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The 2018–2020 Ebola virus disease epidemic in Democratic Republic of the Congo (DRC) resulted in 
3481 cases (probable and confirmed) and 2299 deaths. In this paper, we use a novel statistical method 
to analyze the individual-level incidence and hospitalization data on DRC Ebola victims. Our analysis 
suggests that an increase in the rate of quarantine and isolation that has shortened the infectiousness 
period by approximately one day during the epidemic’s third and final wave was likely responsible 
for the eventual containment of the outbreak. The analysis further reveals that the total effective 
population size or the average number of individuals at risk for the disease exposure in three epidemic 
waves over the period of 24 months was around 16,000–a much smaller number than previously 
estimated and likely an evidence of at least partial protection of the population at risk through ring 
vaccination and contact tracing as well as adherence to strict quarantine and isolation policies.

We present here a quantitative analysis of the effects of public health interventions against the spread of the Ebola 
virus disese (EVD) during the DRC Ebola epidemic that unfolded between August 2018 and September 2020 in 
the northeastern provinces of DRC1,2, partially sharing the timeline of the better known and much larger West 
African epidemic3. The DRC 2018 epidemic, being more geographically contained and smaller, was considerably 
better documented, with the majority of cases’ disease histories collected through the efforts of the College of 
Public Health at the University of Kinshasa4. The work of these researchers allowed in particular for tracking the 
time elapsed between symptom onset, hospitalization, and recovery or death for over 3000 Ebola victims, creat-
ing a unique opportunity for detailed analysis of the epidemic dynamics based on individual disease histories.

The authorization for emergency use of Merck experimental Ebola vaccine rVSV-ZEBOV-GP5,6 and its field 
deployment in 2019 has provided for better protection of those involved in monitoring efforts, as it was given 
to many frontline workers including doctors, nurses, and burial workers. An estimated 330,000 people living 
in the northern DRC provinces were vaccinated in 2019 and 2020, including frontline workers as well as ring 
vaccinations of the contacts of suspected and confirmed cases. This was done in part by the international non-
governmental organization Doctors Without Borders, with authorization by the Ministry of Health, concerned 
with the possibility of further northward spreading of the disease1. However, the more comprehensive vaccination 
efforts were complicated and significantly delayed in late 2019 and in 2020 by local distrust, political instabil-
ity and the resulting lack of security both for aid workers and for vaccine supplies7. For those reasons, despite 
the apparent effectiveness of the rVSV-ZEBOV-GP Ebola vaccine, quarantine and isolation were often still the 
primary and most effective practical interventions for breaking the chain of transmission, especially in rural and 
isolated communities across northern DRC.

Early in the outbreak, a large number of health care workers working for the DRC ministry of health were 
brought to the villages to monitor possible EVD symptoms as the ring vaccination campaign was introduced 
wherever adequate vaccine supplies were procured and safe funeral practices were mandated8. All these fac-
tors likely limited the size of the initial outbreak and prevented the uncontrolled EVD spread into the crucial 
commercial centers of the region along the border towns of Goma in North Kivu and Gisenyi in Rwanda9. The 
spillover of DRC cases to Rwanda and possibly Uganda would have undoubtedly and considerably increased 
the geographical reach of the outbreak. Largely due to successful public health monitoring efforts, EVD spread 
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occurred mainly via symptomatic individuals in relatively isolated villages, which contributed to better protec-
tion of neighbors and other household members of EVD victims and the lack of transmission in the treatment 
centers and among health care workers. This simplified transmission chain allowed us, in turn, to implement a 
relatively simple mathematical model of infection spread based on an individual-level stochastic SIR (susceptible-
infected-recovered) model10.

The classical SIR model for epidemic dynamics was introduced in early 20th century for malaria and cholera 
and led to the so-called ecological models of infections usually described by ordinary differential equations 
(ODEs)11. Such models typically represent an epidemic as a process of transferring individuals between disease-
related states (or compartments) and describe it in terms of the temporal changes in the compartment sizes. For 
the purpose of our analysis, we consider a version of that classical model, which focuses on the fate of a single 
individual (or agent), making our approach similar to the modern agent-based model (ABM) approach to disease 
modeling12. Although other more complex ecological models have been used for studying Ebola transmission 
(most notably including “funeral” and “exposed” compartments, see13), it appears that for 2018 DRC Ebola data 
our stochastic SIR model is both sufficiently flexible to incorporate the heterogeneity of individual disease his-
tories and simple enough to require only a small set of population-level parameters. This allows us to estimate 
the key quantities of interest in the DRC outbreak, such as the rates of disease reproduction and quarantine/
isolation (or hospitalization) and the size of the subpopulation at risk of infection though contact with EVD 
cases. The model also accounts for observed seasonality and spatial variation in the number of cases (e.g., see14) 
by allowing for the three independent sets of parameters to govern the three waves of infections observed over 
the course of the outbreak. For the purpose of our analysis we have determined, similarly as in7, the first wave to 
end in late February 2019 and the second one to end around late May 2020. See Table 1 below for more details. 
Our approach may be also viewed as an alternative to the complicated multi-phase longitudinal analysis proposed 
recently for the DRC outbreak data in15.

Materials and methods
Ebola dataset.  The 2018–2020 DRC EVD outbreak lasted over 24 months and spread over 3 distinct spatial 
and temporal waves. Between the emergency declaration of the EVD outbreak in northern DRC on August 1, 
2018 and the outbreak’s official end on June 25, 2020, the DRC Ministry of Health has reported a total of 3481 
cases (including confirmed and probable), 1162 recoveries, and 2299 deaths16 in the provinces of Northern Kivu, 
Southern Kivu, and Ituri. The dataset considered here is a large subset of the entire EVD database compiled by 
the University of Kinshasa School of Public Health, which comprises 3117 total case records (confirmed and 
probable) recorded between May 3, 2018, and September 12, 2019. The data included partially de-identified but 
still detailed patient information, such as each person’s location, date of symptom onset and hospitalization, as 
well as discharge due to recovery or death. These individual records came from the Ebola treatment centers in 24 
different health zones, spread out among the three DRC provinces of Northern Kivu, Southern Kivu, and Ituri.

Of the 24 health zones, 77.1% of all cases were from only 6: Beni, Butembo, Katwa, Kalunguta, Mabalako, 
and Mandima. Only 9.7% of cases were under the age of 18. There is also a slightly larger proportion of females 
contracting the disease, comprising 57.0% of the cases. Approximately 5% of the cases were health care workers. 
About one-third of the EVD fatalities were not identified until patient’s death and thus not effectively isolated 
from the time of infection. Although over 170,000 contacts of confirmed and probable Ebola cases had been 
monitored across all affected health zones for 21 days after their last known exposure by the end of the epidemic, 
some of the contact tracing was incomplete due to insecurity that prevented public health response teams from 
entering some communities. The overall case density map is presented in panel (A) of Fig. 1 with the animated 
version of the map presented in the online appendix in Fig. A.1. Notice that the high-density areas, particularly 
Butembo, Katwa, and Beni, are all spatially small health zones corresponding to cities or towns with larger 
populations.

Case alerts and definitions.  Since early August, 2018, the DRC Ministry of Health has been collaborating with 
several international partners to support and enhance EVD response activities through its emergency opera-
tions center in Goma. To the extent possible given regional security considerations19, the response teams were 
deployed to interview patients and their suspected contacts using a standardized case investigation form clas-
sifying cases as suspected, probable, or confirmed. A suspected case (whether surviving or not) was defined as 
one with the acute onset of fever (over 100◦ F) and at least three Ebola-compatible clinical signs or symptoms 
(headache, vomiting, anorexia, diarrhea, lethargy, stomach pain, muscle or joint aches, difficulty swallowing or 
breathing, hiccups, unexplained bleeding, or any sudden, unexplained death) in a North Kivu, South Kivu, or 
Ituri resident or any person who had traveled to these provinces during this period and reported the signs or 
symptoms defined above. A patient who met the suspected case definition and died but from whom no speci-
mens were available was considered a probable case. A confirmed Ebola case was defined as a suspected case 
with at least one positive test for Ebola virus using reverse transcription polymerase chain reaction (RT-PCR)20 
testing. Patients with suspected Ebola were isolated and transported to an Ebola treatment center for confirma-
tory testing and treatment2.

Onset and removal.  In our analysis of the DRC dataset, we focused on dates of symptom onset and removal, 
with removal defined as either a death/recovery at home or transfer to an Ebola treatment center (ETC). It was 
assumed that, once in the treatment center, the probability of further infection spread by an isolated individual 
was very small due to the strict safety protocols—and later due also to vaccination of healthcare personnel and 
family members who were in contact with the suspected Ebola case. As summarized in panel (B) of Fig. 1, we 
were able to access 3117 out of 3481 individual records of confirmed and probable Ebola cases. Of these 3117 
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records, 37 were missing both the onset and recovery dates and were removed from further analysis. In about 
30% of the remaining records, either their dates of onset or removal were missing. A detailed flow diagram sum-
marizing the amount of missing data and data processing leading to the final dataset is presented in panel (B) 
of Fig. 1. The distribution of the original and the partially imputed records across the three waves of infection is 
provided for further reference in Table 1.

Spatial and temporal patterns.  Throughout the pandemic, the incidence rates exhibited strong spatial and 
temporal patterns that can be summarized as three distinct waves of infections with approximate boundaries 
marked by vertical lines in Fig. 1. The distribution of weekly reported cases across the most affected health zones 
listed in Table 1 is provided in the bar plot and in the corresponding animation in the appendix (see Figure A.1). 
As seen from the bar chart and the animated plot, the epidemic was initially driven largely by infections in the 
health zones of Beni, Mandima and Mabalako. After several months, the incidence of new cases in these zones 
subsided, but the epidemic moved south to the health zones of Katwa and Butembo, where the majority of new 
infections was registered between weeks 22 to 45 of the epidemic (see Panel (A) in Figure A.1 in the online 
Appendix). In the final spatial shift, around week 49, the epidemic returned to the health zones of Beni, Man-
dima, and Mabalako, where it was mostly extinguished around week 60 (September 2019). Isolated Ebola inci-
dences occurred sporadically across northern DRC until end of the outbreak was officially declared in June 2020.

The empirical patterns of incidence and removal for EVD cases are summarized in Fig. 2 with the bar and 
the dot plots representing the daily numbers of new infections and removals, respectively. As seen from the plot, 
these daily counts closely follow a three-wave temporal pattern in Table 1. This is further evident from the black 
and red trendlines representing the loess smoothers (see21). The daily ratio of new cases and removals may be 
interpreted as a crude estimate of the effective reproduction number Rt defined more formally in (2) in Model for 
Data Analysis below. In particular, the blue trendline for Rt indicates that towards the end of the observed time 
period, the number of removals outpaced the number of new infections ( Rt < 1 ). The ability to sustain this pat-
tern for a sufficiently long time period, mostly by increasing the rate of quarantine and ETC transfers along with 
ring vaccination of case contacts was largely credited with the end of EVD epidemic in mid-2020. The quantifica-
tion of this public health intervention effect in 2018–2020 DRC outbreak is one of the main motivations for our 
model-based analysis. Although the precise cut-off dates for the three waves of 2018–2020 Ebola infections are 
difficult to establish, the incidence data along with simple statistical analysis (see Parameter estimation) indicate 
that the first wave lasted approximately until the end of February 2019, whereas the second wave ended around 
the end of May 2019. For the purpose of the data analysis below, the specific break dates used were February 
27, 2019 and May 27, 2019 as marked by vertical lines in Fig. 2. September 12, 2019 was the cutoff date for the 
individual records data available from the University of Kinshasa (see Table 1).

Model for data analysis.  The analysis of the individual-level epidemic data is based on the standard eco-
logical model known as the SIR (susceptible-infected-removed) model and developed for the purpose of ana-
lyzing average behavior of a large population with a homogenous pattern of interactions11,22. Although there 

Figure 1.   DRC Ebola dataset. (A) The spatial distribution of 3481 EVD cases across the northern DRC health 
zones during Ebola 2018–2020 outbreak. (B) The flowchart of personal records available up to September 12, 
2019 available for the current analysis. The total number of available individual disease records was 3080. Map 
created using open software R17 with geospatial data obtained from18.
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are many variants of SIR models in the literature23, our current analysis considers the classical Kermack-McK-
endrick SIR model that assumes the proportions of population categorized as susceptibles (s), infected ( ι ), or 
removed (r) to evolve according to the differential equations

with s0 = 1, ι0 = ρ > 0 and rt = 0 where β > 0 is the rate of infection, γ > 0 is the rate of recovery and ρ > 0 is 
the initial amount of infection. In particular, the model implies the existence of the basic reproduction number 
R0 (R-naught), which determines the average speed of disease spread11 and is given by the formula

If R0 > 1 , the proportion of infected initially rises and then subsides, with the final proposition of surviving 
susceptibles given by s∞ = 1− τ > 0 where τ is know as the epidemic’s final size. In typical statistical analysis, an 
estimate of R0 is obtained by separately estimating the parameters β and γ . Another important quantity related 
to (1) is the effective reproduction number, which is typically defined as

Although equation (1) is typically considered in the context of an average behavior of a large population, for our 
purposes we interpret it as defining the individual histories of infection and recovery, according to the idea of 
the dynamic survival analysis (DSA) discussed recently in10 and24 and also briefly summarized in the Appendix. 
With the DSA approach, we interpret equation (1) as the so-called stochastic master equation25 describing the 
change in probability of a randomly selected individual being at time t either susceptible, infected, or removed. 
These respective probabilities are represented by the scaled proportions st/(1+ ρ) , ιt/(1+ ρ) , and rt/(1+ ρ) 
and evolve according to (1). As outlined in10, the DSA-based interpretation of the classical SIR equations has a 
number of advantages that make it particularly convenient for analyzing epidemic data consisting of individual 
histories of infection onsets and removals, which is exactly the type of data available in the DRC Ebola dataset. 
The fact that the model is individual-based implies also that we can vary the parameters θ = (β , γ , ρ) to account 

(1)
ṡt = −βst ιt ,

ι̇t = βst ιt − γ ιt ,

ṙt = γ ιt ,

R0 = β/γ .

(2)Rt = R0st .
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Figure 2.   Daily incidence and removal rates. Daily incidence (grey bars) and removal counts (red dots) during 
DRC Ebola 2018–2020 outbreak between August 15, 2018 and September 12, 2020 along with their respective 
trendlines (loess smoothers). The blue trendline above the plot represents daily effective reproduction number 
Rt defined as the ratio of daily number of new infections to new removals. The vertical lines indicate cut-off 
dates for data collection in each wave as listed in Table 1.

Table 1.   Observed cases by EVD wave. The observed cases aggregated by 3 infection waves and the 
corresponding cutoff date for data collection. The number of cases observed in wave 3 by September 12 was 
1113 with a combined total of 3117 cases across all three waves (see Fig. 1).

Wave 1 Wave 2 Wave 3 Total

Cut-off dates February 27, 2019 May 27, 2019 September 12, 2019

No. cases 907 1104 1477 3481

Most affected
Health zones Beni, Katwa Butembo, Katwa,

Mabalako, Mandima
Beni, Kalunguta
Mandima
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for individual covariates and changes in the parameter values over time, as different waves of infection sweep 
through the population. Finally, for the purpose of our analysis, it is also important to note that the DSA model 
does not require any knowledge of the size of the susceptible population subjected to the epidemic pressure. For 
the DRC dataset, that assumption would be difficult to justify due to spatial and temporal heterogeneity of the 
epidemic and the frequent movements of local populations driven by political conflicts and insecurity. Another 
element complicating the determination of the size of susceptible population was the ring vaccination campaign 
that has been conducted since 2019 wherever possible in the northern DRC during periods of relative stability, 
despite local mistrust and supply issues. This campaign ultimately resulted in over 250,000 vaccinations.

Note that, because s0 = 1 , the values of R0 and Rt coincide for t = 0 . Moreover, st = exp
(

−R0

∫

t

0 rudu
)

 is 
a decreasing function of time and therefore, so is Rt . However, in practice, this implication is problematic. 
Rewriting Rt = −ṡt/ṙt suggests that a crude but sensible way to estimate Rt empirically is to take the ratio of 
daily number of new infections to new removals. The empirical Rt thus estimated will not be necessarily mono-
tonically decreasing. In the light of possibly changing parameters and the effective population size, we have 
adopted this approach to estimating the daily effective reproduction number Rt in Fig. 2.

Parameter estimation.  We assume that, for each of the three waves of the epidemic, we have a separate 
and independent set of parameters θ and that, in each wave, we observe nT histories (records) of infection. The 
i-th individual history may be represented either by the times of disease onset and removal (ti ,Ti) or by ti or Ti 
times alone (ti , ◦) or (◦,Ti) ( ◦ denoting missing value). We assume that among the available nT histories we have 
n complete records (ti ,Ti) , n1 incomplete ones (ti , ◦) and n2 incomplete ones (◦,Ti) . The wave-specific DSA likeli-
hood function for n complete data records is (see Appendix)

where T is the available time horizon and wi is the binary variable indicating whether Ti is right-censored (that 
is, Ti ∧ T = T ) in which case wi = 0 and otherwise wi = 1 . For the remaining n1 + n2 records that are partially 
incomplete, the wave-specific DSA likelihood function is

where we assume that Ti < T . The overall likelihood for all nT individual histories is obtained by multiplying 
(3) and (4). Note that the likelihood formulas depends on the parameter β only implicitly, through the values of 
the function st defined by (1). Note also that we assume T to be unique and exactly known although in practice 
this may not be true as subsequent waves of infection may be too close in time (perhaps even overlapping) to 
allow for a precise specification of T. In our analysis below, we solve this practical problem by considering sev-
eral candidates for the values of T in each wave and then identifying ones that jointly maximize the combined 
posterior distribution corresponding to the wave-specific likelihoods in equations (3–4).

The fitting of the model parameters θ = (β , γ , ρ) by maximizing the likelihood function (3) can be con-
veniently integrated into the Bayesian estimation framework, which allows for a more complete propagation 
of uncertainty and the use of external information in the statistical model. This, in turn, allows us to produce 
estimates that reflect all available information and uncertainty. In our DRC data analysis, the approximate 
posterior densities of θ were obtained using the Hamiltonian Monte-Carlo sampler26 implemented in the open 
source statistical software STAN27 and integrated with the popular statistical analysis language R via the library 
Rstan28. For the Rstan analysis, we have assumed uniform (sometimes improper) prior distributions on the θ 
components as follows

The lower bound was placed on β based on empirical information, and the upper bound was placed on γ to 
enforce the constraint R0 > 1 . Given the wave-specific time horizons (T’s), the set of parameters for each epi-
demic wave was estimated independently using 2 independent chains of 3000 iterations, with a burn-in period of 
1000 iterations. The chains’ convergence assessed using Rubin’s R statistic28. The analysis resulted in approximate 
samples from the posterior distribution of θ for each of the three waves of the epidemic (see e.g., Fig. 4).

Ethics statement on human subjects and methods.  The research was conducted in accordance with the relevant 
guidelines and regulations of the US law and OSU Institutional Review Board. The research activities involving 
human subjects discussed in the paper meet the US federal exemption criteria under 45 CFR 46 and 21 CFR 56.

Significance statement
With the world health community largely preoccupied with the current COVID-19 pandemic, the Ebola Virus 
Disease (EVD) continues to lurk as a significant threat to public health, prosperity, and political stability in large 
regions of Africa with undiminished potential for spread to other parts of the world. Despite its vital impor-
tance for public health policy, knowledge about the effects of the recent 2018–2020 EVD response efforts in the 

(3)LC(θ |t1 . . . , tn,T1, . . . ,Tn,T) = (sT − 1)−n

n
∏

i=1

ṡtiγ
wi e

−γ (Ti∧T−ti)

(4)LI (θ |t1 . . . , tn1 ,T1, . . . ,Tn2 ,T) = (sT − 1)−(n1+n2)γ n2

n1
∏

i=1

ṡti

n2
∏

i=1

(ρe−γTi − ιTi )

(5)
β ∈ (0.15,∞),

γ ∈ (0,β),

ρ ∈ (0, 1).



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5534  | https://doi.org/10.1038/s41598-022-09564-4

www.nature.com/scientificreports/

Democratic Republic of the Congo (DRC) based on ring vaccination supplemented with isolation and quarantine 
has been limited by challenges with data collection and by the lack of simple methods for analyzing complex 
multi-wave patterns of disease incidence occurring across time and space. Within this environment, competing 
narratives with differing policy implications emerged around the effectiveness of vaccination strategy and the 
need for supporting DRC Ebola treatment centers. To address this issue, University of Kinshasa researchers col-
lected a large number of individual records of disease histories from probable and confirmed Ebola cases during 
the 2018–2020 EVD outbreak in DRC. This study describes a model-based Bayesian statistical method developed 
to estimate the effects of ring vaccination, quarantine, and isolation in Ebola treatment centers across northwest-
ern provinces of the country. The method accounts in particular for missing and censored data, heterogeneity of 
infection patterns and multiple waves of infection with different intervention strategies.

Results
The overall comparison of the parametric DSA model predictions with the empirical data in DRC dataset until 
September 12, 2019 is given in Fig. 3, where the scaled theoretical densities of the epidemic are plotted alongside 
the observed relative daily counts of infection (onset) and removal shown earlier in Fig. 2. As seen from the 
plots, the multi-wave model appears to capture well the empirically observed patterns of daily counts represented 
by the histogram bars. The 95% credibility bounds around the model fit (marked in blue) are calculated based 
on the model parameter posterior distributions estimated via the MCMC algorithm with priors described in 
Parameter estimation. We note that, although the DSA fit curve appears quite similar to the non-parametric loess 
smoother presented in Fig. 2, the parametric fit has an advantage of providing an explicitly interpretable set of 
parameters describing the outbreak dynamics. This allows, for instance, for a purely quantitative comparison of 
the 3 different epidemic waves.

The wave-specific results of the MCMC analysis are summarized in Table 2 with some of the posterior plots 
presented in Fig. 4. In Table 2, the posterior mean and corresponding credibility interval for each component of 
θ = (β , γ , ρ) are listed for each epidemic wave along with the estimated reproduction numbers. Additionally, 
in the last two rows, the posterior estimates of the effective population size (N) and the outbreak size ( K∞ ) are 
reported (see Appendix Section B for formal descriptions of these quantities). The MCMC estimation scheme 
that produced the numerical values listed in the table was based on the wave-specific likelihood functions in 
equation (3) conditioned on the observation periods (T) according to the cut-off dates in Table 1. As seen from 
the entries of Table 2 and from the posterior density plots in Fig. 4, the parameter values for the infection rate (β) , 
recovery rate ( γ ) and the initial prevalence of infection ρ all differ considerably across waves. The most notable 
appears to be an average increase of 14% in the posterior β values between waves 1 and 2. This change is seen to 
correspond to an 8% increase in the value of the posterior mean of R0 and the subsequent increase in the number 
of infections in wave 2 of the EVD outbreak. Another interesting observation in Table 2 is that, while the average 
value of β increased moderately (about 8%) between epidemic waves 2 and 3, the corresponding average value of 
γ increased over twice as much (almost 20%). Recalling the plot of the empirical effective reproduction number 
in the top part of Fig. 2, it appears that this increase was crucial in ultimately controlling epidemic growth and 
ending the outbreak within the next several months. We note that the increase in the removal rate γ corresponds 
to the decrease in the duration of the infectious period 1/γ (measured in days). Thus, the increase in the respec-
tive γ values corresponds in this case to a decrease in the average infectious period from 5.6 days to 4.7 days. This 
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Figure 3.   Model fit. Comparison of the statistical model fit (red curve) with the observed daily incidence 
(onset) and removal relative counts for all 3 waves of the epidemic combined. The shaded region indicates the 
95% credibility bounds based on the posterior distributions of the model parameters estimated separately for 
each wave with values summarized in Table 2.
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Table 2.   Parameter estimates. Wave-specific posterior estimates (means and 95% credibility bounds) from the 
parametric model in equation (3).

Parameter Wave 1 Wave 2 Wave 3

T 300 days 89 days 108 days

β 0.190 (0.178, 0.204) 0.217 (0.201, 0.232) 0.235 (0.218, 0.253)

γ 0.169 (0.157, 0.183) 0.179 (0.165, 0.192) 0.214 (0.199, 0.230)

ρ 0.00021 (0.00016, 0.00027) 0.0054 (0.0044, 0.0065) 0.0067 (0.0055, 0.0081)

R0 1.124 (1.108, 1.142) 1.214 (1.168, 1.262) 1.098 (1.061,1.135 )

All Waves

K̂∞ 3481.41 (2877.416, 4155.878)

N̂ 16385.61 (14416.33, 18703.71)
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Figure 4.   Top panels: parameters in different waves. The posterior distributions of β and 1/γ parameters for 
each of the three epidemic waves. The large increase in the rate of infection between waves 1 and 2 is clearly 
visible in panel (A). In panel (B), the density of 1/γ represents the distribution of time from symptom onset to 
removal. Between wave 1 and wave 3 of the epidemic, the average time shortened from 6 to 4.6 days. Bottom 
panels: outbreak size and effective population size. (C) The posterior density of the outbreak size based on the 
statistical model and the actual number of observed EVD cases (vertical red line). (D) The posterior density of 
the effective population size for the epidemic. The vertical line corresponds to the empirical outbreak size (red 
line in panel (C)).
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could be further compared with the average infectious period in the initial wave 1 of the epidemic, which was 
estimated by the model at almost 6 days (corresponding to the posterior mean γ = 0.169 ). These differences in 
the wave-specific estimates of β and 1/γ are also clearly seen in their posterior density plots in the top panels of 
Fig. 4, and they appear to be consistent with the empirical onset and removal rates shown in Fig. 2.

As already indicated, one of the advantages of the parametric DSA approach is that it does not require knowl-
edge of the underlying susceptible population size but may instead infer that value from the incidence data and 
the estimated epidemic parameters (see Appendix Section B). The posterior means and 95% credibility bounds 
for the outbreak size ( K∞ ) and the effective population size (N) are listed in the last two rows of Table 2, and their 
posterior densities are presented in the bottom panels of Fig. 4. In the bottom-left panel (C), we compare the 
model-predicted size of an outbreak (represented by posterior density contour with the mean of 3481.4) to the 
number of cases officially reported by DRC health officials at the end of the epidemic in June 2020 (represented by 
the red vertical line at 3,481). The effective population size corresponding to that value is marked by the vertical 
line in the posterior density plot in the bottom-right panel (D). Both vertical lines appear close to the modes of 
the posterior distributions indicating good agreement of the model-based estimates with empirical data. Note 
that the model predicted effective population size corresponding to the observed outbreak size is only around 
16,000 with the posterior CI between 14,416.33 and 18,703.71, which is a much smaller number than one might 
expect based on demographic estimates (see also Conclusions).

Conclusions
Outbreaks of Ebola in Africa are a persistent threat not only to global public health but also to economic and 
political stability in some of the world’s poorest and most vulnerable regions. Despite early evidence of effective-
ness of the ring vaccination effort, the prolonged political and armed conflict in northern DRC, where the latest 
public health intervention took place, has seeded mistrust towards local authorities and international partners. 
This has impeded effective community collaboration, complicating the vaccination campaign and the overall 
response strategy19. To evaluate the effects of public health response to EVD outbreak in DRC during 2018–2020, 
we used the individual-level data based on case ascertainment, vaccination records, and contact enumeration 
collected by researchers at the University of Kinshasa School of Public Health in collaboration with local health 
authorities in northern DRC from August, 2018 to September, 2019. The analysis of this dataset is crucial for 
informing current and future EVD intervention policies and strategies regarding vaccination, quarantine, and 
isolation. However, the analysis is also quite challenging due to incomplete or missing patient information as 
some families have resisted putting their loved ones in isolation and some individuals have absconded from Ebola 
treatment centers. Another challenge is the complexity of the data itself, with individual patient histories span-
ning multiple waves of infections across multiple seasons and spatial environments result in very heterogenous 
and sometimes incompatible health records.

To overcome these challenges and analyze the University of Kinshasa dataset, we employed the dynamic 
survival analysis (DSA) method10, which combines an individual-level Bayesian survival model with a classical 
SIR epidemic modeling framework. The fusion of the two allowed us to coherently integrate multiple analyses 
of individual disease histories into a single analysis based on a simple parametric model. Using that model, we 
were able to estimate the reproduction numbers and the effective population sizes in each of the three major 
waves of the EVD epidemic while appropriately accounting for uncertainty due to heterogeneity, missingness, 
or censoring in the records of EVD patients. This Bayesian framework also allowed us to incorporate external 
information through informative prior distributions and to provide exact inferences for incidence and interven-
tion effects — the information most relevant to policy makers and public health officials.

Through our study, we estimated the epidemic effective population size (the overall number of individuals 
at immediate risk of infection) to be around 16,000. This number is much smaller than the demography-based 
estimate of the susceptible population that one would usually consider in a standard epidemic model. Indeed, 
the combined population of North Kivu, South Kivu, and Ituri provinces exceeds 16 million and accounts for 
approximately 15% of the DRC population, with many large population centers (e.g., Goma) exceeding half a 
million inhabitants. This discrepancy between demographic estimates and the estimated effective size of the 
susceptible population emphasizes the individual-based nature of our analysis and reflects the effects of public 
health intervention efforts (in particular, ring vaccination and contact tracing) that largely prevented the wide 
and uncontrolled community spread of the EVD.

Our analysis also indicated that, in different epidemic waves, the average removal time was statistically dif-
ferent with the shortening of the removal time from wave 1 to wave 3 by an average of 1.4 days (from 6 days in 
wave 1 to 4.6 days in wave 3). This finding is consistent with the general view that increased isolation and vacci-
nation efforts in late 2019 largely contributed to breaking local chains of transmission and ultimately ending the 
epidemic by mid-2020. Assuming similar infectivity in future outbreaks, our results suggest that, in order to limit 
the spread of EVD in future outbreaks, a rate of removal similar to that achieved in wave 3 will likely be required.

Although the DRC has successfully contained Ebola outbreaks in the past6,29 and an effective vaccine is now 
available, the security and political challenges in the northern DRC — especially North Kivu and Ituru provinces 
— continued to create problems for effective public health interventions during the 2018–2020 outbreak. As 
political challenges in the DRC are likely to persist in the near future, there is great need for a flexible approach 
in responding to future outbreaks that combines multiple pharmaceutical and non-pharmaceutical strategies. 
The individual-level EVD data from the 2018–2020 outbreak presented here is, to our knowledge, the first 
opportunity to comprehensively look at the multi-wave outbreak data and quantitatively assess the strength of 
non-pharmaceutical interventions while also accounting for the the effects of ring vaccination in decreasing the 
size of the population at risk of infection. The methodology developed and used here is also of possible relevance 
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for analyzing other outbreaks exhibiting complicated dynamics and multiple incidence waves, including the 
current COVID-19 pandemic.

Data availability
Deidentified dataset and the code used in MCMC analysis are publicly available via Zenodo platform at https://​
doi.​org/​10.​5281/​zenodo.​61041​88. Further data may be available upon a reasonable request to the authors.

Received: 17 November 2021; Accepted: 17 March 2022

References
	 1.	 Aruna, A. et al. Ebola virus disease outbreak-Democratic Republic of the Congo, August 2018–November 2019. Morb. Mortal. 

Wkly Rep. 68(50), 1162 (2019).
	 2.	 Kalenga, O. I. et al. The ongoing Ebola epidemic in the Democratic Republic of Congo, 2018–2019. N. Engl. J. Med. 381(4), 373–383 

(2019).
	 3.	 Spengler, J. R., Ervin, E. D., Towner, J. S., Rollin, P. E. & Nichol, S. T. Perspectives on West Africa Ebola virus disease outbreak, 

2013–2016. Emerg. Infect. Dis. 22(6), 956 (2016).
	 4.	 Mutombo, P. B. W. B. et al. The experience of control measures for individuals affected by the ebola virus disease in the north-

eastern region of the Democratic Republic of the Congo, 2019. Central Afri. J. Public Health 5(6), 322 (2019).
	 5.	 Ehrhardt, S. A. et al. Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat. Med. 25(10), 1589–

1600 (2019).
	 6.	 Regules, J. A. et al. A recombinant vesicular stomatitis virus Ebola vaccine. N. Engl. J. Med. 376(4), 330–341 (2017).
	 7.	 Tariq, A., Roosa, K., Mizumoto, K. & Chowell, G. Assessing reporting delays and the effective reproduction number: the Ebola 

epidemic in DRC, May 2018-January 2019. Epidemics 26, 128–133 (2019).
	 8.	 Nielsen, C. F. et al. Improving burial practices and cemetery management during an Ebola virus disease epidemic–Sierra Leone, 

2014. MMWR Morb. Mortal. Wkly Rep. 64(1), 20 (2015).
	 9.	 World Health Organization. Ebola outbreak in the Democratic Republic of the Congo declared a public health emergency of 

international concern. [News release]. Geneva, Switzerland: World Health Organization; (2019) https://​tinyu​rl.​com/​47rxu​ztn.
	10.	 KhudaBukhsh, W. R., Choi, B., Kenah, E. & Rempała, G. A. Survival dynamical systems: individual-level survival analysis from 

population-level epidemic models. Interface Focus 10(1), 20190048 (2020).
	11.	 Brauer, F. Mathematical epidemiology: past, present, and future. Infect. Dis. Modell. 2(2), 113–127 (2017).
	12.	 Willem, L., Verelst, F., Bilcke, J., Hens, N. & Beutels, P. Lessons from a decade of individual-based models for infectious disease 

transmission: a systematic review (2006–2015). BMC Infect. Dis. 17(1), 1–16 (2017).
	13.	 Legrand, J., Grais, R. F., Boelle, P.-Y., Valleron, A.-J. & Flahault, A. Understanding the dynamics of Ebola epidemics. Epidemiol. 

Infect. 135(4), 610–621 (2007).
	14.	 Mizumoto, K. et al. Spatial variability in the reproduction number of Ebola virus disease, Democratic Republic of the Congo, 

January-September 2019. Eurosurveillance 24(42), 1900588 (2019).
	15.	 Roosa, K., Tariq, A., Yan, P., Hyman, J. M. & Chowell, G. Multi-model forecasts of the ongoing ebola epidemic in the democratic 

republic of Congo, March–October 2019. J. R. Soc. Interface 17(169), 20200447 (2020).
	16.	 World Health Organization. Ebola outbreak - Democratic Republic of the Congo - North Kivu, Ituri 2018 - 2020. WHO Health 

Emergencies List (2021) https://​tinyu​rl.​com/​22u4b​kvy.
	17.	 R Core Team. R: A language and environment for statistical computing. Version 4.0.1. (2021).
	18.	 OCHA Services Centre for Humanitarian Data. OCHA Democratic Republic of the Congo (DRC). Referentiel Geographique 

Commun. (2022) https://​data.​humda​ta.​org/​datas​et/​drc-​health-​data.
	19.	 Kraemer, M. U. G. et al. Dynamics of conflict during the Ebola outbreak in the Democratic Republic of the Congo 2018–2019. 

BMC Med. 18, 1–10 (2020).
	20.	 Maganga, G. D. et al. Ebola virus disease in the Democratic Republic of Congo. N. Engl. J. Med. 371(22), 2083–2091 (2014).
	21.	 Cleveland, W. S. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. Am. Stat. 35(1), 54 (1981).
	22.	 Kermack, W. O. & McKendrick, A. G. Contributions to the mathematical theory of epidemics–II. the problem of endemicity. Bull. 

Math. Biol. 53(1), 57–87 (1991).
	23.	 Bjørnstad, O. N., Shea, K., Krzywinski, M. & Altman, N. The SEIRS model for infectious disease dynamics. Nat. Methods 17(6), 

557–559 (2020).
	24.	 Wascher, M., Schnell, P. M., Khudabukhsh, W. R., Quam, M., Tien, J. H., & Rempala, G. A.Monitoring SARS-COV-2 transmission 

and prevalence in populations under repeated testing. medRxiv (2021)
	25.	 Dubitzky, W., Wolkenhauer, O., Yokota, H. & Cho, K.-H. Encyclopedia of Systems Biology (Springer Publishing Company, Incor-

porated, 2013).
	26.	 Monnahan, C. C., Thorson, J. T. & Branch, T. A. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo. 

Methods Ecol. Evol. 8(3), 339–348 (2017).
	27.	 Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76(1), 1–32 (2017).
	28.	 Annis, J., Miller, B. J. & Palmeri, T. J. Bayesian inference with Stan: A tutorial on adding custom distributions. Behav. Res. Methods 

49(3), 863–886 (2017).
	29.	 Roca, A., Afolabi, M. O., Saidu, Y. & Kampmann, B. Ebola: a holistic approach is required to achieve effective management and 

control. J. Allerg. Clin. Immunol. 135(4), 856–867 (2015).

Acknowledgements
The work of HV, WK, EK and GAR was partially supported by the US National Science Foundation Award 
DMS 1853587. WK also acknowledges the President’s Postdoctoral Scholars Program (PPSP) of the Ohio State 
University. EK and WK were supported by National Institute of Allergy and Infectious Diseases (NIAID) grant 
R01 AI116770. EK was supported by NIAID grant U54 GM 111274. The content is solely the responsibility of 
the authors and does not represent the official views of NIAID, The National Science Foundation or the National 
Institutes of Health.

Author contributions
G.A.R., E.K. and P.A. designed the research. H.V. and P.A. collected and analyzed the data, Y.P. helped visualize 
the data and created all GIS-based figures, W.K., E.K. and G.A.R. developed the Bayesian dynamical survival 

https://doi.org/10.5281/zenodo.6104188
https://doi.org/10.5281/zenodo.6104188
https://tinyurl.com/47rxuztn
https://tinyurl.com/22u4bkvy
https://data.humdata.org/dataset/drc-health-data


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5534  | https://doi.org/10.1038/s41598-022-09564-4

www.nature.com/scientificreports/

methodology. H.V. and G.A.R. wrote the manuscript. All authors have contributed to manuscript editing and 
approved its final version.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​09564-4.

Correspondence and requests for materials should be addressed to G.A.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-09564-4
https://doi.org/10.1038/s41598-022-09564-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Analysis of individual-level data from 2018–2020 Ebola outbreak in Democratic Republic of the Congo
	Materials and methods
	Ebola dataset. 
	Case alerts and definitions. 
	Onset and removal. 
	Spatial and temporal patterns. 

	Model for data analysis. 
	Parameter estimation. 
	Ethics statement on human subjects and methods. 


	Significance statement
	Results
	Conclusions
	References
	Acknowledgements


