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Abstract The implementation of deep learning based
computer aided diagnosis systems for the classification
of mammogram images can help in improving the accu-
racy, reliability, and cost of diagnosing patients. However,
training a deep learning model requires a considerable
amount of labelled images, which can be expensive to
obtain as time and effort from clinical practitioners is
required. To address this, a number of publicly avail-
able datasets have been built with data from different
hospitals and clinics, which can be used to pre-train the
model. However, using models trained on these datasets
for later transfer learning and model fine-tuning with
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images sampled from a different hospital or clinic might
result in lower performance. This is due to the distribu-
tion mismatch of the datasets, which include different
patient populations and image acquisition protocols.

In this work, a real world scenario is evaluated where
a novel target dataset sampled from a private Costa Ri-
can clinic is used, with few labels and heavily imbalanced
data. The use of two popular and publicly available
datasets (INbreast and CBIS-DDSM) as source data, to
train and test the models on the novel target dataset, is
evaluated. A common approach to further improve the
model’s performance under such small labelled target
dataset setting is data augmentation. However, often
cheaper unlabelled data is available from the target
clinic. Therefore, semi-supervised deep learning, which
leverages both labelled and unlabelled data, can be used
in such conditions. In this work, we evaluate the semi-
supervised deep learning approach known as MixMatch,
to take advantage of unlabelled data from the target
dataset, for whole mammogram image classification. We
compare the usage of semi-supervised learning on its
own, and combined with transfer learning (from a source
mammogram dataset) with data augmentation, as also
against regular supervised learning with transfer learn-
ing and data augmentation from source datasets. It is
shown that the use of a semi-supervised deep learning
combined with transfer learning and data augmentation
can provide a meaningful advantage when using scarce
labelled observations. Also, we found a strong influence
of the source dataset, which suggests a more data-centric
approach needed to tackle the challenge of scarcely la-
belled data. We used several different metrics to assess
the performance gain of using semi-supervised learn-
ing, when dealing with very imbalanced test datasets
(such as the G-mean and the F2-score), as mammogram
datasets are often very imbalanced.
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1 Introduction

Breast cancer is one of the leading causes of death in
women around the world [57]. Nonetheless, it is widely
known that diagnosing a malign breast tumor in its
early stages can increase treatment effectiveness [5]. In
many situations, an early diagnostic can increase sur-
vival probability significantly.

Deep learning has extensively been explored and
implemented as an approach to develop Computer Aided
Diagnosis (CAD) systems using medical imaging [3,9,12,
17,18]. In 2012, a neural network architecture known as
AlexNet won the ImageNet 2012 challenge. It featured
a large neural network architecture, which implemented
a set of novel techniques, which became a core part
what was later referred to as deep learning. Later it
became a popular approach for image analysis tasks.
Deep learning can be defined as the set of architectures,
training algorithms aimed to build very large neural
networks, with millions of parameters. [28]

Deep learning based systems have the potential of
highly improving the diagnosis and further treatment of
patients. For mammogram analysis, different deep learn-
ing architectures have been proposed, for either binary
classification, BI-RADS based multi-class classification,
or segmentation of regions of interest [1, 29]. Frequently,
previously proposed architectures for mammogram clas-
sification (binary or multi-class), use large open datasets
that have been gathered in a specific group of hospi-
tals in one or few countries. These results might not
be representative for a system deployed in a small hos-
pital/clinic from a specific country (target hospital or
clinic). When implementing and deploying a deep learn-
ing solution in such target hospital/clinic, usually a very
small labelled dataset is available. Using small labelled
datasets frequently hampers the model’s generalisation
and performance. Nevertheless, cheaper unlabelled data
might available in the target hospital/clinic.

In this work, we explore the following setting: take a
specific target clinic or hospital to deploy a deep learning
model. Such data sampled from the target hospital/-
clinic must be used for evaluation purposes. A a small
number of labelled observations sampled from the tar-
get hospital/clinic might be available. Additionally, a
larget unlabelled dataset is available in the target hospi-
tal/clinic. Furthermore, different datasets sampled from
other hospitals or clinics might also be available. The
notation of such experimental settings can be formalised
as follows:

– Target labelled dataset Dl
t: A small number of la-

belled observations nl
t might be available which can

be used for training/fine-tuning the model.
– Source labelled dataset Dl

s: Different data sources
of data sampled in different hospitals/clinics might
be used. Usually these datasets have a large number
of labelled observations, thus nl

t < nl
s.

– Target unlabelled dataset Du
t : A larger number of

unlabelled observations nu
t might be available and

can also be used for training/fine-tuning the model.
As unlabelled data is cheaper to obtain, it can often
be found that nl

t < nu
t .

– Source unlabelled dataset Du
s : Similarly to the afore-

mentioned case, more source unlabelled observations
might be available when compared to the number of
source labelled observations, thus nl

s < nu
s .

In this work, the usage of both transfer and semi-
supervised learning using two different source datasets
is explored: INbreast (Dl

s,IN) [43] and CBIS-DDSM
(Dl

s,DDSM) [37]. The target dataset was obtained from
the Costa Rican medical private clinic Imágenes Médicas
Dr. Chavarría Estrada (hereafter referred as Dl

t,CR). The
aim of this research is to experiment the effectiveness of
fine-tuning deep learning models in a semi-supervised
fashion (using both Du

t and Dl
t), performing transfer

learning from models trained with the source datasets
Dl

s,DDSM and Dl
s,IN. For this study, the usage of un-

labelled data from other source datasets was avoided,
as it has been reported that it might decrease the per-
formance of a Semi-supervised Deep Learning (SSDL)
model [15, 16]. In this work, we use MixMatch as a
semi-supervised learning approach [11], given previously
positive results reported for this approach in medical
imaging [13,14].

This work proposes the usage of unlabelled data in
fine-tuning with the MixMatch SSDL approach. The fine-
tuning approach tested in this work refers to pre-training
the model in a source dataset, to later re-train (fine-
tune) the model using the target dataset. We compare
semi-supervised fine-tuning to supervised fine-tuning
(using the same target dataset for both cases). This is
done as a mean of improving the performance of deep
learning models on the task of binary classification of
whole mammogram images under a real-life scenario us-
ing a novel target dataset. Evaluations and comparisons
are drawn over the performance of deep learning models
on the classification of mammogram images obtained in
the context of the day-to-day basis of a local medical
private clinic of Costa Rica. We test the combination of
semi-supervised learning with other common approaches
to deal with small labelled datasets, namely data aug-
mentation and transfer learning. As for transfer learning,
we test two different source datasets, in order to assess
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the impact of the source dataset in the performance of
the model.

2 State of the Art

2.1 Transfer learning and data augmentation for
mammogram classification

CAD of breast cancer via mammogram image classifica-
tion has been widely studied in the literature. Authors
in [1] present a survey of the state of the art in the appli-
cation of deep learning in the analysis of mammography
images for the early detection of breast cancer. The
authors summarize open challenges and best practices
to follow when dealing with mammogram analysis using
deep learning. One of the most frequent short-comings
of implementing deep learning for mammogram analysis
in a target clinic/hospital is the lack of labelled train-
ing data [1]. This can lead to model overfitting to the
dataset. Labelling medical images can be particularly ex-
pensive, as trained professionals are needed to carry out
such specialized tasks [53]. To overcome this challenge,
a number mammogram datasets are publicly available.
However, different patient populations and image acqui-
sition protocols can limit and hinder the performance
of the final model using the target data [36].

Two of the most common approaches to tackle the
problem of labelled data scarcity and subsequent model
overfitting, are transfer learning and data augmenta-
tion [1, 29]. Using pre-trained model parameters from
more general tasks often improve the model’s perfor-
mance. Authors in [26] experimented with the multi-
class classification of mammograms using transfer learn-
ing from ImageNet. Similarly, authors in [46] observed
encouraging results in the classification of mammograms
when using transfer learning from a chest X-ray dataset
of patients with pneumonia.

Applying transfer learning with models trained with
observations from the same domain is intuitively an
interesting approach. Authors in [4] carried out an ex-
haustive research for improving the performance of deep
learning models in the binary classification of mammo-
gram anomalies by using features previously learned
from different mammogram datasets. Authors in [48]
also experimented with transfer learning from mammo-
gram datasets for the detection and classification of
anomalies in mammogram images. For these cases the
more specific term “domain adaptation” can be used, as
although images from different datasets can be visually
and semantically similar, their distributions might be
significantly different, as explained in [20,54].

As previously mentioned, data augmentation is also
an effective approach to tackle data scarcity [1]. Sim-

ple augmentations by applying common image trans-
formations like image rotations and flips can improve
results [38]. In previous works, more sophisticated and
domain-specific data augmentation techniques have been
developed [25]. Authors in [19] obtained positive results
by implementing elastic deformations for mammogram
images, simulating possible different views of the same
breast. The augmentation of training data has also been
recently achieved by creating artificial observations with
generative deep learning models [34,58]. Alternative ap-
proaches to deal with small labelled datsets and meant to
regularize deep learning models for mammogram classi-
fication, can be found in the literature [59]. For instance
in [24] an Euclidian magnitude regularization approach
is proposed in a deep learning pipeline for mammogram
mass segmentation. More recently, adversarial augmen-
tation combined with graph based regularization [40]
has been proposed improve the model’s generalisation
for mammogram diagnosis.

Other methods to deal with small labelled target
datasets such as semi-supervised learning (leveraging
unlabelled data), have received comparably less atten-
tion in the literature. In this work our contribution can
be summarized as the evaluation of common methods
to deal with model overfitting in small labelled datasets
(fine-tuning, data augmentation) combined with semi-
supervised learning. We use a novel labelled dataset
from a Costa Rican clinic, showing the practical chal-
lenges of using deep learning for mammogram analysis.
Therefore, we include a data-centric approach in our
proposed pipeline, as we evaluate the usage of different
source datasets for transfer learning and further model
fine-tuning using semi-supervised learning (along with
data augmentation). The evaluation of the different con-
figurations tested in this work, can shed light around the
impact of using each one of the tested approaches indi-
vidually and combined. This along the usage of different
data sources and unlabelled data.

2.2 Semi-supervised learning for medical imaging and
mammogram analysis

Another approach to deal with small labelled datasets is
the usage of SSDL, which leverages unlabelled data to
improve the model’s performance [20]. In recent years,
the usage of the cheaper and larger unlabelled datasets
for training deep learning models has proven to be a
viable option for handling the lack of labelled data, as
well as improving the performance of models [13, 17].
Authors in [20] present a survey of recent literature of
semi-supervised learning approaches for medical imag-
ing. The survey shows how unlabelled datasets have
been used for improving model training in brain tumor
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segmentation, detection of vascular lesions, and prostate
cancer detection. More recently, the usage of unlabelled
data with semi-supervised deep learning has proven to
give positive results in the detection of COVID-19 in
chest x-ray images [13,17].

However, research on SSDL approaches for mam-
mogram analysis is still limited. In [52] the authors
propose a new semi-supervised architecture for convolu-
tional neural networks, designed to extract information
from multiple views of masses from mammogram images
for their binary classification. In [6] a semi-supervised
setup is proposed for the joint use of weakly labelled
data with fully labelled data of mammogram regions in
the detection and classification of anomalies. Authors
in [53] also proposed a semi-supervised approach based
on graphs and convolutional neural networks for the clas-
sification of anomalies in mammograms. However, from
our knowledge few authors in the literature deal with
the classification of mammograms using less expensive
whole-image labels only. In [14] the MixMatch approach
was tested to improve the accuracy and predictive uncer-
tainty of models applied to the binary classification of
whole mammogram images. A target hospital or clinic
might not have lower level labels available, to fine-tune
and test a deep learning model.

As previously mentioned, analysis of mammograms
includes lower level tasks such as: segmentation and
detection of anomalies, the higher abstraction of level
tasks, the binary classification of images (malign find-
ings with no/benign findings) [1, 29]. It may also in-
clude multi-class classification, for instance using the
BI-RADS standard [25]. As such, different levels of an-
notations in the data might be needed for lower level
tasks, like pixel-level annotations of the Region of In-
terest (ROI). When using transfer learning to leverage
information from thoroughly annotated source datasets
for lower level tasks, fine-tuning on the target data might
still be needed [20]. This, similar degrees of annotations
would be preferable in the target dataset as well. There-
fore, the need to use target data to train or fine-tune a
model makes the use of unlabelled data an interesting
alternative. Different image acquisition protocols and
patient distribution sampled in a dataset source is a fre-
quent real-life scenario that increases the need of model
fine-tuning.

2.3 SSDL with MixMatch

In this work, the MixMatch method is used as the semi-
supervised learning approach for training models with
unlabelled data. This is novel SSDL method, presented
by the authors in [11] has shown important accuracy gain

against previous SSDL frameworks. Given the perfor-
mance boost reported by the authors in [11] of MixMatch
against other state of the art semi-supervised methods,
in this work we chose it to test the impact of semi-
supervised learning for mammogram classification. It is
mainly based on the use of pseudo-labels, unsupervised
regularization and data augmentation. The following
corresponds to a brief description of the method.

SSDL makes use of labelled and unlabelled ob-
servations Xl, Xu respectively. MixMatch implements
data augmentation with affine transformations on both
datasets. Pseudo-labels are then generated for each un-
labelled observation, sharpening the average of the pre-
dictions of a model on each of its augmented “versions”.
This results in the set Ỹ of pseudo-labels for observa-
tions of Xu. Similarly, the set Yl can be used to represent
the labels of observations in Xl.

Further data augmentation is applied to the datasets
Sl and S̃u, with Sl = (Xl, Yl) and S̃u = (Xu, Ỹ ), by
using linear interpolation of the data with the MixUp
algorithm, as mentioned in [11]. This way, the sets of
augmented data S̃′

u and S′
l are obtained and finally

used to train a model by minimizing the compound loss
function shown in equation 1.

L(S, θ) =
∑

(xi,yi)∈S′
l

Ll(θ, xi, yi)+

γr(τ)
∑

(xj ,ỹj)∈S̃′
u

Lu(θ, xj , ỹj)
(1)

This loss function is formed by the respective su-
pervised and unsupervised loss terms Ll and Lu. In
this work, the supervised loss term is implemented as a
cross-entropy loss, while the unsupervised term is imple-
mented as an Euclidean distance, with the regularization
coefficient γ and the rampup function r(τ) = τ/3000, as
recommended in [13]. We refer the reader to the original
publication in [11] for more details.

2.4 Class imbalance correction

A major factor that must be taken into account in
the process of implementing a model for classification
tasks, specially in the medical domain, is the distribution
of classes in a dataset [1]. For medical conditions, it
is common for observations depicting a disease or a
“positive” case, to be fairly less frequent in comparison
to normal or healthy observations [17]. Training a model
with imbalanced data can lead to the final model being
biased towards the majority classes, while ignoring the
minorities.
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Multiple approaches to tackle the problem of imbal-
anced class distributions in datasets can be found in the
literature [17]. Two of the most straightforward tech-
niques used include under-sampling and over-sampling
[56]. These techniques, although fairly simple and in-
tuitive, might not prove to be the best choice, as they
can lead respectively to information loss and over fit-
ting [56]. Other common approaches used towards im-
balanced class distributions in datasets involve the so
called “cost sensitive learning” [56]. One implementation
of this approach is to give weights to each class inside
the cross-entropy loss function to correct for class imbal-
ance. In the case of semi-supervised learning, authors
in [17] proposed a similar technique called Pseudo-label
based Balance Correction (PBC). This technique ap-
plies class-balance correction both to the labelled and
unlabelled data in the MixMatch SSDL approach. Given
its reported positive results, we implement the class im-
balance correction approach tested in [17] in our work.

2.5 Classification Metrics for Imbalanced Data

Class-imbalanced datasets and its impact on the im-
plementation of classification models has long been a
subject of study in the literature [35]. Using metrics
that account for class imbalance is an important aspect,
specially for CAD systems used under real-life condi-
tions. The most frequent and almost customary method
for evaluating the classification performance of models
consists in the traditional classification accuracy [51].
Despite its wide usage, traditional accuracy is not an
adequate metric for imbalanced test data settings [2].
This metric does not take into account the possible dif-
ferences between the distribution of both classes, and
thus can mislead to optimistic results, as illustrated by
authors in [21].

Basic and widely known classification metrics that
also derive from the confusion matrix scheme are the
recall, specificity, and precision [2]. These metrics offer
more information about the model’s classification per-
formance and have been used in the literature to provide
more complete analysis in cases with imbalanced data
settings [2, 33].

Precision, sensitivity and specificity measures pro-
vide values in the interval [0, 1], where higher is better.
While these metrics can be studied individually to anal-
yse different dimensions of the performance of a model,
other metrics can be used to summarize them into a
single score or value. As discussed by the authors in [21],
currently there is no consensus in the machine learn-
ing community on the ideal classification metric to use,
specially in cases with imbalanced data.

Two of the most widely used classification metrics,
besides traditional accuracy, are the F-1 Score and Area
Under the Receiver Operating Characteristic Curve
(AUROC). These metrics are commonly used in con-
texts prone to data imbalance, such as information re-
trieval [47] and the medical domain [51], although they
are not always adequate for such cases [41]. The F-1 score
corresponds to the harmonic mean between recall and
precision. This metric is most useful in contexts where
the main focus of a problem is the positive class, and the
detection of the negative class is less relevant [51]. It of-
fers a balanced score of the rate of true positives (recall)
and the rate of correctly predicted positives (precision).

Nevertheless, multiple works and studies point out
the deficiencies of this metric and discourage its use as
a standalone measure for the classification performance
of a model [21, 27, 41, 47], specially in cases of high
class imbalance. Namely, one of the problems commonly
pointed out is the fact that the F-1 Score weights the
false positives (FP) the same as the false negatives
(FN). To address this short-coming in imbalanced data
scenarios is the F-2 score [23].

The AUROC is another single score metric that sum-
marises the trade-off between the rate of true positives
and the rate of false positives given multiple decision
thresholds for the classification performance of a model.
It provides a deeper insight of the model’s behavior,
when compared to the accuracy. However, it still faces
many problems that are pointed out by a number of
authors in the literature [10, 21, 30], some related to the
impact of highly imbalanced data.

Other classification metrics that have been pro-
posed and explored in the literature for data imbal-
ance scenarios are the balanced accuracy and the G-
Mean [2, 33, 35, 50]. Both of these metrics summarize
the recall and specificity, offering a single score that
balances the model’s capacity to correctly classify ob-
servations belonging to both the majority (negative)
and the minority (positive) classes. Both metrics rely
solely on the recall and the specificity of a model. The
balanced accuracy consists of the arithmetic mean of
both metrics, while the G-Mean is their geometric mean.
They can be useful in cases of imbalanced data, as values
closer to 1 imply that a model has a high predictive
power for both classes.

It can be noted that, while both metrics are similar,
due to its mathematical properties, the G-Mean is less
sensitive to outliers [2]. An example can be a model that
achieves a perfect specificity of 1 by correctly classifying
all negative samples, but with a low recall of 0.1. Here,
the balanced accuracy would be 0.55, while the G-Mean
would be 0.31. This shows how the balanced accuracy
can be over-optimistic. In this work, the usage of the
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G-mean as a metric is implemented as it takes into
account the rate of true positives and true negatives for
malign cases, as its the most under-represented class.

A wide variety of other classification metrics can be
used for cases of imbalanced data, like the Matthews cor-
relation coefficient [21]. This metric corresponds to a cor-
relation coefficient between the observed and predicted
classifications. Other metrics include the Youden’s in-
dex and the Discriminant Power [51]. These metrics,
although useful, are not as popular or widely used as
the other mentioned classification metrics and might
not be as intuitive to understand.

3 Methods

3.1 Experimental Setup

For this purpose several experimental configurations
were analysed and carried out, as illustrated in Figure
1. Multiple models were trained under different training
configurations to evaluate the impact of SSDL on their
classification performance on a target dataset. Transfer
learning (a simple “Domain adaptation” method) and
loss function based class-imbalance correction were also
tested. This was done as means for dealing with common
difficulties of the implementation of classification models
for real-life use cases, such as limited amounts of data
and extreme class imbalance (further detailed in section
3.2.2).

Deep learning models were first trained in a super-
vised manner with complete mammography datasets
Dl

s,IN and Dl
s,DDSM in order to obtain source-trained

models, which were further fine-tuned on our target
Costarrican dataset in a Supervised (Config. S+FT)
or Semi-Supervised (Config. SSDL+FT) manner, with
limited amounts of labelled observations nl

t.
The performance of source-trained models, without

fine-tuning on the target dataset, was also evaluated
(Config. S+No-FT). The performance of models di-
rectly trained on the target dataset using SSDL, with-
out domain adaptation from a source mammography
dataset (Config. SSDL) was also tested. Class imbalance
correction of the loss function with the PBC method de-
veloped in [17] was also used as part of the experiments
of Configurations SSDL+FT, S+FT and SSDL. The
empirical results obtained in this study showed a consid-
erable impact of its usage for correcting data imbalance.
Therefore, we included it to train all of the tested SSDL
models. Finally, all models were evaluated on test images
from our novel target Costarrican dataset.

Due to the extreme data imbalance present in the tar-
get dataset (95% of observations belong to the negative
class and 5% to the positive class), specific classification

Table 1: Summary of datasets used in this work

INbreast [43] CBIS-DDSM [37] Target CR
Dataset

Origin Portugal USA Costa Rica

Year 2011 1997-2016 2020

Number
of cases 115 1566 87

Number
of images 410 3103 341

Views CC CC CC
MLO MLO MLO

Image mode Full-field
digital

Digitised
screen-film

Full-field
digital

Categories
BI-RADS BI-RADS BI-RADS

ACR Density ACR Density
Verified Pathology

ROI
annotations Yes Yes No

metrics, aside from traditional accuracy, were evaluated
as performance indicators. Following the research pre-
sented in Section 2.5, the G-Mean was chosen as main
classification metric. This metric was used to provide
insight related to the accuracy of the models on the
positive class, without ignoring their predictive power
at classifying the negative class. Other metrics including
F-2 Score, accuracy, recall, specificity, and precision are
also reported.

Deep data set Dissimilarity Measures (DeDiMs) fol-
lowing the novel approach presented by authors in [15]
were also evaluated, to provide a more thorough analy-
sis of the impact of the choice of source datasets. This
method consists in a simple and practical approach to
compare different datasets by measuring their dissim-
ilarity in the feature space of a generic deep learning
classification model. We aim to quantitatively assess the
similarity between the tested datasets and correlate it
with the yielded results.

3.2 Mammography Datasets

Three different mammography datasets were used to
carry out the experiments depicted in this work, sum-
marized in Table 1. Sample images are shown in Figure
9. The selected datasets correspond to two popular
and publicly available “source” datasets, used solely for
model training: the INbreast (Dl

s,IN) and CBIS-DDSM
(Dl

s,DDSM). A third novel “target” dataset Dl
t,CR com-

prised of mammogram images gathered from a private
medical clinic of Costa Rica was also used.

3.2.1 Third-party Source Datasets

Introduced in [43], the INbreast dataset is a mammo-
graphic database comprised of multiple full-field digital
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ImageNet
pre-trained

model

Supervised Source Training

Model training
on source dataset

(INbreast or CBIS-DDSM)

Source-trained
model

SSDL Fine-tuning

SSDL fine-tuning
on target dataset

Supervised Fine Tuning

Supervised fine-tuning
on target dataset

SSDL Target Training

SSDL model training
on target dataset

Config. S+No-FT

Model evaluation
on target dataset

Config. SSDL+FT

Config. S+FT

Config. SSDL

Fine-tuning on 
target dataset

INbreast CBIS-
DDSM

CR-
Chavarria-

2020

Fig. 1: Diagram of experimental configurations presented in this work

mammograms of patients with a wide variety of anoma-
lies like masses and calcifications. Each image is labelled
according to the BI-RADS scale from categories 1 to 6
and their density measure with the American College of
Radiology (ACR) standard. The dataset is composed of
410 images in total, collected from 115 different cases.

Since this work is focused on the binary classifica-
tion of mammograms (i.e. according to the presence of
breast anomalies), images from the INbreast dataset
were divided into 2 groups. Similar to [48], mammo-
grams labelled with BI-RADS categories 1 and 2 are
defined as negative (benign) observations, and the ones
labelled with categories 4, 5 and 6 are defined as positive
(malign) observations. Mammograms labelled with cate-
gories 0 (non-conclusive) and 3 (probably benign) are
ignored. For the INbreast dataset, this process results
in 287 negative and 100 positive observations.

The Curated Breast Imaging Subset of Digital
Database for Screening Mammography (CBIS-DDSM)
dataset, presented in [36] was made publicly available
by the The Cancer Imaging Archive (TCIA) [22]. It
corresponds to a curated and standardized version of
the DDSM dataset [31]. The dataset comprises a total
of 3103 digitised screen-film mammography images gath-

ered from 1566 cases, labelled according to the type of
anomalies present (masses or calcifications), their BI-
RADS category, their ACR density measure and their
verified pathology as benign (1728 images) or malign
(1375 images). The dataset presents an overlap between
cases that are classified as containing masses or calci-
fications, as some patients presented both. The total
number of images detailed here represents the overall
total of both mass and calcification cases, as obtained
from [37] and subsequently used for model training.

3.2.2 Clínica Chavarría’s 2020 Mammogram Target
Dataset

The CR-Chavarria-2020 dataset consists of a novel col-
lection of full-field digital mammograms obtained from
the Costa Rican medical private clinic Imágenes Médi-
cas Dr. Chavarría Estrada, over a period of one year
(referred as CR-Chavarria-2020 in Figure 1). The images
are completely anonymized. Specifically, these images
correspond to mammograms taken as a result of rou-
tinely medical appointments for patients of the clinic
across the year 2020. The entire dataset is available for
researchers, along with documentation of its distribu-
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tion, annotations, and extra images that were discarded
in the process of constructing the dataset. If the reader
is interested in using our collected dataset, please make
contact via email with the first author, as we plan to
make the dataset publicly available in the future 1.

We highlight the value of this dataset as target data
for the evaluation of deep learning models in the medical
domain, as it is highly representative of the operation
conditions that production-implemented models would
have to deal with, in a medium sized clinic. The complete
dataset, referred as Dl

t,CR, consists of a set of BI-RADS-
labelled images. These are also annotated in a similarly
manner as the source datasets, with their respective
anonymous patient id, gender, age, type of view, and
depicted breast.

The complete Dl
t,CR dataset contains a total of 341 la-

belled images from 87 patients. Similarly to the INbreast
dataset, images from Dl

t,CR were also subject to the same
“binarization” process described above. This resulted in
the binary-labelled target dataset Db

t,CR ⊂ Dl
t,CR, with

a total of 282 images; 268 negative and 14 positive
observations from 68 and 4 patients, respectively.

Figures 2 and 3 illustrate the distribution of both
BI-RADS and binary labels for Dl

t,CR and Db
t,CR respec-

tively. Here, the extreme class imbalance of observations
can be better appreciated, being one of the most frequent
and troublesome situations that arise in the implementa-
tion of machine learning models in the medical domain.
In addition, figures 4, 5, 6, 7 and 8 show the distri-
bution of other dimensions of both Dl

t,CR and Db
t,CR,

like the depicted view and breast in each mammogram,
along with the age of patients. These aspects show more
balanced distributions, as is the case with most mam-
mogram datasets, and that the regular age span for
patients varies from 40 to almost 90 years old.

Along with the complete Dl
t,CR dataset, a set of

discarded images has also been made available. These
images were retrieved from the clinic, but were discarded
due to low image quality or artifacts (i.e. patients with
breast implants). Nevertheless, these could prove to be
useful on further investigations, surrounding the robust-
ness of models to domain-specific noise or corruptions
in images [32].

3.2.3 Data Preprocessing

Mammograms from all three described datasets origi-
nally possessed considerably high image resolutions. In

1The authors using our novel dataset are required to cite
this paper, for instance as: Calderon-Ramirez, S., Murillo-
Hernandez, D., Rojas-Salazar, K., Elizondo, D. A., Yang, S.,
Moemeni, A., Molina-Cabello, M. (2021). A Real Use Case of
Semi-Supervised Learning for Mammogram Classification in
a Local Clinic of Costa Rica.

11.4%

26.7%

51.9%

5.87%
3.52%

0.587%
BI-RADS 0
BI-RADS 1
BI-RADS 2
BI-RADS 3
BI-RADS 4
BI-RADS 5

Fig. 2: BI-RADS categories distribution for Dl
t,CR

95%

4.96%

Benign     
Malign     

Fig. 3: Binary categories distribution for Db
t,CR

49.6%  

49.6%  

50.4%  

50.4%  

0% 20% 40% 60% 80% 100%

CC
MLO

Fig. 4: Craniocaudal (CC) and Mediolateral Oblique
(MLO) views distribution for complete and binary-
labelled target datasets

order to avoid memory constraints, all image files were
resized to 224× 224 pixels, after being converted from
the DICOM format to the BMP one. Standardization
was applied to all images. The mean and standard devi-
ation, according to the respective dataset employed for
training, were calculated (complete INbreast, complete
CBIS-DDSM or the corresponding training partition of
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Fig. 5: Depicted breast distribution for complete and
binary-labelled target datasets
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Fig. 6: Age distribution for patients in Dl
t,CR

each of the data subsets of the target dataset). Then,
for each image, the channel-wise pixel values were sub-
tracted by the mean and divided by the standard devia-
tion. Standardization is done for each training batch.

Additionally, through visual inspection of the images
in CBIS-DDSM dataset, it can be noted that several
mammograms contain multiple forms of noise, mainly
due to the digitization process of the screen-film. Phys-
ical labels, orientation tags and scanning artifacts are
some of the types of noise inducing elements that can be
found in mammogram images, as illustrated in [44]. To
minimize the effects of these types of noise, a similar ap-
proach to the one described in [8] was implemented and
applied to images from the CBIS-DDSM dataset. This
is shown in figure 11. Authors in [8] describe the imple-
mented preprocessing pipeline in this work, designed for
background removal in mammograms. The process con-
sists mainly on the application of a rolling ball algorithm
with radius = 5. This is followed by the application of
Huang’s fuzzy thresholding and morphological transfor-
mations of erosion and dilation. This process results in
a binary map that can be used to remove background
noise from an image. Such image preprocessing pipeline
is implemented in this work, which makes use of the base
code made available by the authors of [8] and algorithm
implementations from the OpenCV library.

3.2.4 Experiments

All experiments described in this work were implemented
in Python using the FastAI and PyTorch libraries, based
on the MixMatch implementation described in [13] 2.
The PyTorch implementation of the VGG 19-layer with
batch normalization was chosen as the main architec-
ture for the models of all experiments. Additionally,
experiments of Configurations SSDL+FT and S+FT
were also carried out using PyTorch implementations of
ResNet-152 and EfficientNet-b0. The complete results
of experiments with these architectures are presented in
the supplementary material. Transfer learning with pre-
trained weights from ImageNet was used for the initial
models of all experimental configurations. All depicted
experiments were executed employing a total of 10 dif-
ferent randomly generated subsets Db

i,t,CR|i = 1, ..., 10

of the binary-labelled target Costarrican dataset Db
t,CR.

Each with an average distribution of 70% of images for
training and 30% for testing, with observations from
different patients for training and for testing. Therefore,
around 198 training images (including both labelled and
unlabelled), and 82 test images were used.

The models for the configurations SSDL+FT,
S+FT and SSDL were trained on each data subset
Db

i,t,CR, with nl
t = 20, 40 and 60 amounts of labelled

observations, with 95% of observations corresponding
to the negative class (benign) and 5% to the positive
class (malign). Class-imbalance correction of the loss
function was implemented, respectively, as a weighted
cross-entropy loss for the supervised models and as the
PBC technique [17] for the SSDL models. Supervised
models were trained only with the specified nl

t images
from the corresponding training partition of the Db

i,t,CR
target data subset as Dl

t. The SSDL models also used
the remaining training images in Db

i,t,CR as unlabelled
data Du

t .
Data augmentation was implemented for the train-

ing dataset as random flips and rotations through the
FastAI library, for both supervised and SSDL models.
All models were trained for 50 epochs each, with early
stopping to avoid overfitting. We used the G-Mean as
a criterion for keeping the model from the epoch with
the best score after training. A learning rate of 0.00002,
a weight decay of 0.001 and a batch size of 10 images
were used. The hyper-parameters for MixMatch were
set as: K = 2 transformations, a sharpening tempera-
ture of T = 0.25, an alpha mix value of α = 0.75 and
unsupervised coefficient γ = 200, following the authors’
recommendations in [11]. The G-Mean, F2-Score, tra-
ditional accuracy, recall, specificity, and precision were

2https://towardsdatascience.com/
a-fastai-pytorch-implementation-of-mixmatch-314bb30d0f99

https://towardsdatascience.com/a-fastai-pytorch-implementation-of-mixmatch-314bb30d0f99
https://towardsdatascience.com/a-fastai-pytorch-implementation-of-mixmatch-314bb30d0f99
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(a) INbreast (b) CBIS-DDSM (c) CR dataset

(d) INbreast (e) CBIS-DDSM (f) CR dataset

Fig. 9: Examples of benign (top) and malign (bottom)
mammogram images from each dataset

evaluated for each model, using the test data from their
respective Db

i,t,CR. Results from these metrics were then
reported as averages across the 10 target data subsets.

The dissimilarities between the complete source
datasets Dl

s,DDSM and Dl
s,IN, and the binary-labelled

target dataset Db
t,CR were evaluated following the ap-

proach presented in [15]. The cosine distance dC was

Fig. 10: Examples of images from original CR data
discarded due to image quality (top) or patients with
breast implants (bottom)

chosen as the dissimilarity measure, given its reported
behavior in [15]. This was evaluated in the feature space
of a generic Wide-ResNet model pre-trained on Ima-
geNet, with the cosine distance calculated between the
distributions of two datasets on each feature of the
feature space and then summed [15]. We used 10 ran-
domly selected batches of 40 observations to calculate
the feature distribution distances, as suggested in [15].
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(a) Before (b) After

(c) Before (d) After

Fig. 11: Examples of images with background noise
from CBIS-DDSM dataset, before and after being pre-
processed

Table 2: Classification performance for models of Con-
figuration S+No-FT, using the VGG-19 architecture

Metric
INbreast
models

CBIS-DDSM
models

x̄ s x̄ s
G-Mean 0.3773 0.1043 0.3476 0.2534
F2-Score 0.1882 0.0625 0.1347 0.1148
Accuracy 0.2183 0.0602 0.7379 0.0678
Recall 0.7667 0.2509 0.2333 0.1876
Specificity 0.1901 0.0558 0.7639 0.0707
Precision 0.0470 0.0160 0.0517 0.0467

Table 3: Classification performance for models of Con-
figuration SSDL, using the VGG-19 architecture

Metric nl
t = 20 nl

t = 40 nl
t = 60

x̄ s x̄ s x̄ s
G-Mean 0.4798 0.1936 0.5720 0.1257 0.6413 0.0929
F2-Score 0.2169 0.1194 0.2683 0.1168 0.3038 0.0889
Accuracy 0.5786 0.2212 0.6482 0.2172 0.6869 0.1412
Recall 0.5167 0.2687 0.5750 0.2648 0.6333 0.2297
Specificity 0.5815 0.2404 0.6518 0.2354 0.6904 0.1544
Precision 0.1189 0.1551 0.1079 0.0754 0.1096 0.0491

4 Results and Discussion

The results of each of the described experimental con-
figurations are presented in tables 4, 2, 3, 5, and 6, as
the mean and standard deviation of the corresponding
classification metrics, evaluated across each of the 10
random data subsets of the target dataset. Results are
also presented accordingly to the number of nl

t that
were used for training (Configs. SSDL+FT, S+FT
and SSDL).

The classification performance on the target dataset
of source-trained-only models appears to be rather poor,
with no clear advantages between the source datasets,
as seen in Table 2. The low average G-Mean values

yielded by models trained on each of the source datasets
show a deficient ability to correctly discriminate be-
tween both classes. This situation is confirmed by the
yielded average recall and specificity values, which show
a clear imbalance of the discrimination accuracy for
each class. Low average F2-Score values also reinforce
this conclusion, showing a relatively high number of FP
in proportion to true positives (TP) predictions. The
“accuracy paradox” can also be seen in the yielded aver-
age accuracy scores of Table 2. Models trained on Dl

s,IN
scored notably lower accuracy values in comparison to
models trained on Dl

s,DDSM. However, further analysis
suggests that the higher accuracy scores of the latter
models were due to their relatively high specificity scores.
This shows a clear bias on the accuracy scores for the
majority class (negative cases).

Table 3 shows the classification performance results
of models trained with SSDL on the target dataset,
without domain adaptation from a source mammogra-
phy dataset. Considerably high standard deviations are
observed for the majority of the results. Despite this,
the average values of both G-Mean and F2-Score show
steady improvements as the number of nl

t increases. It is
only logical that these models are able to make a better
use of an increased number of labelled observations for
training. This is mainly due to the fact that they do
not possess previous domain-knowledge from a source
dataset.

Significant improvements can be perceived in the
classification performance of the source-trained models
after fine-tuning on the target dataset, as depicted by ta-
bles 5 and 6. Wilcoxon signed-rank tests were applied to
these results in order to identify statistically significant
(p-values < 0.05) differences between the performance of
the models fine-tuned either in a supervised manner or
with the SSDL method. Therefore, the null hypothesis
is defined as that there is no statistically significant dif-
ference of using semi-supervised learning against using
conventional supervised learning. The alternative hy-
pothesis, refers to the statistically significant difference
between using semi-supervised learning against using
supervised learning. Table 5 shows the results of the
models first trained on Dl

s,IN and then fine-tuned on
the target dataset. The results with other architectures
are depicted in the supplementary material. Models fine-
tuned with SSDL generally yielded moderately better
average G-Mean and F2-Score results in comparison
to models fine-tuned using a supervised manner. This
happens specially when using a reduced number of la-
belled observations for training (nl

t = 20, 40), as the
perceived gains decrease with a higher value of nl

t. With
more labels, the results tend to reveal less statistical
significance with p-values > 0.05. Therefore we reject
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the previously stated null hypothesis, when few labels
are used (nl

t = 20, 40).
When comparing the models performance of the

configurations SSDL, and SSDL+FT, described in
tables 3, 5 and 6, we can see two different scalability
trends, with respect to nl

t. The SSDL configuration
(with no fine-tuning), yields considerably lower perfor-
mance scores, when compared to the SSDL+FT con-
figuration. However, it scales better, when nl

t increases.
This suggests that the SSDL+FT configuration, with
initial knowledge on the target task (mammogram clas-
sification), is less benefited when the number of labels
grows.

The results shown in Table 6 correspond to the
models that were first trained on Dl

s,DDSM and then
fine-tuned on the target dataset. Considerably higher
average G-Mean and F2-Score values were yielded by
models fine-tuned with SSDL. They show statistical
significance when employing lower amounts of labelled
observations (nl

t = 20, 40), specially for the models
that used the VGG19 architecture. For these models,
the ones that were fine-tuned in a supervised fashion
scored higher average specificity values. However, by
observing their respective average recall values it is
clear that their rate of correct predictions is unbalanced
for both classes. These models appear to be biased to
the majority class. However, the models with SSDL can
be considered to be less biased, according to the yielded
results. Their average recall and specificity show a more
stable behavior. Models with supervised fine-tuning also
achieved generally higher average accuracy values, when
compared to the no fine-tuned models.

In summary, models that were subject to domain
adaptation from a source mammography dataset showed
improved classification performance results in compari-
son to the other experimental configurations tested in
this work. However, the choice of source dataset and
deep learning model architecture are shown to be im-
portant factors in the yielded results. Models that used
the CBIS-DDSM as source dataset showed better over-
all results, with more evident trends and noticeable
improvements by the use of SSDL. Models that used
the INbreast as source dataset scored relatively worse
results, with no significant differences between the per-
formance of supervised and SSDL models. Additionally,
the performance of supervised models does not change
significantly across the different number of labelled ob-
servations tested. These models achieved seemingly con-
verging G-Mean values with fairly balanced recall and
specificity values from a lower number of nl

t. This was
observed on all tested model architectures.

Regarding the poor performance of configuration
S+No-FT, we found that the measurement of the DeD-

iMs can be an useful warning of choosing one unlabelled
data source over another. The dissimilarity between
Dl

s,IN and Db
t,CR was measured as 31.10± 1.56, while

for the dissimilarity between Dl
s,DDSM and Db

t,CR was
26.21± 2.31, both results with p-values < 0.05. These
results indicate that the feature distributions (using
a generic ImageNet pre-trained model) between both
source datasets and the target dataset are significantly
different. This can explain the poor results of Configu-
ration S+No-FT as a high dissimilarity is accurately
suggesting that some sort of domain adaption is needed.
At the same time, a lower dissimilarity between Dl

s,DDSM
and Db

t,CR might indicate that the former could be bet-
ter suited to be used as a source dataset, as seen in
the yielded performance behavior for both datasets in
tables 5 and 6. The reasons behind a higher dissimilarity
between two datasets need to be explored further.

Table 4 summarizes the performance of the models
with the lowest number of labels. The average G-Mean
scores are shown for models fine-tuned with the lowest
number of labelled observations. The results in Table
4 show how the model architecture constitutes an im-
portant factor in the yielded performance of the models.
As seen previously, SSDL models show better perfor-
mance in comparison to supervised ones. However, the
improved gains are stronger for the more complex mod-
els (i.e. architectures with more trainable parameters).

Overall, SSDL models without domain adaptation
show significantly lower performance than models with
domain adaptation either supervised or with SSDL (Con-
figs. S+FT and SSDL+FT). Low average precision
and F2-Score values are observed for models of all ex-
perimental configurations. As it was mentioned, for a
binary classification task, this implies a considerably
high number of false positives in relation to the number
of true positives. Nonetheless, it must be taken into ac-
count that the target dataset suffers from extreme class
imbalance. This causes the calculation of the precision
to be highly sensitive to the number of false positives.
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Table 4: Summary of G-Mean scores for models of Configs. SSDL+FT and S+FT, using nl
t = 20 labelled

observations. The corresponding number of trainable parameters for the PyTorch-implementation of each architecture
is also shown

Model
Architecture

INbreast CBIS-DDSM Trainable
ParametersSSDL Supervised SSDL Supervised

x̄ s x̄ s x̄ s x̄ s
VGG19_bn 0.6764 0.1084 0.6682 0.0770 0.7313 0.0742 0.5163 0.2826 139.5 Million
ResNet-152 0.6774 0.1167 0.6767 0.1021 0.6575 0.1075 0.5857 0.0598 58.1 Million
EfficientNet-b0 0.6512 0.1081 0.6393 0.0603 0.5982 0.0753 0.5824 0.0489 4 Million

Table 5: Results of Configurations SSDL+FT and
S+FT, using INbreast as source dataset with the
VGG-19 architecture

nl
t Metric SSDL Supervised

x̄ s x̄ s

20

G-Mean 0.6764 0.1084 0.6682 0.0770
F2-Score 0.3506 0.0973 0.3133 0.0673
Accuracy 0.7812 0.0727 0.7014 0.0793
Recall 0.5917 0.1687 0.6500 0.1748
Specificity∗ 0.7907 0.0755 0.7048 0.0876
Precision 0.1436 0.0636 0.1074 0.0335

40

G-Mean 0.7017 0.0932 0.6656 0.0877
F2-Score 0.3650 0.0899 0.3484 0.1112
Accuracy 0.7742 0.0659 0.7224 0.1590
Recall 0.6417 0.1715 0.6417 0.2081
Specificity 0.7810 0.0693 0.7262 0.1721
Precision 0.1380 0.0373 0.1837 0.1708

60

G-Mean 0.6689 0.0957 0.6604 0.0876
F2-Score 0.3278 0.0958 0.3415 0.1116
Accuracy 0.7211 0.1169 0.7432 0.1374
Recall 0.6250 0.1318 0.6000 0.1748
Specificity 0.7267 0.1230 0.7510 0.1466
Precision 0.1226 0.0565 0.1822 0.1704

Table 6: Results of Configurations SSDL+FT and
S+FT, using CBIS-DDSM as source dataset with
the VGG-19 architecture

nl
t Metric SSDL Supervised

x̄ s x̄ s

20

G-Mean∗ 0.7313 0.0742 0.5163 0.2826
F2-Score 0.3910 0.0909 0.2892 0.1797
Accuracy∗ 0.7455 0.1115 0.8333 0.0710
Recall∗ 0.7333 0.1459 0.3917 0.2292
Specificity∗ 0.7460 0.1201 0.8554 0.0709
Precision 0.1480 0.0551 0.1602 0.1289

40

G-Mean∗ 0.7264 0.0909 0.5743 0.2308
F2-Score∗ 0.3917 0.1124 0.3070 0.1597
Accuracy∗ 0.7588 0.1041 0.8286 0.0476
Recall∗ 0.7083 0.1632 0.4417 0.2189
Specificity∗ 0.7612 0.1110 0.8482 0.0453
Precision 0.1520 0.0630 0.1458 0.0899

60

G-Mean 0.7142 0.0717 0.6466 0.1462
F2-Score 0.3779 0.1001 0.3436 0.1506
Accuracy∗ 0.7197 0.1445 0.8132 0.0723
Recall 0.7333 0.1459 0.5333 0.2297
Specificity∗ 0.7190 0.1559 0.8271 0.0779
Precision 0.1435 0.0623 0.1539 0.0834

∗Statistic significance (p-values < 0.05) for average differ-
ences between results of SSDL and supervised models

5 Conclusions

In this work we discussed the impact of using target
datasets with scarce labelled data for the implemen-
tation of deep learning models for detection of malign
cases using mammogram images. As presented in [7], the
determination and study of an appropriate dataset size
is an open challenge. It is clear that under real-life condi-
tions medical imaging implementation of deep learning
systems is still challenging, namely due to problems with
labelled data scarcity and class-imbalance.

To tackle these challenges on the binary classifica-
tion of mammograms, a combination of transfer learning
from source datasets and semi-supervised learning to
leverage unlabelled target data has been proposed and
tested. In the experiments carried out in this work, it
was found that this combination can achieve signifi-
cant improvements on the classification performance of
deep learning models. This surpasses the performance
of models without transfer learning or without the use
of unlabelled target data. The experiments depicted in
this work also reveal the importance of using transfer
learning from source datasets. Still, the highest yielded
performance of the SSDL model with fine-tuning have
a large room for improvement. Enforcing further super-
vision with small labelled datasets (pixel-wise labelling
of the regions of interest), with other forms of weak
or self-supervision [55] and/or domain adaptation [49],
along with more complex data augmentation approaches
as in [25], might improve the overall model performance.
This must be done without raising too much the need
of expensive labelling.

The target dataset used in this work for the evalua-
tion of the models in the classification of mammograms
is made available for other interested researchers. The
dataset built for this work shows real-life conditions for
the deployment of a deep learning based CAD system.
Highly imbalanced data, along with the significant distri-
bution mismatch with the source datasets are important
and frequent aspects of real-world test data for medical
imaging based CAD.

The dissimilarity between source and target datasets
was found to be significant with the use of the DeDiMs
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measures. This was shown to be the case even though
images from datasets can be considered as semantically
and visually similar. Related to this, the choice of the
source dataset was found to be an important factor in
the yielded improvements in the performance of models,
as well as model complexity. The measured DeDiMs can
be considered a generic and simple data quality metric,
similar to the data heterogeneity metric proposed in [42].
In general, specific data quality metrics for deep learn-
ing models to solve medical imaging challenges is still a
very under-developed topic in the literature. We plan
to contribute in such data-oriented metric development
in the medical imaging analysis field in the future. In
future work, we aim to explore computationally efficient
and informative data quality metrics for deep learn-
ing architectures. Feature space based quality metrics
can be explored in more recent deep learning architec-
tures such as transformers [39]. Additionally further
evaluation of model-oriented properties of deep learning
models such as robustness and predictive uncertainty,
as recommended in [45], is also a future work-line to
develop.
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