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Abstract 

 
The properties of statistical tests for hypotheses concerning the parameters of the 

multifractal model of asset returns (MMAR) are investigated, using Monte Carlo techniques. We 

show that, in the presence of multifractality, conventional tests of long memory tend to over-

reject the null hypothesis of no long memory. Our test addresses this issue by jointly estimating 

long memory and multifractality. The estimation and test procedures are applied to exchange rate 

data for 12 currencies. Among the nested model specifications that are investigated, in 11 out 

of 12 cases, daily returns are most appropriately characterized by a variant of the MMAR that 

applies a multifractal time-deformation process to NIID returns. There is no evidence of long 

memory. 
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Long memory and multifractality: A joint test 

 

1. Introduction 

The statistical properties of financial asset returns are of key importance for finance 

theory, and for portfolio and risk management. The econophysics literature has grown rapidly 

in volume over the past two decades, and fractal models have been employed to explain 

empirical regularities at odds with mainstream financial economics theory, such as: power-

laws and self-similarity [1], long memory in returns and volatility [2-4], and multifractality 

[5]. Multifractality in financial returns data has been interpreted as evidence of financial 

market inefficiency [6], or herding behaviour in financial markets [7]. 

The multifractal model of asset returns (MMAR) is capable of accommodating 

exceptional events (large shocks), and can represent either normal or non-normal log returns 

with a finite variance [8]. The MMAR nests the fractionally-integrated ARFIMA(0,d,0) 

model, which allows for long memory in returns, and can also accommodate long memory in 

volatility associated with multifractality in the trading process. Long memory in returns does 

not necessarily imply multifractality, and vice versa. Thus, the MMAR is able to replicate the 

pricing behaviour of many types of financial assets.   

The MMAR describes a continuous-time process, constructed by compounding 

fractional brownian motion (FBM) with a random, multifractal time-deformation process. 

The time-deformation process allows for volatility clustering in log returns measured at any 

time scale, and for long memory in volatility.  

The property of multifractality is identified empirically through estimation of the 

moment scaling function, E( q

t

)n( |p| ), where pt is log price, and nttt

)n( ppp   is the log 

return measured over the time scale n, over a range of values for q. Multi-scaling behaviour 

implies different exponents characterize the variation of different q-moments of the 

unconditional distribution of returns as the time scale n changes. The scaling function 
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captures the intuition that different economic factors, such as technological shocks, business 

cycles and liquidity shocks, have different time scales, and that the volatility arising from 

shocks associated with different factors may have different degrees of persistence [8], [9]. 

The MMAR allows for a wide range of behaviour in the tails of the unconditional distribution 

of returns, including fat tails at high frequencies [10]. Consistent with many financial returns 

series, including exchange rate returns, the MMAR allows the tails of the unconditional 

distribution to become thinner as the time scale increases; but the distribution need not 

converge to a normal distribution at the lowest frequencies [9].  

Previous empirical studies employ methods such as Multi-Fractal Detrended 

Fluctuation Analysis [5, 11, 12, 13, 14], Wavelet Transform Modulus Maxima [11] or a 

Generalized Hurst Exponent approach [15] to detect multifractality. In this study, we develop 

statistical testing criteria for jointly-estimated long memory and multifractality parameters, 

based on a conventional hypothesis-testing methodology. In so doing, we facilitate 

comparisons between processes that are described by the MMAR, and processes that are 

characterized by model specifications nested within the MMAR. The latter include NIID 

(normal, independent and identically distributed) returns, and long-range dependent returns 

generated from a log price series characterized by FBM. Monte Carlo simulations are used to 

generate critical values for the relevant tests. 

The methods are illustrated by fitting the MMAR to the daily log returns series for the 

exchange rates of 12 currencies against the US dollar for the period 1993-2012. Prior 

literature indicates that key empirical features of exchange rate returns data, including long 

memory in volatility, multi-scaling behaviour, and fat tails, can be represented 

parsimoniously using a multifractal framework [8], [16], [17], [18], [19]. Our results suggest 

that the data can be characterized by a variant of the MMAR that is constructed by 

compounding NIID returns with a multifractal time-deformation process; but the more 
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general formulation, in which FBM is compounded with a multifractal time-deformation 

process, is not supported.
1
   

This paper proceeds as follows. The next section describes the MMAR. Section 3 

provides an explanation of how the main parameters of the MMAR can be estimated. Section 

4 introduces a joint hypothesis testing framework for long memory and multifractality and 

Section 5 reports the results of tests based on this method as applied to foreign exchange rates 

data. Section 6 concludes the paper. 

   

2. The multifractal model of asset returns 

According to the MMAR, pt = BH[(t)], where BH[ ] denotes FBM, and (t) denotes a 

time-deformation process. In order to construct (t), consider first the case T=2
K
 for some 

integer value of K. The specification of (t) is 

(t) = (t)–(t–1) = T )]k([m t

K

1k

1 


 , where  =  





T

1

K

1k

)]k([m     (1) 

where t(k) = h if 2
–k

(h–1)T+1  t  2
–k

hT for k=1...K, h=1...k, and t=1...T; and the multiplier 

m[t(k)] is assumed to be drawn randomly from a lognormal distribution with mean  and 

variance 
2
 = 2(–1)/ln 2 for >1. 

In the case T2
K
 for any integer value of K, the following adjustments are required. 

Let K
*
 denote the minimum value of K such that T<2

K
. The multipliers m[s(k)] are 

constructed in accordance with the procedure described above, for k=1...K
*
 and s=1...2

K*
. 

(t) = T )]k([m tr

K

1k

1




  , where  =  







Tr

1r
r

K

1k

)]k([m       (2) 

where r is a randomly drawn integer, distributed uniformly over the interval (0, K
*
–T). 

                                                
1 A methodological approach that involves fitting a multifractal model  to data, and drawing inferences from the 

fitted parameter values, has a longstanding tradition in the multifractality literature, extending back to [20]. In 

this study and elsewhere, multifractality is the (model-dependent) alternative hypothesis against which null 

hypotheses favouring a more parsimonious model specification are tested.  
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Let ut ~ N(0,(t)). For =1, (t)=1 for all t. ut is homoscedastic and there is no 

multifractality in ut. For >1, ut is heteroscedastic and there is multifractality in ut. 

Combining the multifractal time-deformation process with FBM such that pt = BH[(t)], the 

data generating process for 
(1)

pt is 

(1–L)
d


(1)
pt = ut          (3) 

where L denotes the lag operator L
s


(1)
pt = 

(1)
pt–s for s=0,1,2,... 

Using the Wold decomposition, the moving average representation of FBM is 


(1)

pt = (1–L)
–d

ut = [1 + dL + {d(d–1)/2!}L
2
 + {d(d–1)(d–2)/3!}L

3
 + ...]ut   (4) 


(1)

pt is stationary for –0.5<d<0.5. Let H=d+0.5 denote the Hurst exponent. The 

variance of log returns has the following scaling property 

var[
(n)

pt] = n
2H

var[
(1)

pt]          (5) 

Let k = E(
(1)

pt
(1)

pt–k)/E(
(1)

pt
2
) for k=0,1,2,... denote the autocovariance function of 


(1)

pt. For d=0 (H=0.5), pt is a martingale, and k=0 for k1. For –0.5<d<0 (0<H<0.5), pt 

exhibits negative persistence, and k<0 for k1. For 0<d<0.5 (0.5<H<1), pt exhibits positive 

persistence and long memory, and k>0 for k1.  

 

3. Estimation of the parameters of the MMAR 

Following the method described by [8], estimation of the two parameters of interest in 

the MMAR, {H, }, proceeds as follows. Starting from the first observation, subdivide the 

sample period T into M contiguous subperiods, each containing n observations such that T–n 

< Mn  T. Let vm denote the absolute value of the log return calculated over the n 

observations within subperiod m, for m=1...M, vm = |pmn – pm(n–1)|. 

If Mn<T, then L=T–nM observations at the end of the sample period are unused in the 

calculation of {vm}. In order to incorporate these observations into the analysis, the above 
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calculation is repeated, starting from the L+1th observation. A second set of M values of {vm} 

is obtained, labelled (for convenience) {vm+1...v2M}. If Mn=T, {v1...vM} and {vM+1...v2M} are 

identical. The q’th-order partition function for scale n is  

Sq(T,n) = 



M2

1m

q

m

1 )v(2           (6) 

Sq(T,n) is calculated for various values of q, and for each q for various values of n. 

The scaling behaviour of Sq(T,n) is investigated by examining the power law relationship  

E[Sq(T,n)] = Tc(q)n
qh(q)

 = Tc(q)n
(q)+1

        (7) 

where c(q) is the prefactor, h(q) is the generalized Hurst exponent, and (q) is the scaling 

function. The function h(q) determines whether τ(q) is linear or non-linear. In the case of 

unifractality, h(q)  does not vary with q, and τ(q) = qH–1 is linear in q with slope coefficient 

H. The scaling behaviour of Sq(T,n) is the same for all q, or h(q)=H for all q. In the case of 

multifractality, h(q)  varies with q, and there are different h(q) for different moments. τ(q)  = 

qh(q)–1 is non-linear in q. In this case, the scaling behaviour of Sq(T,n) varies with q. In 

finance applications of multi-scaling behaviour, the degree of long-range dependence is 

permitted to differ for various powers of returns [21]. Let q
*
 denote the value of q such that 

q
*
h(q

*
)=1 and (q

*
)=0. This definition implies  

H=h(q
*
)  or  H=1/q

*
         (8)  

If the data generating process for returns is the MMAR with lognormal multipliers 

and >1, the scaling function (q) is quadratic in q [8], [22]. 

(q) = 0+1q+2q
2
                                (9) 

For convenience and without any loss of generality, the intercept of (9) may be 

normalized, 0 = –1. Using (7) and (9), (q) can be estimated from the fixed-effects regression  

ln[Sq(T,n)] = a(q) + [–1+1q+2q
2
] ln(n) + error                           (10)        

where a(q) = ln[nTc(q)].  
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In the previous literature, evidence of multifractality is commonly obtained from 

inspection of the multifractal spectrum, f() = )]q(q[min
q

 . Let 0 denote the value of  

that maximizes f(). Using (8), it is easily shown  

0=1 and H=22[(1
2
+42)

1/2
–1]

–1
                            (11) 

Equation (11) provides an estimation method for H. A test of H0:H=0.5 against 

H1:H0.5 is a test for NIID returns under H0, against either positive persistence and long 

memory (H>0.5), or negative persistence (H<0.5) under H1. 

Figure 1 illustrates the interpretation of the multifractal spectrum. f() can be 

interpreted as the lower envelope of the set of linear functions q – (q). In addition to 0, 

other reference points in Figure 1 are (1, 1/H), (MIN, 0), and (MAX, 0). Since (q
*
)=0 and 

q
*
=1/H, the linear function q

*
 – (q

*
) intersects the origin, and is tangential to f() at the 

point (1, 1/H). MIN and MAX are the minimum and maximum values of  for which 

f()0.    

In the case of unifractality, the scaling function is (q)=–1+Hq, and all of the lines of 

tangency pass through the same point, (H, 1). The lower envelope is degenerate, and the 

multifractal spectrum has the appearance of a spike, located at 0=1=MIN=MAX=H, such 

that f()=1 for =H, and f()=– for H [20].                              

The parameter  is estimated using the relationship  

0 = H or  = 0/H                             (12) 

In the case of unifractality, 0=H implies =1. Accordingly, test of H0:=1 against 

H1:>1 is a test for the null hypothesis of unifractality against an alternative hypothesis of 

multifractality.  
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4. Hypothesis tests for the presence of long memory and multifractality 

The hypothesis tests reported in this study are derived from the synthetic distributions 

of the estimators of H and  based on (11) and (12), obtained from 5,000 replications of NIID 

series and denoted { H ,  }. We examine tests of the following hypotheses: (i) H0:H=0.5 

against H1:H0.5; (ii) H0:=1 against H1:>1; and (iii) H0:{=1, H=0.5}. Using { H ,  } 

obtained from the Monte Carlo simulation and the estimated H and  for an observed series, 

denoted { Ĥ , ̂ }, the p-value for (i) is 2min{H, 1–H} where 




ĤH

1

H 15000 , 
ĤH

1


 is 

the indicator function for ĤH  , and the summation is over the 5,000 simulated H . The p-

value for (ii) is 




 ˆ
1 15000 , where 

 ˆ1  is the indicator function for  ˆ
 and the 

summation is the same. The p-value for (iii), denoted H,, is obtained iteratively as follows:   

 

1.  On the first iteration (j=1), set the initial p-value to p=1–0.001j.  

2.  Using the simulated { H ,  }, fit the confidence ellipse   

)p(HHH 0543

2

2

2

1   

3. For a significance level of =p, H0 is rejected under any of the following conditions:  

Ĥ < MINH  ;  Ĥ > MAXH  ; { MAX1
ˆ     and    )ˆ(fĤ 1  } ; 

 { MAX2
ˆ     and    )ˆ(fĤ 2  } 

where }))]p((4)[()({2)(f 2/1

04

2

2

2

5343

1

1    

  }))]p((4)[()({2)(f 2/1

04

2

2

2

5343

1

2    

  )(fminarg 11 


; HMIN = f1(1); )(fmaxarg 22 


; HMAX = f2(2) 

  }))]p(HH(4)H[()H({2)H(g 2/1

05

2

2

2

4343

1    

  )H(gmaxargH
H

2  ; MAX = g(H2) 



9 

 

4. If H0 is rejected at step 3, proceed to the second iteration by resetting j=2 and p=1– 

0.001j, and repeat steps 2,3. The procedure is repeated for further iterations 

(j=3,...,999), and terminates when a value for p is obtained at which H0 is not rejected. 

 

Figure 2 illustrates the construction of the rejection region in test (iii). Table 1 reports 

the size and power functions for tests (i), (ii) and (iii) for all permutations of H and  drawn 

from the following sets of values: H={0.5,0.54,0.58,0.62}, ={1,1.04,1.08,1.12}. The power 

functions are computed by applying the estimators of H and  based on (11) and (12) to 

simulated series generated in accordance with (1) to (4), with NIID random numbers used to 

generate m[t(k)] and ut.  

Test (i) is oversized if >1 (multifractality): the test rejects the null hypothesis of no 

positive or negative persistence too frequently. For H>0.5, the power of test (i) increases 

monotonically with H. Test (ii) is undersized if H>0.5 (positive persistence and long 

memory): the test fails to reject the null hypothesis of no multifractality too frequently. For 

>1, the power increases monotonically with . Small departures from =1 (e.g. =1.04) are 

more easily detected by (ii) than are small departures from H=0.5 (e.g. H=0.54) by (i). Test 

(iii), however, is effective in detecting departures from {H, }={0.5, 1}. The power functions 

increase monotonically with both H and . Consistent with (i) and (ii), small departures from 

=1 are more easily detected than small departures from H=0.5.     

 

5. Empirical illustration: Fitting the MMAR to foreign exchange rate returns 

Table 2 and Figure 2 report results for the estimation and hypothesis test procedures 

described in Sections 3 and 4, applied to T=5,000 daily logarithmic returns for 12 national 

currency exchange rates against the US dollar, for the period January 1993 to February 2012. 

The data were sourced from Datastream.  
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 The left-hand panel of Table 2 compares the realized estimates of H and  based on 

the log returns series pre-filtered to eliminate short-range dependence by fitting an 

autoregressive model to the observed returns, with critical values from NIID Monte Carlo 

simulations. Pre-filtering, however, can produce distortions in the test for long-range 

dependence. Accordingly, the right-hand panel of Table 2 compares realized estimates based 

on the unfiltered log returns series with critical values from recursive Monte Carlo 

simulations. For the latter, we construct 5,000 simulated series using    

k
1

*

t,i

*

t,i rˆr  where 

ui,t are NIID and ̂  are the coefficients from the k’th order autoregressive model fitted to the 

observed returns, where k is the maximum lag-length that yields a significant coefficient. 

Only those values of  in the range 1k for which ̂  is significant at the 0.05 level are 

included in the construction of *

t,ir . The highest value of k obtained for any currency, i.e. the 

highest-order autoregressive model required to represent short-range dependence, is k=12.
2
  

According to Table 2, test (i) fails to reject H0:H=0.5 in favour of H1:H0.5 at the 

0.05 level for any of the 12 exchange rate log returns series, using either the filtered or the 

unfiltered returns. By contrast, test (ii) rejects H0:=1 in favour of H1:>1 for 11 of the 12 

series, the sole exception being the GB pound. Consistent with the results of (i) and (ii), test 

(iii) rejects H0:{=1, H=0.5} at the 0.05 level for 11 of the 12 series, the sole exception being 

the GB pound as before.
3,4

 The contrast between the results for the GB pound, traded in large 

                                                
2 Separate AR(k) models are fitted to the observed returns series for each currency, with the value of k 

determined by estimating an AR(k) specification with k=18, and then re-estimating with k reduced iteratively in 

steps of one, if the estimated coefficient on 
*

kt,ir   in the previous iteration was insignificant. The search 

terminates when a specification is identified that yields a significant estimated coefficient on 
*

kt,ir  . 

 
3 During the 2007-09 financial crisis, the GB pound fell sharply in value against the US dollar. To investigate 
whether this may have influenced the estimation of H and λ for the UK, we repeat the estimations for the sub-

period 16/05/1997-01/01/2007. The estimated λ is insignificant for both sub-periods, and the result for the GB 

pound reported in Table 2 does not appear to be related to the financial crisis. 

 
4 The estimation procedure described in Section 3 is based upon an assumption that ut are normally distributed. 

As an informal check on the validity of this assumption, for each of the 12 series we compare the sample 
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volume in a highly liquid market,
5
 and those for the other 11 currencies, suggest an 

association between multifractality and market inefficiency [6]. The high estimated  for the 

Japanese yen, also traded in large volumes but in a market subject to regular intervention by 

the Bank of Japan [23], might reflect a tendency for central bank intervention to induce jumps 

in exchange rate volatility [24].   

The empirical tests provide no support for the hypothesis that exchange rate returns 

are characterized by either long memory and positive persistence, or negative persistence. 

With the exception of the GB pound, however, the tests reject the null hypothesis of NIID 

returns in favour of an alternative hypothesis of multifractality, of a form consistent with a 

data generating process of the form 
(1)

pt = ut, with ut ~ N(0,(t)) and (t) defined as in (2). 

Among the nested model specifications that are investigated in this study, it appears that 

exchange rate returns are most appropriately characterized by a variant of the MMAR that 

applies a multifractal time-deformation process to NIID returns.  

 

6.  Conclusion 

In this paper, we develop statistical testing criteria, based on conventional hypothesis 

testing methodology, to facilitate comparisons between processes that are characterized by 

specifications nested within the MMAR, and processes for which the more parsimonious 

specifications are rejected in favour of the MMAR. Monte Carlo simulations are used to 

generate critical values for the relevant tests. The methods are illustrated by means of an 

                                                                                                                                                  
kurtosis coefficient with the upper limit of a 95% one-sided confidence interval for the sample kurtosis, obtained 

by running 5,000 simulations of (1)pt = ut where ut ~ N(0,(t)) and (t) is defined in accordance with (2) for 

ln m[t(k)] ~ N(,2(–1)/ln 2). The parameter  used in the simulations is the estimated  for each series, with 

the sole exception of the UK for which the simulation is based on =1. For all 11 series for which the estimated 

 in Table 2 is significantly greater than one the sample kurtosis lies within the confidence interval, suggesting 

that the normality assumption in respect of ut is reasonable. For the UK, the sample kurtosis of 6.38 lies outside 
the confidence interval, which suggests that the normality assumption is not appropriate. IID returns drawn from 

a student-t distribution with approximately six degrees of freedom would replicate the sample kurtosis in the 

observed UK series. 
5 Our results for GBP are in contrast to those of [19], which reports stronger evidence of multifractality for 

USD/GBP than for any of the other currency pairs investigated: a finding the authors acknowledge is contrary to 

prior expectation. 
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empirical analysis of the daily log returns for the exchange rates of 12 currencies against the 

US dollar for the period 1993-2012. Among the nested model specifications that are 

investigated in this study, 11 of the 12 exchange rate returns series are most appropriately 

characterized by a variant of the MMAR that applies a multifractal time-deformation process 

to NIID returns. In the case of the GB pound/US dollar daily exchange rate series only, a 

currency pair traded in large volume in a liquid market, the tests fail to reject the null 

hypothesis that returns are NIID.  

 

 

References 

[1] Wei, H. L, Billings, S. A. 2009. Power-law behaviour evaluation from foreign exchange 

market data using a wavelet transform method. Physics Letters A 373, 3324–3329. 

[2] Goddard, J., Onali, E. 2012. Short and long memory in stock returns data. Economics 

Letters 117, 253–255. 

[3] Tan, P. P., Galagedera, D. U. A., Maharaj, E. A., 2012. A wavelet based investigation of 

long memory in stock returns. Physica A 391, 2330–2341.  

[4] Yang, C.-X., Wang, R., Hu, S. 2013. Modeling and analysis of an agent-based model for 

Chinese stock market. Physics Letters A 377, 2041–2046. 

[5] Onali, E., Goddard, J. 2009. Unifractality and multifractality in the Italian stock market. 

International Review of Financial Analysis 18, 154–163. 

[6] Zunino, L., Tabak, B.M., Figliola, A., Perez, D.G., Garavaglia, M., Rosso, O.A. 2008. A 

multifractal approach for stock market inefficiency. Physica A 387, 6558–6566.  

[7] Cajueiro, D.O., Tabak, B.M. 2009. Multifractality and herding behaviour in the Japanese 

stock market. Chaos, Solitons and Fractals 40, 497–504. 



13 

 

[8] Calvet, L., Fisher, A. 2002. Multifractality in asset returns: theory and evidence. The 

Review of Economics and Statistics 84, 381–406. 

[9] Calvet, L., Fisher, A. 2001. Forecasting multifractal volatility. Journal of Econometrics 

105, 27-58. 

[10] Barunik, J., Aste, T., Di Matteo, T., Liu, R. 2012. Understanding the source of 

multifractality in financial markets. Physica A 391, 4234–4251. 

[11] Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, 

H.E. 2002. Multifractal detrended fluctuation analysis of nonstationary time series. 

Physica A 316, 87–114. 

[12] Rizvi, S.A.R., Dewandaru, G., Bacha, O.I., Masih, A.M.M. 2014. An analysis of stock 

market efficiency: Developed vs Islamic stock markets using MF-DFA. Physica A 407, 

86–99. 

[13] Arshad, S., Rizvi, S.A.R. 2015. The troika of business cycle, efficiency and volatility. An 

East Asian perspective. Physica A 419, 158–170. 

[14] Dewandaru, G., Masih, R., Bacha, O.I., Masih, A.M.M. 2015. The contribution of fractal 

finance to momentum trading strategies: The case of Islamic equities using multi-fractal 

de-trended fluctuation analysis (MF-DFA). Physica A, forthcoming. 

[15] Di Matteo, T., Aste, T., Dacorogna, M.M. 2005. Long-term memories of developed and 

emerging markets: using the scaling analysis to characterize their stage of development. 

Journal of Banking and Finance 29, 827–851. 

[16] Kim, K., Yoon, S.-M. 2004. Multifractal features of financial markets. Physica A 344,  

272–278. 

[17] Norouzzadeh, P., Rahmani, B. 2006. A multifractal detrended fluctuation description of 

Iranian rial–US dollar exchange rate, Physica A 367, 328–336. 

[18] Oh, G., Kim, S., Eom, C. 2008. Long-term memory and volatility clustering in high- 



14 

 

frequency price changes. Physica A 387, 1247–1254. 

[19] Wang, Y., Wu, C., Pan, Z. 2011. Multifractal Detrended Moving Average Analysis on the 

US Dollar Exchange Rates. Physica A 390, 3512–3523. 

[20] Fisher, A., Calvet, L., Mandelbrot, B. 1997. Multifractality of Deutschemark / US Dollar 

Exchange Rates. Cowles Foundation Discussion Paper No. 1166. 

[21] Lux, T. 2007. The Markov-switching multifractal model of asset returns: GMM 

estimation and linear forecasting of volatility. Journal of Business and Economic 

Statistics 26, 194–210. 

[22] Calvet, L., Fisher, A., Mandelbrot, B. Large Deviations and the Distribution of Price 

Changes. Cowles Foundation Discussion Paper No. 1165. 

[23] Kearns, J., Rigobon, R. 2002. Identifying the efficacy of central bank interventions: the 

Australian case. NBER working paper 9062. 

[24] Beine, M., Laurent, S. 2003. Central bank interventions and jumps in double long 

memory models of daily exchange rates. Journal of Empirical Finance 10, 641–660. 

 

 

 



15 

 

Table 1  Size and power functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Significance level = 0.10 Significance level = 0.05 Significance level = 0.01 

          H 0.5 0.54 0.58 0.62 0.5 0.54 0.58 0.62 0.5 0.54 0.58 0.62 

   

(i) Test H0: H=0.5 against H1: H0.5 
     1.00     T= 2500 .100 .255 .583 .836 .050 .173 .473 .773 .010 .067 .282 .617 
     1.04 .167 .273 .540 .789 .104 .194 .443 .726 .036 .089 .276 .567 

     1.08 .225 .292 .509 .738 .154 .215 .423 .676 .071 .106 .270 .522 

     1.12 .267 .309 .489 .693 .194 .235 .407 .629 .096 .124 .259 .483 

  
     1.00     T=5000 .100 .317 .700 .930 .050 .228 .615 .893 .010 .088 .395 .758 

     1.04 .160 .317 .646 .893 .101 .237 .566 .843 .031 .103 .364 .704 

     1.08 .223 .327 .600 .841 .154 .247 .519 .787 .064 .118 .337 .647 
     1.12 .274 .340 .556 .791 .203 .263 .475 .735 .097 .131 .315 .594 

(ii) Test H0: =1 against H1: >1 
     1.00     T=2500 .100 .054 .027 .011 .050 .024 .009 .003 .010 .004 .001 .000 

     1.04 .688 .614 .527 .437 .606 .515 .418 .316 .443 .337 .237 .152 

     1.08 .862 .823 .773 .717 .820 .767 .705 .621 .715 .633 .531 .426 
     1.12 .914 .901 .879 .848 .893 .868 .835 .788 .823 .777 .716 .628 

  

     1.00     T=5000 .100 .049 .024 .005 .050 .021 .005 .001 .010 .001 .000 .000 
     1.04 .791 .727 .645 .558 .733 .651 .556 .455 .605 .495 .381 .268 

     1.08 .931 .912 .881 .839 .912 .881 .842 .789 .861 .802 .731 .640 

     1.12 .969 .960 .950 .930 .960 .950 .929 .903 .934 .909 .874 .829 

(iii) Test H0: {H=0.5, =1} 
    1.00     T=2500 .100 .186 .461 .759 .050 .099 .326 .649 .010 .018 .110 .362 
    1.04 .581 .625 .748 .883 .478 .493 .620 .802 .292 .241 .327 .532 

    1.08 .826 .849 .903 .954 .762 .774 .831 .912 .587 .567 .609 .732 

    1.12 .919 .934 .960 .980 .882 .892 .925 .961 .770 .756 .788 .855 
  

    1.00     T=5000 .100 .235 .595 .877 .050 .145 .472 .809 .010 .034 .232 .603 

    1.04 .702 .759 .884 .968 .617 .655 .803 .931 .435 .413 .564 .792 

    1.08 .919 .942 .973 .992 .883 .906 .948 .984 .778 .783 .850 .932 
    1.12 .973 .978 .993 .997 .959 .966 .982 .996 .912 .918 .947 .976 
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Table 2  Empirical results 

 

 Filtered returns, critical values from NIID simulations Unfiltered returns, critical values from AR simulations 

 Ĥ  ̂  H  H, Ĥ  ̂  H  H, 

Australia 0.527 1.121 0.417 0.000 0.000 0.523 1.121 0.394 0.000 0.000 

Canada 0.518 1.109 0.577 0.000 0.000 0.493 1.116 0.560 0.000 0.000 

Denmark 0.510 1.076 0.730 0.000 0.004 0.509 1.076 0.742 0.003 0.010 

Israel 0.496 1.130 0.980 0.000 0.000 0.515 1.122 0.840 0.000 0.000 

Japan 0.495 1.182 0.968 0.000 0.000 0.509 1.175 0.851 0.000 0.000 

Norway 0.495 1.071 0.974 0.001 0.013 0.486 1.073 0.970 0.004 0.025 

New Zealand 0.555 1.062 0.109 0.005 0.005 0.549 1.075 0.092 0.003 0.003 

Singapore 0.514 1.116 0.644 0.000 0.000 0.534 1.130 0.469 0.000 0.000 

Sweden 0.502 1.064 0.878 0.003 0.029 0.503 1.065 0.905 0.007 0.036 

Switzerland 0.478 1.115 0.613 0.000 0.000 0.487 1.117 0.810 0.000 0.000 

Taiwan 0.527 1.141 0.418 0.000 0.000 0.560 1.113 0.303 0.000 0.000 

UK 0.510 0.980 0.720 0.955 0.830 0.491 0.978 0.708 0.967 0.811 

 

 

 

 



17 

 

Graphs for Figure 1: Multifractal spectrum. 

(a)      (b) 

 
 

Note 

Panel (a) illustrates the multifractal spectrum f() for H=0.5, =1.12. These values imply 

0=0.56, 1=0.44, MIN=0.214, MAX=0.906. Panel (b) illustrates the multifractal spectrum 

f() for H=0.5, =1 (the multifractal spectrum degenerates to a point). These values imply 

0=1=MIN=MAX=0.5.  
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Graph for Figure 2: 95% confidence 'ellipse' (one-sided test for λ; two-sided test for H). 

Filtered returns, critical values from NIID simulations  

 

 

     
  

Note  

A = Australian Dollar; C = Canadian Dollar; D = Danish Krone; I = Israeli New Sheqel; J = 

Japanese Yen; N = Norwegian Krone; NZ = New Zealand Dollar; Si = Singapore Dollar; Swe 

= Swedish Krona; Swi = Swiss Franc; Ta = Taiwanese Dollar; UK = British Pound.   

λ.950 = 5% upper critical value for λ (one-sided test). 
H.975 = 5% upper critical value for H (two-sided test). 
H.025 = 5% lower critical value for H (two-sided test). 
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