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Abstract 5 

Selective breeding and improved nutritional management over the last 20-30 years has resulted in 6 

dramatic improvements in growth efficiency for pigs and poultry, particularly lean tissue growth. 7 

However, this has been achieved using high quality feed ingredients, such as wheat and soya, that 8 

are also used for human consumption and more recently biofuels production. Ruminants on the other 9 

hand are less efficient, but are normally fed poorer quality ingredients that cannot be digested by 10 

humans, such as grass or silage. The challenges therefore are to (i) maintain the current efficiency of 11 

growth of pigs and poultry, but using more ingredients not needed to feed the increasing human 12 

population or for the production of biofuels; (ii) improve the efficiency of growth in ruminants; and (iii) 13 

at the same time produce animal products (meat, milk and eggs) of equal or improved quality. This 14 

review will describe the use of a) enzyme additives for animal feeds, to improve feed digestibility; b) 15 

known growth promoting agents, such as growth hormone, beta-agonists and anabolic steroids, 16 

currently banned in the EU but used in other parts of the world; and c) recent transcriptomic studies 17 

into molecular mechanisms for improved growth efficiency via low Residual Feed Intake (RFI). In 18 

doing so, the use of Genetic Manipulation in animals will also be discussed. 19 

Feed efficiency: Meat: Enzymes: Growth promoters 20 

 21 

Introduction 22 

It is widely predicted that the world population will increase to 9 billion by 2050 (1-2). At the same time, 23 

economic improvements in developing countries around the world are predicted to result in an 24 

increased demand for meat, milk and other animal products, as those societies become more 25 

“westernised”. Even though there are calls for people in developed countries to reduce meat 26 

consumption for health reasons, particularly processed red meat, the demand for meat is predicted to 27 

continue to increase at a similar rate to that seen in the previous 10+ years. Over the last 50 years, 28 

tremendous advances in animal genetics and animal nutrition have been made to meet the increasing 29 

demand, particularly in pigs and poultry, but this has mainly been achieved using high quality feed 30 
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ingredients such as wheat, maize and soya. Over recent years these ingredients have become 31 

increasingly more expensive, due to a combination of increased demand from the biofuels industry, 32 

as well as for animal and human nutrition, along with shortages due to crop failures in some parts of 33 

the world. It has been estimated that for many agricultural commodities the rate of production has 34 

already reached a peak (3).   Hence if we are to continue to meet the demand for animal products, we 35 

cannot simply feed more animals the same feed ingredients, as that would require more crops, land 36 

and water (1-2).  37 

Feed ingredients account for a large proportion of the overall costs of animal production, particularly 38 

in non-ruminant species (4). Continuing to rely on the same ingredients, in competition with human 39 

nutrition and biofuels, mean prices will increase and therefore the cost of meat and animal products 40 

will also increase. Therefore the aim of current research is to improve the efficiency with which 41 

animals utilise their feeds, giving more product for the same amount of feed or the same amount of 42 

product for less feed. This is referred to as Feed Efficiency (FE), which is simply calculated as the 43 

change in body weight divided by the change in feed intake (kg gain/ kg feed). Hence increased 44 

efficiency would be greater gain per unit feed. Another term used is Feed Conversion Ratio (FCR), 45 

which is the kg feed per kg gain, with improved efficiency associated with a lower FCR value (less 46 

feed per unit gain). More recently animal scientists refer to Residual Feed Intake (RFI), which 47 

compares the feed intake for each individual animal to the average for the herd/ group at the same 48 

rate of growth (4). Hence an animal with a low RFI (often a negative value) would be eating less for the 49 

same growth rate and therefore be more efficient than an animal with a high RFI (a positive value), 50 

which would be eating more. 51 

There is no doubt that selective breeding and improved diet formulations over the last 20-30 years 52 

have improved the feed efficiency of pigs (4) and chickens (5), with FCR values of 2.0 or less currently 53 

achievable (i.e. >50% efficiency). Indeed it is predicted that FCR values of 1.5 and less will be seen 54 

relatively soon for both pigs and chickens (note that the lowest value theoretically possible would be 55 

1.0, meaning 100% efficiency). In contrast, ruminants are a lot less efficient (6), with FCR values of 5.0 56 

or more being normal (i.e. <20% efficiency). However we must remember that ruminants can utilise 57 

ingredients not used for human consumption (e.g. grass and silage) and are therefore not competing 58 

with humans, non-ruminants and biofuels for the high quality ingredients. Feed efficiency can be 59 

improved in ruminants by feeding higher quality ingredients as concentrates (7), but that is not the 60 
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solution for the future. What we need is to maintain or improve the efficiency of livestock, while at the 61 

same time maintaining or improving the quality of the animal products, but using alternative (human 62 

inedible) feed ingredients as much as possible. In that way we will be converting human inedible 63 

ingredients into high quality, human edible foods. This review will highlight a few ways in which this is 64 

being achieved or might be achieved in the future. 65 

 66 

Use of enzymes as feed additives 67 

A number of enzymes are already used commercially as feed additives, particularly in non-ruminant 68 

(pig and poultry) feeds, to increase the digestion and subsequent absorption of nutrients (8-10). They 69 

are mainly used to improve the digestion of feed components that the animals cannot normally digest 70 

or are only able to digest fairly poorly, such as complex carbohydrates and phytate. By increasing the 71 

digestibility of the feed, more nutrients enter the body and less pass through in the faeces, resulting in 72 

increased growth for the same level of feed intake, hence improving feed efficiency. 73 

A number of enzyme feed additives are commercially available to improve the digestibility of cereal 74 

carbohydrates, particularly targeting xylans and arabinoxylans present in the cell walls (9). By digesting 75 

these important structural carbohydrates in the cell wall, that then allows the animals’ own 76 

carbohydrate-digesting enzymes (e.g. α-amylase) better access to the main starch stores within the 77 

plant cells. Secondly, the digestion reduces the viscosity problems associated with arabinoxylans and 78 

β-glucans (9). A number of studies have shown improved feed efficiency/ FCR of pigs and chickens 79 

when these enzymes are added to the feed. For example, Xylanase supplementation of feed was 80 

shown to improve FCR (1.41 vs 1.56 in controls) in broiler chickens by increasing weight gain, but not 81 

affecting feed intake (11). As well as increasing the digestibility of the carbohydrate component of the 82 

feed and reducing the viscosity, there are suggestions that these carbohydrate-degrading enzymes 83 

might have prebiotic actions on the gut microflora via the oligosaccharides they produce (9). This could 84 

be another potential mechanism for their effects on feed efficiency. The absorption of nutrients across 85 

the gut is also known to affect production of gut peptides, which can subsequently alter gut motility 86 

and feed intake. Indeed Xylanase supplementation of feed has been shown to increase plasma PYY 87 

levels in broiler chickens (12) and we have recent data showing effects of Xylanase supplementation 88 

on plasma peptide YY, gastric inhibitory polypeptide and glucagon-like peptide-1 concentrations in 89 

young pigs (13). Hence the regulation of gut peptides and their subsequent effects on gut motility, feed 90 
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intake and/or nutrient utilisation might be additional, alternative mechanisms for the effects of these 91 

carbohydrate-degrading enzymes on feed efficiency. 92 

Phytase is another enzyme used commercially in non-ruminant (pig and poultry) feeds (10). Phytase 93 

digests Phytate (also called Phytic acid or inositol hexakisphosphate, IP6), the main storage form for 94 

Phosphorus (P) in plants. Phytate (IP6) is inositol with 6 phosphate groups attached and phytase is 95 

able to cleave individual phosphate groups, thereby releasing them for absorption and use by the 96 

animal. Phytase supplementation results in greater absorption of P and calcium (Ca) from the feed in 97 

broiler chickens and pigs (14), resulting in increased growth and reduced FCR. However, the increased 98 

growth may not simply be due to increased absorption of these important micronutrients. Chicken 99 

studies (15) have shown that high levels of Phytate in the diet inhibit pepsin and trypsin activities and 100 

therefore inhibit protein digestion and amino acid absorption, resulting in increased FCR. Inclusion of 101 

Phytase as well as high Phytate in the diet reduced the inhibitory effect on proteolysis, resulting in 102 

improved (reduced) FCR (15). 103 

Both of these feed additive enzymes have positive effects on feed efficiency in pigs and chickens fed 104 

cereal-based diets. They do so by different mechanisms, meaning their benefits are likely to be 105 

additive, but importantly they may allow the use of poorer quality (i.e. human inedible) feed 106 

ingredients, an important consideration for future sustainability and food security. These and other 107 

enzymes are also being investigated for use in ruminants (16). 108 

 109 

Use of growth promoters/ metabolic modifiers/ anabolic agents 110 

There are 3 main classes of growth promoters (17) – beta-adrenergic agonists (BA), anabolic steroids 111 

and growth hormone (GH, also called somatotropin, ST). They all improve feed efficiency in livestock 112 

to some extent and this is associated with increased lean mass (particularly skeletal muscle) and 113 

reduced fat mass (17). Indeed they have all been in the news at different times in relation to their illegal 114 

use as performance enhancing drugs in sportsmen and women. Their effects on muscle and fat mass 115 

were first discovered in the 1950s (anabolic steroids) or 1980s (BA and GH) and a number of 116 

commercial products are currently licenced for livestock production around the world (17), although 117 

they are all banned in the EU. For example, Ractopamine and Zilpaterol (both BA) are licenced for 118 

use in pigs and/or cattle in North and South America, South Africa, India and Australia, but not China. 119 

Similarly, the anabolic steroid mix of Trenbolone Acetate and Oestradiol (TBA & E2) is licenced for 120 
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use in beef cattle in North and South America, South Africa, India, Australia and China and GH (either 121 

bovine or porcine ST) is licenced for use in dairy cattle or pigs in the same areas. We were unable to 122 

find information for other parts of the world (e.g. Northern Africa and other parts of Asia), so to our 123 

knowledge only the EU has a total ban on the use of these agents in livestock production. This is 124 

despite much of the early research work being carried out in the EU, especially the UK, and the 125 

original scientific reports suggesting their use was safe (18), as long as appropriate guidelines were 126 

followed (e.g. a withdrawal period prior to slaughter). 127 

At Nottingham, we have been comparing the molecular modes of action of BA and GH in both 128 

sheep(19-21) and pigs(22-24) combining transcriptomic and metabolomics technologies in a systems 129 

biology approach to identify novel mechanisms to achieve the same effects. Ultimately the aim is to 130 

identify novel target genes/ proteins to develop more acceptable drugs or for targeted breeding or 131 

nutritional manipulations. We have made good progress and have identified upregulation of the serine 132 

biosynthesis pathway (19; 21; 23) and a number of other novel changes in response to BA and/or GH 133 

treatments. We are currently performing proof-of-principle studies to determine whether the novel 134 

genes we have identified really do regulate growth, body composition and/or feed efficiency. If 135 

successful, the next stage will be to use this information to develop breeding strategies, new dietary 136 

regimens or drugs that result in improved feed efficiency in livestock.  137 

For proof-of-principle studies we often utilise transgenic animals (mainly mice) where the gene of 138 

interest is either over-expressed or knocked out/ down (i.e. genetic manipulation or GM), often in a 139 

tissue-specific manner. This is done to investigate whether manipulation of the specific gene results in 140 

the predicted changes in tissue growth and/or metabolism, as well as changes in feed efficiency or 141 

whole body energy expenditure. Such studies cannot be performed in cultured cells, so must be done 142 

in animals. Although technically challenging, GM can now be achieved in livestock (25), so that it will 143 

theoretically be possible to produce herds of transgenic livestock. Indeed the Chinese government is 144 

funding work using GM aimed at developing new breeds of livestock for agricultural use in the future, 145 

including research into their safety (26). One of the main advantages of GM over conventional animal 146 

breeding is that GM speeds up the process and is more gene specific; whereas conventional 147 

breeding, while very successful over the last 50 years, can result in unwanted side effects, both on 148 

animal welfare but also product quality. The halothane pig (27) and Callipyge sheep (28) are prime 149 
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examples of this. Both have increased growth rates, particularly muscle, but one (halothane) results in 150 

highly stressed pigs and both result in poorer meat quality. 151 

 152 

Molecular studies of low Residual Feed Intake (RFI) animals 153 

The concept of low and high RFI has progressed rapidly over recent years (29-30). Studies are being 154 

carried out around the world aimed at identifying specific genes (or markers) for improved feed 155 

efficiency in virtually all livestock species (cattle, pigs, sheep, poultry). The genetic approach has 156 

been to identify markers (Quantitative Trait Loci, QTL, or Single Nucleotide Polymorphisms, SNPs) of 157 

low RFI for subsequent use in selective breeding programmes. For example, a Chinese group (31) 158 

recently identified a SNP in a microRNA (miR-1596) gene in chickens that resulted in reduced 159 

expression of miR-1596 in livers and was associated with low RFI. Interestingly, they suggested there 160 

were more than 70 target genes for miR-1596 (31), which were mainly involved in energy metabolism, 161 

apoptosis and immune responses, with some being important proteins for assembling mitochondria. 162 

We collaborated with another Chinese group (32), to investigate differential gene expression in skeletal 163 

muscle from pigs with low vs high RFI using a deep sequencing (RNAseq and miRNAseq) approach. 164 

A number of mRNA (IGF2, FABP3 and PGC1a) and miRNA (miR1, miR30, miR10b, miR145) were 165 

found to be differentially expressed, but importantly the majority of mitochondrial genes were down-166 

regulated. The data suggested that low RFI was linked with changes in expression of mRNA and 167 

miRNA associated with increased muscle growth and reduced mitochondrial activity in skeletal 168 

muscle (32). 169 

Effects on mRNA or miRNA associated with mitochondria appear to be a recurring theme in the low 170 

RFI studies (33-34) and this agrees with some of our growth promoter studies, where we also see down-171 

regulation of a number of genes associated with mitochondria, including both Tricarboxylic Acid cycle 172 

and oxidative phosphorylation genes (unpublished data). 173 

Once again the genes being identified in these various RFI studies could be potential targets for novel 174 

drugs, dietary regimens or GM in animals, as well as being used for conventional breeding strategies 175 

to improve feed efficiency in livestock. 176 

 177 

 178 

 179 
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Conclusions 180 

There are tools already available to improve feed efficiency in meat production, including the use of 181 

enzyme feed additives and growth promoters. Recent molecular studies are starting to identify other 182 

mechanisms that might be utilised in the future, including manipulation of gut microflora or gut 183 

peptides and targeting of gene expression in skeletal muscle or other tissues using drugs or GM 184 

technologies. Whether the use of drugs or GM technologies will be acceptable to the EU general 185 

public in the future remains to be seen, but we cannot simply wait until food and meat availability 186 

becomes limited (or very expensive) before starting research on these more controversial topics. At 187 

present, food and meat are readily accessible and reasonably affordable throughout most of the EU, 188 

so the current ban on the use of growth promoters does not really affect the consumer. However this 189 

might change if feed ingredients continue to increase in price and there are issues with crop failures 190 

around the world limiting their availability for animal feeds. The EU might then have to reconsider the 191 

ban or accept that meat and animal products will become more expensive and less accessible, as 192 

well as potentially limiting the countries we import meat from. We should emphasise that safety and 193 

quality of the products will always be a primary concern and must not be ignored in the drive to 194 

improve feed efficiency for meat production. Indeed we would suggest that research into the safety 195 

aspects must be carried out alongside the research into the manipulation of feed efficiency, as is 196 

currently happening in China. Finally, we suggest that greater emphasis is needed on the use of 197 

“poorer quality” ingredients in animal feeds in future, to reduce the competition with human nutrition 198 

and biofuels for the high quality ingredients, such as wheat, maize and soya. 199 
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