
RESEARCH ARTICLE
10.1002/2015WR017958

Tracking tracer motion in a 4-D electrical resistivity
tomography experiment
W. O. C. Ward1,2, P. B. Wilkinson2, J. E. Chambers2, H. Nilsson1, O. Kuras2, and L. Bai1

1School of Computer Science, University of Nottingham, Nottingham, UK, 2British Geological Survey, Keyworth, UK

Abstract A new framework for automatically tracking subsurface tracers in electrical resistivity
tomography (ERT) monitoring images is presented. Using computer vision and Bayesian inference
techniques, in the form of a Kalman filter, the trajectory of a subsurface tracer is monitored by predicting
and updating a state model representing its movements. Observations for the Kalman filter are gathered
using the maximally stable volumes algorithm, which is used to dynamically threshold local regions of an
ERT image sequence to detect the tracer at each time step. The application of the framework to the results
of 2-D and 3-D tracer monitoring experiments show that the proposed method is effective for detecting
and tracking tracer plumes in ERT images in the presence of noise, without intermediate manual
intervention.

1. Introduction

Applying computational imaging techniques is a relatively novel approach to the interpretation and analysis
of electrical resistivity tomography (ERT) data [Ward et al., 2014]. Prior research has investigated automated
identification of subsurface boundaries in static images, using steepest gradient [Chambers et al., 2012], Lap-
lacian [Hsu et al., 2010], or watershed [Elwaseif and Slater, 2010, 2012] edge detection. A common difficulty
with such approaches is that ERT images tend to exhibit smooth boundaries between different regions. The
cause may be artifacts of the smoothness constraints typically used to regularize the inversion, but can also
reflect true gradational changes in the resistivity structure of the subsurface. Attempts have been made to
mitigate the effects of smoothness constraints on edge detection by incorporating detected boundaries
into the inversion process, to some success [Elwaseif and Slater, 2012; Zhou et al., 2014].

Another approach is to use clustering techniques to automatically detect distinct regions in static ERT
images [Ward et al., 2014; Audebert et al., 2014], as well as combining resistivity models created using multi-
ple electrode arrays [Ishola et al., 2014]. One particular method, distribution-guided fuzzy clustering, has
been used previously on time-lapse ERT data [Ward et al., 2014; Chambers et al., 2015].

In a more complex situation, for example, where there is a need to track a particular region against a vari-
able background (caused by noise or the influence of other processes), automated identification is a nontri-
vial problem. Clustering the overall change, for example to monitor quarry dewatering as in Chambers et al.
[2015], is one of the methods for identifying regions-of-interest. However, that would require both a base-
line image to compare with, and also manual intervention to choose the correct cluster associated with the
region of interest (similar to the problem faced by Elwaseif and Slater [2013]).

In the case of tracking and monitoring a plume or tracer movement, clustering techniques are less suita-
ble since they do not necessarily distinguish features, but rather fully segment an image. A more promis-
ing approach is to consider monitoring tracer movement as a visual tracking problem, incorporating the
need for local feature detection [Tuytelaars and Mikolajczyk, 2007]. Such is the approach taken in
research presented in this paper. The detections at each time step should be matched across the time
series to form consistent tracks of objects throughout the time-lapse model [Yilmaz et al., 2006]. Due to
the effects of noise and variable spatial resolution in ERT imaging, this is not a simple task. Approaches
to track objects would need to deal with the loss of tracked regions that either have not been correctly
resolved in the current time step, or have moved out of the survey area (temporarily or permanently).
The tracking should be able to handle artifacts in the model, as well as quantify uncertainty or variance
in the results.
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The paper introduces a framework for tracking tracers in 2-D and 3-D time-lapse ERT images using a Kalman
filter [Kalman, 1960], with promising results. The Kalman filter uses a measure of statistical correspondence
to predict the next state in time sequence given information from all previous time steps. Updating each
prediction step with observations, e.g., detected features from the model, allows for improved estimation of
the true state while not relying on detection results being absolutely correct [Yilmaz et al., 2006]. Multiple
regions can be simultaneously tracked using assignment algorithms, to maintain and/or prune tracks as the
time-series progresses.

A technique called maximally stable volumes (MSV) is used to detect features at each time step. The MSV
approach involves converting an image into binary using thresholding (known as ‘‘binarising’’), performed
at several thresholds to create a tree of disconnected regions of the image at each threshold level [Matas
et al., 2002; Donoser and Bischof, 2006]. A measure of stability is then used to extract regions that remain rel-
atively constant in size over a small set of consecutive thresholds. The method may be considered a local-
ized adaptive thresholding method [Matas et al., 2002]. Information from the identified MSVs is used to
guide the Kalman filter by providing observations at the current time step.

In the rest of the manuscript, the background theory and algorithms are outlined, with a complete descrip-
tion of the framework. Details of the implementation and results of a 2-D and a 3-D ERT monitoring experi-
ment are given. Following this, an evaluation of the technique and limitations are discussed, and
recommendations for further work are outlined.

2. Methodology

2.1. Maximally Stable Volumes
The maximally stable volumes algorithm is a generalization of the maximally stable extremal regions (MSER)
method [Matas et al., 2002], used to find connected regions that are considered ‘‘stable.’’ An input volume is
binarized at multiple successive thresholds and a tree is created using the spatially connected components
[Donoser and Bischof, 2006; Vedaldi, 2009]. MSER is widely regarded as one of the most effective means of
local feature detection in images [Tuytelaars and Mikolajczyk, 2007]. In 3-D, MSV has been shown to perform
well in automatic selection of points-of-interest, and has been found to be especially robust in the presence
of noise [Yu et al., 2012].

First, a set of thresholds, D, is specified, typically spanning the range of unique values in the input data and
discretized over some predefined intervals. At each threshold, the input image is binarized to 0 or 1 based
on whether values are below or above the threshold, and the individual connected components are identi-
fied—by nature they are spatially disconnected from each other. An example in 2-D is shown in Figure 1,
with the binary image on the left, and connected components individually colored on the right. The algo-
rithm for calculating connected components is simply finding an unlabeled voxel with value 1 and using a

Figure 1. (right) A binary image with independent connected components individually colored.
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flood-fill to label all the voxels in the connected region containing that voxel. The process is repeated for
every remaining unlabeled 1 value voxels in the model. In calculating connectivity, a voxel is adjacent both
along principal coordinate axes and diagonally—8 connected for 2-D, and 26 connected for 3-D.

The connected component tree built for a simple 2-D image using four threshold levels is demonstrated in
Figure 2. Each connected component forms a tree node at its threshold level, as a child of the component
in the level above to which its voxels also belong. By the nature of the thresholding and connectivity crite-
rion, there are no overlapping regions. The contour plot shows the embedded connected components in
the equivalent input data.

From the complete tree, a measure of ‘‘stability’’ can be calculated based on the change in size of compo-
nents as the threshold changes. Each connected component c has a corresponding stability WðcÞ that takes
the difference in size between its parent node and its largest child divided by the size of c. The root node
(with no parent) and leaf nodes (with no children) have 0 stability. Traversing the tree depth-first to calcu-
late local maxima in stability returns the nodes that correspond to maximally stable volumes. While some
branches in the tree will have monotonically decreasing stability, it is also not uncommon for MSVs to be
nested, as can be seen in Figure 3. The full algorithm is detailed in Algorithm 1 in Appendix A.

Constraints can be applied to remove MSVs that are too large or small as relative to the size of the image.
Stability can also be calculated based on the sizes of the connected components hð� 1Þ threshold levels
above and below the focused component. Figure 3 shows a comparison of distribution-guided fuzzy clus-
tering (as described by Ward et al., [2014] and Chambers et al., [2015]) and MSV applied to a time step from
a 2-D ERT tracer monitoring experiment. It can be seen here that while the clustering approach is effective
in picking out distinct regions, it is not as effective at pinpointing the local region of the tracer as MSVs. The
issue is largely due to the complete segmentation nature where every point is given an arbitrary label,
including ‘‘background’’ regions.

MSVs are well suited for the purpose of detecting tracers in ERT images, due both to their success at identi-
fying distinct regions in a background of noise, and also the presence of nested volumes. The nested vol-
umes mark steps of stability in the gradual shift in resistivity between the tracer and the background, the
boundaries of which give discrete contours describing the contained tracer. Detected volumes are used to
extract localized information at each time step, which is described in detail in a later section. The informa-
tion is used for tracking purposes, incorporated into an implementation of the Kalman filter.

2.2. Kalman Filter
Object tracking is the process of identifying and locating a moving object or region in a sequence of images
over time. In the cases studied in the presented work, the objects tracked are regions of increased conduc-
tivity, associated with the passage of a saline tracer in a time-lapse sequence of ERT images.

Figure 2. Demonstration of the connected component tree used in MSV. The nodes in the tree represent the connected components obtained by thresholding the input model with Di ,
with contour plot corresponding to input data.
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Tracking algorithms are often split into two types characterized by the relations used to identify objects
between time-slices. The first, deterministic correspondence, uses a cost function that is minimized between
a current object and equivalent points of reference identified in a consecutive time-slice [Yilmaz et al.,
2006].

The alternative to deterministic approaches is to use statistical methods to identify correspondence of
objects between time-slices. The basis of such tracking algorithms is to include model and detection errors
into the algorithm. Errors are given in the form of covariance matrices that dictate the degree of uncertainty
in the transition between two time-slices. Using a state model that is consistent with current knowledge of
the underlying problem, and then updating this model as more data is observed, is the basis for many

Figure 3. 2-D resistivity model of pit experiment at t20, with results from (middle) distribution-guided fuzzy clustering and (bottom)
maximally stable volumes. Individually colored regions represent distinctly separate detected regions which, in the MSV case, exhibit
nesting.
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approaches [Masreliez and Martin, 1977]. While there are a variety of such approaches that can be taken,
requiring a different set of assumptions, such as Markov chain Monte Carlo [Andrieu et al., 2003], or the par-
ticle filter [Liu and Chen, 1998], the Kalman filter tracker is used.

The Kalman filter is useful to approximate a linear system and gives an optimal estimate of the current state
of the system, if the underlying errors are strictly normally distributed. The system is described by some
state model, which is generated from observed features and dictates the rules of correspondence between
two time-slices [Kalman, 1960]. An object state, Xt, at some time t, may be described by the following
dynamic system:

Xt5FXt211But1Wt (1)

where the matrix F is a system of linear equations representing the change between two states over
some fixed time step; B and ut form a control system that can be used to constrain the linear system; and
Wt � ð0;QtÞ is some unknown Gaussian noise, with zero mean and known covariance Qt .

The relation between detected measurements zt and the state representation is specified by an observation
function:

Zt5HXt1Vt (2)

where H is the mapping of state into measurement, and Vt � ð0;RtÞ is unknown Gaussian noise, with zero
mean and known covariance Rt . It is referred to as ‘‘measurement noise’’ and is independent of Wt .

The operation of the Kalman filter can be considered in three distinct phases: initialization, prediction, and
updating. While the initialization only occurs once, the prediction and correction phases will alternate for
the duration of the tracking. Since each iteration of Xt is dependent on its prior state, its approximation is
made with prior information of all previous measurements up to the current time step.
2.2.1. Initialization
To initialize a Kalman filter, some initial state X0 and its corresponding error covariance P0 need to be gener-
ated. Taking some initial measurement, Z0, X0 is simply the inverse of H multiplied by Z0. The initialization of
P0 can be simply the identity matrix, or some estimate based on measurement noise covariance R. If the ini-
tial state is unknown or the approximation is imperfect, the value of the initial covariance can be set to
some large value L to minimize the effect of the initial information over the first few states: P05L � I, where
I is the identify matrix with dimension equal to the length of X0.
2.2.2. Prediction
The prediction step creates an approximation of the state, X̂ tjt21, at time t using the dynamic state transition
system in (1). Calculating the state error covariance involves updating the prior error with F and the process
covariance Pt , which can then used to calculate the weighting of the input measurements on the state
model during the update phase.

Using the predicted state, a forecast of the present measurement Ẑ tjt21 can be attained given no informa-
tion about the current time-step. The measurement can be found simply by applying the observation map-
ping H to X̂ tjt21, as in (2).
2.2.3. Updating
The correction phase corrects the predictions using observed measurements obtained from the tracked
data, Zt. The measurement is used both to better approximate any unobservable parameters in the state
model, and to correct observations to fit the given state model, assuming some noise is present in the
measurement.

The first step is to calculate the optimal ‘‘Kalman gain,’’ Kt based on the estimated error covariance and obser-
vation model. The Kalman gain is a measure dictating the certainty of measurements with respect to the state
estimate, with added measurement covariance Rt . Given the current observed measurement Zt, the Kalman
gain is used to weight the difference between Zt and approximation Ẑ tjt21. The result is added to the pre-
dicted state to get the updated estimation X̂ tjt at time t. Similarly, the gain is used to weight state error infor-
mation that is subtracted from the covariance P̂ tjt21 to get P̂ tjt . With a corrected state now available in the
model, the observation function (2) can now be applied to get an updated measurement estimate, Ẑ tjt .

Where no measurement Zt is available, the Kalman filter loop can continue for the next time step t 1 1 using
only the approximations gained in the prediction step. The full equations for each phase are given in
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Algorithm 2 in Appendix A, which detail the appropriate matrix multiplications for each calculation. Choices
of noise parameters and setting up the state model are discussed in a later section, based on the context of
the tracer tracking framework for time-lapse ERT data.

2.3. Selecting Kalman Filter Parameters
The creation of the state model requires an understanding of the underlying mathematics of the object
being tracked. The aim of the research is to identify a saline tracer moving under gravity in an approxi-
mately uniform horizontal flow field. A simple state model for the Kalman filter is to represent the position
and velocity of the tracer at a given time. The resistivity of the tracer is not expected to change significantly
for the duration of the time-lapse model, qV : Rd3t! R. With the mean log resistivity of the identified
tracer region, �q, included, the state model is constructed as such: X 5 ðs; �q;dsÞT .

The velocity of a tracer will be used to update the prediction of s, such that st115st1dst , whereas the val-
ues of �q and ds will be dependent only on their respective prior values. The assumed additive noise is not
included, Wt , which is instead considered in the calculation of Pt. Based on the assumptions outlined, the
dynamic state transition function (1) can be set up as follows:

F5

1 0 0 1 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
; Xt5

xt

zt

�qt

dxt

dzt

0
BBBBBBBB@

1
CCCCCCCCA

(3)

The above is for the 2-D case, with a horizontal x by vertical z imaging plane. For the 3-D case, Xt will have
parameters for the y coordinate and its respective velocity component, dy. Since the velocity was expected
to be only approximately constant, it was selected as a state variable, rather than a control parameter—
hence its use in X instead of u—allowing the velocity to be calculated adaptively, rather than relying on it
being a known value. There are no other controls in the defined state system, so B50. and any components
containing B or u are omitted from calculations.

Mapping the state to the observations derived from the ERT images is a simple case of taking the position
and resistivity components of the state X. H can therefore be defined as the following (again for a 2-D case):

H5

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0
BB@

1
CCA (4)

Observations, Z, are thus of the form ðs; �qÞT . We can extract such values though simple averaging, with the
coordinates and distribution of resistivity in a measurement Z contributing to the geometric center of a
detected MSV. For each detected MSV, a measurement will consist of the center-of-mass, s5ðx; y½in 3D�; zÞ,
and mean log resistivity, �q. Center-of-mass can be calculated using a weighted mean, such that each spatial
cell in a MSV is weighted by its conductivity change from some baseline, where available:
s5
P

hðsÞs=
P

hðsÞ, with hðsÞ5qVðs; tÞ21
2qVðs; 0Þ21 and s the set of coordinates in the current MSV. Val-

ues for Q and R are setup as square matrices, created with diagonal elements containing predefined values
of noise. The values chosen dictate the results of tracking, and directly affect the distance measure used in
the assignment of tracks and observations.

2.4. Tracer Tracking Framework
The tracer tracking framework (TTF) introduced incorporates the previously described concepts of MSVs
and the Kalman filter. The main principle of the TTF is to iterate through the time-slices of a time-lapse ERT
model and at each state identify all MSVs. Rather than just managing a single Kalman filter that follows one
detected region, the TTF uses a deterministic cost function to enable tracking of multiple objects. Taking
this approach allows the creation of a ‘‘track’’ for each distinctly identified region and assigns an independ-
ent Kalman filter to each.
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The use of MSVs may lead to multiple detected regions that could correspond to the tracer, but also to sta-
tionary regions, and random or systematic artifacts in the model. Additionally, it is very likely that nested
volumes will occur: where a region is considered stable at different thresholds. Using a multitrack approach
avoids the need to identify a single prominent region in each time-slice. Rather, minimizing the cost func-
tion between predicted measurements Ẑ tjt21 in each track and the observed measurements allows the
assignment of the detected regions to the independent Kalman filters.

The information taken from each individual MSV from an image qVðS; tÞ at time step t forms the observed
measurements Zt input to the Kalman filters. The cost function used to associate predictions with observa-
tions is based on a variant of the Hungarian assignment method [Munkres, 1957]. For some given matrix of
distances between all combinations of predictions and observations, the method will find the optimal com-
bination of assignments by minimizing the sum of distances. The distance measure for a given observation
and track prediction is as follows:

dðZt; Ẑ tjt21Þ5 Zt2Ẑ tjt21

� �T
R21 Zt2Ẑ tjt21

� �
(5)

where R5HP̂ tjt21HT 1Rt , with the error covariance of the Kalman filter associated to the given track.

Costs for nonassignment for both tracks and observed measurements are also incorporated into the assign-
ment algorithm. If a track or prediction has no associated distance lower than the nonassignment cost, it
will not be assigned to a prediction or track, respectively. For the case of tracks with assigned observations,
the following step is simply a case of updating the Kalman filters with the given observed measurement.
Measurements that do not correspond to any tracks are used to initialize a new Kalman filter, thereby start-
ing a new track. Where a track has not been assigned, the predicted state and covariance will be used in
the next time step to make the new prediction. If a track remains unassigned for a predetermined N consec-
utive time-slices, it will be considered ‘‘lost.’’ Lost tracks will consist of detected regions that were simply
noisy artifacts, as well as objects that have left the imaging region. Once a track is lost, it will no longer be
updated or used in the assignment function.

The TTF is described explicitly in Algorithm 3 in Appendix A. The basic outline of the algorithm for a time-
lapse ERT model, qVðS; tÞ, is as follows. For the first time-slice, identify the MSVs. From each stable volume,
obtain a measurement vector and initialize a Kalman filter. The Kalman filters will then form the initial set of
tracks. For consecutive time-slices, the algorithm will continue by predicting the existing tracks, and identi-
fying the MSVs in this slice. Then, the assignment method will be used for the tracks and measurements
(taken from the MSVs). As described above, tracks will be updated and new tracks created. The process is
then iterated for the whole time series.

The output of the TTF consists of the list of active tracks and lost tracks at the end of the time series, repre-
senting all the tracked objects, and can be post processed. Extraneous tracks or detected noise may be
removed automatically, for example, based on age (i.e., the number of time-steps tracked), expected veloc-
ity, or the magnitude of the error covariance.

3. Results

The examples described in the presented work demonstrate the results of the tracer tracking framework
when applied to two time-lapse cross-borehole ERT tracer experiments—one 2-D and one 3-D.

The tracer tracking framework was applied to both the 2-D and 3-D experiments. For each time step, MSVs
were calculated using 50 thresholds, with fixed intervals at 2% of the total range of log resistivity values.
The list of thresholds was then reversed, such that it ran high to low, and MSVs were recalculated and com-
bined with the initial results. The two-way thresholding is performed to obtain MSVs regardless of whether
they shrink or grow as the resistivity threshold increases as a result of the contrast difference with the back-
ground. MSVs are removed automatically if they were outside the range of tolerated sizes, in both cases
fixed between 2.5% and 25.0% of the total size of the image, inclusive.

3.1. Test Cell Experiment
The 2-D time-lapse experiment consists of a saline tracer monitored using time-lapse ERT in a reduced field
scale hydraulic test cell [Kuras et al., 2009]. The experimental area was an unlined elongated trench,
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measuring 6.0 m 3 1.5 m 3 1.6 m, excavated from made ground comprising low permeability Cropwell
Bishop Formation mudstones, and filled with fine washed and graded high silica sand (Chelford 52, average
grain size 0.267 mm). Pumps and level sensors were used to produce a well-controlled horizontal flow field,
with a relatively low flow rate (4–5 m/d) compared to the rate of ERT image acquisition to avoid blurring on
the horizontal scale of the model cells (0.1 m) [Wilkinson et al., 2010; Rucker, 2014].

The cell was instrumented with 19 vertical electrode arrays, 9 of which, spaced at 0.5 m intervals, formed a
2-D imaging plane along the long axis of the trench. Each array consisted of 16 stainless steel electrodes at
0.1 m separations. Data were acquired using cross-borehole bipole-bipole measurements between adjacent
arrays, with a full data set being measured every 40 min over a 24 h period. The data were inverted using a
2.5-D least squares smoothness-constrained algorithm [Loke and Barker, 1995] with an L2 model smooth-
ness constraint and an L1 measure of data misfit. The saline tracer had a concentration of 20 g/L and 25 L
of tracer was injected into the flow field over a period of 1.5 h at a depth of 0.4 m and a distance of 0.5 m
from the right-hand side of the imaging plane. The expected vertical Darcy velocity of the tracer, due to
sinking under gravity, was 0.4 m/d. Further technical details of the experiment can be found in Kuras et al.
[2009].

The results at the end of tracking are shown in Figure 4, highlighting the individually tracked regions over
the whole time series. At the end of tracking, post processing was carried out to automatically remove
extraneous tracks that did not meet the expected criteria: any tracks with horizontal velocity below 22 m/d
relative to the flow field were considered a noisy response and removed. In addition, tracks that were only
detected for 2 (or fewer) time-slices before being lost are also removed. A lost track was counted as one
that was unassigned to a detected MSV for four consecutive time-slices.

The paths of the tracks in Figure 4 are represented by connecting solid and dashed lines, with point markers
indicating the location of the tracked center-of-mass of a region, predicted or corrected by some detected
MSV. Notable tracks of interest can be seen specifically across the central area of the imaging plane (solid
with triangle, square, and circles markers), but also in the top and lower left corners of the image (around
ð2:2;20:1Þ and ð2:1;21:2Þ, respectively). The latter are indicative of stationary regions with a slight resis-
tivity contrast from surrounding areas, detected as MSVs in multiple time series. Their velocities are rela-
tively constant at 0 m/d and so are tracked successfully by the framework despite not being due to the
tracer. It is simple then to identify and isolate these in post processing.

The three tracks representing the tracer path are highlighted in the image and shown progressing across
the time series in Figure 5. This is demonstrated at 12 time-steps at evenly spaced intervals in the 2-D time-
lapse model. The tracks show assignment and detection to the tracer plume (blue region of low resistivity,
�1230 X m). The tracked horizontal and vertical velocity of these tracks are plotted against time in
Figure 6. The plot in Figure 6a shows the tracked velocity reaching the expected region of 425 m/d, consist-
ent with the flow field. Toward the end of the tracking period, the measured velocity is slightly higher.
Despite this, the error bars representing standard deviation include the upper velocity limit for each time
step.

Figure 4. Kalman filter tracks showing the pathway and tracked positions of detected regions across the whole time series, plotted on the
final ERT time-slice, t37.
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Density-driven sinking shown in Figure 6b demonstrates the tracked vertical velocity decreasing to a value
consistent with the calculated Darcy velocity of 20.4 m/d. This pattern is present in each of the tracer tracks
and shows the reliability of the tracking model.

3.2. Tank Experiment
The 3-D experiment was similar to the 2-D test cell, but was carried out in a laboratory tank. A volume of
1.30 m 3 0.80 m 3 0.95 m was filled with Chelford 52 sand and tap water, and a hydraulic gradient was
established along the long dimension of the tank, giving an approximately uniform horizontal flow field
with a velocity of 1.70 m/d. The saline tracer had the same concentration as in the 2-D experiment (20 g/L)
and therefore the same expected density-driven vertical Darcy velocity of 0.4 m/d. A tracer volume of 1.30 L
was injected over 0.5 h at a depth of 0.20 m and a distance of 0.10 m upstream of an ERT imaging volume.
The volume, of dimensions 0.80 m 3 0.40 m 3 0.75 m, was defined by 8 vertical electrode arrays (A1-A8)
situated within the tank as shown in Figure 7, each comprising 16 electrodes at 0.05 m spacing between
depths of 0.10 m and 0.85 m. As above, cross-borehole bipole-bipole measurements were carried out
between pairs of arrays shown by the numbered dashed lines in Figure 7. Full data sets were acquired every
hour over a 16 h period and were inverted using a 3-D algorithm with the same types of constraints used in
the 2-D experiment.

The results of the maximally stable volumes algorithm (after automatically removing MSVs greater than or
less than 40% and 1% of the total image size, respectively) for each time step are shown in Figure 8. The
surfaces representing volume boundaries are shaded corresponding to the mean log resistivity of the MSV.
From these plots, it is clear that the MSV is effective at clearly isolating distinct regions, such as those

Figure 5. Time-slices of 2-D time-lapse ERT model of test cell tracer experiment, with Kalman filter tracks showing tracked positions of tracer plume up to the current time-slice.
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corresponding to the tracer plume, in 3-D
ERT data. While the tracer is clearly defined,
there are numerous detected regions that
do not correspond to areas-of-interest.
These are likely caused by artifacts in the
ERT data, such as those resolved in t1.

The tracks shown in Figure 8 represent the
best fits for the tracer, found by automati-
cally removing those that were deemed
too short, were stationary, or had negative
horizontal velocity with respect to the
expected flow field. The plots of both lat-
eral (jjðdxt; dytÞjj2) and vertical velocity
(dzt) of these tracks are shown in Figures
9a and 9b, respectively. Each path shown
clearly corresponds to the tracer plume,
which at later time-steps is represented by
a set of nested MSVs, and show both hori-
zontal and vertical velocities that match
the expected values (denoted by the
dashed lines in Figure 9). This is especially
the case for the vertical velocity. Notable
deviations from the expected parameters
occur toward the end of the monitoring
period, where the horizontal velocities for
the circle and triangle tracks begin to
decrease in the final four time steps. This
corresponds to the tracer plume moving

outside the imaging volume, which occurs over multiple time steps. Detections of the tracer in this plume are
thus incomplete and the detected center-of-mass begins to affect the Kalman state for these tracks. The phe-
nomenon does not affect the diamond track, as this is no longer dictated by detection and is driven only by
predictions based on the prior states. However, this is a clear indicator that the tracking and estimation of
velocity parameters is effective for forecasting the physical progression where no measurements are available.

4. Limitations

Despite the many benefits of the tech-
nique for the process of tracking tracer
movement in ERT time-lapse data, there
are a number of limitations to the frame-
work in its current form. In using ERT data,
there are greater assumptions required for
the detection certainty. Due to the inver-
sion process, it is always the case that
image resolution varies throughout the
imaging space [Gharibi and Bentley, 2005].
A degree of uncertainty is present that is
nonuniform in the imaging survey, some-
thing that is not explicitly dealt with in the
tracking framework.

Additionally, the detection step of the pro-
cess (i.e., MSV), relies on local connectivity
between resistivity cells to calculate

Figure 6. Plots showing (a) horizontal and (b) vertical velocity (m/d) for the
three tracks shown in Figure 5 based on Kalman filter states in the test cell
tracer experiment. Calculated expected velocities are marked with dashed
black lines: 425 and 20:4 m=d, respectively. Error bars represent one
standard deviation either side of the estimation.

Figure 7. Arrangement of vertical electrode arrays (black dots A1-8) in
laboratory tank experiment, showing measurement array pairs and tracer
injection point.
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connected components. The assumption here is that the cells are sized and distributed uniformly—which is
the case for the data used, but would not necessarily be so for e.g., surface monitoring experiments. The cur-
rent implementation of MSV relies on structured grids for calculating connectivity. In theory, the extension of
MSVs to unstructured polygonal and polyhedral meshes is feasible, by using a measure of connectivity based

Figure 8. Time-slices of 3-D time-lapse ERT model of tank experiment, showing detected MSVs and Kalman filter tracks of the tracked positions up to the current time-slice. MSV surfaces
are shaded to represent log mean resistivity.

Water Resources Research 10.1002/2015WR017958

WARD ET AL. TRACKING TRACER MOTION IN 4-D ERT 11



on shared edges, vertices, or faces (as 2-
D quadric grid uses 8-connectivity, and
3-D cubic grid uses 26-connected in the
presented work). However, some investi-
gation should be made into the effects
on computational efficiency and
implementation.

The estimation of tracer center-of-
mass is based on a pseudomeasure of
concentration that weights cells based
on their observed change from some
baseline. Where no convenient base-
line exists, e.g., in monitoring a region
where the tracer plume occurs in the
initial time step(s), the assumptions
behind this weighting may not hold.
An alternative weighting using solely
the current conductivity would addi-
tionally allow a focused estimation of
the plume distribution. However, using
only electrical conductivity is not as
reliable in representing tracer distribu-
tion, as it does not account for back-
ground artifacts that may be removed
with use of a baseline.

Despite these issues, a comparison of
the two approaches, demonstrated in
Figure 10, shows that there is little
deviation in the overall values given,
and that the estimated velocity is reli-

ably predicted in both cases. The results give positive indications that conductivity may be used as an
appropriate alternative where there is no reliable baseline.

In the use of the Kalman filter, to calculate the optimal gain, all noise is assumed to be normally distributed,
whereas the data noise in ERT is strongly voltage-dependent and the model covariances are influenced by the
type of smoothing constraint. Similarly, we are limited to only a linear system for state transition. Alternative
methods based on Kalman filter and other Bayesian approaches are available and will be discussed in section 6.

5. Conclusions

In summary, the tracer tracking framework presented is an effective means of automatically identifying
tracer movement with minor user intervention in identifying specific tracks. The results take into account
inaccuracies in detection methods and variance from the expected model.

Results have clearly shown the capabilities of tracking a moving object, demonstrating simple post process-
ing steps that can be both automated and manually controlled. Namely, short tracks and stationary tracks
can easily be identified for the given state transition parameters.

The detection method can effectively identify and isolate maximally stable volumes, seen in Figure 8. The
capabilities for nested volumes allow for multiple tracks to be assigned to the same tracer. Such an
approach may be useful for observing different levels of concentration in the tracer—one track following
the movement of high concentration region, and another initialized and tracking the larger region as the
tracer disperses into the outlying environment as in the 3-D tank experiment.

Using a Bayesian approach such as Kalman filter is effective in dealing with uncertainties involved with ERT imag-
ing. Taking into account potential errors in both the detection method and expected trajectory allows an

Figure 9. Plots showing (a) horizontal and (b) vertical velocity (m/d) for the three
tracks shown in Figure 8 based on Kalman filter states in the 3-D tank tracer
experiment. Calculated expected velocities are marked with dashed black lines:
1.7 and 20:4 m=d, respectively. Error bars represent one standard deviation either
side of the estimation.
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appropriate level of response to changes in
the system. The Kalman filter in particular is
useful as the calculation of Kalman gain, Kt,
allows an optimal weighting of the expecta-
tion versus observation based on the covari-
ance of state tracking. It is evident that the
tracer tracking framework described here
can provide useful functionality in the detec-
tion and tracking of subsurface hydrogeo-
physical processes, both in assisting and
automating observation processes.

The approach is distinct from focused inver-
sion [Cardiff and Kitanidis, 2009], in that it is
reliant only on the inverted data. As a result
of the predict/update cycle, with estimators
accounting for the assumed uncertainty in
the ERT models, the framework is largely
invariant to inversion parameters. While it has
been shown that predictions of the center-of-
mass from smoothness-constrained ERT of
tracers is relatively robust [Singha and Gore-
lick, 2005; Doetsch et al., 2012], some bias
exists due to spatially variable resolution.
Adjusting the choices of inversion and associ-
ated constraints to optimize the solution
would go some way to improve the results,
but the presented method mitigates the
effects by means of Bayesian inference.

In contrast to some other feature detection frameworks for ERT, which return pseudo-optimal segmentations
based on multiple inversions with changing parameters [Audebert et al., 2014], the detection results are cor-
rected by the dynamic state model.

6. Further Research

The framework outlined demonstrates the effectiveness of Kalman filters applied to maximally stable vol-
umes for hydraulic feature tracking in ERT monitoring. As discussed previously, the current state model
involves only the tracer velocity and resistivity. With additional parameters in the state model, it may be
possible to develop a more accurate forecasting technique.

Introducing more statistical measures, such as covariance models to represent stable volumes, will provide
increased information to track. Similarly, ancillary data may be incorporated into the model as additional
observations, such as local temperature measurements. By increasing the dimensionality of potential state
models, both by improved information and the use of second-order moments, the complexity of state tran-
sition will be greater which, while relying on more computation, will provide a more detailed result based
on increased understanding of the underlying system.

It may also be possible to use more complex state equations to model the tracer, especially if incorporating
more spatial information such as higher spatial moments (e.g., those quantifying the extend of the tracer).
For example, incorporating a convection-dispersion model to describe the tracer plume in a flow [Kemna
et al., 2002]. Such a model may be incorporated into use with the Kalman filter, however, the state system
may now be nonlinear. In modeling tracers that experience decay, or in the presence of continuous injec-
tion, it would be possible to model known physical effects on the tracer.

Figure 10. Plots showing (a) horizontal and (b) vertical velocity (m/d)
comparing tracking results for center-of-mass calculations weighted with
resistivity ratio (red) and conductivity (blue) for tracks corresponding to
those in Figure 5. Calculated expected velocities are marked with dashed
black lines: 425 and 20:4 m=d, respectively.
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Adaptations to the basic Kalman filter exist, designed to handle a nonlinear state transition function. Indeed,
approximating a linear model derived from the underlying nonlinear system is possible by using a first-
order Taylor expansion, as with the extended Kalman filter [Ljung, 1979].

The extended Kalman filter requires calculations of derivatives in the form of a Jacobian, which may lead to
high computational expense. An alternative is to use the unscented transform to numerically sample the lin-
ear predictors [Julier and Uhlmann, 2004]. This unscented Kalman filter is similar to particle filter, except that
the sample scheme is deterministic instead of stochastic [Ahn and Chan, 2014].

Regardless of the filtering technique used, alternative relations between multiple tracks may be explored.
Instead of using a deterministic cost minimization approach, statistical measures may be used in the form
of multiple hypothesis testing [Cox and Hingorani, 1996]. The method works by maintaining all permuta-
tions of track assignment and uses a likelihood function to assign final tracks.

Appendix A: Algorithms

Algorithm 1 Maximally Stable Volumes

inputs
V : Rd ! R d-dimensional volume, indexed by coordinates s 2 S � Rd

n 2 N number of threshold levels
D½1;n� � R ascending (or descending) vector of thresholds, indexed by i 2 ½1; n� \N

variables
B : Rd ! f0; 1g binary d-dimensional volume indexed by coordinates s
C½0;n� � PðSÞ set of connected components for each threshold level, indexed by i 2 ½0; n� \N

T : ½0; n� 3 PðSÞ tree containing connected components with n 1 1 levels
W : ½0; n� 3 PðSÞ ! R stability measure for pairs ði;CÞ 2 T
algorithm
C0  fSg (or f1g if D is descending)
rootðTÞ  ð0;C0Þ
for i ¼ 1 . . . n do

for all s 2 S do
BðsÞ  VðsÞ � Di

end for
Ci  set of connected components in B
for all c 2 Ci21 do

childrenðT ; ði21; cÞÞ  fði; c0Þjc0 2 Ci; c0 � cg
end for
for all ði; cÞ 2 T do

if i = 0 or childrenðT ; ði; cÞÞ ¼1 then
Wði; cÞ  0

else
Wði; cÞ  jcj21 jparentðT ; ði; cÞÞj2max fjc0jjð ; c0Þ 2 childrenðTði; cÞÞgð Þ

end if
end for

end for
return
fcjði; cÞ 2 T ;Wði; cÞ � WðparentðT ; ði; cÞÞÞ

and Wði; cÞ � Wði11; c0Þ;8ði11; c0Þ 2 childrenðT ; ði; cÞÞg
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Algorithm 2 Kalman Filter

inputs
Z0 initial observations
Qt 2 Rx 3 Rx state estimation noise, with dimension x ¼ jXj
Rt 2 Rz 3 Rz measurement noise with dimension z ¼ jZj
algorithm
initialize
X̂ 0j0 ¼ H21Z0

P̂0j0 ¼ L � I
t  0: time-step
loop

t  t11
predict

X̂ tjt21  FX̂ t21jt211But

P̂ tjt21  FP̂ t21jt21FT 1Qt

Ẑ tjt21  HX̂ tjt21

input Zt : current observations
update

Kt  P̂ tjt21HT ½HP̂ tjt21HT 1Rt�21

X̂ tjt  X̂ tjt211Kt½Zt2Ẑ tjt21�
P̂ tjt  P̂ tjt212KtHP̂ tjt21

Ẑ tjt  HX̂ tjt
end loop
return Ẑ tjt observation estimate at time-step t

Algorithm 3 Tracer Tracking Framework

inputs
qV : Rd 3 t! R ERT volume, indexed by coordinates s 2 S � Rd and time t 2 t
e 2 R cost of non-assignment
M 2 N minimum age of a track before it can be considered lost
N 2 N maximum consecutive steps a track is invisible before considered lost
variables
T �1 set of active tracks
L �1 set of lost tracks
algorithm
for all t 2 t do

m qVðS; tÞ
for all j 2 T do

jðtÞ  predictðjÞ
ageðjÞ  ageðjÞ11
invisibleðjÞ  invisibleðjÞ11

end for
Cm  msvðmÞ
Zm  fðs; �qÞjc 2 Cm; s 2 c; s  

X
hðsÞs=

X
hðsÞ; hðsÞ ¼ mðsÞ21

2qVðs; 0Þ21;

q mðsÞ; �q  
X

q=jqjg
for all Z 2 Zm do

j	  arg min fcostðZ; jðtÞÞjj 2 T g
if costðZ;j	ðtÞÞ < e then

j	ðtÞ  updateðk	; ZÞ
invisibleðj	Þ  0

else
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Notation
s spatial coordinates, e.g., (x, y, z).
S spatial domain: set of coordinates fsg.
t time series of ERT slices.
q log resistivity in Xm.
qV electrical resistivity tomography model.
h electrical conductivity change.
j � j cardinality, i.e. number of elements.
Ci set of connected components at threshold Di.
c a connected component in Ci .
W stability measure of a region.
Z data observation.
X state representation.
P state error covariance.
dð�; �Þ Kalman weighted distance function.
ð�^Þajb estimation for time a given prior b.
 assignment.
[ set union.
fajbg set of values a that meet condition(s) b.
a n b set a without contents of set b.
PðaÞ power set: the set of all combinations of elements in set a.
1 empty set.
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