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Abstract10

The main focus of this paper is to investigate the tensile properties of virgin and rubberized11

cement bound granular mixtures. This was conducted using indirect tensile testing with lateral12

displacement measurements, nondestructive resonant frequency testing, X-ray CT and13

quantitative assessment for cracking pattern using fractal analysis. The investigated properties14

were density, compacity, indirect tensile strength (ITS), indirect tensile static modulus,15

toughness, dynamic modulus of elasticity, dynamic modulus of rigidity, dynamic poison’s16

ratio, fractal dimension and fracture energy. To keep the same aggregate packing, the natural17

aggregate was replaced by waste tyres’ crumb rubber of similar gradation. Four volumetric18

replacement percentages (0%, 15%, 30% and 45%) of the 6 mm fraction size were utilized.19

This adjustment was observed to affect the material density not only due to the lower specific20

gravity, but because it also affects the compactibility of the mixture negatively due to the21

damping action of the rubber particles. In addition, strength was also affected detrimentally.22

However, material toughness was improved and stiffness was mitigated. The latter findings23

were supported by quantitative assessment of the cracking pattern which revealed more24

tortuosity and a higher fractal dimension as a result of rubber content increasing. A failure25

mechanism for this type of mixture was suggested and support by examining the internal26

structure of failed samples using X-ray CT. Overall, construction of cement-stabilized27
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aggregate base with a small percentage of added crumb rubber may ensure a more sustainable28

and environmental-friendly pavement material and, at the same time, improve the properties29

of stabilized layers. However, behaviour of these mixtures under cyclic loading and30

evaluation of their durability should be assessed to fully validate their use.31

32

Keywords: cement-stabilized aggregate; waste tyres; rubberized cement bound mixture;33

indirect tensile; sustainable pavement; fractal analysis.34

35

1. Introduction36

Stockpiling waste materials and depletion of natural resources represent two accompanying37

problems in the modern world. One of the most common and continuously increasing waste38

materials is derived from the vehicle tires consumed every year. Over the years, many authors39

have attempted to make use of these waste materials to ensure proper disposal of these40

materials and to save natural resources. Authors (Khatib and Bayomy 1999; Güneyisi et al.41

2004; Papakonstantinou and Tobolski 2006; Balaha et al. 2007; Gesoğlu and Güneyisi 2007; 42

Zheng et al. 2007; Khaloo et al. 2008; Taha et al. 2008; Zheng et al. 2008; Güneyisi 2010;43

Pelisser et al. 2011; Najim and Hall 2012; Güneyisi et al. 2014) have investigated the44

feasibility of using waste tire materials in different types of concrete mixtures as a45

replacement of either fine or coarse aggregate or both. Others (Pincus et al. 1994; Cecich et al.46

1996; Foose et al. 1996; Masad et al. 1996; Liu et al. 2000; Youwai and Bergado 2003; Kim47

et al. 2005; Humphrey 2007) studied the possible use of these materials in geotechnical48

applications as fill materials for embankments and behind retaining walls.49

50

No doubt, highway construction consumes large quantities of natural materials as compared51

with other civil engineering projects (Cao 2007; Barišić et al. 2014). Therefore, studies have52

been conducted to investigate the possibility of using these waste materials within the53

pavement structure, specifically in asphaltic mixtures to modify the properties of the binder54
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either through the wet or dry process (Chiu and Lu 2007; Fontes et al. 2010); (Cao 2007; Xiao55

et al. 2007; Chiu 2008). A very few studies were conducted to investigate the possibility of56

using crumb rubber within cement-stabilized aggregate mixtures typically used as a base57

and/or subbase courses in flexible composite pavement structure. The usage in this case might58

be more feasible than in asphaltic mixtures used as a base or surface course since the latter59

two layers usually have a limited thickness due to their high cost as compared with cement-60

stabilized layers. Cement-stabilized mixtures as defined by (Lim and Zollinger 2003) are a61

mixture of aggregate, Portland cement and a small quantity of water to facilitate compaction62

and to hydrate the cement. Cement-stabilized aggregate can be classified as a cementitious63

material. The Portland Concrete Association (PCA 2005) has classified these materials into64

four types depending on the amount of water and cement being used. Materials with high65

cement contents are roller-compacted concrete and normal concrete. However, the first one is66

constructed by rolling due to the low level of water as compared with the latter. On the other67

hand, flowable fill and cement-stabilized materials are the other types which contain low68

cement levels with first one being constructed by rolling due to its low water content.69

70
71

2. Rationale and aims72

The motivation of this research is to make use of the above waste materials which in turn73

should help to save natural resources as well as to reduce the environmentally detrimental74

effect of these materials. Another motivation comes from the fact that the use of Portland75

cement to stabilize granular materials usually produces stiff mixtures which are sensitive to76

cracking, overloading and fatigue failure (Wu et al. 2015). Furthermore, the reflection cracks77

mostly accompanying the cement-stabilization, especially at high cement contents.78

Consequently, an attempt was made in this paper to mitigate the above disadvantages by79

using the crumb rubber to modify some cement-stabilized mixtures. The purpose of this paper80

is to study the effect of crumb rubber particles on the properties of cement-stabilized mixtures,81

mainly in terms of tensile performance. The importance of this investigation comes from the82
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fact that, in pavement structural design, tensile properties are the most influential factors since83

all bound layers (including cement bound granular mixture (CBGM) are designed based on84

the tensile stress / strain at the bottom of these layers. A review of literature indicated that85

there is no published study about the quantitative evaluation of cracking pattern of rubberized,86

nor even of conventional cement-stabilized materials. Therefore, another complementary87

objective of this paper is to use the fractal analysis concept to quantitatively study the88

cracking pattern of cement-stabilized aggregate containing different rubber contents and to89

investigate any possible correlation with macro-scale properties. This will help to better90

understand the failure mechanism of this type of modified mixture.91

92

3. Experimental program and methodology93

3.1 Materials and their properties94

A crushed limestone aggregate of 20 mm maximum size is used across this study. To ensure95

the manufacture of comparable mixtures containing the same gradation and densities and96

hence investigating the effect of rubber alone, two steps were conducted. The first one was to97

use and combine different fractional sizes (20 mm, 14 mm, 10 mm, 6 mm and dust (less than98

6mm)) in different proportions to constitute the required gradation and the second was to99

batch, mix and compact each sample individually. This was so as to ensure comparable100

strength since there is a high dependency of the strength on mixture density (Williams 1986).101

Different fractions of limestone aggregate were collected from Dene Quarry in102

Nottinghamshire in the UK. The gradations were assessed in accordance with BS EN 933-103

1:2012. The crumb rubber particles were sourced from J Allcock and Sons Ltd. in104

Manchester, UK. Its gradation is presented in Figure 1. Initial examination showed a105

similarity between the 6 mm aggregate fraction size and that of crumb rubber as shown in this106

figure. Consequently, it was decided to replace the former by the latter in order to ensure the107

same aggregate packing so as to enable study of the effect of elastic aggregate particles alone.108
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The specific gravity of the rubber was adopted as 1.12 as measured by (Najim and Hall 2012).109

CEM I 52.5 R Portland cement conforming to BS EN 197-1: 2000 was used for aggregate110

mixtures stabilization. Potable tape water was utilized to moisturize the cement- aggregate111

mixture.112

113

3.2 Mixture design and samples production114

The final gradation, after blending, of the CBGM was to specification BS EN 14227-1:2013 -115

[CBGM2-0/20]. It is illustrated in Figure 2. 5% cement, by dry weight of aggregate, was used.116

Optimum water content for aggregate-cement mixture was estimated as 4.6% (by the total dry117

weight of aggregate and cement) in accordance with BS EN 13286-4:2003. Regarding the118

degree of replacement by rubber, three volumetric replacement percentages was investigated119

and the resulting materials compared with mixtures contain no rubber. These are 15%, 30%120

and 45% of the 6 mm aggregate fraction volume. These are equivalent to 2.1%, 4.2% and121

6.2% of the total volume of the aggregate, respectively. Because of the considerable122

differences between the specific gravities of natural aggregate and crumb rubber,123

proportioning on the weight basis is a misleading approach. This is because the cement is124

normally added by the dry weight of aggregate which will reduce after replacing with crumb125

rubber due to the low specific gravity of the latter. This in turn would cause a change in the126

cement content and accordingly water content for different replacement levels. Accordingly,127

volumetric proportioning was taken into consideration. All volumetric proportion was kept128

constant as used in the virgin mixture and the only variable was the rubber volume. This was129

simply done by keeping the weight of cement and water as that used in the virgin mix. For the130

purpose of designation, C5R0 was used to indicates the mixture containing 5% cement131

content and 0% rubber replacement i.e., virgin mix. On the other hand, C5R15, C5R30 and132

C5R45 were used to describe the mixtures containing 5% cement and 15, 30 and 45%133

replacement levels, respectively.134

135
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Regarding mixing sequence, cement and dust were mixed firstly until uniform colour was136

achieved. The cement- dust mixtures was added to the rest of aggregate sizes and mixed for a137

minute. After adding the appropriate water quantity, all materials were mixed thoroughly for138

another two minutes. All mixing was conducted manually. On completion of mixing, each139

mixture was compacted in three layers inside a lubricated spilt mould with diameter of 101.6140

mm using a Kango 638 vibrating hammer. The compaction time was 60 sec. per layer as141

recommended by BS EN 13286-51:2004. Past experience with testing cement-stabilized142

samples predicted that a very low strain would develop during testing and that there would be143

a high sensitivity to the small unevenness in the surface which the loading platens touch,144

necessitating accurate instrumentation (Scullion et al. 2008). From initial investigations made145

during this study, the impossibility of achieving a smooth and level surface, which will make146

it is difficult to fix the instrumentations, had been observed. To overcome this problem, it was147

decided to manufacture the sample to achieve a height of about 115 mm and then trim it down148

to 100 mm. In addition, another set of samples was manufactured for resonant frequency149

testing using standard split moulds of 150 mm diameter and 300 mm height. Again, a150

removable mould extension was fabricated and used to ensure a specimen more than 300 mm151

tall which was then sawn down to 300 mm using a diamond saw. Three samples were152

manufactured for each mix. Once the compaction was finished, specimens were left inside153

their moulds and covered with wet paper and polythene sheets overnight to prevent moisture154

loss. On the next day, these were demoulded and wrapped with nylon film and placed in wet155

polythene bags and closed tightly and left in a humid room for 28 days.156

157

3.3 Testing procedures and analysis performed158

3.3.1 Compacity and density159

It was observed that the performance of cement-stabilized aggregate mixture is greatly160

dependent on its density. (Williams 1986) has reported that a 5% reduction in mixture density161



7

causes 40-50 % reduction in the mixture strength. Thus, effective compaction can be expected162

to be critical for adequate performance. Accordingly, the British specification (BS EN 14227-163

1:2013) has introduced the compacity factor as a measure of the efficiency of compaction. It164

has been reported by the above specification that the compacity for cement-bound mixtures165

should be not less than 0.82. Critical analysis of this criterion shows that this is a movement166

towards the concept applied in asphaltic mixture to calculate the percent of air-voids.167

Compacity can be calculated as [100 - % air-voids]. In the current paper, due to the damping168

tendency of the rubber particles, these may affect the effectiveness of compaction negatively.169

Therefore, an investigation was carried out to evaluate if the rubber particle have a170

detrimental effect on the compactibility of the mixtures. Compacity in accordance with the171

above specification can be calculated using the following equation172

173

 = ቀ
ࢽ


ቁ× (

ࢇ

ࢽ
+

࢈

ࢽ
+

ࢉ

ࢽ
… )

where: C is the compacity factor, γm is the maximum dry density of the mixture and γA, γB, 174

γC, are particle densities of material A, B and C, respectively. a, b, c represent the percentages 175

of material A, B, C in the total mixture. Dry density of the specimens was measured after176

curing by drying them in an oven at 105±5°C until constant weight, then using the water177

displacement method to measure the density.178

179

3.3.2 Indirect tensile strength and static modulus of elasticity180

This test was performed at 28 days in accordance with BS EN 13286-42:2003. A 200 KN181

capacity Instron universal testing machine was used. The indirect tensile strength (ITS), in182

MPa, was estimated using the following equation: ITS=2P/πhD where P is the ultimate load 183

(N), h is the sample thickness (mm) and D is the diameter of the sample (mm). In order to184

estimate the static modulus of elasticity, deformation was measured utilizing two linear185

variable differential transducers (LVDTs) mounted using LVDTs’ blocks. These were glued186

on the both faces of specimen. Figure 3 illustrates the indirect tensile testing configuration. To187
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ensure accurate instrumentation, the gluing jig was manufactured and used as reported by188

(Wen et al. 2014) to ensure precise alignment of the LVDTs blocks on both faces of the189

sample. The average displacement value from these two LVDTs was used at each load190

application. Finally, the static elastic modulus was estimated for a load being 30% of the191

maximum load, and the corresponding lateral displacement according to EN 13286-43:2003.192

However, instead of using the equation provided in the latter specification, which assumes193

specific arrangement for the LVDTs, the following formula was used (Solanki and Zaman194

2013):195

196

ܧ =
2ܲ

ܦ.ߨ .ݐ. ଶܦ)்ܪ∆ + (ଶܦ
൜(3 + ܦ.ଶܦ߭( + (1 − )߭ܦ

ଷ− ଶܦ൫ܦ2 + ܦ
ଶ൯�ܽݐ ݊ିଵ൬

ܦ

ܦ
൰൨ൠ

197

Where: P= load; D=diameter of sample; t= sample thickness; lateral=்ܪ∆ deformation;198

Dg=LVDTs gauge distance and ߭= Poisson’s ratio.199

200

3.3.3 Mesostructural investigation201

To better understand the failure mechanism and to observe how the cracks propagated, failed202

specimens were scanned using an X- ray CT machine. This includes two systems located in203

the same cabinet. The first one is the mini focus system of a 300 kV X-ray source and a linear204

detector. The second system is a micro focus having a 225 kV with an area detector. To205

ensure sufficient power of X-ray for penetration through stabilized mixtures, the first system206

was used in this investigation. Two scans were done for each sample at the top and bottom of207

the middle third of sample. The resolution of the reported scan is 0.065 mm/pixel.208

209

3.3.4 Toughness through indirect tensile test210

To obtain the post-peak load-deflection behaviour and hence quantify toughness of the211

material, the test was performed at a deformation rate of 0.5 mm/min. The corresponding212
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deflection was measured as mentioned earlier. To evaluate the post-peak loading bearing213

capacity enhancement, the area under the load-deformation curve can be used to compute the214

toughness or energy absorption capacity of the material. The estimation of toughness in this215

manner may include the improvement in strength and ductility due to rubber incorporation as216

stated by (Sobhan and Mashnad 2000). However, due to the reduction in the strength of the217

mixture as a result of rubber inclusion, it is necessary to normalize the load to its ultimate218

value to evaluate the enhancement in terms of ductility only. This is also logical since in the219

mechanistic pavement design the stress is usually normalized with respect to the strength and220

the stress ratio is normally used.221

222

3.3.5 Dynamic properties through resonant frequency223

Dynamic modulus of elasticity represents an important input for pavement analysis and224

design. (Nunn 2004) in TRL615 report and (Lav et al. 2006) adopted dynamic modulus as225

determined from resonant frequency for pavement design. In the present paper, dynamic226

properties were measured nondestructively using a resonant frequency tester (ERUDITE) in227

accordance with (ASTM C215-02). In this test, dynamic properties were evaluated in terms of228

dynamic modulus of elasticity (Ed), dynamic modulus of rigidity (Gd) and dynamic Poisson’s229

ratio (υd). During the test, the sample was supported at its centre on the equipment bench and230

clamped in place. The driver and pick up parts were placed at different locations depending231

on whether dynamic modulus of elasticity or dynamic modulus of rigidity is to be measured.232

For each dynamic modulus type, there is a different recommended frequency range as shown233

in the equipment manual. Using the recommended frequency range and starting from a low234

frequency, the frequency was increased gradually until the output meter showed the maximum235

value which indicates the fundamental resonant frequency of the mixture. The latter was used236

to calculate the dynamic modulus of elasticity (Ed) and dynamic shear modulus (Gd) as237

explained in the above specification. From these two moduli, dynamic Poisson’s ratio was238

estimated as νୢ = (Ed/2Gd).239
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3.3.6 Damage quantification using fractal analysis and image processing240

To provide better a understanding of the mechanism of failure of this type of mixture, the241

failure cracking pattern was characterized quantitatively using fractal analysis. This technique242

has been extensively used in normal concrete to quantify cracking patterns (Erdem et al. 2012;243

Farhidzadeh et al. 2014) and fractured surfaces (Issa and Hammad 1994; Carpinteri et al.244

1999; Guo et al. 2007). However, no published study was found in literature regarding the245

quantification of surface cracks of cement-stabilized mixtures using fractal analysis. In this246

study, the fractal analysis was performed in terms of the fractal dimension. The latter was247

estimated using the box-counting method (Mihashi et al. 2006; Erdem and Blankson 2013).248

An initial investigation performed to extract topological information concerning the cracked249

area using image processing software, ImageJ, had difficulty in differentiating between the250

cracks and the rubber particles utilizing a grey thresholding process. For this reason it was251

decided to digitize the crack network using the following procedure: images of failed samples252

were firstly captured using a high resolution camera. These images were inserted into253

AutoCAD software and scaled up to reflect the actual dimensions. The cracks were digitized254

after that using the software tools. Then these were covered by imaginary meshes with255

rectangular grid sizes decreasing linearly (Figure 4). Then the number of grid squares required256

to cover the cracks was counted. Finally the fractal dimension was computed from the slope257

of the line joining the logarithm of number of grid squares encountered by the crack and the258

logarithm of the grid square dimension. From surface macro-crack fractal dimension, the259

fracture energy was roughly estimated based on the formula suggested by (Guo et al. 2007)260

which is Ws/Gf=a*(δ/a)1-D1-d where Ws is the energy dissipated at the surface of the crack, Gf261

is the fracture energy at the observation scale, a is the Euclidean length (equal to the diameter262

of the sample) and D1-d is the fractal dimension computed previously.263

264
265
266
267
268
269
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4. Results and discussion270

4.1 Density and compacity271

Table 1 shows a reduction in the material density after rubber incorporation. This is logical272

since the specific gravity of natural aggregate is much higher than that of crumb rubber.273

However, unlike natural aggregate, rubber particles of high elasticity may absorb the energy,274

due to their damping characteristics, from a vibrating hammer. This could causes a reduction275

in the compaction efficiency and, hence in mixture density. As can be seen from Table 1, the276

maximum difference was at a rubber replacement of 45% where there is a 0.92% reduction in277

the compacity of the mixture (i.e, a decline in density). This can lead to the conclusion that it278

is not only the low specific gravity of rubber that is responsible for density reduction, but it is279

also the reduction in compaction efficiency, due to the damping action of the rubber particles,280

that affects the density of the mixture detrimentally. The practical consequence of the latter281

finding is to avoid high levels rubber replacement in compacted mixtures.282

283
284

4.2 Indirect tensile strength285

It is generally accepted that all cementitious materials (including concretes) are weak in286

tension and have low strain capacity. It was found that replacement of natural aggregate by287

crumb rubber has a negative effect on the indirect tensile strength (ITS) as shown in Figure 5.288

ITS decreased by 3% for each 1% of rubber replacement. This can be attributed, in addition to289

the lower modulus of elasticity, to the decrease in the number of contacts points between290

natural aggregate particles as a result of compacity drop and hence a reduction in the291

efficiency of aggregate interlock. This may affect the frictional resistance and accelerated292

mixture deterioration since frictional resistance is one of the main mechanisms for sustaining293

loads. The same decrease in ITS was observed at both 7 and 28 days for all mixes except294

C5R45 where there was no further reduction in this parameter, perhaps because of a specific295

rubber distribution.296

297
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4.3 load-deformation relationship, static modulus of elasticity and toughness298

The load-deformation relationships for different mixtures are illustrated in Figure 6. From299

these curves, toughness index was calculated as shown in Figure 7. It is clearly seen, at all300

replacement levels, that there was an improvement in the energy absorption capacity of the301

mixtures. This improvement was around about 27%. Although many researcher reported302

similar behaviour when they investigated the effect of rubber on toughness of normal concrete,303

no clear reasons was reported to explain this behaviour. However, (Chiaia et al. 1998)304

claimed that the ductility improvement when using weak aggregates is due to a change in the305

mechanism of microcracking. The reasons behind ductility improvement due to rubber306

addition in cement-stabilized materials might be a) partly because the crumb rubber particles307

helped to delay crack propagation by relieving some induced local stresses b) and partly due308

to embedding of weak particles inside stiff media lengthening the crack path since the crack309

path tends to propagate through these weak points. In addition, since the cracks tend to be310

propagating as a main crack and branches rather than one main crack, especially for rich311

rubber mixtures, this would cause more energy dissipation as described by Shah et al. (1995)312

and (Erdem 2012). To clarify the mechanism of failure and to elucidate the above hypotheses,313

X-ray CT was utilized to investigate the internal structure of failed samples at mesoscale level.314

Part (b) of the suggested mechanism is evidenced in Figure 8 which shows how the cracks315

propagated for different mixtures containing different rubber contents. Examining these scans316

clearly supports the suggested failure mechanism as the cracks can be seen to connect rubber317

particles as indicated by the red arrows in the same figure and tend to avoid areas without318

rubber (as predicted by reason (b) above). Furthermore, the load-deflection responses and319

estimated improved energy absorption capacity clearly support the explanation (a) of the320

mechanism suggested as presented in Figure 7. This was also supported by the tortuous and321

complex crack pattern as highlighted in fractal analysis. No doubt the applicability of this322

proposed mechanism depends, to some extent, on the distribution of the rubber particles. The323
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more uniform the rubber distribution, the more uniform the stress/strain distribution can be324

anticipated inside the mixture.325

326

As the stiffness of the mixture depends, to a large extent, on the stiffnesses of its constituents,327

replacement of stiffer natural aggregate by softer crumb rubber particles reduces the stiffness328

of the mixture as shown in Figure 9. The increase in the stiffness of C5R45 relative to C5R30329

might be because of the less uniform distribution of rubber particles in the mixture. Perhaps330

an accumulation of rubber particles caused a stress concentration and resulted in premature331

failure of the sample without large deformation.332

333
334

4.4 Dynamic properties335

Similar to the static modulus of elasticity results, there was a decrease in both dynamic336

modulus of elasticity and that of rigidity due to rubber replacement, as shown in Figure 10.337

This is because these two moduli depend on mixture density and type of aggregate. However,338

these parameters decreased linearly at all replacement levels. This, in fact, supports the above339

hypothesis regarding the possible rubber accumulation. As it known, during nondestructive340

testing, there was zero applied stress which eliminates the formation of micro-cracks and341

possible creep (Najim and Hall 2012). In other words, it depends on the mixture constituents342

and mixture fabrication alone. For this reason, it can be concluded that nondestructive testing343

does not depend, to a large extent, on rubber distribution as compared with sensitivity of344

destructive ones. With regard to dynamic Poisson’s ratio, Figure 11 shows a decline in the345

value of this parameter as rubber content increase in the mixture. This is consistent with346

Goulias and Ali (1997) as cited by (Nehdi and Khan 2001)347

348
349

4.5 Damage quantification350

Figure 12 demonstrates the fractal dimensions and fracture energies for different rubber351

replacement levels. Generally, higher fractal dimensionality and fracture energy are observed352

as rubber replacement level increases. This means that as rubber content increases, more353
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energy will dissipate to fracture the sample as suggested by (Guo et al. 2007) and (Erdem354

2012). The possible explanation for this phenomenon is that when the cracks developed they355

propagated through the weak points (i.e., rubber particles), as noted previously. Before their356

propagation, the rubber particles tend to absorb energy developed at the crack tip when the tip357

reaches them, especially at the microcracking level. In addition, more energy will disperse358

since the cracks more easily propagate as branches rather than as one main crack, which359

agrees with (Yan et al. 2003) who attributed this to the disordered crack growth characteristics360

found in a mixture’s internal structure during load application. This means that more energy361

was absorbed by the mixture before failure. Energy dissipation capacity improvement is one362

of the findings reported by (Atahan and Yücel 2012) when they investigated the effect of363

rubber on fracture energy of normal concrete during impact tests. The dissipated energy at the364

surface macro-crack based on fractal analysis correlated well (Figure 13) with the toughness365

of mixture calculated from the load-deformation responses. This supports the above366

explanation and confirms that a strong relationship exists between the cracking pattern,367

represented by the fractal dimension, and the toughness, a finding which is consistent with368

(Yan et al. 2002; Tang and Wang 2012).369

370

5. Conclusions371

The effect of replacement of natural aggregate by crumb rubber on the tensile properties and372

mechanism of their failure was investigated in this paper. This was done utilizing indirect373

tensile tests and fractal analysis. The following conclusions can be drawn:374

375

1. Even though the reduction in density after replacement with crumb rubber is a logical376

finding due to the low specific gravity of rubber particles as compared with natural377

aggregate, this is not the only reason for density reduction. Evaluation of the378

compacity for different replacement levels revealed a decline in the effectiveness of379
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compaction as the rubber inclusion rate increased. This can be attributed to the380

damping effect that the rubber particles of high elasticity possess which may absorb381

some of the compaction energy during vibratory compaction.382

383

2. Indirect tensile strength reduced due to the inclusion of rubber particles in cement-384

stabilized aggregates mixtures due to the weakness of these introduced particles.385

However, an increase was observed in the post-peak behaviour which caused an386

improvement in the toughness of the modified mixtures. In addition, the high stiffness387

of the original mixtures was mitigated after partial replacement with rubber particles.388

389

3. By observing stress-strain responses and the failure pattern and examining the internal390

structure of the failed specimens, the failure mechanism for a rubberized compacted391

system has been proposed in this paper. It assumes that the crack propagates through392

rubber particles which are thought to be absorbing energy on the crack tip. In addition,393

due to the distribution of these weak particles, this may also lengthen the path of the394

crack. Both of these would improve the energy absorption capacity of the modified395

mixtures.396

397

4. The Fractal analysis concept is found to permit quantitative distinguishing between398

different failure patterns of CBGMs. Findings indicate that there is an increasing399

fractal dimension due to rubber replacement. This also provides a support for the400

suggested failure mechanism.401

402

5. Non-destructive investigation confirmed that added rubber produced less stiff403

materials. It is also proved the ability of this test method to distinguish between404

mixtures with low rubber contents and its suitability to assess the performance of these405

modified mixtures.406

407

6. It is not recommended to use high content of rubber particles contents due to their408

negative effect on compactibility of the mixture and, accordingly, the strength of the409
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modified mixture. Evaluation of the durability of these mixtures and assessment of410

their performance under cyclic load is important to validate their use.411

412

413

414
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Figure Captions432

Fig.1. Grain size distribution rubber and 6 mm natural aggregate.433

Fig.2. Grain size distribution for investigated material (specification limit as defined by BS434

EN 14227-1:2013).435

Fig.3. Indirect tensile testing configuration.436

Fig.4.Methodology of fractal dimension calculation.437

Fig.5. Indirect tensile strength for examined mixtures.438

Fig.6. Load-diametrical deformation curves for different replacement levels: a. C5R0;439

b.C5R15; c. C5R30; and d. C5R45.440

Fig.7. Effect of replacement on toughness indices.441

Fig.8. Sample scans of the failed specimens showing crack propagation through rubber442

particles: A and B represents the mixtures with 30% and 45% rubber replacement,443

respectively.444

Fig.9. Effect of rubber content on static modulus of elasticity.445

Fig.10. Effect of rubber replacement on dynamic elasticity and shear moduli.446

Fig.11. Effect of rubber replacement on dynamic Poisson’s ratio.447

Fig.12. Fractal dimensions for virgin and modified mixtures with different replacement level.448

Fig.13. Correlation between mechanical and fractal analysis results.449
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Table 1: Investigated mixtures, compacity and dry density450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

Mixture

symbol
Compacity factor Dry density, Kg/m3 COV, %

C5R0 0.9198 2421.79 0.5

C5R15 0.9189 2395.21 0.65

C5R30 0.9165 2364.96 1.4

C5R45 0.9114 2327.70 0.8
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480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

Mix ID Fractal dimension Ws/Gf

C5R0 1.013 103.99

C5R15 1.166 164.40

C5R30 1.219 192.70

C5R45 1.214 189.67

Table 2: Fractal analysis result summary
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Figure 1: Grain size distribution rubber and 6 mm natural aggregate

Figure 2: Grain size distribution for investigated material

(specification limit as defined by BS EN 14227-1:2013)



Figure 3: Indirect tensile testing configuration

Figure 4: Methodology of fractal dimension calculation



Figure 5: Indirect tensile strength for examined mixtures

Figure 6: for different replacement levels: a. C5R0; b.C5R15; c. C5R30; and d.

C5R45



Figure 6: c

Figure 6: b



Figure 7: Effect of replacement on toughness indices.

Figure 6: d



Figure 8: Sample scans of the failed specimens showing crack propagation through rubber particles: A

and B represents the mixtures with 30% and 45% rubber replacement, respectively.
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Figure 11: Effect of rubber replacement on dynamic Poisson’s ratio

Figure 12: Fractal dimensions for virgin and modified mixtures with different replacement level



Figure 13: Correlation between mechanical and fractal analysis results


