is, an input ⌧ that provides values for the free variables in expression e

satisfies the reachability condition i↵ the input applied to the expression eval-
uates to the target. This equivalence describes what it means for a given input
to reach the target, but does not describe a specific reach problem. An example
for such problem might be to find a specific input that satisfies reachability, or
to show that none exists. In most languages, but not in our minimal language,
the problem is undecidable and therefore an additional termination criterion is
included, e.g. find a solution up to a given search depth.

A naive approach to implementing a reach solver is to search for a solution
by brute force enumeration and evaluation of all possible inputs. Clearly, how-
ever, this is not very e�cient. Instead, Naylor and Runciman [12] implement an
approach based on lazy narrowing which proves far more e�cient. This approach
shares evaluation, where possible, across the input domain.



5 Lazy Narrowing Semantics

In this section we define a semantics for our minimal language extended with
free variables, based upon the notion of lazy narrowing, a symbolic evaluation
strategy from functional logic programming. As illustrated in section 2, the basic
idea of lazy narrowing is that when evaluation of an expression is suspended
on the value of a free variable, we allow evaluation to proceed by performing
a narrowing step, in which each partial value that the variable could have is
considered in turn. As evaluation proceeds a substitution is gradually built up
which tracks the instantiation of free variables.

5.1 Preliminaries

We begin by defining a number of concepts that are used in our formalisation
of the notion of lazy narrowing, in the form of suspended expressions, minimal
narrowing sets, and the composition of substitutions.

Suspended expressions An expression e is suspended on a free variable x ,
denoted by e ( x, if the value of the variable is required for evaluation of the
expression to proceed any further. For our language, the relation( ✓ Exp

X

⇥X

can be defined by the following two inference rules:

fvarx( x

susp

e( x

case e of e0 f ( x

subj-susp

That is, free variables are themselves suspended, and a case expression is sus-
pended if its subject expression is suspended. Expressions that are suspended
can make no further transitions in our small-step operational semantics from
section 3. However, the converse is not true. In particular, values and the target
expression cannot make further transitions, but are not suspended.

Minimal narrowing set When an expression is suspended there is a set of
possible narrowing steps that can be performed. However, in order to maximise
laziness, each of the steps that are considered should be minimal, in the sense
that it should only instantiate the free variable just enough to allow evaluation to
continue, and no further. For our language, in which the only values are natural
numbers, this means replacing a free variable x by either Zero or Suc (fvar x ),
the two possible forms that a natural number can have.

To formalise this idea, we begin by writing x /a for the one-point substitution
that maps the free variable x 2 X to the partial value a 2 Val

Y

and leaves all
other variables in X unchanged, defined as follows:

(/) :: (x 2 X ) ! ValY ! SubX!X[x/Y ]

(x / a) x 0 | x ⌘ x 0 = a
| otherwise = fvar x 0



The return type of the substitution is given by X [x / Y ] = (X � {x }) [ Y ,
in which the element x 2 X is replaced by the set Y . Note that the type of (/)
depends on the name of the variable x , i.e. the operator has a dependent type.
Being precise in this manner helps to simplify our Agda formalisation. Using
this operator we can now define the minimal narrowing set Narr

X

(x) of a free
variable x 2 X by replacing x by the two possible forms that it may have:

Narr
X

(x) = {x/ Zero, x/ Suc (fvar x)}

This set has two properties that play an important role in completeness of the
lazy narrowing semantics. Firstly, the minimal narrowing set itself obeys a notion
of completeness, in the sense that for every input that is possible before the
narrowing there exists a substitution in which the input remains possible. And
secondly, each substitution in the minimal narrowing set is advancing, in that it
always instantiates a variable. These properties are formalised in section 6.2.

Composition of Substitutions As evaluation proceeds under lazy narrowing,
we will construct a substitution in a compositional manner from smaller compo-
nents. In order to define a composition operator for substitutions, we first note
that Val forms a monad under the following definitions:

return :: X ! ValX
return = fvar

(>>=) :: ValX ! (X ! ValY ) ! ValY
Zero>>=� = Zero

Suc e >>= � = Suc (e >>= �)
fvar x >>= � = � x

We note in passing that this is the free monad of the underlying functor for the
natural numbers. Using the>>= operator for this monad it is then straightforward
to define the composition operator for substitutions:

(>=>) :: SubX!Y ! SubY!Z ! SubX!Z

� >=>�

0 = �a ! � a >>= �

0

Moreover, expanding out the definition of Sub in the type for the >=> operator
gives (X ! Val Y ) ! (Y ! Val Z ) ! (X ! Val Z ), which corresponds to the
standard notion of Kleisli composition for the Val monad.

Along with the monad laws we require one more law, relating the composition
of substitutions to the application of a substitution.

Lemma 1. The sequential application of substitutions to an expression is equiv-
alent to the application of the composed substitutions to the expression:

e[�][�0] ⌘ e[� >=>�

0]



5.2 Semantics

We now have all the ingredients required to define a lazy narrowing semantics
for our minimal language. A step in the new semantics is either:

– a single step in the original semantics; or
– a minimal narrowing step, if the expression is suspended.

To keep track of the substitutions that are applied during narrowing, we write
e he0,�i to mean that expression e can make the transition to expression e

0 in
a single step, where � is the substitution that has been applied in the case of a
narrowing step. In the case of a step in the original semantics, we simply return
the identity substitution, which is given by the return operator of the Val monad.
More formally, we define a transition relation  ✓ Exp

X

⇥ (Exp
Y

⇥Sub
X!Y

)
for lazy narrowing by the following two inference rules:

e !
X

e

0

e he0, returni
prom

e( x � 2 Narr
X

(x)

e he[�], �i
narr

The first rule promotes transitions from the original semantics to the new seman-
tics, where !

X

✓ Exp

X

⇥ Exp

X

is the trivial lifting of the transition relation
! ✓ Exp ⇥ Exp to operate on expressions with free variables in the set X,
for which the inference rules remain syntactically the same as previously except
that they now operate on expressions of a more general form. The second rule
applies a minimal narrowing step to a suspended expression.

The definition of how to sequence steps in our extended semantics, which
takes into account the additional presence of substitutions, is given by a relation
 + that is defined by the following two rules:

e he0, �i e

0  + he00, ⌧i
e + he00, � >=>⌧i

seq

e 2 Exp
X

⌧ 2 Inp
X

e + he[⌧ ], ⌧i
fill

The first rule simply composes the substitutions from the two component re-
ductions. The second rule adds a final narrowing step to the end of a reduction
sequence that instantiates any remaining free variables. The reason for includ-
ing a final narrowing step is that it simplifies both the definition of forward
reachability and its relationship to the original semantics.

5.3 Forward Reachability

Finally, we can now give an alternative characterisation of reachability using
our lazy narrowing semantics. Given an expression e 2 Exp

X

, the set of inputs
reach

F

(e) 2 Inp
X

that reach the target expression is defined as follows:

⌧ 2 reach
F

(e) () e + h•, ⌧i

That is, an input ⌧ satisfies the forward reachability condition i↵ there is a lazy
narrowing reduction sequence that ends with the target and the given input. The



key di↵erence with our original definition of reachablity in section 4.2 is that our
new semantics constructs an input substitution during the reduction sequence,
whereas the original semantics requires that we are given a substitution so that
it can be applied prior to starting the reduction process. In the next section we
show that these two notions of reachability coincide.

6 Correctness of the Narrowing Semantics

To prove that forward reachability is equivalent to the original definition, we first
formalise the relationship between the lazy narrowing semantics and the original
semantics. This relationship is characterised by two properties, soundness and
completeness, which are proved using a number of lemmas. The proofs of the
lemmas themselves are provided in the associated Agda formalisation.

6.1 Soundness

Lemma 2. A transition in the original semantics can be lifted through a sub-
stitution. Given a substitution � 2 Sub

X!Y

, we have:

e !
X

e

0 =) e[�] !
Y

e

0[�]

Theorem 1 (Soundness). For every reduction sequence in the lazy narrowing
semantics there is a corresponding sequence in the original semantics:

e + he0, ⌧i =) e[⌧ ] !⇤
e

0

Proof. The proof proceeds by rule induction on the definition for the narrowing
relation  +, for which there are three cases to consider.

Case 1 In the base case when the narrowing is a simple application of

e + he[⌧ ], ⌧i
fill

the goal follows immediately from the reflexivity of !⇤:

e[⌧ ] !⇤
e[⌧ ]

refl

Case 2 There are two inductive cases to consider, depending on the nature of
the first reduction in a narrowing sequence. We first consider the case when the
reduction is a narrowing step, constructed as follows:

narr

e( x � 2 Narr
X

(x)

e he[�], �i e[�] + he0, ⌧i
e + he0, � >=>⌧i

seq



We are now free to use the three assumptions e( x, � 2 Narr
X

(x) and e[�] +

he0, ⌧i in our proof. In this case, we only require the third of these assumptions
in order to verify our goal, by first using the induction hypothesis (ih) e[�] +

he0, ⌧i =) e[�][⌧ ] !⇤
e

0, and then applying lemma 1:

e[�] + he0, ⌧i
e[�][⌧ ] !⇤

e

0 ih

e[� >=>⌧ ] !⇤
e

0 lemma 1

Case 3 We now consider the case when the first reduction is a promoted reduc-
tion from the original language, constructed as follows:

prom

e !
X

e

0

e he0, returni e

0  + he00, ⌧i
e + he00, return >=>⌧i

seq

In this case our goal can then be verified by lifting the reduction from the original
language through the input substitution using lemma 2, sequencing with the
result of applying the induction hypothesis to the remaining reduction sequence,
and finally applying an identity law for Kleisli composition:

lemma 2

e !
X

e

0

e[⌧ ] ! e

0[⌧ ]

e

0  + he00, ⌧i
e

0[⌧ ] !⇤
e

00 ih

e[⌧ ] !⇤
e

00 seq

e[return >=>⌧ ] !⇤
e

00 id

ut

Although the above proof was presented specifically for the specific case of lazy
narrowing semantics, it is not dependent on the properties of the narrowing set
or the condition for applying a narrowing step. Therefore the proof is also valid
for any narrowing set and any applicability condition.

6.2 Completeness

Definition 1. We exploit two pre-orderings on substitutions, which respectively
capture the idea of one substitution being a prefix or su�x of another:

�1 v �2 () 9�0
. �1 >=>�

0 ⌘ �2

�1 6 �2 () 9�0
. �

0
>=>�1 ⌘ �2

Lemma 3. If the source expression of a transition in the original semantics
is not suspended then the transition can be ‘unlifted’. Given a substitution � 2
Sub

X!Y

and a transition e[�] !
Y

e

0 for which e 6( x, we have:

9e0
�

. e !
X

e

0
�

^ e

0
�

[�] ⌘ e

0



Lemma 4. The lazy narrowing set is complete. For every input there is a sub-
stitution in the narrowing set that is a prefix of the input:

8x 2 X, ⌧ 2 Inp
X

. 9� 2 Narr
X

(x). � v ⌧

Lemma 5. The lazy narrowing set is advancing. The identity substitution is a
strict prefix of every substitution in the narrowing set:

8x 2 X, � 2 Narr
X

(x). return @ �

Theorem 2 (Completeness). For every reduction sequence in the original
semantics there is a corresponding reduction in the lazy narrowing semantics:

e[⌧ ] !⇤
e

0 =) e + he0, ⌧i

Proof. The proof proceeds by rule induction on the definition for the evaluation
relation !⇤, for which there are three cases to consider.

Case 1 In the base case when the evaluation is just reflexivity

e[⌧ ] !⇤
e[⌧ ]

refl

the goal follows immediately by instantiating free variables:

e + he[⌧ ], ⌧i
fill

Case 2 There are two inductive cases to consider, depending on whether or not
the expression e is suspended when the sequencing rule is applied:

e[⌧ ] ! e

0
e

0 !⇤
e

00

e[⌧ ] !⇤
e

00 seq

In the case when e is not suspended our goal can be verified as follows, in which
the two branches of the proof tree exploit the two conclusions from lemma 3:

prom

lemma 3

e ! e

0
⌧

e he0
⌧

, returni

e

0 !⇤
e

00

e

0
⌧

[⌧ ] !⇤
e

00 lemma 3

e

0
⌧

 + he00, ⌧i
ih

e + he00, return >=>⌧i
seq

e + he00, ⌧i
id

Case 3 Finally, when e is suspended on x , because the narrowing set Narr(x)
is complete (lemma 4) there is a substitution in this set that is a prefix of the
input ⌧ , i.e. a substitution � 2 Narr(x) and input ⌧

0 for which ⌧ ⌘ � >=> ⌧

0.
Based upon this observation our goal can then be verified as follows:



narr

e( x � 2 Narr(x)

e he[�], �i

e[⌧ ] !⇤
e

0

e[�][⌧ 0] !⇤
e

0 lemma 1

e[�] + he0, ⌧

0i
ih

e + he0, � >=>⌧

0i
seq

e + he0, ⌧i
lemma 4

Well-foundedness In the third case above, we need to explicitly verify that the
induction is well-founded as the induction hypothesis is not trivially smaller in
this case. Instead, with each iteration the input gets smaller. To formalise this
well-foundedness neatly and generally, we restrict our notion of substitutions
Sub

X!Y

to the case when the free variable sets X and Y are finite, and every
variable in Y appears in the result of the substitution. For our purposes this
leads to no loss of generality and all of our definitions satisfy these restrictions.
With these in place, we then have the following two results, which together with
lemma 5 ensures that the use of induction in the third case is well-founded.

Lemma 6. The su�x relation < is well-founded. For any substitution ⌧0, there
only exists finite chains of substitutions ⌧

i

such that:

⌧

n

< ... < ⌧1 < ⌧0

Lemma 7. A su�x formed by an advancing prefix is strict.

� >=>�1 ⌘ �2 ^ return @ � =) �1 < �2

ut

Whereas the soundness proof was independent of the properties of the nar-
rowing set and the condition for its applicability, the completeness proof relies on
the fact that the narrowing set is complete and advancing, and that narrowing
steps can always be applied when an expression is suspended.

6.3 Correctness

Using the soundness and completeness results, it is now straightforward to prove
that our two notions of reachability are equivalent:

Theorem 3 (Correctness). For all expressions e 2 Exp

X

:

reach
F

(e) ⌘ reach(e)

Proof.

⌧ 2 reach
F

(e) () e + h•, ⌧i (by definition)

() e[⌧ ] !⇤ • (theorems 1 and 2)

() ⌧ 2 reach(e) (by definition)



7 Agda Formalisation

Our correctness result has also been formalised in the Agda [14]. The Agda
formalisation follows the presentation given in the paper closely: the language
grammar and semantic rules convert directly to inductive datatypes, and rule
induction translates to recursive dependent functions. A proof of the main result
and all associated lemmas is available online from:

http://tinyurl.com/reachtheory

Using Agda brings a number of important benefits. First of all, it provides a
guarantee that our results are correct. Secondly, it helped guide the development
of our theory and proofs, resulting in a number of simplifications. For example,
when translating our original formalisation into Agda we found that it contained
a subtle error. The process of correcting the error also pointed towards a neater
theory. In particular, our original lazy narrowing formulation kept the substitu-
tion as an environment, only replacing free variables when they were needed. The
most natural way to fix the error was to apply the substitution to the current
expression immediately, removing the need to keep the substitution as an envi-
ronment. This also removed an unnecessary distinction in the formalisation: in
the original formulation the expression/environment pair he, �i behaved equiva-
lently to the pair he[�], �i, yet the two were distinct. And finally, the use of Agda
had a positive e↵ect on the formulation of the representation of substitutions.
In order to ensure totality in Agda we had to parameterise substitutions with
the set of variables used in their domain and result. Far from being a hindrance,
this led us to the monadic formulation of composition.

8 Extending the language

In this paper we focused on a minimal language to emphasise the key elements
of the reach problem and a solver based on lazy narrowing semantics. However,
our results also scale up to a more realistic language that includes function ap-
plication, lambda abstraction and fixed points [4]. This section briefly describes
the changes that are required to the Agda formalisation.

First of all, the expression grammar is extended to include the three new
constructors: function application, lambda abstraction and fixed points. To avoid
ill-formed expressions the addition of these language features requires the new
expression grammar to be typed. Therefore a function type is added to the
language, along with the type of natural numbers. The small step semantics is
extended to account for the new language constructs.

Our formalisation of the lazy narrowing semantics for the extended language
restricts free variables, and by extension narrowing, to natural numbers. Al-
though this is certainly a limitation, it is standard in the lazy narrowing lit-
erature, where a narrowing theory is generally described for first-order data
initially, and then potentially extended to the higher-order case in subsequent
work. With this restriction, the alteration to the lazy narrowing semantics and

http://tinyurl.com/reachtheory


correctness proof is minor. The suspension predicate, e( x, has to be updated
as an expression can now be suspended within a function application or a fix-
point expression. We defined the lazy narrowing semantics by lifting the original
semantics, and this definition remains unchanged except that we now lift the
extended semantics. Finally, the lemmas, particularly the lift and unlift lemmas
(2&3), need updating to account for the additional cases. The proof of soundness
and completeness remain identical under the updated lemmas.

The ease of this extension suggests it may be possible to generalise the theory
by abstracting away from the details of the underlying language and semantics
that is used, which is an interesting topic for further work.

9 Related Work

There is a large body of work on the theory of lazy narrowing in functional
logic programming. We introduce and compare two particularly relevant theo-
ries to ours. In their seminal work, Antoy et al. [2] established the soundness
and completeness of the related notion of needed narrowing, and the optimality
of needed narrowing within a restricted domain. However, whereas our formali-
sation is based on extending a small-step semantics, theirs is based on classical
rewrite systems. As a result, our approach is easier to mechanically verify, which
we have done, as the semantics of our language has a direct representation in
proof assistants. In fact, to the best of our knowledge, this is a first time that a
lazy narrowing formalisation has had such a verification.

A formulation of lazy narrowing which is more closely related to ours is given
by Albert et al. [1] in which a “natural” big-step semantics is defined before an
implementation driven small-step semantics is introduced. Both semantics are
call-by-need, implement sharing, and are proved to be equivalent. They go on
to extend the small-step semantics with additional features such as equational
constraints and external functions. There is a di↵erence in motive in comparison
to our work, as they establish lazy narrowing as a programming language feature
whereas we are interested in using lazy narrowing to analyse the operation of a
program. The di↵erence manifests itself in the theories: they relate their small-
step semantics back to their defining big-step semantics, whereas we relate our
lazy narrowing semantics back to the underlying functional semantics.

10 Conclusions and Future Work

In this article we established the correctness of a reach solver for a minimal
language, based upon a soundness and completeness result for a lazy narrowing
semantics. Our final formulation of the semantics is the result of several iterations
and improvements, and captures the main ideas of lazy narrowing in a simple
and concise manner. In particular, the use of an underlying small-step semantics
was instrumental in simplifying the theory. The simplicity along with the use of
precise types enables a direct translation of our result to the Agda system [4].



There are number of interesting directions in which the theory developed in this
article could be extended and improved, which are summarised below.

Other reach solvers The work in this article lays the ground for attempting to
formalise alternative and more general reach solvers, such as the Backward Reach
solver defined in Naylor’s thesis [13]. In addition, tools such as Lindblad’s data
generator [10] and Lazy SmallCheck [16] define logical or operators that evaluate
both argument expressions in parallel, which could significantly improve the
performance of lazy narrowing as expressions of the form e or e

0 can be reduced
to true if either argument reduces to true in the current substitution state. We
could easily add such an operator to our language. However, our formulation
suggests a generalisation to this idea, in the form of evaluating branches in
parallel and utilising equational reasoning on case expressions.

Other language features We used a minimal language for simplicity, but it is
important to consider how our approach generalises to other language features.
For algebraic datatypes, we expect it should be straightforward to extend our
theory using ideas from generic programming as in [8], while first-order functions
could be handled by representing functions using tries as in the improved Lazy
Smallcheck [15]. Another interesting area to explore is dependent type theory.
Lazy narrowing is often used in automated property based testing and depen-
dent type theory seems a natural coupling as it o↵ers an inbuilt language for
specifications. In this area there is also potential for interesting comparison to
related work such as automated proof search [14].

E�ciency We showed that the lazy narrowing definition of reachability for our
language is correct with respect to the original specification of reachability. How-
ever we have not made any formal argument regarding the e�ciency of the lazy
narrowing approach, either against an alternative narrowing semantics or a naive
approach based on brute force search. Such an argument could be made on the
basis of simply counting the number of reduction steps required, or adopt a more
sophisticated approach, for example using the idea of improvement theory [11],
which has recently been used to prove that a general purpose optimisation tech-
nique for lazy languages never makes programs worse [6].
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