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Abstract 

 

Developmental and evolutionary effects on brain organisation are complex, yet linked, as 

evidenced by the striking correspondence in cortical expansion changes. However, it is still 

not possible to study concurrently the ontogeny and phylogeny of cortical areal 

connections, which is arguably more relevant to brain function than allometric changes. 

Here, we propose a novel framework that allows the integration of connectivity maps from 

humans (adults and neonates) and non-human primates (macaques) onto a common space. 

We use white matter bundles to anchor the definition of the common space and employ the 

uniqueness of the areal connection patterns to these bundles to probe areal specialisation. 

This enables us to quantitatively study divergences and similarities in cortical connectivity 

over both evolutionary and developmental scales. It further allows us to map brain 

maturation trajectories, including the effect of premature birth, and to translate cortical 

atlases between diverse brains.  
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Introduction 

 
Developmental and evolutionary effects on the brain and its organisation occur at vastly 

different timescales, yet these effects have been shown to be linked1–3. For instance, 

allometric changes in cortical area expansion show striking correspondence across ontogeny 

and phylogeny. Brain regions that expand later in newborn humans are also those that 

differ the most in size between humans and monkeys2. Despite these early markers, our 

understanding of how brains differ across species and ages and how this affects the 

behaviour they produce is still in its infancy, as mapping changes that are relevant to brain 

function across multiple domains is inherently challenging. 

 

Such mapping and understanding requires the integration and synthesis of diverse datasets, 

often lacking common references and terminologies, and must consider very different brain 

geometries4. This lack of integration has led to numerous confusions in the literature, from 

anatomical translatability across species and experiments in animal models5 to barriers in 

explorations of early brain development6, of its implications later in life7,8 and of related 

developmental disorders7.  Having a unified framework and common vocabulary for 

mapping brain organisation across the ontogenic and phylogenic dimensions is key. 

 

Magnetic Resonance Imaging (MRI) provides unique capabilities for non-invasive brain 

mapping, applicable to both the human and non-human brain, and across the lifespan. 

Traditional methods have approached the problem of comparison of diverse brains and 

their organisation as a geometrical alignment task, by attempting image registration of e.g. 

cortical folding landmarks9–11. There is a number of significant shortcomings in this 

approach. Firstly, sulci that are often used to align adult brains together are largely absent in 

non-human primates and less developed in (preterm) neonates. Secondly, alignment based 

on geometrical landmarks alone does not ensure functional correspondence, even within 

the same species and age group12. For instance, well-studied regions, such as the primary 

visual cortex can vary up to two-fold in areal size across individuals13,14 and this functional 

variability cannot be captured by cortical folding alone. 
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A number of alternative methods have recently been introduced15–17, including 

contributions from our group17–20, which use brain connections to proxy similarities and 

differences in brain organisation across species. Regions that have similar functional 

specialisation are anticipated to have similar patterns of extrinsic (i.e. inter-region) 

connections21,22. By therefore comparing the pattern of structural or functional connections 

of brain areas, estimated using diffusion or resting-state functional MRI respectively, it 

becomes possible to compare brains in a latent “connectivity space” that is not dependent 

on the sulcal morphology or the geometry of different brains22. 

 

We have previously demonstrated that one can describe each part of brain’s cortical grey 

matter in terms of its unique pattern of extrinsic connections to a set of landmarks, 

provided by white matter fibre bundles17,23. Major fascicles can be reliably identified 

through diffusion MRI tractography in diverse brains, such as in humans and macaques20,24, 

but the projections of these bundles to grey matter (i.e. the cortex) will differ. The patterns 

of how grey matter locations connect to these bundles can be compared across brains and 

can be used to probe brains’ phylogeny. 

 

In this study, we build upon these ideas and tackle the challenge of integration across both 

phylogeny and ontogeny of brain connections for the first time. We propose a novel 

framework that allows us to concurrently map brain connectivity from humans (adults and 

neonates) and non-human primates (macaque monkeys) onto a common space. Towards 

this, we define and construct a new library of tractography protocols for mapping 42 white 

matter bundles in neonates from diffusion MRI data, in a corresponding manner with the 

same bundles in the adult human and macaque brains. We subsequently use these 

corresponding bundles to anchor the definition of the common space and employ the 

uniqueness of the cortical areal connection patterns to these bundles to probe areal 

specialisation (Fig. 1). This enables us to quantitatively study divergences and similarities in 

cortical connectivity over both evolutionary and developmental scales. In the context of 

evolutionary developmental biology (evo-devo), we investigate whether regions whose 

connections are developed later in humans coincide with regions whose connection 

patterns differ most greatly between humans and monkeys. We investigate changes in 

connectivity with development by comparing the brains of neonatal (across different 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482776doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482776
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

gestational ages) and adult humans and explore whether the development of brain 

connectivity might be modulated by extrinsic/environmental factors such as premature 

birth. Finally, we demonstrate how we can use our framework to translate cortical atlases 

between diverse brains. Our proposed approach opens new and exciting possibilities for 

untangling the brain’s complexity in standardised ways that have not been possible before. 

 

 
Figure 1. Mapping diverse brains into a common connectivity space using white matter fibre bundles as “landmarks”. 

This allows for definitions of cortical grey matter connectivity patterns with respect to the white matter fibre bundles and 

comparisons across both ontogeny and phylogeny. We use diffusion MRI data and devise tractography protocols for 

delineating corresponding white matter bundles across neonatal humans, adult humans and macaques to define this 

common connectivity space. 

 

Results 

 

Neonatal Tract Protocols and Atlases 

 
We developed a novel library of standardised tractography protocols for 42 major white 

matter bundles of the neonatal brain, including commissural, association, projection and 

limbic tracts (Table 1 in Methods). Crucially, these protocols were defined in consistency 

with previous protocols for the same bundles in the adult human and macaque
20

, using 
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similar grey and white matter definitions for bundle delineation. Figure 2a shows neonatal 

tract atlases obtained by applying the protocols to high-quality diffusion MRI data of 277 

full-term newborns (scanned at 37-45 weeks post-menstrual age (PMA)) from the 

developing Human Connectome Project (dHCP)25,26. Looking into narrower age-ranges (full-

terms scanned at 37-40, 40-42 and 42-45 weeks PMA), we could confirm that the 

tractography protocols produced highly consistent results across these groups 

(Supplementary Fig. 1). Figure 2b shows qualitatively how the neonatal tract delineations 

compare against the ones defined before in the adult brain, and in the non-human primate 

brain.  

 

We tested the robustness of these tractography protocols using independent neonatal 

diffusion MRI data of varying quality. In addition to the high-quality dHCP dataset 

(acquisition time = 20 mins, high angular and spatial resolution, bespoke setup, subset of 

neonates scanned at 37-42 weeks PMA), we used two further datasets (from neonates also 

scanned at 37-42 weeks PMA): a) a good quality dataset from a conventional clinical scanner 

(no specialised acquisition hardware and software as in dHCP, reduced acquisition time of 8 

mins, but still high angular resolution and contrast - “Oxford dataset”); and b) a lower 

quality (and lower b value) dataset with further reduced angular resolution and acquisition 

time (3 mins - “standard dataset”) (see Methods for full acquisition protocol and cohort 

details). We compared the tract atlases and the inter-subject variability across these three 

datasets (after age and sex-matching). Strong similarity was observed between the average 

tract atlases, shown in Fig. 2c (right, and Supplementary Fig. 2), allowing good neonatal tract 

delineations even with a standard data acquisition protocol. Some differences can be 

observed between the high and lower quality datasets, for instance reduced tract extent in 

the second branch of the superior longitudinal fasciculus (SLF2) and lower population 

coverage in the acoustic radiation (AR). Yet, the average spatial correlation across all tracts 

in the atlases was 0.89 (±0.04) between the 20-minute and 8-minute acquisition dataset, 

and 0.86 (±0.08) between the 20-minute and 3-minute data. 

 

Inter-subject variability in the tractography results was assessed within and across the 

subject groups (relative to the 20-minute dHCP dataset). As shown in Fig. 2c (left), inter-

subject variability was relatively consistent across the datasets with, as expected, greater 
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inter-subject similarity within than across groups, albeit with slightly greater variance in the 

lower quality datasets.  

 

We further investigated whether the developed neonatal tractography protocols could 

capture early developmental trends in tract maturation. Projection fibres (e.g. thalamo-

cortical and cortico-thalamic) are expected to mature more quickly over this early life 

period, followed by commissural (e.g. corpus callosum fibres), association (e.g. superior 

longitudinal fasciculi) fibres and limbic (e.g. cingulum) fibres27–35. We mapped tract-

averaged microstructure parameters with neonatal age (37-45 weeks PMA) and observed 

trends that agreed overall with expectation (full details in Supplementary Text, 

Supplementary Fig. 3). Taken together, all the above analyses demonstrate that the 

protocols give reproducible tracts across independent datasets of varying data quality and 

can capture known neurodevelopmental trends. 
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Figure 2. Neonatal white matter tract reconstruction, correspondence with adult human and macaque tracts, and 

robustness against diffusion MRI data quality. a) Axial, sagittal, and coronal views of population percentage atlases of 42 

tracts from 277 full-term dHCP neonates. The tract atlases are created by averaging binarised (at a threshold of 0.1%) path 

density maps across subjects, obtained from probabilistic tractography. For ease of visualisation, all tracts are displayed as 

maximum intensity projections with 30 – 100% population coverage. Tract names and abbreviations are provided in Table 1 

of the Methods. b) Population percentage atlases from the adult human, neonatal human and macaque brain. Adult and 

macaque protocols are as described elsewhere
20

. Visualisation same as in (a). c) Left: Inter-subject variability of tract 

delineations across three neonatal datasets of varying data quality: 20-minute dHCP (high quality), 8-minute Oxford (good 

quality), and 3-minute standard (lower quality). Each violin plot is a distribution of 231 correlations between pairs of 

subjects, averaged across all tracts, within and across datasets. Right: Neonatal tract atlases from a subset of 22 age and 

sex-matched subjects from data of varying quality (dHCP - top row vs Standard - bottom row). 
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Extracting Connectivity Patterns and Mapping Divergence Across Ages and Species 

 

Correspondence across diverse brains (adult humans, neonate humans and macaques) is a 

key feature in our tractography protocol definitions. We used these corresponding tracts as 

landmarks to define a common connectivity space, within which we could perform brain 

comparisons. Importantly, all of the considered tracts exist in the different brains, given 

their early development in humans and their stability across phylogeny/among primates, 

but the way cortical grey matter connects to these white matter tracts varies. Hence, we 

have common features to use as a reference (the tracts), but also differences to compare 

(pattern of connectivity to these tracts). 

 

We used connectivity blueprints17 to enable these comparisons (see Methods for full 

details). These are (Cortex x Tracts) matrices that represent how different grey matter 

locations are connected to a set of white matter tracts. Using our tractography protocols we 

constructed such connectivity maps, anchored on the 42 corresponding tracts provided by 

our tractography protocols for adult humans, neonate humans and macaques. 

 

A column of the connectivity blueprint represents the cortical territories of a tract, with 

examples across different brains shown in Fig. 3a. Consequently, a row of the connectivity 

blueprint describes the pattern of how a given cortical location connects to the set of 

considered tracts (Fig. 3b). Given the built-in correspondence of the tracts, normalised 

connectivity patterns may be treated as probability distributions in the same “sample 

space”. They can then be compared across diverse brains using measures of statistical 

similarity, e.g. the Kullback-Leibler (KL) divergence36. Using this definition, we expect that 

regions with similar connectivity patterns to these tracts to appear close in this common 

connectivity space. Since the pattern of connections is linked to the functional role of a 

brain region21, this space can therefore probe functional similarity and divergence.  An 

example is shown in Fig. 3b where the matching vertex to a location in the neonatal 

occipital cortex Na is found in the adult human and macaque brains by sweeping through 

the connectivity patterns of all vertices in the adult/macaque brains and identifying the one 

(Az for the adult human and Mi for the macaque, both in the occipital cortex) with most 

similar pattern to Na (i.e. by finding the minimum KL divergence). All vertices predominantly 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482776doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482776
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

connect to the vertical occipital fasciculus (VOF), with connections also to the optic radiation 

(OR), inferior fronto-occipital fasciculus (IFO), middle longitudinal fasciculus (MDLF) and 

corpus callosum (FMA); while for instance vertex Ax in the adult human superior frontal 

cortex connects more to association tracts.  

Figure 3. Building a common connectivity space across the neonatal human, adult human and macaque brain using 

patterns of cortical connections to corresponding white matter tracts. a) Examples of the cortical territories of example 

white matter tracts derived for the neonate human, adult human and macaque brain (not to scale). These maps correspond 

to columns of the connectivity blueprints (see Methods and Fig. 9). b) The patterns of connections of different cortical grey 

matter locations to white matter tracts may be compared across diverse brains, even in the absence of geometrical 

correspondence, using measures of statistical similarity. These patterns correspond to rows of the connectivity blueprints. In 

the presented example, the best-matching pattern to vertex Na in the neonatal brain is identified in the adult human (Az) 
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and macaque (Mi) brains by sweeping through all vertices in the adult/macaque brain, resulting in a pair of cortical 

locations in the occipital region with strong VOF projections.  

 
 
We performed comparisons across both the ontogeny and phylogeny dimensions using this 

common connectivity space. Connectivity blueprints were constructed for groups of 

neonate (33 subjects – born and scanned at 40 weeks PMA), adult (20 random HCP subjects) 

and macaque (6 high-quality post-mortem macaque datasets) brains and KL divergence was 

used to assess similarities and divergences. Figure 4a-c shows the minimum KL divergence 

maps for pairs of groups. By finding the minimum KL divergence for each cortical location, 

i.e. by asking how different is the best matching connectivity profile of a given area across 

brains, we could assess predictability in connectivity patterns between groups.  

 

We found higher divergence when comparing across species (mean minimum KL divergence 

of 0.62 (s.d. 0.38) and 0.68 (s.d. 0.44) between the macaque and neonate, and macaque and 

adult respectively, Fig. 4a and c) rather than within species (mean minimum KL divergence 

of 0.33 (s.d. 0.19) between neonate and adult human, Fig. 4b), as anticipated. Between the 

neonate and adult human, highest divergence was observed in the inferior and medial 

frontal, temporal, and inferior parietal regions. These regions reflect maximum dissimilarity 

in connectivity patterns of newborns compared to later in life, therefore indicating regions 

that are less developed/matured at birth and develop later. Comparing the human and 

macaque brain, the inferior frontal, temporal and parietal regions were mostly divergent, 

reflecting regions that have evolved across primate species.  

 

We subsequently explored how the divergence of connectivity patterns compare jointly 

across ontogeny and phylogeny. Figure 4d shows a joint divergence map of neonate and 

macaque with respect to the adult human (i.e. product of maps in Fig. 4b and Fig. 4c, 

corresponding roughly to the union of the two sets). High values in this map correspond to 

regions whose connections develop/mature later in humans and also emerged later (more 

recently) in human evolutionary history. Figure 4e shows an exclusive disjunction (exclusive 

OR) map of the two patterns, highlighting where one of the ontogeny and phylogeny 

divergences are high with respect to the other, but not both of them. The similarity pattern 
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shown in Fig. 4d is impressively close to previous results based on cortical expansion in 

human development and between human and non-human primates
2
. Frontal, parietal and 

temporal regions that have evolved in humans from primates tend to mature more slowly. 

Figure 4f provides example connectivity patterns for selected vertices in the inferior frontal 

region where sharp gradients in ontogeny-phylogeny divergence is observed. On the left, 

patterns are jointly-divergent, i.e. in both neonates and macaques they diverge from the 

corresponding pattern in the adult humans. On the right, patterns are divergent between 

macaques and humans, while for neonate and adult humans they are quite similar. We see 

that the arcuate fasciculus (AF), a fascicle involved in the production and understanding of 

language, is a key driving factor in these maps, in line with expectations from the literature 

on evolution
37,38

 and development
39–41

. 

 
Figure 4. Divergence of connectivity patterns between human-macaque (phylogeny) and human adult-neonate 

(ontogeny) share similar patterns, but also exhibit unique features.  a, b, c) Divergence (minimum KL divergence) was 

calculated for each vertex, comparing between the above groups, i.e. across the ontogeny (b) and phylogeny (c) dimension. 

Group blueprints were used (33 neonates born and scanned at 40 weeks PMA; 20 adult HCP subjects; 6 macaque animals). 

Small divergence values correspond to regions with more predictable connectivity patterns between the two considered 

groups. d) Phylogeny-ontogeny joint-divergence map, calculated as the product of panels b and c with larger (red) values 

indicating that divergence to adult is greater both across phylogeny and ontogeny. This indicates regions that develop later 

in life, and also have evolved in primates. e) Phylogeny-ontogeny exclusive disjoint (exclusive OR) divergence map, 
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calculated as the (b+c)-2(b*c) (union minus the intersection). Larger (red) values indicate regions that either develop later in 

humans or have evolved in primates, but not both. f) Connectivity patterns for example vertices in the inferior frontal region 

(Brodmann areas 44 and 45): a vertex in the region of interest is selected on the adult human surface (marked with a dot 

and a triangle respectively in panels (d), (e)), the corresponding minimum KL divergence vertex on the neonate and 

macaque surface are identified, and the connectivity pattern plotted for each example and each brain. In Brodmann area 45 

(left plot), patterns are jointly-divergent (i.e. for both neonates and macaques) from adult humans. In Brodmann area 44 

(right plot), patterns are more divergent for macaques, while for neonates and adult humans they are quite similar. Arrow 

highlights such differences for connections through the arcuate fasciculus (AF). For visualisation, only the most highly 

contributing tracts are displayed (tract contribution > 0.05 to any group). 

 
Results in Fig. 4 were based on a single developmental timepoint (40 weeks PMA). We 

augmented the previous analysis by investigating connectivity changes at different neonatal 

ages with respect to the adult brain, shown in Fig. 5. We constructed group-averaged 

connectivity blueprints for the neonatal brain at three different stages of early development 

(37-40 weeks, 40-42 weeks, and 42-45 weeks PMA). Figure 5a shows the average divergence 

for these different developmental neonatal stages against age, for both dense (vertex-wise) 

and parcellated (region-wise) reconstructions. For parcellated comparisons, we applied the 

Desikan-Killiany (DK) cortical atlas to the KL divergence matrices for both the adult42 and 

neonate43 and compared corresponding parcels. On average, a decrease in divergence, 

relative to the adult brain, was observed with increasing age, as indicated by the 

regions/locations shown in red in the difference maps for older age groups in Fig. 5a. Even if 

the level of divergence reduction exhibited regional variations, it was evident throughout 

the brain, revealing the development and maturation of cortical connections even in this 

relatively brief period. At a dense level (i.e. vertex-wise), the overall changes were small on 

average, but they were enhanced with (reduced spatial scale) parcel-wise comparisons.  

 

Changes in the divergence of connectivity patterns between the adult and neonatal brain 

against neonatal age are highlighted in Fig. 5b for example regions (all regions shown in 

Supplementary Figs. 4-5). The rate of change with age exhibits regional variability, but an 

interesting pattern emerges from these examples. On the left column, a set of higher-order 

areas (associative multi-modal regions such as the superior temporal sulcus, fusiform area 

and pars triangularis) show greater overall divergence relative to the adult and more rapid 

changes with age. These trends are indicative of more rapid development of connectivity 

during this early life period. On the right, cortical regions lower in cortical hierarchy (primary 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482776doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482776
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

unimodal regions such as sensorimotor, visual and auditory) display overall lower 

divergence relative to the adult and slow changes with age. These trends can be indicative 

of greater maturity in the connections of these regions.  

 

 
Figure 5. Divergence between neonatal and adult brain connectivity patterns decreases on average with development, 

but exhibits regionally variable rate of change. a) Divergence was calculated for three neonatal age-groups (37-40, 40-42, 

and 42-45 weeks PMA) relative to the adult brain and the whole-brain median (and median absolute deviation) plotted 

against neonatal age for i) the dense-level (bottom surface plots), finding the minimum KL divergence between any two 

vertices and ii) the parcellated-level (top surface plots) where the dense KL divergence matrix was parcellated using the 

Desikan-Killiany cortical atlas and the KL divergence between corresponding parcels found. Surface plots represent the KL 
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divergence map for the first age group and, subsequently, the difference between the first age group and each other age 

group (red indicates greater divergence in the 37-40w neonate compared to the age of interest, blue indicates reduced 

divergence). b) Changes in divergence of connectivity patterns between adults and neonates against neonatal age for 

example high-order associative (left column) and low-order sensory (right column) regions (distributions extracted from 

dense divergence maps, each dot is a vertex) and radar plots showing the parcel-averaged tract connectivity to those 

parcels for each neonatal age group and the adult brain (see Supplementary Figs. 4-5 for all regions). For visualisation, only 

the most highly contributing tracts are displayed (tract contribution > 0.05 to any group) and each plot area has been sum-

normalised. Beta values correspond to the rate of change in KL divergence with neonate age derived via linear regression 

and the parcel-mean is indicated by the large dot. * indicates significant trends after correction for multiple comparisons. 

 

Probing Differences due to Preterm Birth Within the Common Connectivity Space 

 

To study the vital scientific question of how premature birth affects brain connectivity, we 

used our approach to explore differences between full-term and very preterm (age at birth 

< 32 weeks PMA) brain, scanned at full term-equivalent age. Premature birth is a major 

burden worldwide44 and is well-known to lead to significant disruptions in 

neurodevelopment throughout life45,46. The common connectivity space enables unique 

explorations into how preterm and full-term neonates differ, with respect to the adult brain. 

 

Group-averaged connectivity blueprints were calculated for the two sub-groups of neonates 

(25 in each group, age and sex matched). The neonatal connectivity blueprints were then 

compared through KL divergence to the adult connectivity blueprint and the KL divergence 

between corresponding DK parcels was calculated (Fig. 6a). Higher divergence was observed 

between the adult and preterm brain (mean of 1.737) than between the adult and the full-

term brain (mean of 1.632). This suggests that the connectivity patterns in the preterm 

brain (scanned at term-equivalent age) are, on average, less similar to those of the adult 

brain, compared to the full-term brain.  

 

The superior frontal, inferior frontal (pars triangularis and orbitalis) and precuneus areas 

showed maximum divergence differences to the adult brain, suggesting that these areas are 

more dissimilar between preterms and adults than between full-terms and adults. The 

connectivity profiles for these regions are presented as polar plots in Fig. 6b. Large 

differences in frontal connectivity were driven to a large extent by reduced connectivity in 
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preterms to the anterior thalamic radiation (ATR) and arcuate fasciculus (AF). This agrees 

with previous findings that frontal white matter “quality” (maturation and development) is 

reduced in the preterm infant
32,47,48

. We also observed differences both in the sensorimotor 

cortical regions (results not shown) and superior frontal regions, driven in part by 

differences in the superior thalamic radiation (STR). This agrees with  previous work that 

thalamic connections are less developed in the preterm infant
49

.  Differences in the 

precuneus were mostly driven by under-representation of association tracts in preterms 

(e.g. SLF1 and IFO) and corresponding over-representation of the cingulum bundle. 

Interestingly, some regions in the limbic system (parahippocampal, and rostral and isthmus 

cingulate parcels) showed the opposite trend, where preterms demonstrated more similar 

to adult connectivity patterns than full-terms. 

        

Figure 6. Connectivity patterns of premature neonates are more dissimilar than full-term neonates, relative to the adult 

brain. a) KL divergence maps and their between-group difference: KL divergence matrices are calculated between the 

preterm and adult (top) and full-term and adult (middle) group connectivity blueprints (25 age and sex matched neonates 

per group) which are then parcellated using the Desikan-Killiany cortical atlas and the KL divergence between 

corresponding parcels found. The difference between the preterm and full-term divergence maps (bottom, i.e. full-term – 
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preterm), with red indicating greater divergence in the preterm brain compared to the full-term brain, relative to the adult 

brain. b) Tract connectivity profiles (adult – blue, preterm – orange, full-term – green) for a subset of parcels of interest with 

large between-group differences (parcel: difference). For visualisation, only the most highly contributing tracts are 

displayed (tract contribution > 0.05 to any group) and each plot area has been sum-normalised. 

 

Connectivity Embedding for Cross-species, Cross-ages Atlas Translation 

 

Connectivity blueprints further allow for a direct translation of cortical atlases between 

geometrically diverse brains17. Using the similarity (or inverse KL divergence) of connectivity 

patterns as a metric, a low-dimensional embedding can be achieved. Regions with similar 

connection profiles will appear close to each other, with dimensions of the embedding 

representing maximum variability in similarity patterns. Therefore, likely equivalent areas 

are expected to group together, even if their location and size varies across brains.  

 

We used such an embedding to identify phylogeny and ontogeny correspondences between 

cortical atlases of the neonatal and macaque brain with the standard Brodmann parcellation 

for the adult brain50, converted to surface format51. For the macaque brain, we used the 

Brodmann vervet monkey atlas52, converted to the macaque monkey brain surface51. And, 

for the neonatal brain, we used the DK atlas43. Through spectral reordering53, the KL 

divergence matrices of pairs of blueprints (Fig. 7a) (neonate to adult, macaque to adult) 

were projected to low-dimensional spaces. We used the top two modes of variation to 

define a 2-dimensional space (Fig. 7b), within which each region can be represented with 

the component weights of its connectivity profile.  

 

Overall, parcels from similar anatomo-functional cortical systems (colour-coded in Fig. 7a) 

tended to group together, both across species and across ages. Sensorimotor and occipital 

regions did so more, while frontal regions were more scattered. For instance, adult primary 

visual Brodmann areas 17, 18 and 19 showed the smallest distance to neonatal primary 

visual regions (pericalcarine, cuneus and lateral occipital in DK parcellation) and to monkey 

visual Brodmann areas 17, 18 and 19; and greatest distance to areas that do not receive any 

visual projections, such as the cingulate areas (for neonates - rostral, caudal, anterior and 

isthmus cingulate in DK parcellation, for monkeys - cingulate areas 24 and 25) and 
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sensorimotor areas (for neonates – paracentral, postcentral and precentral in DK 

parcellation, for monkeys - sensorimotor Brodmann areas 1-4). We took the centre of 

gravity in the embedded connectivity space for each color-coded cortical system and for 

each brain (Fig. 7b insets). The occipital (blue) and sensorimotor (pink) regions were closest 

for both the neonate-adult and macaque-adult embedded spaces, reflecting that the lower-

order cortical areas show close similarity in their connections across ontogeny and 

phylogeny compared to other regions. The largest distance was observed between the adult 

human and macaque frontal regions, driven in part by the inferior frontal parcels 

(Brodmann areas 44-46), as expected given their apparent uniqueness to the human brain. 

Taken together, these results demonstrate how different atlases from brains across species 

and across ages can be related to each other using the common connectivity space. 

   
Figure 7. Translating cortical atlases across species and ages using spectral embedding of connectivity. a) The KL 

divergence is calculated between group (neonate and adult, adult and macaque) connectivity blueprints and the KL 
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divergence matrices are parcellated using the Brodmann cortical atlas for the adult and macaque brain and the Desikan-

Killany cortical atlas for the neonatal brain, taking the median value for each region. We further define a set of anatomo-

functional cortical systems, coloured-coded in the middle column surface plots. b) The first two components projected into a 

2-dimensional space, colour-coded by major brain regions, for the neonate-adult (left) and macaque-adult (right) 

embeddings. Circles represent the Brodmann parcels for the adult brain and crosses represent the Desikan-Killany parcels 

for the neonate brain (left) and the Brodmann parcels for the macaque brain (right). Figure insets show the centre of gravity 

(median of parcel coordinates) for each anatomo-functionally defined cortical system for each brain. Legend key: “cing” = 

cingulate; “front” = frontal; “temp” = temporal; “trans” = transverse; “med” = medial; “mid” = “middle”; “inf” = inferior; 

“lat” = lateral; “ant” = anterior; “post” = posterior. 

 

Discussion 

 

A significant hurdle towards a fully integrative approach to neuroanatomy is the lack of 

unifying frameworks that would allow comparisons between diverse brains, correspondence 

between brain atlases, and compatible terminology between different subfields. This 

dramatically impedes translational investigations aiming to bridge developmental, 

comparative, and clinical neuroscience5,6,54–57. Here, we tackled this challenge by proposing 

a novel framework that integrates connectivity maps from humans (adults and neonates) 

and non-human primates (macaques) and enables quantitative comparisons in cortical 

connectivity over both evolution and developmental scales. Key to this framework is the 

idea of describing non-human primate, human adult, and human newborn brains all in a 

single common space58, consisting of homologous white matter fibre bundles that can be 

unambiguously identified in all of them, even if their cortical terminations differ. 

To achieve this, we first developed and validated a novel library of tractography protocols 

for reconstructing white matter bundles in the neonate brain. Previous studies have 

developed such neonatal protocols23,27,59–64, however, none have been developed where 

correspondence across diverse brains is explicit. The protocols developed here are defined 

analogously with protocols for the adult human and macaque brain20. We demonstrated 

that these protocols are highly reliable for developmental data, generalisable across 

acquisition parameters and data qualities, and we are making them openly available to the 

community. 
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The in-built correspondence in the white matter bundle delineation protocols was exploited 

in our framework to anchor a common connectivity space and to provide a means for 

performing direct comparisons across ontogeny and phylogeny. Although the old notion 

that ontogeny is a full ‘replay’ of evolution has now been discredited, it seems that areas of 

the cortex that have expanded most in the human lineage (multi-modal associative regions 

as opposed to primary unimodal regions) are the ones that tend to develop/mature latest in 

development65,66. Consistent with previous observations based on cortical expansion2 and 

microstructural maturation67, we showed that there are a number of cortical territories in 

the frontal, temporal and parietal regions, whose connections both develop later in the 

human brain and have a different pattern in the human brain compared to the macaque. 

These included regions that have previously been suggested to be particularly well-

developed in the human, including the anterior prefrontal cortex68–70 and inferior parietal 

lobule71. Crucially, and previously undescribed, we also showed cortical territories where 

the two dimensions of ontogeny and phylogeny do not converge. An interesting case is 

provided by the left hemisphere inferior frontal region hosting Broca’s area. This region is 

recognised to consist of distinct subdivisions72, with different cytoarchitecture, transmitter 

receptor distribution, and connectivity. Here, we showed that the posterior and anterior 

part of Broca’s area seem to have distinct connections in the human brain compared to the 

macaque, but it is the anterior part that seems to show a later maturation of connections. 

Such results have implications for development of higher cognitive abilities in humans, as 

caudal parts of this larger territory are commonly ascribed a role in phonological/motoric 

aspects of language production73 while more rostral parts are thought to have more 

semantic/lexical roles74, although the specificity of functional localisation is debatable75.  

 

Our approach allowed us to use the divergence between the neonate and adult brain to 

explore changes linked to early development at different gestational stages (37-44 weeks 

PMA) (Fig. 5). We found that cortical regions lower in cortical hierarchy (sensorimotor, 

visual and auditory) have already more mature connectivity, whereas connectivity for 

higher-order regions (frontal, parietal and temporal regions) develops more rapidly during 

this period. It is important to note that maturation of connectivity patterns presented here 

(i.e. of how cortical areas connect to different white matter bundles during early 

development) does not necessarily follow the microstructural maturation trend of specific 
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tracts presented in Supplementary Fig. 3 (i.e. how dense/myelinated each tract is during 

early development), providing complementary views. For instance, the microstructure of 

projection tracts mature with higher rates, yet the preferential connectivity pattern of these 

tracts to sensorimotor areas seem to have already been developed and mature more slowly 

over this developmental period, perhaps reflecting differences in axonal growth rates, white 

matter maturation and cortical development (e.g. folding)76. Mapping developmental 

changes, as demonstrated here for the human brain, can be extended to non-humans, for 

example as has been recently done for the macaque brain77, thus augmenting the 

dimensionality of our framework to capture developmental trajectories for multiple species.  

 

We further tested the effect of premature birth on brain connectivity between full-term and 

preterm neonates, scanned at full-term equivalent age. We found higher divergence in the 

preterm brain compared to full-term brain, relative to the adult brain. These differences are 

generally larger for the superior and inferior frontal, medial and inferior parietal regions and 

sensorimotor regions and agree with previous studies32,47–49, yet our framework allows for 

direct comparisons against the adult brain. Interestingly, these divergence maps seem to 

follow overall the trends observed in Fig. 5, with the preterm divergence map appearing to 

represent a further under-developed neonatal brain; the mean whole-brain KL divergence in 

the preterm brain is greater than the 37-40 week neonate and the same pattern of 

divergence is observed. However, we also find apparent increases in connectivity 

divergence in the full-term brain compared to the preterm brain in the parahippocampal, 

and rostral and isthmus cingulate parcels. It is unclear whether these findings are a true 

reflection of anatomical differences between the groups or not. These may reflect the 

acceleration of maturation due to stressors (i.e. premature exposure to the extrauterine 

environment)78–81, although this would contradict the reported disruptions to limbic 

development in preterm newborns and in association with early neonatal stress46,82–84. 

Alternatively, these findings may be linked to limitations of the automated neonatal DK 

parcellation. For regions bordering the medial wall (and particularly the isthmus cingulate 

and parahippocampal regions), we observed that the automatically identified parcels and 

their boundaries looked overly inclusive in neonates compared to expectation. Therefore, 

results for these regions may need to be interpreted with caution.  
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We demonstrated another powerful application of the common connectivity space in using 

it to achieve a low-dimensional connectivity embedding within which atlases across 

different brains could be translated. Specifically, we used connection patterns to link 

cortical parcellation atlases of the neonatal, adult human and macaque brains that lacked a 

built-in a-priori correspondence. We found that parcels from similar cortical systems 

clustered together, regardless of the parcellation scheme used. For instance, visual areas 

across brains and cortical atlases clustered together in the low-dimensional embedded 

space, and were separate from e.g. cingulate areas, that do not receive visual tract 

projections. Such translations may be extended to any map of cortical features reflecting 

organisation and hierarchy at different levels17,18, such as cortical myelination maps or even 

maps of functional activation where correspondence in activation patterns are expected85. 

Furthermore, structural and functional changes throughout the lifespan could be explored. 

For instance, it has been found that medial prefrontal cortex neuronal activity decreases 

between adolescence and adulthood during mentalising tasks86, but it is not yet understood 

why. One hypothesis is that functional changes with age are due to neuroanatomical and 

connectivity changes in the same time period. Our approach explicitly allows us to explore 

whether changes/divergences in the connectivity blueprints can be predictive of differences 

in functional activation maps.  

 

In using white matter tracts as landmarks for the common connectivity space, we alleviated 

known issues in tractography, particularly in estimating end-to-end (i.e. grey matter to grey 

matter) connections87–89. Firstly, we used anatomical priors to define protocols for well-

documented white matter bundles, focusing on the body of the tracts. These are much 

clearer to identify reliably90–93 and can be identified across species and ages. Secondly, 

having established the bodies of the tract, we used a novel procedure to estimate the grey 

matter projections of the tracts. The most obvious approach of tracking towards the grey 

matter has the problem that one moves through bottlenecks in the cortical gyrus and after 

which fibres fan out. Most tractography algorithms have problems resolving this fanning, 

leading to what is known as the gyral bias87,94–96. However, we took the opposite approach 

of tracking from the grey matter surface towards the white matter, thus following the 

direction in which the fibres are expected to merge, rather than to fan out. We then 

multiplied the surface-to-white matter tractogram with that of the body of the tract to 
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create the connectivity blueprint. This avoids some of the major problems associated with 

tracking towards the surface17. 

 

In summary, we demonstrated that unique explorations across multiple dimensions of brain 

connectivity are enabled by the proposed framework, bridging developmental and 

comparative neuroscience questions. Our framework allows similar white matter 

tractography protocols to the ones presented here to be developed for additional 

primates97–99 and non-primate mammals19, allowing even larger-scale comparisons along 

phylogeny in the future. Furthermore, applications linking with the clinical neuroscience 

domain can also be envisaged. For instance, it is known that aging does not influence all 

brain systems equally100 and it has been hypothesised that “evolutionary” bundles (i.e. 

those that are common across species but show evolutionary change) are particularly 

vulnerable to the effects of aging and to diseases that are uniquely human, such as 

schizophrenia101,102. Additionally, it has been argued that individual variability across human 

brains is found in the same places as variation across primate species103, presumably 

because evolution exploits the variation across individuals. Our common space framework 

allows us to explicitly test such hypotheses in a unifying manner and identify connectivity 

patterns that are linked to these differences.  
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Methods 

 

Neonatal Tractography Protocols 

 

Tractography protocols for neonates were defined following the general principles of 

XTRACT20, ensuring direct correspondence with the adult human and the macaque brain. In 

total, 42 white matter tracts (19 bilateral and 4 commissural) were defined for the neonatal 

brain (Table 1).  

 

Protocols consisted of a set of rules and regions of interest (ROIs), drawn in standard space, 

which govern tracking. These included seed (streamline starting points), target/waypoint 

(region through which a streamline should pass to be valid), exclusion (regions that reject 

any streamline passing through them), and stop/termination (regions that stop tracking if a 

streamline passes through them) masks. During tractography, these standard space protocol 

masks are warped to native space where tractography is performed and the subsequent 

paths are resampled back to standard space during tracking, in a way that minimises 

resampling. 

 

To ensure correspondence with the XTRACT protocols, the MNI-space adult protocols were 

used as a very initial starting point. A non-linear warp field was used to roughly align the 

adult protocol masks to a 40 week PMA neonatal template104. These registered masks were 

then manually redrawn to ensure good alignment and correspondence to the neonatal 

anatomy. To avoid artificial lateralisation in bilateral tracts, seed and target masks were 

enforced to have equal volumes in each hemisphere. Additional revisions were made to the 

protocols based on preliminary results, to optimise the results for the neonatal anatomy. 

The full protocol descriptions are provided in the Supplementary Text.  

 

Some of the protocols use a reverse-seeding approach, in which the protocol is run twice, 

with the roles of the seed and target masks exchanged. The resultant streamline 
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distributions are then added together. This extra step was added in cases where robustness 

of tract reconstructions was significantly improved (see Table 1).  

 

Table 1. Description of the 42 tracts included in baby-XTRACT, along with their abbreviations used to refer to them in the 

text. Bilateral tracts have separate protocols for their left and right counterparts. The reverse seeding approach is used for 

some tracts, whereby the protocols are run twice with the seed and target masks reversed. 

 

Data and Pre-Processing 

 

Neonatal Data: Diffusion MRI data were drawn from 438 neonates born at mean (range) 

38.1 (24.6 - 42.3) and scanned at 40.2 (29.3 - 45.1) weeks postmenstrual age (PMA), made 

Category Tract Name Abbreviation Bilateral Reverse Seeding 
Association 
Fibres 

Arcuate Fasciculus AF �  

Frontal Aslant Tract FA 
� 
 

 

Inferior Fronto-Occipital 
Fasciculus 

IFO � � 

Inferior Longitudinal 
Fasciculus 

ILF � � 

Middle Longitudinal 
Fasciculus 

MdLF � � 

Superior Longitudinal 
Fasciculus 1, 2 and 3 

SLF 1,2,3 �  

Uncinate Fasciculus UF �  
Vertical Occipital 
Fasciculus 

VOF � � 

Commissural 
Fibres 

Anterior Commissure AC  � 

Forceps Major (Splenium 
of the Corpus Callosum) 

FMA  � 

Forceps Minor (Genu of the 
Corpus Callosum) 

FMI  � 

Middle Cerebellar Peduncle MCP  � 

Limbic Fibres Cingulum bundle: dorsal 
section 

CBD �  

Cingulum bundle: peri-
genual section 

CBP �  

Cingulum bundle: temporal 
section 

CBT �  

Fornix FX �  

Projection 
Fibres 

Acoustic Radiation AR � � 

Anterior Thalamic 
Radiation 

ATR �  

Corticospinal Tract CST �  

Optic Radiation OR � � 

Superior Thalamic 
Radiation 

STR �  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.03.482776doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482776
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 26

publicly available by the second data release of the developing Human Connectome Project 

(dHCP)25. Briefly, data were acquired during natural sleep on a 3T Philips Achieva with a 

dedicated neonatal imaging system, including a neonatal 32 channel head coil25,105. 

Diffusion MRI data were acquired over a spherically optimised set of directions on three 

shells (b = 400, 1000 and 2600 s/mm2). A total of 300 of volumes were acquired per subject, 

including 20 with b = 0 s/mm2. For each volume, 64 interleaved overlapping slices were 

acquired (in-plane resolution = 1.5 mm, thickness = 3 mm, overlap = 1.5 mm). The data were 

then super-resolved106 along the slice direction to achieve isotropic resolution of 1.5 mm3 

and pre-processed to correct for motion and distortions26,107. The distortion-corrected 

diffusion MRI data were separately linearly aligned to the T2-weighted space and the 

concatenation of the diffusion-to-T2 and T2-to-age-matched-template transforms allowed 

diffusion-to-age-matched-template warp fields to be obtained26. The dHCP data release 

includes an assessment of incidental findings scored 1-5 with larger values indicating larger, 

or more clinically significant, incidental findings. We used this scoring system to exclude 

subjects with score > 3. This resulted in 351 datasets, that we considered for our study. 

 

Adult Data: We drew from the pre-processed108, publicly-released Human Connectome 

Project (HCP) dMRI data109,110. We randomly chose 20 unrelated subjects (age range: 22-35 

years). In brief, the HCP data was acquired using a bespoke 3T Connectom Skyra (Siemens, 

Erlangen) with a monopolar diffusion-weighted (Stejskal-Tanner) spin-echo EPI sequence, an 

isotropic spatial resolution of 1.25 mm, three shells (b-values = 1000, 2000 and 3000 s/mm2) 

and 90 unique diffusion directions per shell, acquired twice. Non-linear transformations to 

the MNI152 standard space were obtained using T1-weighted images with FSL’s FNIRT111,112. 

The distortion-corrected diffusion MRI data were separately linearly aligned to the T1-

weighted space and the concatenation of the diffusion-to-T1 and T1-to-MNI transforms 

allowed diffusion-to-MNI warp fields to be obtained. 

 

Macaque Data: We used six high-quality post-mortem macaque (age-range: 4-16 years) 

datasets in this study, as described previously in20,113. These data were acquired at 7T, with 

16 b=0 volumes and 128 volumes acquired with b = 4000 s/mm2. These datasets are 

available as part of the Primate Data Exchange114. Non-linear transformations to the 
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macaque standard space (F99)115 were estimated using FSL’s FNIRT111,112 based on the 

fractional anisotropy (FA) maps. 

 

Fibre Orientation Estimation and Tractography: Fibre orientations were modelled for up to 

3 orientations per voxel using FSL’s BEDPOSTX116 and used to inform tractography. For the 

neonatal brain, a model-based deconvolution against a zeppelin response kernel was used 

to accommodate for the low anisotropy inherent in data from this age group26,117,118.  

 

Probabilistic tractography was performed using FSL's XTRACT20, which uses FSL’s 

PROBTRACKX119,120, with streamlines seeded from and constrained by the protocol masks, as 

described in the protocols. A curvature threshold of 80° was used, the maximum number of 

streamline steps was 2000, and subsidiary fibres were considered above a volume fraction 

threshold of 1%. A step size of 0.5 mm was used for the neonatal and adult brain and a step 

size of 0.2 mm for the macaque brain. Resultant path distributions were normalised by the 

total number of valid streamlines. 

 

 

Generation of Population WM Tract Atlases 

 

Tractography results from groups of subjects were used to obtain tract atlases, in the form 

of population percentage overlap. The normalised path distributions for each tract were 

binarized and then averaged across subjects. The resultant spatial maps describe the 

percentage of subjects for which a given tract is present at a given voxel. Tract atlases were 

generated for three different neonatal age-groups from the dHCP cohort, composed of 73 

full-term and normally-appearing (i.e. no analysis-significant incidental findings) neonates 

each, with ages of 37-40 weeks (mean = 38.9, s.d. 0.70), 40-42 weeks (mean = 41.0, s.d. 

0.48), and 42-45 weeks (mean = 43.1, s.d. 0.81) PMA at scan, as well as for a larger group of 

277 full-term and normally appearing dHCP neonates (mean age = 41.0, s.d. 1.69, range = 

37.4-44.7). 
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Robustness Against Neonatal Data Quality 

 

To explore the robustness of the protocols across data of varying quality, we use an 

additional dataset of 22 neonates born and scanned at 37-42 weeks (mean = 38.9, s.d. 1.4) 

PMA121, taking the dHCP dataset as the high-quality benchmark dataset. These data were 

collected on a 3T Siemens Prisma with a non-specialised adult 32-channel receive coil. 

Diffusion MRI data were acquired with 163 volumes per subject, over three shells (b = 500, 

1000, 2000 s/mm2), with 1.75 mm isotropic voxels and an acquisition time of 8 minutes. This 

dataset was acquired at the Wellcome Centre for Integrative Neuroimaging (Oxford, UK), 

and is referred to as the Oxford dataset. 

 

As a further test, a third dataset was generated by removing the b = 2000 s/mm2 shell from 

the good-quality (Oxford) dataset and reducing the overall number of volumes to 65 (which 

corresponds to an approximate scan duration of 3 minutes). This corresponds to a more 

conventional low-b value acquisition, and so will be referred to as the “standard” dataset. 

The acquisition parameters of the three datasets are summarised in Table 2 below. 

 

These datasets were analysed following the dHCP data pre-processing as described above, 

including motion and distortion correction, the generation of diffusion-template warp fields, 

crossing-fibre modelling and standardised tractography for each subject. We compared 

tract-atlases and inter-subject variability across the three datasets. An age and sex-matched 

group of dHCP neonates (mean age at scan = 38.9, s.d. 1.4 weeks PMA) was selected for 

comparison. Tract atlases were compared quantitatively by correlating each tract (with 

population threshold of 30% applied) from the dHCP dataset with the respective tracts from 

the comparison datasets. Inter-subject variability in the tractography results was assessed 

within and across the subject groups. Similarity was assessed using the Pearson’s correlation 

coefficient between subjects’ normalised tractography maps in template space, thresholded 

at 0.1%. The correlation values were averaged across tracts for each subject pair. For within-

group comparisons, the subjects were each compared with each of the other subjects in the 

group, yielding 231 pairs of subjects. For across-group comparisons, 231 pairs were 

randomly generated across the groups to give the same number of data points. 
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 High Quality 
(dHCP) 

Good Quality 
(Oxford) 

Standard Quality 
(fewer b values and 
angular resolution) 

Scanner 3T Philips Achieva 3T Siemens Prisma 3T Siemens Prisma 
Head coil  32-channel 

neonatal 
32-channel 

adult 
32-channel 

adult 
TE (ms) 90 73 73 
TR (ms) 3800 2900 2900 
Multiband factor  4 3 3 
Spatial Resolution 
(isotropic) (mm) 

1.5 1.75 1.75 

# Volumes 300 163 65 
b-values (s/mm2) 0, 400, 1000, 2600 0, 500 ,1000, 2000 0, 500, 1000 
# Volumes per b 20, 64, 88, 128 20, 23, 50, 70 5, 10, 50 
Acquisition time 
(approx. minutes) 

20 8 3 

Table 2. Description of the three neonatal datasets used in this study. The Oxford dataset is from ref. 
121

. This dataset was 

further subsampled to generate a third dataset (the “standard” dataset) without the b=2000 s/mm
2
 shell, which could be 

acquired in more clinically feasible scan times. 

 

 

Building Connectivity Blueprints 

 

Tractography results can be used to generate maps of the cortical termination of each tract, 

using connectivity blueprints17. The process of extracting such connectivity patterns is 

shown in Fig. 8. Tractography results are unwrapped to 1-D, yielding a (Whole-brain x 

Tracts) matrix. Next, whole-brain probabilistic tractography is performed to build a (Cortex x 

Whole-brain) connectivity matrix, seeding streamlines from the cortical white matter-grey 

matter boundary (WGB). Connectivity blueprints (Cortex x Tracts) are derived as the product 

of this whole-brain connectivity matrix and the vectorised tract matrix. The columns of this 

matrix give the cortical termination patterns of each tract, whereas the rows provide the 

connectivity pattern of each of the cortical locations, as illustrated in Fig. 8. Using this 

approach, we constructed connectivity blueprints for the neonatal, adult and macaque brain 

using WGB surfaces. 
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Figure 8. Connectivity blueprints (right) are calculated by taking the dot product of a cortex-to-whole brain connectivity 

matrix (left) with a matrix of tractography maps, unwrapped to 1D (middle). Columns of the connectivity blueprint provide 

maps of the cortical territories of tracts and rows consist of cortical connectivity patterns, describing how each cortical 

location is connected to the white matter tracts. 

 

Surface Extraction: Neonatal cortical surfaces were reconstructed from T2w images, using a 

pipeline specifically adapted for neonatal structural MRI data
122

. These surfaces were 

registered to a representative template space before performing tractography, to ensure 

alignment between subjects. Subjects’ WGB surfaces were first aligned to the dHCP’s 40 

week PMA surface template
123

, using a specialised surface registration pipeline 

(https://github.com/ecr05/dHCP_template_alignment), based on multi-modal surface 

matching (MSM)
124,125

. This aligned vertices on the WGB to ensure consistent seed points 

for tractography across subjects. A previously computed non-linear volumetric 

registration
126

 was then applied to all MSM-derived surfaces to register them to 40-week 

PMA volumetric template space
104

. This step was necessary to ensure that the tractography 

seeds were aligned to the target space.  

 

The adult surfaces were derived using the HCP pipelines
108

. For the macaque surface data, 

we follow the approach of ref. 
17

. Briefly, a single set of macaque surfaces were derived 

using a set of high-quality structural data from one of the macaque subjects. The remaining 
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macaque data were then non-linearly transformed to this space and the surfaces were non-

linearly transformed to the F99 standard space115 to allow group-level tractography. 

 

Prior to tractography, the surfaces were downsampled to approximately 10,000 vertices per 

hemisphere. We then carried out probabilistic tractography, seeding 1,000 streamlines from 

each vertex on the WGB, and recording visitation counts between each seed point and each 

voxel in a whole-brain mask with the ventricles removed, down-sampled to 2 mm3 for the 

neonatal and macaque brain and 3 mm3 for adult brain. 

 

Group-Averaged Blueprints: Following subject-wise construction of connectivity blueprints, 

we derived group-averaged blueprints for each dataset. Average connectivity blueprints 

were generated using 33 full-term neonates born, and scanned just after birth, at 40 weeks 

PMA (mean age at birth = 39.9, s.d. 0.2; mean age at scan = 40.2, s.d. 0.2) from the dHCP 

cohort, 20 adult subjects from the HCP cohort and 6 macaques. Further group-averaged 

connectivity blueprints were derived for other sub-groups of the neonatal dHCP cohort: a 

group of 25 very premature infants (<32 weeks of gestational age at birth, mean = 29.1, s.d. 

2.2, age at birth range: 24.6-31.7 weeks) who were scanned at full-term equivalence (37-45 

weeks, mean = 41.3, s.d. 2.1), a sex and age (at scan) matched group of 25 neonates born 

full-term (mean age at birth = 40.0, s.d. 1.3; mean age at scan = 41.3, s.d. 2.1), and also 

generated for three groups of 73 full-term neonates scanned at three age ranges (36-40, 40-

42, and 42-45 weeks). 

 

 

Connectivity Embedding for Comparing Connections with Adult Humans and 

Macaques 

 

Connectivity patterns, as captured by rows of the connectivity blueprints, were compared 

across age-groups and species, using Kullback-Leibler (KL) divergence36 (Eq. 1). Let N be a 

neonatal connectivity blueprint matrix and Nik represent the likelihood of a connection from 

vertex i on the neonatal cortex to tract k. Let matrix A be the equivalent matrix for the adult 

brain, with the same number of tracts T. Vertices i and j in the neonatal and adult brains can 
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then be compared in terms of their connectivity patterns {Nik, Ajk, k=1:T} using the 

symmetric KL divergence Dij as a dissimilarity measure: 

 

��� �  ∑ ��� ����
���

���
	 ∑ 
�� ����

���

���
�  �      (1) 

 
The same process can be used to compare any two brains N and A (e.g. human with that of 

the macaque). This provides a matrix describing the (dis-)similarity between each of the 

cortical locations across the compared brains. The closest matching cortical locations across 

brains may be revealed by minimising the KL divergence, i.e. arg min(d) where d is the i-th 

row-vector of Dij.  

 

Parcellated Divergence: When generating parcellated KL divergence matrices, first the KL 

divergence was calculated between the two dense (i.e. vertex-wise) connectivity blueprints 

and the KL divergence matrix was subsequently parcellated (parcel-wise median) along 

columns and rows using the relevant cortical parcellation scheme.  

 

The neonatal KL divergence data was parcellated using the Melbourne Children’s Regional 

Infant Brain (MCRIB-S) neonatal parcellation, which is compatible with the Desikan-Killiany 

(DK) parcellation43. For the adult human, we used the DK cortical atlas42, as well as the 

standard Brodmann cortical atlas50,51. We used the Brodmann vervet monkey atlas52 for the 

macaque data. In all cases, we excluded the insula (Brodmann areas 13, 14 and 16 and 

insula in DK) as it was poorly represented by the set of tracts reconstructed and we also 

excluded Brodmann area 26 due to its very small size in the human brain.  

 

As before, once parcellated, the minimum KL divergence between parcels may be found. 

Alternatively, as was used in the divergence against neonatal age and preterm/full-term 

analyses, where both the neonate and adult brains were parcellated using the DK cortical 

atlas, the KL divergence between corresponding parcels may be obtained by taking the 

diagonal of the parcellated KL divergence matrix diag(Dij). 
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Using connectivity blueprints as a common connectivity space, we may translate and 

compare cortical atlases across diverse brains. Following the approach introduced in ref. 17, 

we projected parcellated KL divergence matrices to a low-dimensional space using spectral 

embedding53. Spectral embedding groups parcels with similar connectivity profiles together 

in the projected space. Through this, we compared connectivity within and across cortical 

atlases between the neonatal and adult brain, and the macaque and adult brain. 

 
 

Data and Code Availability 

The adult human data used are available through the WU-Minn Human Connectome Project 

(https://www.humanconnectome.org/)109,110; macaque data are available via PRIMatE Data 

Exchange (PRIME-DE, http://fcon_1000.projects.nitrc.org/indi/PRIME/oxford2.html)114; and 

neonatal data are available through the developing Human Connectome Project 

(http://www.developingconnectome.org)25. For the “Oxford” neonatal data, see the original 

publication121.  

Data processing and analysis were performed using FSL (v6.0 onwards, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL), Connectome Workbench (v1.5.0, 

https://www.humanconnectome.org/software/connectome-workbench) and Python 

(v3.8.9), including nibabel (v3.2.1)127 and surfplot128,129. Python scripts and the required data 

for generating figures are available via GitHub (https://github.com/SPMIC-UoN/baby-

xtract).  

Neonatal tractography protocols are currently available via GitHub 

(https://github.com/SPMIC-UoN/baby_xtract_protocols) and will be made available via FSL 

in a future release. Tools for performing standardised tractography and building 

connectivity blueprints (XTRACT and xtract_blueprint) are available in FSL (v6.0 onwards, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT).
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