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Abstract 

 

 Quantitative reconstructions of terrestrial climate are highly sought after but 

rare, particularly in Australia. Carbon isotope discrimination in plant leaves (Δleaf) is 

an established indicator of past hydroclimate because the fractionation of carbon 

isotopes during photosynthesis is strongly influenced by water stress. Leaves of the 

evergreen tree Melaleuca quinquenervia have been recovered from the sediments of 

some perched lakes on North Stradbroke and Fraser Islands, south-east Queensland, 

eastern Australia. Here, we examine the potential for using M. quinquenervia ∆leaf as a 

tracer of past rainfall by analysing carbon isotope ratios (
13

C) of modern leaves. We 

firstly assess Δleaf variation at the leaf and stand scale and find no systematic pattern 

within leaves or between leaves due to their position on the tree. We then examine the 

relationships between climate and Δleaf for an 11 year timeseries of leaves collected in 

a litter tray. M. quinquenervia retains its leaves for 1-4 years; thus cumulative average 

climate data are used. There is a significant relationship between annual mean ∆leaf 

and mean annual rainfall of the hydrological year for 1-4 years (i.e. 365-1460 days) 

prior to leaf fall (r
2
=0.64, p=0.003, n=11). This relationship is marginally improved 

by accounting for the effect of pCO2 on discrimination (r
2
=0.67, p=0.002, n=11). The 

correlation between rainfall and Δleaf, and the natural distribution of Melaleuca 

quinquenervia around wetlands of eastern Australia, Papua New Guinea and New 

Caledonia offers significant potential to infer past rainfall on a wide range of spatial 

and temporal scales.  
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Introduction 

 

 Quantitative reconstructions of past climate parameters, such as temperature 

and precipitation, are considerably more useful than dimensionless, relative 

assessments of climate trends such as “wetter” or “drier”. Quantitative inferences 

enable direct comparison of the rate and magnitude of climate change and variability 

between different locations and time periods (e.g. Shakun & Carlson, 2010) and they 

can be used to explore fundamental questions in environmental and Earth science, 

such as the relationship between global atmospheric carbon dioxide concentration 

(pCO2) and temperature (Rohling et al., 2012, Shakun et al., 2012) and the sensitivity 

of rainfall to temperature change (Li et al. 2013). Furthermore, numerical climate 

estimates can be compared with climate models to assess their veracity (Phipps et al., 

2013) and used as inputs into hydrological (Henley et al., 2011) and/or ecological 

(Prowse et al., 2013, Verschuren et al., 2000) models. Importantly, quantitative 

reconstructions can be calibrated with (Emile-Geay et al., 2013b), and tested against 

(Verschuren et al., 2000), instrumental records, thereby facilitating an estimate of the 

precision and accuracy of proxy-climate relationships.  

Numerical estimates of prehistoric climate change from terrestrial archives are 

limited in time and space. Many records span less than 1000 years or are spatially 

restricted (e.g. ice core or coral records). The Australian continent, in particular, has a 

very limited number of quantitative palaeoclimate reconstructions extending more 

than 1000 years. The majority of Australian proxy rainfall records, such as those 

derived from corals and tree rings, are relatively short (< 500 years, e.g. Lough, 2007, 

O'Donnell et al., 2015), and even though individual records can be merged to 

lengthen the temporal coverage, this process reduces the proxy’s ability to detect low 

frequency variability (Ault et al., 2013, Emile-Geay et al., 2013a). As a result of the 
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limited number of archives, key quantitative reconstructions of Australian climate rely 

on archives that are distant from the Australian mainland (Neukom & Gergis, 2012). 

These reconstructions are, therefore, based on teleconnections that may not be stable 

through time (Gallant et al., 2013). Quantitative climate estimates >1000 years in 

length include temperature reconstructions from pollen (Fletcher & Thomas, 2010, 

Lloyd & Kershaw, 1997) and branched glycerol dialkyl glycerol tetraethers 

(Woltering et al., 2014). Although some (pollen-based) rainfall reconstructions exist 

(Kershaw et al., 2004a, Kershaw & Nix, 1988, Kershaw et al., 2004b), the majority of 

Australian hydrological reconstructions consist of non-quantitative lake water balance 

and speleothem oxygen isotope records (e.g. Barr et al., 2014, Denniston et al., 2013, 

Gouramanis et al., 2013). 

Carbon isotope discrimination recorded in leaf tissue (Δleaf) reflects the degree 

of moisture stress experienced by plants, along with factors including photosynthetic 

rate (Farquhar et al., 1989). Importantly, Δleaf can be quantitatively related to variables 

driving moisture stress including vapour pressure deficit (Brett et al., 2014, Turney et 

al., 1999) and rainfall (Diefendorf et al., 2010, Kohn, 2010). The relationship between 

leaf carbon isotope ratios (δ
13

C) and rainfall has been predominantly used to infer 

rainfall in pre-Quaternary settings since lengthy (i.e. > 1000 year) preservation of 

leaves in late Quaternary deposits is rare (Birks, 2001, Spicer, 1989). However, the 

potential of this proxy was demonstrated by Liu et al. (2011) who used δ
13

C in plant 

remains from a mixture of species to infer relative changes in rainfall during the Little 

Ice Age in north-western China.  

We have discovered a number of perched acid lakes on North Stradbroke and 

Fraser Islands, south-east Queensland, Australia, that preserve leaves of the tree 

species Meleleuca quinquenervia (Cav.) S.T. Blake (the broad-leaved paperbark; 
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family Myrtaceae) in sediments deposited throughout much of the Holocene. In this 

study we assess the nature and strength of the rainfall-Δleaf relationship in M. 

quinquenervia to evaluate its potential as a rainfall proxy. Firstly, we characterize 

within-leaf and within-stand Δleaf variability and then evaluate the relationship 

between rainfall and Δleaf in M. quinquenervia by determing Δleaf  from an 11-year 

long monthly collection of leaves. Finally, we identify factors that lead to leaf 

preservation and map wetlands that have the potential to preserve sub-fossil leaves of 

M. quinquenervia.  

 

Carbon isotope discrimination in leaves 

 leaf reflects the net photosynthetic carbon isotope fractionation relative to the 

δ
13

C of atmospheric CO2. leaf varies among plants with different photosynthetic 

pathways; i.e. C3, C4 and CAM. M. quinquenervia utilises the C3 photosynthetic 

pathway (Kattge et al., 2011). Within C3 plants, environmental variables such as the 

availability of water, pCO2 and irradiance can further modify leaf (Cernusak et al., 

2013; Shubert and Jahren, 2012). The effects of irradiance are particularly evident in 

closed canopy environments (Graham et al., 2014).   

 

Relationship between leaf and precipitation in C3 plants 

 Plants preferentially fix 
12

C over 
13

C during photosynthesis. This preference is 

expressed as carbon isotope discrimination and is defined as:  

 

∆𝑙𝑒𝑎𝑓=
( 𝛿𝑎𝑡𝑚−𝛿𝑙𝑒𝑎𝑓)

1+(𝛿𝑙𝑒𝑎𝑓 1000) ⁄
                                                                              (1) 
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Where atm and leaf represent the δ
13

C of atmospheric CO2, and the leaf, respectively 

(Farquhar et al., 1982).  

The most widely used model for carbon isotope discrimination during C3 plant 

photosynthesis, developed in Farquhar et al. (1982), explains carbon isotope 

discrimination as the result of the isotopic effects of diffusion of CO2 through stomata 

and carboxylation by RuBisCo during photosynthesis, such that: 

  

∆𝑙𝑒𝑎𝑓= 𝑎 + (𝑏 − 𝑎)(
𝐶𝑖

𝐶𝑎
)           (2) 

  

where a and b are constants that represent fractionation due to diffusion (4.4‰) and 

carboxylation (27-29‰), respectively; ci and ca, represent the partial pressure of CO2 

(pCO2) inside the leaf, and the ambient atmosphere, respectively (Cernusak et al., 

2013, Farquhar et al., 1989). Although more complicated models exist, this model 

sufficiently describes photosynthetic carbon isotope discrimination in many different 

settings (Cernusak, et al. 2013). In this model carbon isotope discrimination is 

entirely a function of the ci/ca ratio. 

Key factors determining ci/ca are the supply of CO2 to the leaf and the 

photosynthetic demand for CO2.  Supply of CO2 is a function of stomatal conductance 

(i.e. the rate of passage of gases through the stomata). Stomatal conductance also 

controls the flux of water out of the leaf via transpiration, creating a trade-off between 

water loss and CO2 uptake. As moisture availability increases, plants can afford to 

increase stomatal conductance, increasing ci/ca and increasing carbon isotope 

discrimination (Cernusak et al., 2013; Diendendorf et al., 2010). On the demand side 

of the equation, light limitation can lower the photosynthetic fixation of CO2 leading 

to an increase in ci, thereby increasing ci/ca and Δleaf. Our study species, M. 
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quinquenervia, lives in relatively open wetland environments and forms the 

uppermost canopy layer. As a result, canopy shading is unlikely to have a large 

influence on Δleaf, but self-shading could have an effect and is considered in this 

study.  

Furthermore, Δleaf can be altered by the concentration of carbon dioxide in the 

atmosphere (pCO2) (Schubert & Jahren, 2012). This relationship is described by the 

hyperbolic equation (Schubert and Jahren, 2012): 

 

∆𝑙𝑒𝑎𝑓=
[(28.26)(0.21)(𝑝𝐶𝑂2+25)]

[28.26 + (0.21)×(𝑝𝐶𝑂2+25)]
  .        (3) 

 

In this equation, the value of 28.26 represents the asymptote or maximum carbon 

isotope discrimination as determined empirically through experiments on a number of 

plants grown under a wide range of pCO2 and high nutrient and water availability 

(Schubert and Jahren, 2012). 

 The relationship between pCO2 and Δleaf is steepest at low pCO2 

concentrations. Hence, the pCO2-induced change in Δleaf through the last glacial-

interglacial cycle is argued to exceed 2‰ (Schubert and Jahren, 2012). In the 

Holocene, the change in Δleaf resulting from the shift in pCO2 from 251 ppm at the 

start of the Holocene to 281 ppm at 600 year BP (Monnin et al., 2004) would result in 

a shift of approximately 0.6‰ in Δleaf. This change is noteworthy compared to those 

resulting from moisture stress, with a 0.6‰ shift in Δleaf equivalent to that induced by 

an increase in mean annual rainfall from 1000 to 1285 mm based on the relationship 

observed for evergreen angiosperms in Diefendorf et al. (2010). 

 

Global rainfall-carbon isotope relationships  
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Global syntheses of rainfall-leaf relationships demonstrate the potential to 

quantitatively infer past rainfall from (sub)fossil leaves (Diefendorf et al., 2010, 

Kohn, 2010). Diefendorf et al. (2010) found a statistically significant positive 

relationhip between mean annual rainfall (log10 transformed) and leaf (r
2
=0.55, 

p<0.0001). Notably, this global relationship masks variability at the continental scale. 

For example, there is no statistically significant relationship exhibited in Europe 

(r
2
=0.025, p=0.125). Kohn (2010) developed a more complex model that includes the 

influence of altitude and latitude. It showed similarly strong relationships between 

rainfall and leaf, particularly below ~1700 mm a
-1

, with a largely constant isotopic 

discrimination at higher rainfall amounts. 

While these meta-analyses point to the potential to reconstruct rainfall from 

leaf, only ~50% of the variance (on log scales) in isotope discrimination is explained 

by mean annual precipitation (Diefendorf et al., 2010, Kohn, 2010). Substantial Δleaf 

variation between different species has been observed under the same water 

availability regime in natural (Cernusak et al., 2013) and experimental (Cernusak et 

al., 2009) settings. The between-species variability in rainfall-Δleaf  relationships is so 

large that it has been argued Δleaf  cannot be used to infer past precipitation from a 

mixed leaf fossil assemblage (Freeman et al., 2011).  

 

Rainfall-carbon isotope relationships in Australia 

Statistically significant relationships between rainfall and δ
13

Cleaf of plant 

communities (Stewart et al., 1995), δ
13

Cleaf of C3 grasses (Murphy & Bowman, 2009) 

and δ
13

C in charcoal (Turney, 2012) have been demonstrated in Australia across broad 

spatial gradients. By contrast, Schulze et al. (1998) noted that Δleaf did not increase 

above 475 mm in mixed species samples from Northern Australia, and only seven out 
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of thirteen Eucalyptus species from the same study region showed significant 

(positive) relationships between Δleaf and rainfall (Miller et al., 2001). These studies 

were undertaken across broad spatial gradients, mirroring research in other locations 

(e.g. Ehleringer, 1993, Weiguo et al., 2005). Spatial sampling regimes have the 

potential to overestimate the explanatory power of rainfall due to co-variation with 

confounding factors (e.g. changes in soil type and moisture, elevation and aspect) and 

spatial autocorrelation (see discussion in Telford & Birks, 2009). In contrast to 

previous mixed species and spatial study designs, this study circumvents these 

uncertainties by sampling leaves of M. quinquenervia over a period of 11 years at a 

single site.  

 

Spatial distribution of Melaleuca quinquenervia 

M. quinquenervia is native to the eastern coastal margin of Australia (between 

8–34°S) and to Papua New Guinea (PNG) and New Caledonia (Fig. 1a). It is 

generally found proximal to wetlands as its seeds have an obligate need for moist 

substrates for propagation, although mature trees will survive in locations with low 

soil moisture (Doran & Turnbull, 1997). M. quinquenervia has a shallow root system, 

with over 80% of the root biomass occurring in the top 15 cm of the soil in our 

Carbrook Wetlands study site (Bradley, 1996). In Australia and PNG, M. 

quinquenervia mostly grows at altitudes of less than 100 m above sea level, while in 

New Caledonia, where M. quinquenervia is the dominant savannah tree (Ibanez et al., 

2013), it grows at altitudes up to 1000 m. The mean maximum temperature of the 

hottest month over M. quinquenervia’s range in Australia is 26–34°C (Doran & 

Turnbull, 1997), while the mean minimum temperature of the coolest month is 

between 4 and 20°C (Doran & Turnbull, 1997). The species occurs across a wide 
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rainfall gradient, ranging from 400 to 4000 mm per annum (Fig. 1b). M. 

quinquenervia is an invasive species in the Florida Everglades, USA and a substantial 

literature discusses the reasons for, and possible solutions to, this problem (Dray Jr et 

al., 2006).  

 

Regional Setting 

Our study analyses M. quinquenervia from two locations in south-east 

Queensland, Australia: Carbrook Wetlands (Fig. 1c), where a long-term leaf 

collection was undertaken, and Swallow Lagoon, North Stradbroke Island, where we 

analysed leaf and stand-scale variation in Δleaf. Carbrook Wetlands are located in the 

catchment of Native Dog Creek and the Logan River Floodplain (27.690 S, 153.276 

E) (Fig. 1c). M. quinquenervia forest occupies an area of 164 ha in the wetland, which 

is described by Greenway (1994). Mean annual rainfall at nearby Mount Cotton Farm 

(Australian Bureau of Meteorology station number 040460), 7.2 km north of 

Carbrook Wetlands, (Fig. 1d) is 1289 mm (annual rainfall range: 634–2499 mm, 

n=34). Mean annual maximum temperature at the Logan City Water Treatment Plant, 

approximately 5 km west of Carbook Wetland (Bureau of Meteorology station 

number 40854) is 26°C, with the highest mean monthly maximum temperature in 

January of 29°C and the lowest mean monthly maximum of 21.4°C in July.  

Swallow Lagoon (27.499 S, 153.455 E) is a small (<1.5 ha) relatively deep 

(5.8 m maximum depth) perched freshwater lake (Marshall & McGregor, 2011) 

(maximum recorded elevation of the lake surface: 154 m AHD, April 2011) on North 

Stradbroke Island, a large (285 km
2
) sand island in Moreton Bay, Queensland (Barr et 

al., 2013). Swallow Lagoon is fringed by M. quinquenervia, which forms a narrow 
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ring around the lake at a distance of less than 10 m from the water’s edge and in water 

up to 0.5 m deep (in March 2014).  

 

 

Material and Methods 

 The weight of M. quinquenervia litterfall and its carbon isotope discrimination 

was analysed from a leaf litter tray on the Carbrook Wetlands floodplain, 100 m from 

Native Dog Creek. The litter tray was located in a position which had 2175 trees ha
-1

, 

with a mean height of 18.6 m (±4 m, 1 s.d.) and a mean diameter at breast height of 

17.8 cm (±9 cm 1 s.d.) (Greenway, 1994). The density of the trees, and collection of 

windblown leaves of species which did not overhang the tray, indicates the tray 

integrates leaf fall from a number of canopy trees, rather than a single individual 

(Greenway, 1994). Litterfall was collected from a raised 0.25 m
2
 (0.5 m × 0.5 m) leaf 

litter tray at ca. four-weekly intervals between April 1992 and July 2003. We thereby 

extend the record of Greenway (1994) through provision of more recent data (April 

1994–July 2003) and additional analyses. Hereafter, this data set is referred to as the 

“temporal” data set, with the sampling interval described herein as “monthly”. 

Litterfall was sorted into a number of different components (including leaves divided 

into “young” – identified by their covering of silky white hairs which disappear as the 

leaf matures – and “total” categories), oven dried at 40°C and weighed. These data 

provide an understanding of the phenology of M. quinquenervia and, in particular, 

identify the period of new leaf formation and highest leaf production. Leaves were 

stored in paper bags until 2011. From each monthly collection, a 1 cm slice from the 

leaf tip was sampled from a mean of nine leaves for δ
13

C analysis. 

We examined variation in M. quinquenervia leaf at the leaf, tree and stand 

scale from trees fringing Swallow Lagoon. Discrimination within a leaf may vary 
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with distance from the vein due to increased diffusive pathway length (Seibt et al., 

2008). The leaves of M. quinquenervia have five longitudinal veins (as indicated by 

the species epithet), which may reduce the effects of diffusive length. We nevertheless 

undertook experiments to assess within leaf variation in leaf. In these experiments, 

leaves were cut into 12 sections (Fig. 2) and leaf determined on each subsample. At 

the stand scale, leaf may be influenced by factors including the leaf’s position in the 

canopy (Marshall et al., 2007), orientation on the tree (as has been observed by 

Lockheart et al., 1998) and edaphic factors such as temperature and water availability 

(Diefendorf et al., 2010, Kaplan et al., 2002). Hence, we examined the difference 

between north facing (more sun exposed) and south facing (more shaded) leaves on 

four trees and the variation between these trees growing at positions 1 m outside the 

lake, at the lake edge, and at 3 m and 6 m inside the lake.  

All leaf samples were washed in deionised water, freeze dried and milled to a 

fine powder prior to δ
13

C analysis. δ
13

C analyses were performed on a Costech 

Elemental Analyser coupled to a VG TripleTrap and Optima dual-inlet mass 

spectrometer, with δ
13

C values reported on the VPDB scale using a within-run 

laboratory standard calibrated against NBS-18, NBS-19 and NBS-22. Replicate 

analysis of well-mixed samples indicated a precision of  <0.1‰ VPDB (1 s.d.).  

leaf was calculated with equation 1 using 
13

Catm derived from an average of 

monthly values for the two years prior to leaf sample collection as measured at the 

Mauna Loa Observatory, Hawaii, by the United States of America’s NOAA Earth 

System Research Laboratory, Global Monitoring Division (www.esrl.noaa.gov/gmd). 

We also derived a relationship that removes the effect of pCO2 on leaf by calculating 

the difference between leaf predicted from pCO2 (equation 3) and the leaf from the 

carbon isotope values measured in our leaves (equation 1). This calculation used 

http://www.esrl.noaa.gov/gmd
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pCO2 data from Mauna Loa Observatory for 2 years prior to dates of leaf collection. 

This difference between pCO2-predicted and measurement-based discrimination is 

referred to as the discrimination anomaly. 

 

While the primary aim of our study is to investigate the relationship between 

M. quinquenervia Δleaf values and rainfall, some studies (e.g. Diefendorf et al., 2010) 

have shown that other climate variables (e.g. temperature) may be of secondary 

importance. Hence, we investigated the degree to which variability in M. 

quinquenervia Δleaf was explained by a range of potential environmental variables, 

namely: rainfall, minimum and maximum daily temperature, pan evaporation, 

precipitation divided by evaporation (hereafter P/E), solar radiation - hereafter termed 

“radiation”, vapour pressure and relative humidity at both maximum and minimum 

temperature. Precipitation data were taken from the Mount Cotton Farm rainfall 

station (Fig. 1). Where no rainfall data were available for a particular month (n=4), we 

estimated rainfall amount from a linear relationship, developed from the remaining 

study period, between that month’s rainfall and that of the adjacent month most 

correlated to the month with a single missing value. Other climate data were derived 

from the Queensland Department of Science, Information Technology and 

Innovation’s Scientific Information for Land Owners dataset which derives synthetic 

climate data interpolated across space from variables measured at climate stations 

(Jeffrey et al., 2001). 

Our analyses of the relationships between climate and Δleaf were undertaken 

using two temporal data sets. The first determines the relationship between the 

individual Δleaf values collected at monthly intervals and climate data for which 

composite means were calculated for a range of time windows prior to the month of 
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leaf collection. Climate data in the year immediately prior to leaf fall was excluded 

because very few young (<1 year old) leaves were collected in the tray (Fig. 3).  Thus, 

the time composites encompassed periods of 1 to 2 years, 1 to 3 and 1 to 4 years prior 

to leaf fall. For the second set of analyses, annual mean Δleaf was calculated for each 

hydrological year (November 1st to October 31st). Annual mean values were 

compared to both mean rainfall for the hydrological year, and individual month’s 

rainfall, again composited for periods of between 1-2 years and 1-4 years before leaf 

collection. 

In order to identify sites where M. quinquenervia leaves may be preserved we 

identified where this species grows close to wetlands that may favour preservation. 

Vegetation associations (known as regional ecosystems; Neldner et al., 2012) with M. 

quinquenervia as the dominant or sub-dominant canopy tree were mapped where they 

fell within 30 m of lacustrine or permanent palustrine wetlands using the Queensland 

Government’s Regional Ecosystem Description Database 

(www.qld.gov.au/environment/plants-animals/plants/ecosystems/about/#redd) 

vegetation associations. The location of the wetlands was identified from satellite 

imagery, with all wetlands < 8 ha classified as palustrine and the distinction between 

lacustrine or palustrine for wetlands > 8 ha based on whether open water (lacustrine) 

or vegetation (palustrine) dominated the site (Neldner et al., 2012). To further identify 

sites of, and conditions favouring preservation, we collected sediment cores from 10 

lakes and swamps on North Stradbroke and Fraser Islands using piston (Livingstone, 

1955) or side sampling (Jowsey, 1966) corers. Continuous sediment sections (between 

1 and 5 cm in width) from these cores were sieved with a 250 μm sieve, with the 

retained material inspected for M. quinquenervia leaves. Lastly, at Swallow Lagoon 

we used a YSI 6920 multi-parameter sonde to determine the lake water dissolved 



15 

 

oxygen profile approximately monthly between June 2011 and May 2012, while 

historical dissolved oxygen data from Brown Lake, North Stradbroke Island (see 

supporting information S3) are also discussed. 

 

Results  

Phenology of Melaleuca quinquenervia  

M. quinquenervia produces new leaves throughout the year but with marked 

seasonality in production. Peak leaf production (young leaf fall) commences in June 

and is greatest in August–November (Fig. 3). It is unlikely that young leaf fall is 

related to wind stress since the period of maximum abscission of older leaves 

frequently occurs after the abscission of young leaves in the seasonal cycle (Fig. 3). 

The small number of young leaves collected (<1% of leaf weight over the sampling 

period) indicates that most leaves remain on the tree for over one year.  

 

Intra-leaf Δleaf variation and variation within a stand  

 In the three leaves analysed, the within-leaf variability of Δleaf was less than 

1‰. The mean Δleaf for the 12 sub-samples from the three leaves was 23.82‰ ± 0.29, 

24.48‰ ± 0.18 and 23.85‰ ± 0.22 (± 1 standard deviation [s.d], Fig. 4). Moreover, 

the leaf tips – equivalent to the leaf fraction sampled in our temporal sampling – have 

Δleaf values within the range measured for the other parts of the leaf (Fig. 4a). We also 

found no systematic differences between central and marginal leaf Δleaf for individual 

leaves (see Fig. 4b). The Δleaf of north (mean=24.40‰, s.d.=1.16‰, n=4) and south 

(mean=24.44‰, s.d.=0.83‰, n=4) facing samples of four trees at Swallow Lagoon 

exhibited no systematic difference (Fig. 5).  

 

Temporal relationship between rainfall and Δleaf  of M. quinquenervia  
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 The Δleaf of M. quinquenervia collected from April 1992 to July 2003 in 

Carbrook Wetlands ranged from 20.46‰ to 24.90‰, (mean: 22.63‰, s.d.: 0.9‰, 

n=137) (supporting information S1). Carbon isotope discrimination systematically 

increased in 1996 (Figure 6), with values before August 1996 rarely exceeding 

22.50‰ (mean: 21.89‰) and after this time mostly exceeding 22.50‰ (mean: 

23.09‰). Importantly, the shift in Δleaf, corresponds to an increase in rainfall at 

nearby Mount Cotton Farm in the 24 months prior to leaf fall (Fig. 6). 

 

 The relationship between M. quinquenervia Δleaf and climate was first 

examined using the monthly Δleaf data. All the climate variables analysed, with the 

exception of maximum temperature, were significantly, but weakly, correlated with 

monthly Δleaf data for at least one of the time periods considered (1-2, 1-3 and 1-4 

years before leaf fall) (Table 1). However, spurious correlations can emerge from 

correlation of biological data with multiple climate variables over multiple timescales. 

This is particularly problematic in this study as M. quinquenervia leaves remain on 

the tree for a variable period of time (between 1-4 years). Therefore, each monthly 

collection provides a time-averaged sample spanning up to four years prior to leaf 

collection, resulting in a need to examine relationships to climate over varied time 

intervals. In addition, unlike the litter collection, natural accumulations of leaves in 

sediments are mixed over multiple years, calling for a calibration that examines 

climate relationships relevant to that coarser sampling resolution. As a result of these 

considerations, we focus the remaining analysis on the relationship between climate 

and Δleaf pooled into yearly means. 
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When the relationship between climate and annual mean Δleaf is derived, only 

two climate variables exhibited significant relationships to Δleaf: rainfall 1-4 years 

before leaf collection and radiation 1-4 years before leaf collection (Table 2). Rainfall 

and radiation are significantly correlated (r
2
=0.54, p=0.011). Based on this outcome, 

we developed rainfall calibrations that can be applied to sub-fossil records (Table 3). 

One relationship is based directly on Δleaf and one takes into account the effect of 

pCO2 on Δleaf (Schubert & Jahren, 2012) (see methods). There was little difference in 

the strength of the isotope-rainfall relationship based on Δleaf and discrimination 

anomaly (Fig. 7), due to the linear increase in atmospheric pCO2 through the study 

period (www.esrl.noaa.gov/gmd). However, given the influence of pCO2 variation on 

∆leaf through time, the application of the model that accounts for this effect is 

preferable. The relationship between rainfall 1–4 years before leaf collection and the 

anomaly (which accounts for the influence pCO2 on Δleaf) is slightly stronger 

(r
2
=0.67 p=0.002, n=11) (Fig. 7) than that between Δleaf and rainfall over the same 

period (r
2
=0.64, p=0.003, n=11). 

 

Discussion 

Isotope systematics of leaves 

 Analysis of intra-leaf variability shows no discernible difference in Δleaf values 

between the leaf tip and other parts of the leaf (Fig. 4). This suggests the leaf tip Δleaf 

used in our temporal study represents the whole leaf Δleaf. Additionally, it appears any 

given leaf fragment (e.g. those occurring in sub-fossil deposits) can provide a 

representative whole leaf Δleaf value for M. quinquenervia. Furthermore, our analysis 

shows leaf position on individual trees (north vs south facing), and the position of the 

trees relative to the water’s edge do not bias the isotopic analysis as there are no 

http://www.esrl.noaa.gov/gmd
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systematic differences between leaves or trees in different positions. Therefore, leaf 

position on the tree, and the tree’s location relative to the water’s edge, should have a 

minimal impact on Δleaf.
 

 

 

Relationship between M. quinquenervia Δleaf and climate 

 Our analysis of monthly Δleaf for M. quinquenervia for an 11 year period 

reveals significant but weak correlations with all of the climate variables examined on 

at least some of the time intervals prior to leaf collection. The numerous weak 

correlations reflect the complexity of the relationship between climate and Δleaf on 

short timescales. However, when the climate and leaf data are pooled into yearly 

means, a process akin to filtering the climate data, then only rainfall and radiation (in 

the 1-4 years preceding leaf fall) are significant. The significant relationship (r
2
=0.64, 

p<0.003, n=11) between Δleaf and rainfall (Table 2; Fig. 7) mirrors observations made 

at the scale of individual plant species (Van de Water et al., 2002), communities 

(Prentice et al., 2011, Stewart et al., 1995) and the globe (Diefendorf et al., 2010, 

Kohn, 2010). This study, however, assesses the relationship between Δleaf and rainfall 

at a single location, rather than across a mean annual precipitation gradient as used in 

most previous studies. Hence, our analysis represents a robust assessment of rainfall-

isotope relationships as it negates effects associated with (spatial) autocorrelation 

frequently encountered in calibration data sets (Telford & Birks, 2009). The strong 

relationship between this species and rainfall is in contrast to that observed in other 

studies (Miller et al., 2001, Schulze et al., 1998, Van de Water et al., 2002). M. 

quinquenervia’s adaptation to a wide range of environments with varying moisture 

availability (see Fig. 1b) may contribute to the strong relationship observed.  

 

The potential to quantify past tropical and subtropical rainfall 
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 A review of the locations in eastern Australia where M. quinquenervia leaves 

may preserve highlights enormous potential to establish quantitative rainfall 

reconstructions from the ∆leaf-rainfall relationships described herein. Our analysis 

shows there are over 200 permanent wetlands in the Australian state of Queensland 

where M. quinquenervia grows within 30 m of the wetland (Fig. 8). 

 

 To investigate whether M. quinquenervia leaves are preserved in some of 

these sites, we recovered sediments from ten lakes and swamps on the sand islands 

North Stradbroke Island and Fraser Island (Table 3). On these islands, three out of the 

ten wetlands surveyed preserved leaves of M. quinquenervia and two also preserved 

leaves of Eucalyptus (Table 3). M. quinquenervia has highly resistant sclerophyllous 

leaves (Li et al., 2009), which favours their preservation, however sclerophylly does 

not ensure preservation since there was no preserved material found at a number of 

other sites we sampled (Table 3). In addition, no leaves were preserved in sediments 

of Lachlan Nature Reserve swamp, Sydney, Australia (R. Hamilton pers. comm.), a 

wetland which has no permanent standing water but has M. quinquenervia as the 

current canopy dominant (Hamilton & Penny, 2015). As a result, we hypothesise the 

preservation of leaves is dependent on anoxia, which reduces chemical and biological 

breakdown (e.g. by macroinvertebrate “shredders”  Li et al., 2009). Anoxia in these 

low nutrient lake systems is likely to result from their physical characteristics, in 

particular the ratio of lake surface area to both depth and water volume, and the 

degree of protection afforded from wind driven overturning by the surrounding terrain 

(including vegetation) (Hondzo & Stefan, 1996). As an example, monitoring the 

deepest area of Swallow Lagoon at approximately monthly intervals between June 

2011 and May 2012 found that it experiences prolonged anoxia (near bed dissolved 
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oxygen typically < 1 ppm; supporting information S3) for most of the year due to its 

sheltered position and small surface area (< 1.5 ha). By contrast, larger more exposed 

lakes on North Stradbroke Island typically have higher oxygen concentrations at 

depth. Blue Lake never experienced anoxia for the period 1996–2002 (Barr et al. 

2013) and lakebed anoxia was only recorded once in Brown Lake for the period 1992-

2001 (n=47; supporting information S3). Neither of these sites preserved leaves 

(Table 3). Beyond our investigations, there are large numbers of potential sites for 

preservation of M. quinquenervia in Queensland, Australia (see Fig. 8). Outside 

Australia M. quinquenervia has been observed on the margins of palaeoecological 

sites in New Caledonia (Stevenson et al., 2001). 

 

Conclusions 

The annual mean carbon isotope discrimination of M. quinquenervia leaves 

collected over an 11-year period exhibits a statistically significant relationship to 

rainfall. In the modern day, the effect of pCO2 is largely negligible for our samples; 

however, for application to the fossil record, changes in pCO2 even during the 

Holocene has an important effect (Schubert & Jahren, 2015). Variation within leaves 

and within the canopy is not systematically offset and is small relative to the overall 

rainfall-isotope relationship. Therefore the utility of ∆leaf in M. quinquenervia as a 

proxy for past rainfall variability has great potential in locations where leaves are 

preserved.  

An analysis of the distribution of M. quinquenervia reveals a large number of 

wetlands across the Australian eastern seaboard that may contain sub-fossil leaves 

within their sediments. A survey of ten lakes on North Stradbroke Island and Fraser 

Island found three lakes with abundant preservation within the sediments. The 
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rainfall-∆leaf relationship, widespread distribution and demonstrated preservation of M. 

quinquenervia leaves, indicate substantial potential for reconstructing past variability 

in tropical and subtropical precipitation.  
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Supporting information captions 

S1: Melaleuca quinquenervia Δleaf from Carbook Wetland April 1992-July 2003.  

S2:  Monthly and annual rainfall from Mt Cotton Farm 

S3: Swallow Lagoon and Brown Lake, North Stradbroke Island dissolved oxygen 

concentrations 
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Table 1. Coefficient of determination for significant (p<0.01) relationships between 

monthly Δleaf and climate variables over different time intervals before leaf collection 

(blc). RHmaxT and RHminT=relative humidity at maximum and minimum 

temperature, respectively. n/s=not significant. 

Climate variables 

Coefficient of determination of 

relationship with monthly Δleaf 

1 - 2 years 

blc 

1 - 3 years 

blc 

1 - 4 years 

blc 

Evaporation  0.13 0.10 n/s 

Minimum temperature 0.30 0.28 0.15 

P/E 0.19 0.28 0.18 

Radiation  0.18 0.23 0.26 

Rainfall 0.17 0.28 0.19 

RHmaxT 0.15 0.16 0.16 

RHminT n/s n/s 0.06 

Vapour Pressure 0.19 0.18 0.14 

 

 

Table 2. Relationship between Δleaf and climate variables for 1–2, 1–3 and 1–4 

hydrologic (Nov-Oct) years before leaf collection (blc). Only significant (p<0.01) 
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variables are displayed. Rainfall data are expressed as yearly mean (mm) while 

radiation data are daily mean (MJ/m
2
).  

Variable Relationship Linear regression 

Annual average rainfall 1–4 years 

(365–1460 days) blc 

r
2
=0.64, p=0.003 y = 0.004x + 17.936 

Radiation 1–4 years (365–1460 

days) blc 

r
2
=0.57, p=0.008 y = -2.1557x + 62.815 
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Table 3. Wetlands with M. quinquenervia growing on the wetland surface or around the margin that we investigated for leaf preservation.  For 

additional background information about North Stradbroke Island (NSI) wetlands see Marshall et al. (2011).  

 

Wetland Site type Location 

(and island) 

Reference (for lake 

characteristics) 

Water 

depth at 

time of 

sampling 

Wetland 

area 

Leaves recovered? 

18 Mile 

Swamp (pools) 

Freshwater 

coastal swamp 

27.526444 S 

153.496778 E 

(NSI) 

Mettam et al. (2011) 2.3 m 0.1 ha No 

Brown Lake Perched lake 27.488291 S 

153.434740 E 

(NSI) 

Mosisch and Arthington 

(2001); Marshall et al. 

(2011) 

6.1 m 46 ha No 

Blue Lake Groundwater 

window lake 

27.518056 S 

153.477417 E  

(NSI) 

Barr et al. (2013); Marshall 

and  McGregor (2011); 

Marshall et al. (2011) 

7.2 m 10.3 ha No 

Fern Gully 

Lagoon 

Perched 

palustrine 

wetland 

27.25053 S 

153.27663 E 

(NSI) 

Marshall et al. (2011) 1 m 7.3 ha No 

Swallow 

Lagoon 

Perched lake 27°.41772 S 

153°.46118 E 

(NSI) 

Mosisch and  Arthington 

(2001); Marshall and  

McGregor (2011); Marshall 

et al. (2011) 

5.7 m 

 

<1.5 ha Yes. Eucalyptus 

leaves also 

preserved 

Welsby 

Lagoon 

Perched 

palustrine 

wetland 

27.43717 S 

153.45010 E 

(NSI) 

Moss et al. (2013); Marshall 

et al. (2011) 

1.2 m 19.25 ha No 

 

Barga Lake Perched lake 25.5 S 

153.05 E 

(Fraser Island) 

Bayly et al. (1975) 0.8 m* 7.0 ha No 

Basin Lake Perched lake 25.466667 S 

153.05 E 

Bayly et al. (1975) 7.5 m 3.8 ha Yes 
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(Fraser Island) 

Benaroon Lake Perched lake 25.516667 S 

153.05 E 

(Fraser Island) 

Bayly et al. (1975) 5.7 m  83 ha No 

Jennings Lake Perched lake 25.494 S 

153.055 E 

(Fraser Island) 

Bayly et al. (1975) 4.1 m 12.2 ha 

(open water 

area) 

Yes. Eucalyptus 

leaves also 

preserved 

*deepest part of the lake not sampled. 

 


