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amplitude. Thanks to a subtle interplay between a weak scalar coupling and a low scalar mass,
it is possible to exhibit self-tuning and compatibility with solar system tests of gravity without
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coupling and the correspondingly slow response to vacuum energy phase transitions may
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of vacuum energy.
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1 Introduction

The cosmological constant problem has haunted theoretical physics ever since Pauli cal-
culated the effect of the zero-point energy of the electron on the curvature of spacetime,
declaring that the universe would “not even reach to the moon” [1]. The situation hasn’t
really improved in the century that followed. When we apply standard quantum field theory
methods, radiative corrections to the vacuum energy are extremely sensitive to ultra-violet
physics, scaling like the fourth power of the cut-off. Vacuum energy gravitates just like a
cosmological constant presenting a major issue for cosmology. The observed value of the
cosmological constant lies sixty orders of magnitude below the expected value predicted from
vacuum energy calculations with a TeV cut-off, set by the scale of modern collider experi-
ments. If we push the cut-off all the way up to the Planck scale, the discrepancy extends to
120 orders of magnitude. For reviews of the cosmological constant problem, see [2–6].

One approach to the cosmological constant problem is to invoke some sort of self-tuning
or self-adjustment mechanism. This assumes the existence of additional fields that adjust
their value in order to shield the spacetime from a large underlying vacuum energy. In other
words, the self adjusting fields respond to changes in the vacuum energy, leaving the spacetime
geometry relatively unaffected. In his seminal review article [2], Weinberg famously developed
a no-go theorem ruling out a phenomenologically viable model of self-tuning. As with any
no-go theorem, there were some key underlying assumptions, including the assumption of a
local kinetic structure in the four dimensional effective theory, and translational invariance of
the vacuum. The latter condition was relaxed for so-called Fab Four theories [7–9], evading
the clutches of Weinberg’s theorem and giving rise to self-tuning Minkowski vacua even in the
presence of a very large vacuum energy. However, all Fab Four theories necessarily contained a
light scalar coupled to matter with gravitational strength, potentially giving rise to fifth forces
and eventually being ruled out by multi-messenger probes of neutron star mergers [10–13].
Self-tuning can also be realised in higher dimensional settings (see e.g. [14–19]) although such
scenarios are often beset with problems such as hidden fine tunings, ghost-like instabilities
and bad phenomenology [20–25].

These problems prompted two of us [26] to expand on Weinberg’s no-go theorem, drop-
ping the assumption of translation invariance but bringing in other considerations such as
stability of the vacuum and observational constraints. The idea was to use Källén-Lehmann
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spectral representations of exchange amplitudes for conserved gravitational sources to explore
a very general class of self adjusting theories. By assuming unitarity, Lorentz invariance,
metastability of the self-tuning vacuum, and compatibility with solar system tests of gravity
at leading order in perturbations [27], self-tuning on Minkowski and de Sitter vacua was
shown to be impossible. However, the analysis did leave room for two interesting loopholes.
The first of these is realised by vacuum energy sequestering [28–40], where the free field prop-
agators do not take the canonical form (for sequestering they take the form of decapitated
propagators [41]). The second loophole involves self-tuning on anti de Sitter vacua. In other
words, the no-go results of [26] did not exclude the possibility that there are self adjusting
field theories for which the vacuum is low scale anti de Sitter, even in the presence of a large
vacuum energy (of any sign). It is this anti de Sitter loophole that we would like to explore
further in this paper.

We identify a generalised class of Fab Four theories, where the self-tuning vacuum is
stable anti de Sitter, and linearised perturbations about the vacuum satisfy solar system
constraints on the gravitational force. The anti de Sitter vacuum means that translational
invariance is broken by the metric field as opposed to the vacuum expectation value of the
scalar. This should be contrasted with the original Fab Four theory, where the vacuum
was Minkowski, and so translational invariance had to be broken by the scalar in order
to evade Weinberg’s theorem. The constant vev for the scalar in our new set-up makes it
more amenable to an analytic analysis of linear perturbations. Perturbative stability and
compatibility with solar system tests require the scalar to be very weakly coupled. However,
it is also very light and can exert a non-trivial effect on long wavelength sources, making
self-tuning possible.

Our generalised Fab Four theories include the four familiar terms - John, Paul, George,
and Ringo [7–9] - although now they are adapted to an anti de Sitter vacuum with curvature
−q2, similar to those seen in [42]. The curvature scale q is chosen independently of the
vacuum energy, and it can be set to lie below the current Hubble scale. Our generalised
theory also contains an extension of the dRGT mass term for the graviton [43–45], yielding
a scalar-graviton potential that is ghost free and similarly adapted to vanish on the bespoke
anti de Sitter vacuum.

As a canonical example, we note that there exists a simple self-tuning theory where the
graviton mass actually vanishes, described by the following action (we work in units where
Mpl = 1)

S =
∫
d4x
√
−g

[1
2R−

1
2g

µν∇µφ∇νφ +φ

µ
(G − 24q4)

]
+ Sm[gµν ,Ψ], (1.1)

where Sm is the matter action and the Gauss-Bonnet combination, G = RµναβR
µναβ −

4RµνRµν + R2. We have also introduced an explicit mass scale, µ. Even in the presence of
a large vacuum energy, Vvac, the vacuum is anti de Sitter with curvature −q2. The vacuum
energy fixes the constant vev of the scalar field as φ̄ = − µ

24q4 (Vvac+3q2). Fluctuations about
the vacuum are well behaved, and satisfy solar system tests provided |µ| & 1000q2.

The focus on anti de Sitter vacua, motivated by the no go results of [26], might raise
phenomenological concerns about describing the current phase of acceleration. However, the
transition to self-tuning vacua is not instantaneous — on the contrary, the weakness of the
scalar coupling means it will generically be very slow. Therefore, if dark energy begins to
dominate at late times, it could easily give rise to a quasi de Sitter expansion for at least
an efold, as required by observation. As it happens, the canonical example presented above
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also admits self-tuning to de Sitter vacua. However, in that case, the scalar is tachyonic
(consistent with [26]), albeit at a scale much lower than the de Sitter curvature.

The weakness of the scalar coupling also means that the response to a phase transition in
the early universe is expected to be slow. This could be a serious problem for all our models,
as it suggests that there could be a long period of accelerated expansion after the QCD phase
transition, cooling the universe right down. However, this early phase of acceleration could
potentially be identified with inflation, although to become phenomenologically viable, there
would also need to be a period of preheating, raising the temperature of the universe to
beyond the scale of nucleosynthesis. The details of this speculative idea are beyond the scope
of the current paper, although they do offer some tantalising prospects for future research.

The rest of this paper is organised as follows: in the next section, we write down a
generalised family of Fab Four theories, exhibiting self-tuning to AdS or dS vacua. We also
allow the graviton to have a mass. In section 3, we consider fluctuations about the self-tuning
vacua and express the results in terms of the amplitude. We establish constraints that ensure
the system is both self-tuning and able to pass solar system tests of gravity in the relevant
limit. The details of the amplitude calculation appear in an appendix. In section 4, we
illustrate the results of the previous section by examining the canonical example of (1.1). In
section 5, we make some concluding remarks and speculate on possible future directions.

2 Generalised Fab Four theories

Fab Four theories were introduced in [7–9] as the most general subset of Horndeski theo-
ries [46, 47] that exhibited dynamical self-tuning to Minkowski space, whatever the value of
the vacuum energy in any given epoch. As the name suggests, the theory is built from four
distinct terms in the Lagrangian, each vanishing identically for vanishing Ricci curvature.

Here we consider a generalisation of the Fab Four described by a generic action of
the form

S =
∫
d4x
√
−g [Lj + Lp + Lg + Lr −K(φ)gµν∇µφ∇νφ− Umg] + Sm[gµν ,Ψ], (2.1a)

where we have the usual Fab Four terms - John (j), Paul (p), George (g) and Ringo (r) -
adapted to an anti de Sitter vacuum with curvature −q2,

Lj = Vj(φ)(Gµν − 3q2gµν)∇µφ∇νφ, (2.1b)
Lp = Vp(φ)(Pµναβ + 2q2gµ[αgβ]ν)∇µφ∇αφ∇ν∇βφ, (2.1c)
Lg = Vg(φ)(R+ 12q2), (2.1d)
Lr = Vr(φ)(G − 24q4). (2.1e)

These four terms are obtained from the original Fab Four [7–9] by replacing the curvature
terms in the Lagrangian with a shifted curvature, Rµναβ → Rµναβ + q2(gµαgνβ − gµβgνα).
In addition to the Einstein tensor, the Ricci scalar and the Gauss-Bonnet combination, G,
the Fab Four depends on the double dual of the Riemann tensor, Pµναβ = −1

4δ
µνρδ
σλαβR

σλ
ρδ =

−Rµναβ + 2Rµ[αδ
ν
β] − 2Rν[αδ

µ
β] −Rδ

µ
[αδ

ν
β].

The action (2.1) also contains an additional kinetic term for the scalar, proportional to
a general function K(φ), whose vacuum expectation value can be chosen so that linearised
perturbations satisfy solar system constraints [27]. This term is absent in standard Fab Four
models, but it is allowed here since it does not affect the form of the vacuum solution for a
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constant scalar field. The potential Umg is a generalisation of the dRGT mass term for the
graviton [43–45], being ghost free and again adapted to vanish on an anti de Sitter vacuum
with curvature −q2. Specifically, we have

Umg = 1
4m

2V 2
g

[
U(Σ)

]FE
F̄E
, (2.2)

where we introduce the shorthand
[
U(Σ)

]FE
F̄E

= U(FE) − U(F̄E) for later convenience. The

corresponding arguments are given implicitly as (FE)2 = g̃−1ḡ = 1
Vg
g−1ḡ, (F̄E)2 = 1

Vg
1 and

are built directly from the Einstein frame metric g̃µν = Vggµν and the vacuum anti de Sitter
metric, ḡµν . The underlying potential takes the familiar dRGT form [44]

U(Σ) = −4
(
12− 6 TrΣ +

(
TrΣ

)2 − TrΣ2). (2.3)

Our goal here is to explore the phenomenology of these generalised models. In particular,
we would like to ask if they exhibit consistent vacua that self-tune to anti de Sitter (with
curvature −q2), and whether linearised perturbations are free of instabilities and compatible
with solar system tests of gravity. Unlike in the original Fab Four set-up, the breaking of
translational invariance on the anti de Sitter vacuum allows self-tuning to occur even for
constant scalars, making the linearised analysis far simpler. The John and Paul terms will
not play any role whatsoever in this analysis, either at the level of the background, or at
linear order. For that reason, we drop them from now on. It may be worth restoring them
in a detailed analysis of the cosmological evolution which is beyond the scope of this paper.

With these truncations, our working action is now given by

S =
∫
d4x
√
−g
[
A(φ)2(R+ 12q2) + Vr(φ)(G − 24q4)

−K(φ)gµν∇µφ∇νφ−
m2

4 A(φ)4
[
U(Σ)

]FE
1
A1

]
+ Sm[gµν ,Ψ], (2.4)

where we have written the George potential as Vg(φ) = A(φ)2, for notational convenience.
This yields field equations Eµν = 0 from variation with respect to the metric, and Eφ = 0 from
variation with respect to the scalar, where

Eµν = 2
(
∇µ∇ν−δµν�−Gµν

)
A2 +12q2A2δµν +2K

{
∇µφ∇νφ−

1
2
(
∇φ
)2
δµν

}
+m2

4

{
Wµ
ν −δµν

[
U(Σ)

]FE
1
A

1

}
A4 +

(
8Pµανβ∇α∇β−24q4δµν

)
Vr+Tµν , (2.5)

Eφ = 2AA′
(
R+12q2)+K′

(
∇φ
)2 +2K�φ−m

2

4 A
3A′

[
4U(Σ)−Tr

(
Σ∂U
∂Σ

)]FE
1
A1

+V ′r
[
G−24q4]. (2.6)

HereWµ
ν = −4

(
−6(FE)µν+2Tr(FE)(FE)µν−2(FE)µα(FE)αν

)
is related to the energy momentum

tensor for the dRGT mass term, while Tµν = − 2√
−ḡ

δSm
δḡµν is the energy-momentum tensor for

matter minimally coupled to the metric. Prime denotes differentiation with respect to φ.
We now consider the self-tuning vacua in this theory, assuming the presence of an

arbitrarily large vacuum energy, Tµν = −Vvacgµν . It is easy to see that the scalar equation
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of motion (2.6) is satisfied for a constant scalar φ̄ whenever the metric coincides with the
background anti de Sitter vacuum gµν = ḡµν , with curvature −q2. The metric equation of
motion (2.5), sourced by a large vacuum energy, now fixes the value of the scalar field, as
opposed to the metric, giving

Vvac

6Ā2 = m2(Ā − 1
)

+ q2
(

1− 4q2

Ā2 V̄r

)
, (2.7)

where bar denotes the corresponding potential evaluated at φ̄. As we will see in a moment,
Ā sets the scale of gravitational interactions on this vacuum and is therefore identified with
the Planck scale. It is instructive to see what happens in the absence of the mass term
and the Ringo term. In this instance, equation (2.7) forces a fine tuning condition on the
vacuum energy. Indeed, the background curvature should not exceed the curvature scale of
the universe today, q2 . H2

0 , and so the vacuum energy is constrained to be unnaturally
small |Vvac| . H2

0 . However, the presence of the Ringo term immediately changes the story.
Equation (2.7) now picks up a scalar dependence which we can use to accommodate a much
larger vacuum energy. We might also imagine that the mass term can be used in a similar
way. However, as we will see, this is not the case. A detailed study of the fluctuations
suggests that the mass term needs to be too small, so Ringo is absolutely crucial.

3 Fluctuations about the self-tuning vacuum

We now consider the fluctuations about this vacuum. As shown in the appendix, this yields
the following expression for the exchange amplitude between conserved sources τµν and τ ′µν

Amp = − 1
Ā2

∫
d4x

√
−ḡ

{
τ ′µν

1
�̄+ 2q2 −m2

g

τµν

−τ
′

2

[
1/2

�̄+ 2q2 −m2
g

+
(
q2 +m2

g/6
q2 +m2

g/2

) 1/2
�̄− 6q2 −m2

g

]
τ +

m2
φ

12Γτ
′ 1
�̄−m2

φ

τ

}
, (3.1)

where the trace of the source is τ = ḡµντµν and τ ′ = ḡµντ ′µν . We also define the effective
mass of the graviton

m2
g ≡ m2(3Ā − 2),

and the effective mass of the scalar

m2
φ ≡

12(αĀ2Γ− 4q4V̄ ′r )2

Ā2Γ(K̄ + 6α2Ā2 − 24q2αV̄ ′r ) + 48q6V̄ ′2r
, (3.2)

where α ≡ Ā′Ā and Γ ≡ 2q2 +m2
g.

The first line in (3.1) is the amplitude for a massive graviton of mass m2
g in a maximally

symmetric space with curvature −q2. To avoid a helicity-2 ghost, we require Ā2 > 0. If m2
g =

0, there is nothing more to add as the helicity- 1 and helicity-0 modes are absent. However,
if m2

g 6= 0, the helicity- 1 and helicity-0 modes return, and the absence of a corresponding
ghost requires m2

g > 0 and Γ > 0 respectively.1 The second line in (3.1) is just the amplitude
1In [26], only the condition Γ > 0 is required. However, as emphasized in [48], the condition m2

g > 0 is also
required to ensure the stability of the helicity-1 mode.
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for exchange of a scalar. This is ghost-free provided m2
φ/Γ ≥ 0, and tachyon-free provided

m2
φ ≥ 0. In principle, for the case of a massless graviton, we could tolerate a tachyonic

instability that was sufficiently slow compared with the current age of the universe. In other
words, we might be able to relax the tachyon condition to m2

φ & −H2
0 , where H0 is the

current Hubble scale.
The full amplitude (3.1) exhibits self-tuning, as long as m2

φ and q2 +m2
g/6 are not iden-

tically zero. To see this, note that it vanishes for a vacuum energy source, τµν = −δVvacḡµν .
This is exactly as it should be given the ability of the theory to self-tune in these limits.

At the other extreme, for short wavelength sources like planets and stars, we assume
that �̄� |q2|, |m2

g|, |m2
φ|, so that the amplitude reduces to

Amp ∼ − 1
Ā2

∫
d4x

√
−ḡ
{
τ ′µν

1
�̄
τµν −

1
2τ
′ 1
�̄
τ + ε

2τ
′ 1
�̄
τ

}
, (3.3)

where ε = m2
φ+2m2

g

6Γ . If we identify Ā2 with 1/2, the first two terms in (3.3) recover the
amplitude for four dimensional GR, on flat space. The last term represents the deviation away
from GR, which is constrained to be small on solar system scales, such that |ε| . 10−5 [27].

Bringing all of this together, we see that there are three scenarios of interest.

1. massive graviton, no tachyons, AdS vacuum: if m2
g,m

2
φ > 0, the constraints above

require an AdS background and masses that also satisfy m2
g . O(10−5)q2 and m2

φ .
O(10−5)q2. Since we further assume that q2 . H2

0 this corresponds to an ultralight
graviton and an ultralight scalar. The latter is also very weakly coupled to matter,
being five orders of magnitude more weakly coupled than the graviton.

2. massless graviton, no tachyons, AdS vacuum: ifm2
g = 0,m2

φ > 0, the constraints require
an AdS background and a scalar mass that also satisfies m2

φ . O(10−5)q2. Since we
assume that q2 . H2

0 this, once again, corresponds to an ultralight scalar that is also
very weakly coupled to matter, being five orders of magnitude more weakly coupled
than the graviton.

3. massless graviton, tachyonic scalar, dS vacuum: if m2
g = 0,m2

φ < 0, the constraints
require a dS background and a scalar mass that satisfies 0 > m2

φ & −O(10−5)|q2|. Since
we assume that |q2| . H2

0 this corresponds to an ultralight tachyon with a lifetime that
exceeds the current age of the universe. The scalar is also very weakly coupled to
matter, being five orders of magnitude more weakly coupled than the graviton.

In each of these scenarios, the theory exhibits self-tuning and is ghost-free. The third and
final scenario contains a tachyonic instability, although it is very slow. Compatibility with
solar system tests of gravity is achieved in each case thanks to the very weak coupling of the
light scalar field.

4 The canonical example

Let us now consider a canonical example with a massless graviton, Ā2 = 1/2, K = 1/2 and
Ringo potential Vr = φ/µ, given by the action (1.1), only now we allow for the fact that the
vacuum can be either dS or AdS, depending on the sign of q2 (in our notation, the vacuum
has curvature −q2, being dS for q2 < 0 and AdS for q2 > 0). As stated previously, the
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vacuum energy Vvac does not affect the vacuum curvature. Instead, it fixes the constant vev
of the scalar field as φ̄ = − µ

24q4 (Vvac + 3q2).
The exchange amplitude between conserved sources is given by

Amp =−2
∫

d4x
√
−ḡ
{
τ ′µν

1
�̄+2q2 τµν−

τ ′

2

[ 1/2
�̄+2q2 + 1/2

�̄−6q2

]
τ+gφτ

′ 1
�̄−m2

φ

τ

}
, (4.1)

where
m2
φ = 384q6

µ2 + 96q4 , gφ = 16q4

µ2 + 96q4 .

At large wavelengths, �̄ � q2,m2
φ, there is an elegant cancellation between terms and the

amplitude acquires the tensor structure associated with self-tuning

Amp ∼ −2
∫

d4x
√
−ḡ 1

2q2

{
τ ′µντµν −

1
4τ
′τ

}
. (4.2)

Note the importance of the background curvature q2 6= 0 for this to be well defined. At short
wavelengths, �̄� q2,m2

φ, the amplitude scales as

Amp ∼ −2
∫

d4x
√
−ḡ
{
τ ′µν

1
�̄
τµν −

1
2τ
′ 1
�̄
τ + gφτ

′ 1
�̄
τ

}
. (4.3)

If |µ| & 1000|q2|, then gφ . 10−5, ensuring compatibility with solar system tests of gravity.
Further, the size of the scalar mass |m2

φ| . 10−4|q2| . 10−4H2
0 .

5 Discussion

In this paper, we have explored a family of generalised scalar-tensor theories, finding ex-
amples of self-tuning to low scale AdS or dS vacua for any choice of vacuum energy. Since
translational invariance is broken by the background curvature, these self-tuning vacua can
exist even for constant scalar profiles and still evade Weinberg’s no go theorem. This makes
it easy to investigate fluctuations around the vacuum, which can be made compatible with
solar system gravity tests provided the scalar is very weakly coupled.

We should not be surprised that compatibility with solar system tests required a weakly
coupled scalar. Such a statement is trivial if the scalar exists alongside a massless graviton.
It is also true for an ultra light massive graviton in anti de Sitter space, thanks to the absence
of the so-called vDVZ discontinuity in that case [49]. What is, perhaps, more surprising, is
that self-tuning can be achieved even when the scalar is so weakly coupled. However, the
point is that the scalar is also ultra light. This can compensate the effect of weak coupling in
the presence of a vacuum energy source, giving a non-trivial contribution to the amplitude.

The weak coupling should also help protect the stability of these theories under radiative
corrections. We can see this explicitly in the canonical model (1.1). Here there is a shift
symmetry in the scalar broken only by the linear potential. The coefficient of the linear
potential, q4/µ . q2/1000, sets the scale of the background vacuum and is technically natural.
Note that the scale µ is only very weakly constrained.

The weak scalar coupling could have some important (perhaps worrying) consequences
for early universe phase transitions, in which the vacuum energy jumps over a relatively
short timescale. Suppose a transition occurs when H ≈ H∗, at which point vacuum energy
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jumps as ∆Vvac ∼ H2
∗ . This will trigger a change in the scalar ∆φ, as it moves from the

self-tuning position prior to the transition, to the one after. If gφ measures the strength of
the scalar coupling, we might naively expect the scalar to take a proper time ∆t ∼ g−1

φ H−1
∗

to find the new self-tuning position after the transition. Given that gφ . 10−5, this is likely
to take more than 100,000 Hubble times, during which the vacuum energy is expected to
gravitate, leading to a long period of inflation. The universe will cool significantly during
this time, as the matter content of the universe is rapidly diluted. This sounds problematic,
especially when we consider the fact that the QCD phase transition occurs at a low scale
ΛQCD ∼ 200MeV. As a result, there are likely to be significant phenomenological challenges
that must be overcome for these self-tuning models to be considered viable in the presence
of vacuum energy phase transitions.

Of course, it is important to establish whether or not our naive expectation is indeed
realised, and this is a computationally non-trivial task. The details of a dynamical response to
a phase transition could also depend on the inclusion of Paul or John terms in the underlying
action. These terms do not affect the perturbative analysis presented here. Assuming the
response to the QCD transition is indeed slow, could we identify the burst of accelerated
expansion as a model for early universe inflation? In this set-up, the self-tuning scalar
would be identified with the inflaton, and inflation would be halted once it had found the
new self-tuning vacuum. Of course, the universe would need to warm up again, raising the
temperature beyond the scale of nucleosynthesis, but that is not in general a problem for
preheating, which would probably be the preferred route to reheat the universe because the
scalar and matter are only very weakly coupled.

The cosmological dynamics after inflation, up until the present time, also merits further
investigation. For the original Fab Four scenario, and generalisations, the degeneracy asso-
ciated with self-tuning can result in matter and radiation being screened alongside vacuum
energy [50]. This is unlikely to be the case here since cosmological dynamics in linearised
form (see [51]) should recover the standard Friedmann equations of GR for short wavelength
sources. Furthermore, the weakness of the scalar coupling to matter should help to keep
any deviations from GR under control. Indeed, this is the reason our theory may be able to
accommodate bursts of acceleration as we have described above for inflation. All that said,
only a complete analysis of the cosmological dynamics in the presence of self-tuning will be
able to establish if these expectations are realised. This analysis is likely to be numerically
quite challenging.
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A Exchange amplitude

Here we derive the formula for the amplitude (3.1). We begin by perturbing equations (2.6)
and (2.5) about the background solution with gµν = ḡµν+hµν , φ = φ̄+δφ, Tµν = −Vvacδµν +τµν .
The perturbed field equations are given as δEµν = δEφ = 0 where

δEµν = −2Ā2δGµν + (4ĀĀ′ − 8q2V̄ ′r )Dµ
ν δφ+m2

g

(
6ĀĀ′δφδµν + Ā2(hδµν − hµν ))+ τµν , (A.1)

and
δEφ = 2ĀĀ′δR+ 3m2

gĀĀ′h+ 2K̄�̄δφ+ V̄ ′r
(
4P̄µανβ∇̄α∇̄βhµν − 12q4h

)
. (A.2)

Here Dµ
ν ≡ ∇̄µ∇̄ν − �̄δµν + 3q2δµν and m2

g ≡ m2(3Ā − 2), and indices are raised and lowered
with respect to the background metric.

We now decompose hµν as

hµν = h(TT )
µν + 2∇̄(µA

(T )
ν) + 2∇̄µ∇̄νχ+ 2ḡµνψ, (A.3)

where A(T )
µ is transverse and h(TT )

µν is transverse-tracefree

∇̄µA(T )
µ = 0, ḡµνh(TT )

µν = 0 = ∇̄µh(TT )
µν .

We can consistently set the vector part A(T )
µ to 0. By using the Lichnerowicz operator to

compute δGµν , equation (A.1) can now be written as

τ (TT )µ
ν = −Ā2(�̄+ 2q2 −m2

g

)
h(TT )µ

ν , (A.4)

where the transverse-tracefree part of the energy-momentum tensor is given by

τ (TT )µ
ν = τµν − 2Dµ

νS + Cδµν , (A.5)

with
S = Ā2(m2

gχ− 2ψ − 2αδφ
)

+ 4q2V̄ ′rδφ, (A.6)

and
C = 6Ā2m2

g

(
ψ + q2χ+ αδφ

)
. (A.7)

Here we have also defined α ≡ Ā′
Ā . Assuming conservation of the source ∇̄µτµν = 0, the

transverse property of (A.5) implies the constraint C = 0. Note that this only gives something
non-trivial if m2

g 6= 0, when the massive graviton breaks diffeomorphisms explicitly.
The transverse-tracefree part of the energy momentum tensor can now be written more

succinctly as τ (TT )µ
ν = τµν − 2Dµ

νS, where we now have

S = − 1
q2

(
Ā2Γψ +Rδφ

)
, (A.8)

with Γ ≡ 2q2 + m2
g and R = αΓĀ2 − 4q4V̄ ′r . Note that we have also used the constraint

C = 0 to eliminate m2
gχ in our expression for S.

Using the tracelessness of τ (TT )µ
ν , we further obtain

S = −1
6

1
�̄− 4q2 τ. (A.9)
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An explicit computation of the perturbed scalar equation of motion (A.2) now yields

− 6R
q2 (�̄− 4q2)ψ + 2Keff�̄δφ = 0, (A.10)

where Keff = K̄ − 3α2m2
gĀ2

q2 , and, once more, we have used the constraint C = 0 to eliminate
m2
gχ in our final expression. We can use equation (A.8) to eliminate δφ in favour of S.

Plugging the result into equation (A.10) we obtain

ψ =
m2
φ − 4q2

4Ā2Γ
�̄

�̄−m2
φ

S, (A.11)

where m2
φ is given by equation (3.2).

We are now ready to compute the exchange amplitude for two conserved sources, τµν
and τ ′µν , on a maximally symmetric background, with curvature −q2. To do this we write

Amp =
∫

d4x
√
−ḡτ ′µνhµν =

∫
d4x

√
−ḡ
(
τ ′µνh(TT )

µν + 2τ ′ψ
)
, (A.12)

where we have used eq. (A.3), along with energy momentum conservation to eliminate the
∇̄µ∇̄νχ terms. Using the fact that

h(TT )
µν = − 1

Ā2
1

�̄+ 2q2 −m2
g

(τµν − 2DµνS) , (A.13)

and our formula for ψ, given by equation (A.11), the amplitude can be written as

Amp = − 1
Ā2

∫
d4x

√
−ḡ

{
τ ′µν

1
�̄+ 2q2 −m2

g

τµν − 2τ ′µν 1
�̄+ 2q2 −m2

g

DµνS

−τ ′
m2
φ − 4q2

2Γ
�̄

�̄−m2
φ

S
}
. (A.14)

We now make use of the following formula [26]

1
�̄−M2 ∇̄µ∇̄νS = ∇̄µ∇̄ν

1
�̄−M2−8q2S+ 1

4 ḡµν

[
M2

�̄−M2 −
(M2 +8q2)
�̄−M2−8q2

]
S, (A.15)

and energy-momentum conservation, so that the amplitude becomes

Amp = − 1
Ā2

∫
d4x

√
−ḡ

{
τ ′µν

1
�̄+ 2q2 −m2

g

τµν + 2τ ′ �̄− 3q2

�̄+ 2q2 −m2
g

S

−1
2τ
′
[
−2q2 +m2

g

�̄+ 2q2 −m2
g

−
(6q2 +m2

g)
�̄− 6q2 −m2

g

]
S − τ ′

m2
φ − 4q2

2Γ
�̄

�̄−m2
φ

S
}
. (A.16)

Upon inserting the form of S given by equation (A.9), and simplifying, we arrive at the
formula for the amplitude stated in equation (3.1).
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