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Glycosylation is one of the key components influencing several signaling pathways 
implicated in cell survival and growth. The Notch signaling pathway plays a pivotal role 
in numerous cell fate specifications during metazoan development. Both Notch and its 
ligands are repeatedly glycosylated by the addition of sugar moieties, such as O-fucose, 
O-glucose, or O-xylose, to bring about structural and functional changes. Disruption to 
glycosylation processes of Notch proteins result in developmental disorders and disease, 
including cancer. This review summarizes the importance and recent updates on the role 
of glycosylated Notch proteins in tumorigenesis and tumor metastasis.
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inTRODUCTiOn

It has been 60 years since the discovery of a link between the changes in protein glycosylation and 
oncogenic transformation (1). Numerous studies in cancer biology have supported this finding and 
underscored the significance of glycosylation in tumorigenesis and metastasis. Numerous proteins, 
such as mucins, selectins, gonadrotrophins, with altered glycosylation have been implicated in 
tumorigenesis (2, 3). Extensive research has been carried out to understand the glycobiology of the 
cancerous cell (4, 5). Cancer is a complex disease requiring several accumulated mutations, whose 
progression additionally depends on tumor cell interactions with the surrounding environment (6). 
Cell-surface proteins and changes associated with them define the course of cell-to-cell interactions. 
Altered glycosylated cell-surface proteins are one of the unique features of a cancerous cell (7), and 
specific glycan changes are critical during tumorigenesis and metastasis (8, 9). Several altered glycans 
serve as biomarkers to identify malignant cells undergoing epithelial–mesenchymal transition (EMT) 
and metastasis (9–11). Many essential glycosylated proteins, such as Notch, are altered in malignant 
cells, and the recent finding of GALNT11 as a new molecular marker in Notch-mediated chronic 
lymphocyte leukemia (CLL) (12) has increased interest in understanding Notch glycosylation.

The Notch signaling pathway facilitates short-range cell–cell communication to play a central role 
in proliferation and differentiation during animal development (13, 14). Notch signaling regulates a 
plethora of genes implicated in various cellular processes, and its signaling activity is extremely sensi-
tive to the Notch receptor levels. Therefore, any slight modulation in Notch activity can perturb the 
regulation of gene expression and thus promoting several disorders, including cancer. Intriguingly, 
aberrant Notch signaling activity is highly implicated in several forms of leukemia and solid tumor 
development (11). T-cell acute lymphoblastic (T-ALL) neoplasm is one of the earliest diseases to be 
associated with the Notch signaling pathway (15). Membrane-bound Notch proteins (Notch receptor 
and its ligands) undergo rigorous glycosylation to accomplish its activity. Interestingly, deregula-
tion of the components involved in glycosylating Notch proteins are implicated in Notch-induced 
tumorigenesis (16–19).
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There is extremely robust evidence to suggest that aberrant 
Notch activity (11, 20, 21) or changes in glycosylation (5, 22, 23) 
can promote EMT and tumor development, despite the unclear 
role of glycosylated Notch proteins in relation to tumorigenesis. 
This review discusses recent advances in our understanding of 
glycosylation of Notch proteins and the impact of altered Notch 
glycans in promoting tumorigenesis and metastasis.

An OveRview OF nOTCH SiGnALinG 
PATHwAY

A century ago, flies with Notch-ed wing phenotype led to iden-
tification (24) and characterization of evolutionarily conserved 
Notch signaling pathway (25, 26). The signaling pathway com-
prising Notch receptor and Delta/Serrate/LAG-2 (DSL) family of 
ligands play crucial role in determining cell-fate choices in all 
animals (13, 27). While Drosophila has one Notch receptor (28), 
mammalians have four homologs (Notch1–4) (29) with an extra-
cellular domain (ECD) and an intracellular domain (ICD). Both 
Notch receptor and DSL ligands show a high degree of structural 
similarities in the ECD (30).

Notch signaling involves receptor activation, Notch ICD 
(NICD) generation, and target stimulation (Figure 1A). Nascent 
Notch protein is initially glycosylated in the ER and Golgi appa-
ratus (17, 31–33). In mammals, it is proteolytically cleaved by 
Furin at site 1 (S1) (this cleavage does not occur in Drosophila) 
(34). Following this, the mature Notch receptor heterodimer, 
comprising the ECD and transmembrane-ICD, gets tethered 
to the cell surface of the signal-receiving cell. Notch receptor 
interaction with membrane-bound ligands such as Delta/Serrate/
LAG-2 (DSL) family proteins in the signal-sending cell initiates 
two successive proteolytic cleavages at site 2 (S2) and site 3 (S3) 
mediated by a disintegrin and metalloprotease (ADAM) and 
presenilin/γ-secretase complex, respectively. The NICD is then 
released, which translocates into the nucleus and binds to CSL 
(CBF1/SuH/LAG-1) transcriptional regulators to activate target 
genes (14, 35). The events that lead to the release of the Notch ICD 
(and Notch activation) rely on Notch ECD shedding. Evidences 
indicate presence of a non-canonical mode of signaling without 
ligand–receptor interaction to release NICD [Figure  1A (36, 
37)]. Therefore, factors that influence shedding of the Notch 
ECD (either positively or negatively) can directly modulate Notch 
activity. Numerous extra- and intracellular modulators involving 
glycosylation, and trafficking machineries maintain the cellular 
pool of Notch in a context-specific manner.

Notch protein exerts its biological functions by both canoni-
cal (ligand-dependent) and non-canonical (ligand-independent) 
signaling modes (Figure 1A). Contradicting earlier reports that 
ligand-dependent Notch activity alone is indispensable for the 
positive regulation of Notch signaling, recent work suggests that 
ligand-independent Notch signaling also plays a crucial positive 
role in regulating Notch activity (36, 38). Namely, changes in 
trafficking can lead to ligand-independent signaling (Figure 1A). 
Defects in any one of the two signaling modes can lead to 
tumorigenesis and tumor progression. Strikingly, glycosylation 
is one such process that modulates ligand–receptor binding and 

trafficking activities [Figure 1B (39, 40)]. In the following section 
of this review, we discuss the impact of glycosylation on Notch 
and its ligands to accomplish its biological function.

GLYCOSYLATiOn OF nOTCH PROTeinS

Glycosylation is an enzymatic reaction that mediates a chemical 
linkage of mono- or polysaccharides (glycans) onto other sac-
charides, proteins, or lipids occurring in Golgi apparatus and 
endoplasmic reticulum (ER). Nascent Notch proteins enroute 
the secretory pathway (41) to undergo a rigorous glycosylation 
on their ECD with 29–36 epidermal growth factors (EGF)-like 
repeats to emerge as a mature receptor and get localized on 
the cell surface (42). Predominantly, Notch receptor undergoes 
O-glycosylation at serine/threonine residues (31), and to a lesser 
extent, N-glycosylation on AsnXSer/Thr residues of EGF repeats 
(17).

The EGF repeats are modified by O-fucose, O-glucose, 
O-GlcNAc, and O-xylose (Figure 2). This short EGF repeat has 
six conserved Cys residues that form three disulfide bridges, 
wherein O-fucosylation at C2–X–X–X–S/T–C3 is mediated by 
O-fucosyltransferase 1 (O-FucT-1) (encoded by Ofut1 gene in 
Drosophila and Pofut1 in mammals) (39, 43) and elongated by 
Fringe, an N-acetylglucosaminyl transferase. Fucosylation is one 
of the prevalent glycosylation types on Notch proteins. Fringe 
is essential to promote Notch/Delta-binding, in preference to 
Notch/Serrate, whose interaction is inhibited by this modifica-
tion (44, 45). Similarly, O-glycosylation (C1–X–S–X–P/A–C2) 
is mediated by O-glucosyltransferase, Rumi in Drosophila or 
POGLUT1 in mammals (40, 46–48), and elongated by Shams, a 
xylosyltransferase. In humans, xylosyltransferase (GXYLT)1 and 
(GXYLT)2, that add first and second xylose residues to Notch 
EGF repeats, have been identified (49, 50). Although Rumi is 
not required for the ligand-binding activity of Notch, it has been 
suggested that it functions to promote extracellular cleavage. In 
contrast to the glucose residues, xylosylation negatively regulates 
Notch signaling. A unique non-nucleocytoplasmic O-GlcNAc 
is reported to occur on the consensus sequence of Notch 
C5–X–X–G–X–S/T–G–X–X–C6 by EGF-specific O-GlcNAc-
transferase (EOGT) in Drosophila and Eogt1 in mammals that 
mediate extracellular matrix interactions (51–54). The specific 
role of O-GlcNAc modifications on Notch activity is still not clear 
(Figure  2C). Recently, the presence of mucin-type-O-GalNAc 
glycans on the Notch ECD and N-glycans have been reported 
(19). The last four amino acids in the spacer between EGF repeats 
cooperates with calcium-ion binding and plays an important 
role in enhancing the rigidity and stability of EGF repeats (55). 
Recent research suggests that a strong crosstalk exists between 
glycosylating machinery and calcium modulating chaperones in 
regulating Notch activity.

nOTCH-inDUCeD TUMORiGeneSiS

Recent glycomic studies suggest that common glycosylation 
changes associated with tumor development are fucosylation, 
sialylation, O-glycan truncation, and O- and N-linked branching 
(8), and most of these changes are frequently associated with 
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FiGURe 1 | Glycosylated notch-mediated cell–cell interactions in normal cells and cancerous cells. In normal cells (A), glycosylation on the Notch 
receptor takes place in the Golgi bodies followed by proteolytic (S1) furin cleavage (Step 1, yellow). Depending on the glycosylation cues, glycosylated Notch 
receptor takes either a canonical route (as shown by green arrows) or a non-canonical route (as shown by red arrows) to release the NICD fragment. Through the 
canonical mode (green) of a signal-receiving cell, glycosylated Notch receptor is transferred to the plasma membrane (Step 2) to interact with the ligands on the 
signal-sending cell (Step 3). Following this, the Notch receptor undergoes two successive proteolytic cleavages (S2) (Step 4) and (S3) (Step 5) to release the NICD 
that translocates into the nucleus to activate target genes (Step 6). In the non-canonical route (red), the Notch receptor does not interact with ligands (Step 2) but 
gets proteolytically cleaved inside the vesicles to release the NICD fragment (Step 3) that translocates into the nucleus to activate the target genes (Step 6). In 
cancerous cells (B), changes in glycosylation lead to the production of Notch receptors with modified glycans or truncated Notch receptors. Notch receptors with 
modified glycans undergo unusual S3 cleavage in the vesicles that releases NICD to activate Notch targets. Truncated Notch receptors and Notch receptors with 
modified glycans that reach the plasma membrane cannot interact with ligands on the signal-sending cell to release the NICD.
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Notch proteins. Notch pathway cooperates with other mutations 
or deregulation in other oncogenic or tumor-suppressive genes 
of other signaling pathways, polarity regulators, and endocytic 
compartments to potentiate tumor progression (56–58).

Aberrant Notch activity has distinct roles in the development 
of several solid and hematopoietic tumors, and it has been shown 

to have either oncogenic or tumor-suppressive roles in a context-
specific manner (21). In hematopoietic cancers, for example, T 
cell active lymphoblastic leukemia (T-ALL), Notch has an onco-
genic role (59, 60), while in acute myeloid leukemia (AML), it has 
a tumor-suppressive role (61, 62). However, in solid tumors, such 
as hepatocellular carcinoma (HCC) (63) and medulloblastoma 
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(64), Notch may have either an oncogenic or tumor-suppressive 
role depending on context (65, 66). It has been suggested that the 
switch between canonical and non-canonical Notch signaling can 
have a tumor-suppressive role, as demonstrated with Notch1 in 
the mouse (67). Not only does the glycosylation process of the 
Notch receptor aid in ligand-dependent signaling activity, but 
also reports suggest that changes in glycosylation events may lead 
to ligand-independent Notch activation (37). Most importantly 
changes in glycosylation could switch from one mode of signaling 
to the other, leading to deregulated Notch activity.

Ligand-Dependent notch-Mediated 
Tumorigenesis
Notch protein undergoes extensive post-translational modifica-
tion (68). To a larger extent, the ligand-dependent Notch signaling 
pathway requires glycosylation of the Notch ECD for signaling 
activation. It has been demonstrated that altered carbohydrate 
structure can play a very significant role in modulating ligand-
binding activity (31, 69). Glycan modifications on EGF repeats of 
the Notch receptor indicate that the EGF8 repeat is required for 
Serrate-specific binding (70), while EGF12 is specifically required 
for Fringe function to inhibit Serrate and promote Delta-binding 
(16, 71), which mediates positive regulation on Notch signaling 
(Figure 2). Biochemical studies suggest that O-fucose addition 
on EGF14 leads to either dysregulated receptor–ligand activation 
or truncation effects. Fucosylation, which modulates the receptor– 
ligand interaction, is an important epitope on the EGF repeat 
(72–74) and impairment to this process is implicated with various 
forms of malignancies. Reports indicate that aberrant ligand-
dependent Notch activity is highly associated with development 
of HCC, T-cell leukemia, and breast cancer (23). Interestingly, 
in humans, upregulation and aberrant gene expression of α-1,6-
fucosyltransferase encoded by FUT8 is associated with develop-
ment of breast cancer (75) and liver cancer (76).

Intriguingly, deletion or truncation of EGF repeats that 
impair the ligand–receptor interaction has been implicated in 
tumorigenesis. Such truncation may emerge due to defects in the 
glycosyl transferases or other factors that cooperate with them to 
enhance the receptor–ligand interaction. In squamous cell lung 
carcinoma (SqCC), where the tumor-suppressive role of Notch 
is impaired, it has been demonstrated that loss of EGF repeats 
generates truncated receptors that disrupt ligand-binding activ-
ity (Figure 1B) (77). Defects in Notch receptor fucosylation by 
deletion of FX (homolog of human GDP-l-fucose synthase) or 
O-fucosyltransferase (Pofut1) has been implicated in the develop-
ment of myeloid hyperplasia (Figure 2) (78). Recently, O-mucin-
type glycans have been found on Notch proteins and defects in 
O-mucin type glycosylation are well-documented in several forms 
of cancer (3, 19). Defects in ppGALNAcTS (an enzyme involved 
in initiating O-mucin glycans) (79) and C1GalT1 (chaperones 
involved in elongation) (80) can lead to the truncation of Notch 
protein. The association of Notch proteins with ppGALNAcTs and 
C1GalT1 is yet to be identified. Although the functional defects 
of glycosyltransferases are correlated to development of cancer, 
further investigation is required to understand how alterations in 
glycosylation of Notch contribute to tumor development.

Factors that influence Notch heterodimerization can have a 
significant impact on receptor–ligand interactions. Interestingly, 
OFut1 (55, 81) and Rumi (46, 82) are proposed to bind to calcium 
ions to enhance rigidity and also aid in modulating the thermo-
dynamics of the protein. It has been shown that calcium binds to 
the EGF 12 repeat (55, 83). Calcium binding on EGF repeats is 
a highly conserved phenomenon assigning a crucial role to the 
structure of the protein (84). Calcium binding occurs on certain 
amino acids on a short linker sequence, N–N–x–N–C1 (where N 
can be D/E/Q/N, x-any amino acid, and C1 is the first conserved 
Cys of the EGF) between two EGF repeats (55, 83). From our 
knowledge of how calcium binding can affect EGF repeats, it 
has been proposed that depending on the rigidity and flexibility 
provided, Fringe might facilitate interactions with elongated 
glycans or inhibit interactions with neighboring regions. Studies 
indicate that calcium depletion dissociates and activates heterodi-
meric Notch receptors (85). Reports suggest that crosstalk exists 
between calcium levels and Notch activity during tumorigenesis. 
In line with this, it has been demonstrated that calcium/calmod-
ulin-dependent kinase II (CaMKII) regulates Notch1 activity in 
prostate carcinoma development (86).

Ligand-independent notch-Mediated 
Tumorigenesis
In recent years, several reports indicate that ligand-independent 
Notch signaling is implicated in tumorigenesis. Several endocytic 
components have been associated with Notch in promoting tumor 
progression. In spite of this, regulatory mechanisms that initiate 
ligand-independent Notch signaling activity remain elusive. It is 
highly logical to think that such events are triggered during early 
stages of nascent Notch protein production in the Golgi compart-
ment. Glycosylation is not only indispensable for protein folding 
and protein activity, but it has an unprecedented role in intracellu-
lar transport/localization and degradation/half-life of the protein.

Ofut1/Pofut1 has both enzymatic fucosyl activity and fucosyl-
independent chaperone activity on Notch proteins (39, 87). In 
addition to its usual role as O-fucosyltransferase, OFut1 has 
been implicated in maintaining the Notch pool by recycling 
cell-surface Notch through endosomes and on to lysosomes in 
a fucose-dependent manner (39). Similarly, another study has 
provided evidence of the involvement of OFut1 and fucosylation 
in localizing Notch to the sub-apical complex/adherens junction 
of epithelial cells by dynamin dependent transcytosis (88). These 
interesting data prompt further investigation into the possible 
mechanisms of the process. Fringe activity follows the Ofut1 
reaction on specific EGF repeats of Notch. There is evidence 
indicating possible glycosylation events on other sites of EGF 
repeats too. Therefore, Fringe activity on different EGF repeats 
of Notch proteins, or yet to be identified glycosylation activity, 
might promote cleavage of Notch that inhibits the localization 
of processed Notch protein to the plasma membrane, retaining it 
in the intracellular compartment (Figure 1B). Deregulated func-
tion of Fringe or glycosyltransferase like Ofut1 might possibly 
lead to aberrant Notch activity. Rumi activity has been demon-
strated to be required for ligand-independent Notch activation 
caused by deletion of LNR repeats (47, 48). Mutations in the 
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heterodimerization domain on the EGF repeats may impair S2 
cleavage of Notch leading to either ligand-independent activation 
or ligand-mediated hypersensitivity. A recent report has shown 
a cooperation of Ofut1 chaperone activity and Rumi in Notch 
transport (40). In the absence of ligands, preliminary results 
demonstrating glycosylation-mediated Notch trafficking defects 
are yet to be linked to tumorigenesis.

PeRSPeCTive

Studies to date, in most contexts, demonstrate that the addition 
of O-glucose positively regulates Notch signaling, while updates 
from Shams/GXYLT suggest that the addition of O-xylose 
residues downregulates Notch activity in a context-specific 
manner. It is proposed that this regulation, by changing the 
distribution of forms and length of sugar residues, offers a novel 
paradigm to modulate Notch signaling (48). Report suggests that 
the addition of Xylose to isolated Ser or Thr residues initiates 
Glycosaminoglycans (GAG) synthesis (89). As several studies 
have implicated aberrant GAG synthesis and GAG-conjugated 
proteins to tumor development and metastasis (90–92), it is 
highly intriguing to understand the significance of GAGs during 
Notch-induced tumorigenesis. Current therapeutic develop-
ments depend mostly on either modulating ligand–receptor 
interactions or the proteolytic cleavage of the receptor (93). 
Recent studies indicate that glycosylating proteins are impor-
tant auxiliary proteins that modulate Notch activity and could 
therefore also be potential targets for future therapeutics. Glycan 
profiling of the modified glycans on Notch proteins may provide 
a better picture to understand the dramatic “glycome shift” that 
takes place during tumorigenesis and metastasis.

It is clear from the numerous studies highlighted here that 
Notch regulation is extremely complex and context dependent. For 

example, Notch can signal in a ligand-dependent or -independent 
manner, there are multiple Notch ligands, and the plethora of 
glycosyl modifications discussed in this review provide a further 
level of complexity. It is also clear how little we understand about 
how this regulation affects Notch’s ultimate function, namely, the 
regulation of gene expression. How does the nature of the ligand 
(or lack of ligand) affect the combination of genes whose expression 
will be upregulated or downregulated due to Notch signaling? Do 
individual or combinations of glycosyl modifications affect Notch’s 
ability to engage with other DNA-binding proteins and regulate 
the expression of specific genes? Notch-mediated gene regulation 
controls multiple cell differentiation processes both during devel-
opment and adult life, and the complexity of Notch regulation will 
likely provide the necessary specificity that is required to generate 
the correct response to Notch signaling in different contexts. Our 
lack of understanding is tangible and unless we address these ques-
tions we cannot begin to understand how Notch regulation leads to 
specificity of response or the mechanisms by which Notch deregula-
tion can lead to either an oncogenic or tumor-suppressive effect.
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