
J
H
E
P
0
6
(
2
0
1
5
)
1
6
3

Published for SISSA by Springer

Received: May 28, 2015

Accepted: June 2, 2015

Published: June 24, 2015

Cold Baryogenesis from first principles in the

two-Higgs doublet model with fermions

Zong-Gang Mou,a Paul M. Saffina and Anders Tranbergb

aSchool of Physics and Astronomy, University of Nottingham,

University Park, Nottingham NG7 2RD, United Kingdom
bFaculty of Science and Technology, University of Stavanger,

4036 Stavanger, Norway

E-mail: ppxzm1@nottingham.ac.uk, paul.saffin@nottingham.ac.uk,

anders.tranberg@uis.no

Abstract: We present a first-principles numerical computation of the baryon asymmetry

in electroweak-scale baryogenesis. For the scenario of Cold Baryogenesis, we consider a

one fermion-family reduced CP-violating two Higgs-doublet model, including a classical

SU(2)-gauge/two-Higgs sector coupled to one quantum left-handed fermion doublet and

two right-handed singlets. Separately, the C(CP) breaking of the two-Higgs potential and

the C and P breaking of the gauge-fermion interactions do not provide a baryon asymmetry.

Only when combined does baryogenesis occur. Through large-scale computer simulations,

we compute the asymmetry for one particularly favourable scalar potential. The numerical

signal is at the boundary of what is numerically discernible with the available computer

resources, but we tentatively find an asymmetry of |η| ≤ 3.5× 10−7.

Keywords: Cosmology of Theories beyond the SM, Nonperturbative Effects, CP viola-

tion, Lattice Quantum Field Theory

ArXiv ePrint: 1505.02692

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2015)163

mailto:ppxzm1@nottingham.ac.uk
mailto:paul.saffin@nottingham.ac.uk
mailto:anders.tranberg@uis.no
http://arxiv.org/abs/1505.02692
http://dx.doi.org/10.1007/JHEP06(2015)163


J
H
E
P
0
6
(
2
0
1
5
)
1
6
3

Contents

1 Introduction 1

2 The reduced Standard Model 4

2.1 Continuum action 4

2.1.1 Higgs potential 4

2.1.2 Yukawa couplings 6

2.2 Asymmetric observables 6

2.3 CP-symmetric initial conditions 7

3 Results 8

3.1 Which observable to use: NW , Ncs or Nf? 9

3.2 Looking for flips 10

3.3 Averages 12

3.4 Computing the asymmetry 13

4 Conclusion 14

4.1 Can we see a net asymmetry? 14

4.2 Outlook 15

A Lattice implementation 16

B Counterterms and renormalization 19

1 Introduction

Electroweak baryogenesis is still the subject of significant scientific attention, being a very

elegant and testable set of scenarios to explain the baryon asymmetry of the Universe.

The central element is the non-perturbative violation of baryon and lepton number in the

electroweak sector of the Standard Model, which when combined with C- and CP-breaking

interactions out of equilibrium allows for baryogenesis [1]. Since the Standard Model and

its simplest extensions (multiple scalar fields, massive leptons) break C and CP, there only

remains to compute the asymmetry. This turns out to be very challenging to do from first

principles, since it involves non-perturbative quantum dynamics of in particular fermions

out of thermal equilibrium, and because the final asymmetry one is trying to compute is

very small [2]

η =
nB
nγ
' (6.0± 0.1)× 10−10. (1.1)
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Traditionally, the approach has been to split the computation up into a number of equilib-

rium and out-of-equilibrium quantities, which may each be treated using dedicated tech-

niques. The state-of-the-art is quite advanced, and often involves considering effectively

bosonic systems obtained through integrating out the fermions and/or dimensional reduc-

tion [3]. This has allowed a quite precise determination of the sphaleron rate [4]; the phase

diagram of the Standard Model and its extensions [5, 6]; the bubble nucleation rate (in

case of a first-order transition) [7]; the dynamics of bubbles and their observational signa-

tures [8, 9]; the effective CP-violation in the Standard Model [10, 11]; the interaction of

a bubble wall with fermions (see for instance [12–14]). Putting these quantities together

gives a handle on the baryon asymmetry produced, and some are even no-go results, such

as the non-existence of a first-order phase transition and the very strong suppression of

Standard Model CP-violation. Historically, these no-go results removed the need for ac-

tually calculating a number for the asymmetry, apart from order-of magnitude estimates

based on maximally favourable parameters.

The need for a strong phase transition is in the Cold Baryogenesis scenario replaced by

the requirement of a cold tachyonic transition at the end of inflation [15–17]. A compelling

feature of this scenario is the option of numerically computing the final asymmetry from

first principles, simply because the mechanism is very simple: the particle creation process

of reheating during an electroweak spinodal transition is asymmetric in particles and an-

tiparticles. Such simulations have been performed for more than a decade [18–25], showing

that the scenario is viable, given a cold initial condition. The simulations were however

done in purely bosonic versions of the Standard Model or extensions with a singlet [26] or

a doublet scalar field [27].

For electroweak baryogenesis, it is crucial to note that C-, CP- but also P-breaking is

necessary to generate a baryon asymmetry. This follows from the anomaly equation relating

the Chern-Simon number of the SU(2) gauge field and the baryon and lepton numbers

B(t)−B(0) = nf [Ncs(t)−Ncs(0)] = L(t)− L(0), (1.2)

and the observation that Chern-Simons number is odd under P but even under C. What this

means in practice is that it is not enough to break C, thereby breaking CP if P is conserved.

And it is also not enough to break P and thereby break CP if C is conserved. One needs

to break C and P and CP, and this is indeed achieved in the Standard Model through

the left-handed coupling to gauge fields (C and P broken maximally, CP conserved), and

the complex phase in the CKM matrix (CP broken, by breaking C). Alternatively, in

the two-Higgs doublet model (ignoring the CKM matrix), the left-handed coupling to

gauge fields again provides C and P breaking, and in addition, complex parameters in

the Higgs-Higgs potential break C and thereby CP. And only when combining them is an

asymmetry produced.

The results of different combinations of the breaking of discrete symmetries was demon-

strated in [19] for the bosonic part of the Standard Model with an effective CP and

P-violating operator. One finds non-zero Ncs, and the fermion number was inferred through

the anomaly equation. The subsequent task is then to compute the coefficient of such an

operator from integrating out the fermions in the full theory, including both C, P and

– 2 –
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CP-breaking. This turns out to be a substantial calculation, yielding a slightly different

set of effective operators [10, 28–30].

In the bosonic part of the two-Higgs doublet model, it was seen that simply adding the

C-breaking potential does not produce a net Chern-Simons number; only when in addition

including an effective C- and P-breaking, but CP-conserving operator is an asymmetry

produced. In [36], the operator

δV =
δC/P

16π2m2
W

i
(
φ†1φ2 − φ†2φ2

)
TrFµνF̃µν , (1.3)

was considered. Again, it remains to compute the coefficient δC/P of this operator, this

time from the CP-even fermion sector.1 This has not been attempted beyond the simplest

estimates [24, 25], but may in principle be done using the methods of [10, 29, 30].

The obvious, but as it turns out far from straightforward, alternative is to include

the fermions in the real-time dynamics. Fermions are inherently quantum mechanical, but

may be formulated on a classical bosonic background [31, 32]. The numerical solution

is computationally extremely demanding, but possible using what is known as “ensem-

ble” fermions [33]. Crucially, the anomaly equation carries through and the fermion back

reaction on the bosons is reliably described [34, 35]. The C- and P-breaking of the gauge-

fermion coupling may now be directly introduced, and in combination with the C-breaking

of the two-Higgs potential, an asymmetry should be created. The questions we wish to

address are then the following:

• Is an asymmetry created in a cold spinodal transition?

• Is this asymmetry large enough that we can see it numerically on the lattice?

• Is it comparable to or ideally larger than the observed asymmetry?

• Can we connect these results to previous work [36], for instance to provide an estimate

of the coefficient δC/P ?

• What is the numerical effort involved, and is it realistic to sweep a multidimensional

experimentally allowed parameter space?

Many of these questions will depend on the speed of the spinodal transition, the numerical

effort available and the parameter range adopted for the Higgs-Higgs potential. But for

moderately favourable choices, the answers are: yes, perhaps, yes, yes and unlikely.

In section 2 we will introduce the reduced Standard Model that we will consider,

including only one generation of fermions. We will set out the observables, numerical

implementation, initial condition and the Higgs potential. In section 3 we explain how

to compute the baryon asymmetry and describe our numerical results. We conclude in

section 4. A number of technical details are relegated to a set of appendices.

1If one chooses to neglect the contribution from CKM matrix.
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2 The reduced Standard Model

We will consider a reduced version of the Two-Higgs Doublet Standard Model, where the

SU(3) and U(1) interactions are ignored, and we only keep one generation of fermions,

including a left-handed quark SU(2) doublet, qL = (uL, dL)T , a left-handed lepton SU(2)

doublet, lL = (eL, νL)T and right-handed singlets uR, dR and νR, eR. Although we use

a notation suggesting the first generation of the SM (u, d, e, νe), we expect the main ef-

fect of CP-violation to come from the heaviest fermions, in practice the third generation

(t, b, τ, ντ ). We emphasise that although for SM CP-violation it is crucial to have 3 gener-

ations of fermions (allowing for a complex phase in the CKM matrix to be physical), for

the 2HDM CP-violation considered here, this is not necessary. Adding up to three families

is straightforward, but require three times as much computational time.

2.1 Continuum action

Having made these simplifications, the continuum action reads

S = −
∫

d4x

[
1

4g2
AaµνA

a,µν + (Dµφ1)†(Dµφ1) + (Dµφ2)†(Dµφ2)

+ q̄Lγ
µDµqL + ūRγ

µ∂µuR + d̄Rγ
µ∂µdR

+ l̄Lγ
µDµlL + ν̄Rγ

µ∂µνR + ēRγ
µ∂µeR

+ V (φ1, φ2) + Y (q, l, φ1, φ2)

]
, (2.1)

where the SU(2) gauge covariant derivatives are

Dµφ = (∂µ − iAµ)φ, DµqL = (∂µ − iAµ)qL, DµlL = (∂µ − iAµ)lL, (2.2)

and we have ordinary partial derivatives for the right-handed singlet fermion fields uR, eR,

dR and νR.

2.1.1 Higgs potential

The two-Higgs scalar potential is given by

V (φ1, φ2) = −µ
2
11

2
(φ†1φ1)− µ2

22

2
(φ†2φ2)− µ2

12

2
(φ†1φ2)− µ2,?

12

2
(φ†2φ1)

+
λ1

2
(φ†1φ1)2 +

λ2

2
(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2) + λ4(φ†2φ1)(φ†1φ2)

+
λ5

2
(φ†1φ2)2 +

λ?5
2

(φ†2φ1)2. (2.3)

This is the standard parametrisation [37], where we have chosen to put the couplings λ6,7

to zero for simplicity. Allowing λ5 and/or µ2
12 to be complex provides for C-violation at

tree-level. If in addition Im(µ2
12) = 2|v1||v2|Im(λ5), both Higgs vevs v1,2 can be chosen real.

Otherwise the vevs will have a relative phase Arg(v†2v1). We will choose this argument to

be maximal,

Arg(v†2v1) =
π

2
. (2.4)
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Figure 1. The Higgs potential as a function of the unitary gauge Higgs field components |v1|, |v2|.
The two degenerate minima are at (v1, v2) = (±110,±220) GeV.

Not all sets of complex λ5 and µ12 lead to C-violation. A useful parametrisation is provided

by [38], which guides our choices below. We wish to maximise the effects of CP-violation,

by tuning the parameters of the Higgs potential (the C- and P-breaking in the gauge-

fermion coupling is already maximal). In addition we wish to have well separated Higgs

mode masses, and we choose for the neutral Higgs bosons

m1 = 125 GeV, m2 = 300 GeV, m3 = 350 GeV, (2.5)

and for the charged modes

m± = 400 GeV. (2.6)

We have also fixed the total Higgs vev, so that

|v1| = 110 GeV, |v2| = 220 GeV, tanβ = 2, (2.7)

with a relative phase of π/2 and

|v1|2 + |v2|2 = (246 GeV)2. (2.8)

After a number of tests at small lattice volumes, we settled on

µ2
11 = (233 GeV)2, µ2

22 = (311 GeV)2, µ2
12 = (78.6 GeV)2 + i(200 GeV)2, (2.9)

with

λ1 = 5.2, λ2 = 2.0, λ3 = 5.1, λ4 = −4.2, λ5 = −0.56 + i0.26, (2.10)

which amount to the angles mixing angles of the three neutral Higgs modes [38]

(α1, α2, α3) = (0.314,−1.49, 2.58) . (2.11)
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The potential breaks C, due to the non-zero values of

Arg(µ2
12) = 0.45π, Arg(λ5) = −0.14π. (2.12)

In figure 1, we show a contour plot of the potential in the |v1|, |v2| plane. The potential

energy in the symmetric phase is

V0 = V (φ1 = φ2 = 0)− V (v1, v2) = (226 GeV)4. (2.13)

2.1.2 Yukawa couplings

The Yukawa coupling terms can in all generality be parametrized as

Y (q, l, φ1, φ2) = Gd1q̄Lφ1dR +Gd2q̄Lφ2dR +Ge1 l̄Lφ1eR +Ge2 l̄Lφ2eR

+Gu1 q̄Lφ̃1uR +Gu2 q̄Lφ̃2uR +Gν1 l̄Lφ̃1νR +Gν2 l̄Lφ̃2νR

+Gd†1 d̄Rφ
†
1qL +Gd†2 d̄Rφ

†
2qL +Ge†1 ēRφ

†
1lL +Ge†2 ēRφ

†
2lL

+Gu†1 ūRφ̃
†
1qL +Gu†2 ūRφ̃

†
2qL +Gν†1 ν̄Rφ̃

†
1lL +Gν†2 ν̄Rφ̃

†
2lL. (2.14)

For simplicity, we will use a single coupling constant,

λyuk = Gd2 = Ge2 = Gu1 = Gν1 , Gd1 = Ge1 = Gu2 = Gν2 = 0, (2.15)

so that

Y (q, l, φ1, φ2) = yyuk

(
q̄Lφ2dR + l̄Lφ2eR + q̄Lφ̃1uR + l̄Lφ̃1νR

+ d̄Rφ
†
2qL + ēRφ

†
2lL + ūRφ̃

†
1qL + ν̄Rφ̃

†
1lL

)
. (2.16)

There is no issue in principle using general Yukawa couplings, although it may become a

little cumbersome. We take

λyuk = 0.1. (2.17)

It was demonstrated in [34] that the ensemble averaging procedure is under control for

such large Yukawa couplings, which correspond to fermion masses of about 11/
√

2 ' 8 and

22/
√

2 ' 16 GeV, depending on which Higgs field they are coupled to, easily larger than

all the quark masses except for the top mass.

2.2 Asymmetric observables

The baryon and lepton numbers are the spatial integrals over the zero-component of the

baryon and lepton currents

jµ(b) = i
[
q̄Lγ

µqL + ūRγ
µuR + d̄Rγ

µdR
]

= iq̄γµq, (2.18)

jµ(l) = i
[
l̄Lγ

µlL + ν̄Rγ
µνR + ēRγ

µeR
]

= il̄γµl. (2.19)

– 6 –
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We will assign baryon number 1 to the quarks to emulate summing over SU(3) colour. And

lepton number 1 to the lepton field. Fermions coupled chirally to an SU(2) gauge field will

experience a quantum anomaly, so that these currents obey

∂µj
µ
(b) = ∂µj

µ
(l) =

1

32π2

[
1

2
εµνρσF aµνF

a
ρσ

]
, (2.20)

= ∂µK
µ, (2.21)

for each fermion doublet. The Chern-Simons current is given by

Kµ =
1

16π2
εµνρσ

[
F aνρA

a
σ −

2

3
εabcA

a
νA

b
ρA

c
σ

]
, (2.22)

and we therefore have that under a change of Chern-Simons number NCS over time, we

pick up a change in baryon and lepton number of

B(t)−B(0) = L(t)−L(0) = nf [Ncs(t)−Ncs(0)] =

∫ t

0
dt

∫
d3x

1

32π2

[
1

2
εµνρσF aµνF

a
ρσ

]
. (2.23)

The Chern-Simons number changes continuously between one gauge vacuum and the next,

and is an integer in the infinite series of (almost) degenerate gauge vacua. In contrast, the

Higgs field winding number

NW =
1

24π2

∫
d3xεijkφ̂

†∂iφ̂φ̂
†∂jφ̂φ̂

†∂kφ̂, φ̂ =
1

|φ|
φ, (2.24)

is always an integer, changes discontinuously halfway between vacua, and coincides with

Chern-Simons number in the vacua. Because it is an integer, the winding number turns

out to be a better observable to count baryons, since if at the end of a simulation one has

a well-defined NW , one knows that because the sphaleron barriers are now up, Ncs and

therefore B and L will eventually relax to the same integer value. We also note that there

are two winding numbers N1,2
W , one for each Higgs field, and they both coincide with the

Chern-Simons number in the vacuum. Because of lattice artefacts, these are in fact not

numerically exactly integers, and the jumps not strictly discontinuous. In addition to the

expectation of the Higgs fields and the various energy components, our prime observables

will be Chern-Simons number, the two winding numbers and the fermion number of the

quark and lepton fields.

2.3 CP-symmetric initial conditions

We will consider an instantaneous quench of the Higgs potential at zero temperature. This

in practice means that we evolve the initial configurations using the potential (2.1.1) for

times t > 0 but that we generate these initial conditions in the vacuum corresponding to

the quadratic potential

V (t < 0) =
µ2

11

2
(φ†1φ1) +

µ2
22

2
(φ†2φ2) +

µ2
12

2
(φ†1φ2) +

µ2,?
12

2
(φ†2φ1). (2.25)

– 7 –
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The vacuum is defined through the “half” method of [18], which is to have field correlators

and momentum correlators obey

〈φik(φjk)†〉 =
1

2ωk
δij , 〈πik(πjk)†〉 =

ωk

2
δij , (2.26)

where πik and φik are the momentum space variables for each real component of the Higgs

fields (8 in total), and ω2
k = M2 + k2, with M2 the eigenvalues of the mass matrix.

The understanding being, that if m12 is non-zero, one should first diagonalise in field

space, generate the configuration in this basis and then rotate back to the φ1,2 basis. This

prescription is the natural analog of the quench in [22], where in a single-Higgs model, the

coefficient of the quadratic term “flips” instantaneously.

For each randomly generated configuration φi, πi, one also generates an entire ensemble

of Nf = 4000 fermion configurations (u, d, e, ν separately, with “male” and “female”

copies [33]). Since the initial state is the symmetric vacuum (〈φ1〉 = 〈φ2〉 = 0), the

fermions are taken to be massless initially. Setting Aµ = 0 initially, we solve Gauss law for

the SU(2) electric field Ei in the background of the scalar-fermion fields.

The behaviour of each of our fields under CP-transformations is

qcpL (t, x) = iγ0γ2 q?L(t,−x), lcpL (t, x) = iγ0γ2 l?L(t,−x), (2.27)

ucpR (t, x) = iγ0γ2 u?R(t,−x), dcpR (t, x) = iγ0γ2 d?R(t,−x), (2.28)

νcpR (t, x) = iγ0γ2 ν?R(t,−x), ecpR (t, x) = iγ0γ2 e?R(t,−x), (2.29)

and

Acp(t, x) = AT (t,−x), φcp1 (t, x) = φ?1(t,−x), φcp2 (t, x) = φ?2(t,−x) . (2.30)

In order to reduce statistical noise, we will construct an explicitly CP-symmetric ensemble

of initial conditions, where for every randomly generated initial configuration of φ1,2 and

u, d, e, ν and Ei, we include its CP-transformed.

The CP-symmetric ensemble ensures, that when C-symmetry is turned off in the Higgs

potential, the ensemble averages of the CP-asymmetric observables N1,2
W and Ncs are iden-

tically zero. We have checked numerically that this is indeed the case (see also [34, 35]).

This also means that there is no spurious CP-violation from counter terms or discretisation.

3 Results

We implement the action on a space-time lattice, and derive the classical equations of

motion for the bosonic fields and the linear operator equations for the fermions (see

appendix A, eqs. (A.24), (A.26), (A.27)). We use Wilson fermions on the lattice, to get

rid of spatial fermion doublers, while suppressing the time-like doublers through a small

time step.2 The bosonic equations depend on the fermion bilinears, through their quantum

expectation values. These are computed from the real-time solutions of the fermion oper-

ator equations through the “ensemble” fermion method [33]. For details on the numerical

implementation of this method, we refer to [34], and to the appendices in the present paper.

2The time-like doubler modes then have very large frequency and stay un-excited if initialised that way.
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Figure 2. Basic observables for a single bosonic realisation; φ21,2, N1,2
W , Ncs and a not very well

converged Nf .

The fermion expectation values are formally divergent in the continuum limit. This

can be resolved by introducing counter terms in the bosonic equations of motion. This is

described in appendix B.

For each random initial realisation of the Higgs field and fermion ensemble, we solve

the evolution equations in temporal gauge A0 = 0. We use a spatial lattice of size (Lv)3 =

(nxav)3 withNx = 32 and av = 1.2 denoting the Higgs vev in lattice units. MPI-parallelised

runs each take about 8 hours on 80 cpu’s. The total cpu-time used for 400 CP-conjugate

pairs is therefore approximately 500.000 hours.

3.1 Which observable to use: NW , Ncs or Nf?

In figure 2, we show the average Higgs field, the winding numbers, the Chern-Simons

number and the fermion number for a single configuration. As was demonstrated in [34]

the fermion number follows the Chern-Simons number in accordance with the anomaly

equation, but the statistical noise of the observable Nf is substantial. This noise originates

in the UV of the lattice operator, and is largely white noise that may be reduced by

increasing the fermion ensemble. What is important for our purposes here is that the

back-reaction on the bosonic degrees of freedom has converged, and this is achieved to a

reasonable degree for Nf ' 4000 [34].

The bosonic fields evolve in a plausible way: the two Higgs fields roll off the potential

barrier at φ1,2 = 0, and oscillate and damp asymptotically to their respective vacuum

expectation values, which is here normalised to unity (blue and black). The Higgs transition

is over by vt ' 10, but the topological observables do not settle until vt ' 20, i.e. after

twice as long. Chern-Simons number (red) changes from zero to (in this case) 4 in the

interval 10 < vt < 20, following the two Higgs winding numbers, but lagging a little behind

– 9 –



J
H
E
P
0
6
(
2
0
1
5
)
1
6
3

Figure 3. Histograms of final values of Ncs and N1,2
W . The distribution peaks around integers,

when normalised by a multiplicative lattice correction factor of 0.73.

(yellow and green). Winding number changes most readily when the average Higgs field is

small, and we indeed see a failed attempt at a winding number transition around the first

Higgs minimum at vt ' 7.

Both winding numbers and Chern-Simons number suffer some amount of lattice cor-

rections, which tend to reduce the vacuum asymptotic values to somewhat below integer.

Figure 3 shows a histogram of final winding and Chern-Simons numbers, over all the con-

figurations simulated. We see a clear set of peaks, corresponding to integer values. In fact

the values in the figure have been rescaled by 1/0.73 to compensate for lattice artefacts.

The overall distribution of integers looks roughly Gaussian, and although the difference

is not large, the winding numbers tend to be somewhat more peaked than Chern-Simons

number for each integer. Because of the statistics noise on the fermion number and the

lattice artefacts, we choose to use N1,2
W as the cleanest observables. As we will see below,

since we are looking for complete integer flips, this choice is convenient, but Ncs could be

used as well.

3.2 Looking for flips

Next, we demonstrate that “flips” do occur, configurations where the observables and the

CP conjugate configuration observables do not add up to zero after the transition. First,

figure 4 shows a pair of configurations that average out to zero in both winding number

and Chern-Simons number. The observables for the CP-conjugate pair have been given

the opposite sign for comparison. We see that not only is there no flip, the observables are

also closely similar, almost to the point that they are indiscernible. The effect of C, P and

CP violation stays quite small.

In figure 5, we see a case where observables of the pair are again closely similar (up

to an overall sign), but suddenly around vt = 30, the CP-conjugate configuration (dashed

lines) stays at NW = (−)1 whereas the original configuration flips back to zero. These are

the kind of events we are looking for, and these will stay as a permanent asymmetry in

the fermions. In the present case the flip is of +1 in the total winding number. Closer

– 10 –
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Figure 4. A configuration and its CP conjugate, where no net asymmetry is produced. The sign

of the observables for the CP conjugate has been flipped.
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vt
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4
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N1
W(N)

N2
W(N)

Ncs(CP)

N1
W(CP)

N2
W(CP)

Figure 5. A configuration and its CP conjugate, where a flip occurs and an asymmetry is produced.

inspection shows that the mismatch begins to accumulate around vt = 20, having been

vanishing for earlier times. Also, the transition seems to be controlled by the evolution

of Ncs, which first splits away from N1,2
W in both configurations, but for one the winding

number moves to rejoin the Chern-Simons number; in the other Chern-Simons number

moves to rejoin the winding number.
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Figure 6. Final values of N2
W for configurations (black) and their CP-conjugate (white).

This sort of event is reminiscent of the early work of [24, 25]. A configuration with

mismatched Ncs and NW is gauge equivalent to a Ncs → 0, NW → NW − Ncs localised

texture. One may then ask under which circumstances such a texture decays by the winding

number going away, rather than the gauge field moving to screen the topological charge,

i.e. change Chern-Simons number. In [24, 25] it was argued that there is a typical physical

size of the texture, deciding one or the other, and that this critical size is shifted in the

presence of CP-violation. A similar behaviour was observed in [39].

In our setup, C and P violation from the fermions acts on the gauge fields and C

violation enters in the scalar dynamics from the potential. We may therefore identify our

flips with events where a texture is created at random, and its unwinding is just biased

enough by C/P and C violation that it goes opposite ways for the CP-conjugate pair.

In figure 6, we display the final values of N2
W for all 400 configurations (black) and their

CP-conjugate (white), rescaled by the lattice artefact correction 1/0.73. Firstly, we notice

how precisely most of them overlap, so that the black symbols are practically hidden. But

a few (16) do not match, and they correspond to flips, 6 times +1 and 10 times −1.

3.3 Averages

We conclude by showing in figure 7 the observables in time, averaged over the entire

ensemble of bosonic realisations. The green bands correspond to one standard deviation.

We see that the average Higgs fields φ2
1,2 are very well behaved statistically, and describe

a strongly damped oscillation, approaching the equilibrium expectation value. Because of

finite temperature corrections, this is slightly smaller than the vevs, to which the Higgs

fields are normalised. Although the Chern-Simons number Ncs seems to have a broad

statistical uncertainty, the average evolution looks strikingly similar to the purely bosonic

simulations [19, 21, 22, 27, 36] (up to an overall sign). First a semi-exponential growth

until vt ' 20, then a dip to a final value of the opposite sign. In [19], the initial rise

was explained in terms of a linear treatment of the effective CP-violation, and the general

transfer of energy to the gauge field during the spinodal preheating. That this initial

– 12 –
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Figure 7. Clockwise: the Higgs fields, Chern-Simons number, fermion number and winding num-

bers, when averaged over the entire bosonic ensemble.

behaviour should carry over from using effective bosonic operators to the full fermion

dynamics is perhaps not surprising. What is maybe more interesting is that also the

qualitative “bouncing” to the opposite side occurs with the dynamical fermions providing

the C- and P- violation. A similar behaviour is observed for the winding numbers. Having

discovered and asymmetry of 6 − 10 = −4 in 400 pairs, we would expect final winding

and Chern-Simons numbers of −4/800 ' −0.005. This does not follow directly from these

averaged observables, without including the lattice artefact correction 0.73, which itself is

only approximate. Including this, the integer counting corresponds to N1,2
W ' 0.004 at the

final time. The naive statistical error bars are as large as the signal, and must therefore be

taken as inconclusive. We do suspect that the naive standard deviation is an over-estimate

of the statistical error, and therefore count these results as suggestive.

The fermion number is badly behaved, but seems to agree between different bosonic

realisations. This shows that the lattice fermion number observable is indeed dominated

by UV modes, that are all initialised identically irrespective of the random background

bosonic field.

3.4 Computing the asymmetry

Our simulations are performed on a lattice of physical size v3V = v3L3 = n3
x×(av)3. Given

N+ −N− flips in Ntot pairs of configurations, this constitutes a baryon asymmetry of

nB =
1

V

N+ −N−
2Ntot

. (3.1)

The total energy available in the simulation is V0 = (226 GeV)4, which should be distributed

over all the active degrees of freedom

V0 =
π2

30
g∗T 4 → 7.04× nγ =

2π2

45
g∗T 3 = 1.01× (g∗)1/4V

3/4
0 . (3.2)
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Then the baryon to photon ratio is

nB
nγ

= 6.97
1

(av)3n3
x

N+ −N−
2Ntot

(g∗)−1/4

(
v

V
1/4

0

)3

. (3.3)

Using g∗ = 28 (in the reduced SM simulated here, g∗ ' 100 in the full Standard Model),

v = 246 GeV, V
1/4

0 ' 226 GeV on a lattice nx = 32, av = 1.2, we find

η = 6.9× 10−5 × N+ −N−
2Ntot

(
1±

√
N+ +N−

(N+ −N−)2

)
, (3.4)

where the one standard deviation error applies for Ntot � 1. The observed asymmetry of

6.0 × 10−10 corresponds to one uncancelled flip in 105 configurations. This is numerically

a hopeless task to find, since only fully completed flips count. An overall shift close to

a minimum in the Chern-Simons number potential is not meaningful. We were able to

simulate 400 such configuration pairs, so that one uncancelled flip amounts to η ' 8.6 ×
10−8. However, the statistical error is large if there are many flips cancelled out (N+ +

N−) > (N+ −N−)2.

4 Conclusion

4.1 Can we see a net asymmetry?

In a ensemble of 400 pairs of realisations, we found N+ = 6 flips with +1 difference in NW ;

and N− = 10 with −1. We therefore have

η ' −3.5× 10−7 × (1.0± 1.0) , (4.1)

about 600 times as big as the observed asymmetry; but also consistent with zero, if these

simple statistical error estimates are to be relied upon. Taking the average value as physical,

one may readily compare to the results of [36], obtained by replacing the fermion degrees

of freedom by an effective C/P breaking bosonic operator of the form

δV =
δC/P

16π2m2
W

i
(
φ†1φ2 − φ†2φ2

)
TrFµνF̃µν . (4.2)

The expectation is, that to leading order in a gradient expansion, this effective term arises

upon integrating out the fermions (see however [10, 28–30]). In this way one could in

principle compute the coefficient δC/P . In the present work including fermions, this term

and all higher order terms are in principle included at one-loop.3

Our values of (α1, α2, α3) correspond exactly to the the lowest left black point in

the bottom right panel of figure 1 in [36]. The simulations in that paper were done at

µ =
√

Im(µ2
12) = 100 GeV (half of the value in the present work). Typical asymmetries

quoted in [36] are |η| = (1− 2)× 10−4, with a maximal value of

η = −1.1× 10−5 × δC/P . (4.3)

3And presumably to higher loop order with only classical bosonic internal lines.
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Under the assumption that the precise value of µ is not decisive, and to the extent that

the fermion degrees of freedom can be represented by such a bosonic operator, we conclude

that in this scenario, the effective coefficient is of the order of

δeff
C/P ' 0.03. (4.4)

This is much smaller than one, but not nearly as small as for Standard Model CP-violation

at finite temperature [10], which seems to totally rule out electroweak baryogenesis in the

Standard Model. This is likely due to the large Yukawa couplings and the fact that CP-

violation in the SM kicks in at higher loop order than in the present case of a tree-level

CP breaking effect combined with a tree-level C and P breaking effect.

4.2 Outlook

In conclusion, we have successfully developed a method to numerically compute the baryon

asymmetry from first principles in a viable reduced Standard Model. The numerical effort

is significant, and with our available numerical resources, we were only barely able to see

a signal. But clearly, the effect of CP-violation is present, and using an explicitly CP-

symmetric ensemble of realisations allows us to see this. Using a fermion ensemble of

N = 4000 for each bosonic realisation is a cautious choice, where we may be confident that

the fermion back-reaction on the bosonic evolution is well converged. This back-reaction is

important, since it provides the breaking of P absent in the Higgs potential and necessary

for the asymmetry to be generated.

We tentatively find an asymmetry of ≈ 600 times the observed one, but with a very

large statistical uncertainty. An increase in computing time of a factor 10 is necessary to pin

this down convincingly. We are currently seeking to acquire such resources for future work.

Obvious applications and extensions of this method are to consider other experimen-

tally allowed regions of two-Higgs doublet parameter space; including all three families

of fermions with the physical values of the Yukawa couplings; including the mechanism

responsible for the cold spinodal transition (low-scale inflaton, singlet Higgs field); and the

interaction of fermions with a bubble wall in a first order phase transition, relevant for

“hot” electroweak baryogenesis. The inclusion of U(1) and SU(3) gauge fields may also be

envisaged, but then the transformation from a chiral to a vector theory no longer works,

and one will have to in another way circumvent the issue of chiral fermions on the lattice.
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A Lattice implementation

Putting chiral fermions on the lattice is notoriously difficult, but because of the pseudo-

reality of SU(2), it is possible to bypass this problem by defining (in the continuum) a new

set of fermion fields, in the following way:

ΨL = qL, ΨR = εC−1 l̄TL ⇒ lL = −εC−1Ψ̄T
R, l̄L = ΨT

RCε−1, (A.1)

χR = uR, χL = C−1ēTR ⇒ eR = C−1χ̄TL, ēR = −χTLC, (A.2)

ξR = dR, ξL = −C−1ν̄TR ⇒ νR = −C−1ξ̄TL , ν̄R = ξTLC, (A.3)

Φ =
(
φ̃, φ

)
, φ̃ = εφ?, ε = iσ2 . (A.4)

This amounts to a charge conjugation on the left-handed component. Now, instead of

having four right-handed singlets and two left-handed doublets, we have a full doublet

(left- and right-handed) and two full singlets. This turns the reduced Standard Model into

a vector theory rather than a chiral one, and the lattice implementation becomes similar

to 2-colour QCD.

The action now reads:

SG =
∑
x,t

βtG
∑
i

(
1− 1

2
TrU0i,x

)
−
βsG
2

∑
ij

(
1− 1

2
TrUij,x

)
, (A.5)

SH =
∑
x,t

∑
n

(
βtH
2

Tr
[
(D0Φn)†D0Φn

]
−
βsH
2

Tr
[
(DiΦn)†DiΦn

])
− βRV (Φ1,Φ2) + βY C(Φ1,Φ2), (A.6)

SF =
∑
x,t

−
[
Ψ̄γ0D̃0Ψ + χ̄γ0∂̃0χ+ ξ̄γ0∂̃0ξ

]
− at
a

[
Ψ̄γiD̃iΨ + χ̄γi∂̃iχ+ ξ̄γi∂̃iξ

]
+
rat
2a

[
Ψ̄D

′
iDiΨ + χ̄∂

′
i∂iχ+ ξ̄∂

′
i∂iξ

]
− βY Y (Ψ, χ, ξ,Φ1,Φ2), (A.7)

with the 2-Higgs scalar potential

V (Φ1,Φ2) = −a
2µ2

11

4
Tr
[
Φ†1Φ1

]
− a2µ2

22

4
Tr
[
Φ†2Φ2

]
−
a2µ2

12RE

2
Tr
[
Φ†1Φ2

]
+
a2µ2

12IM

2
Tr
[
Φ†1Φ2iσ3

]
+
λ1

8

(
Tr
[
Φ†1Φ1

])2
+
λ2

8

(
Tr
[
Φ†2Φ2

])2

+
λ3

4
Tr
[
Φ†2Φ2

]
Tr
[
Φ†1Φ1

]
+
λ4

4

(
Tr
[
Φ†1Φ2

])2
+
λ4

4

(
Tr
[
Φ†1Φ2iσ3

])2

+
λ5RE

4

(
Tr
[
Φ†1Φ2

])2
− λ5RE

4

(
Tr
[
Φ†1Φ2iσ3

])2

− λ5IM

2
Tr
[
Φ†1Φ2iσ3

]
Tr
[
Φ†1Φ2

]
. (A.8)
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The Yukawa interactions are now somewhat more complicated, with in general

Y (Ψ, χ, ξ,Φ1,Φ2) = Gu1Ψ̄Φ1PUPR(χ, ξ)T +Gu†1 (χ̄, ξ̄)PUΦ†1PLΨ

+Gu2Ψ̄Φ2PUPR(χ, ξ)T +Gu†2 (χ̄, ξ̄)PUΦ†2PLΨ

+Gd1Ψ̄Φ1PDPR(χ, ξ)T +Gd†1 (χ̄, ξ̄)PDΦ†1PLΨ

+Gd2Ψ̄Φ2PDPR(χ, ξ)T +Gd†2 (χ̄, ξ̄)PDΦ†2PLΨ

+Ge1Ψ̄Φ1PUPL(χ, ξ)T +Ge†1 (χ̄, ξ̄)PUΦ†1PRΨ

+Ge2Ψ̄Φ2PUPL(χ, ξ)T +Ge†2 (χ̄, ξ̄)PUΦ†2PRΨ

+Gν1Ψ̄Φ1PDPL(χ, ξ)T +Gν†1 (χ̄, ξ̄)PDΦ†1PRΨ

+Gν2Ψ̄Φ2PDPL(χ, ξ)T +Gν†2 (χ̄, ξ̄)PDΦ†2PRΨ, (A.9)

in terms of a number of projectors

PU =
1 + σ3

2
, PD =

1− σ3

2
, PR =

1 + γ5

2
, PL =

1− γ5

2
. (A.10)

For the redefined fields, CP-transformation amounts to

Ψcp(t, x) = −γ5iγ0γ2Ψ(t, xp), (A.11)

χcp(t, x) = γ5iγ0γ2χ(t, xp), (A.12)

ξcp(t, x) = γ5iγ0γ2ξ(t, xp), (A.13)

U cpn (t, x) = UTn (t, xp − n), (A.14)

Φcp(t, x) = Φ?(t, xp) . (A.15)

The lattice parameters are related to the continuum ones and the lattice spacings as

βtG =
4

g2

a

at
, βsG =

4

g2

at
a
, βtH =

a

at
, βsH =

at
a
, βR =

at
a
, βY =

at
a
, (A.16)

where at = adt is the lattice spacing in the time direction, with a the spatial spacing. We

will refer to dt as the “time step”.

It follows that the energy density is given by (for the G(auge), H(iggs) and F(ermion)

components, respectively)

eG =
1

V at

∑
x

βtG
∑
i

(
1− 1

2
TrU0i,x

)
+
βsG
2

∑
ij

(
1− 1

2
TrUij,x

)
, (A.17)

eH =
1

V at

∑
x

∑
n

(
βtH
2

Tr
[
(D0Φn)†D0Φn

]
+
βsH
2

Tr
[
(DiΦn)†DiΦn

])
+βRV (Φ1,Φ2), (A.18)

eF =
1

V at

∑
x

at
a

[
Ψ̄γiD̃iΨ + χ̄γi∂̃iχ+ ξ̄γi∂̃iξ

]
− rat

2a

[
Ψ̄D

′
iDiΨ + χ̄∂

′
i∂iχ+ ξ̄∂

′
i∂iξ

]
+ βY Y (Ψ, χ, ξ,Φ1,Φ2)− βY C(Φ1,Φ2), (A.19)

summing to the total energy density.
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Because of the field transformation, we compute the baryon and lepton currents of the

original theory as the chiral current in the transformed theory(
jµ(5)

)
C−conjugated

=
(
jµ(b) + jµ(l)

)
Original

= i
[
−Ψ̄γµγ5Ψ + χ̄γµγ5χ+ ξ̄γµγ5ξ

]
. (A.20)

We now specialise to the Yukawa interactions with a single coupling yuk,

Y (q, l, φ1, φ2) = yuk

(
q̄Lφ2dR + l̄Lφ2eR + q̄Lφ̃1uR + l̄Lφ̃1νR

+ d̄Rφ
†
2qL + ēRφ

†
2lL + ūRφ̃

†
1qL + ν̄Rφ̃

†
1lL

)
. (A.21)

This translates to the lattice theory as

Y (Ψ, χ, ξ,Φ1,Φ2) = yuk

(
Ψ̄Φ1PUPR(χ, ξ)T + (χ̄, ξ̄)PUΦ†1PLΨ

+ Ψ̄Φ2PDPR(χ, ξ)T + (χ̄, ξ̄)PDΦ†2PLΨ

+ Ψ̄Φ2PUPL(χ, ξ)T + (χ̄, ξ̄)PUΦ†2PRΨ

+Ψ̄Φ1PDPL(χ, ξ)T + (χ̄, ξ̄)PDΦ†1PRΨ
)
. (A.22)

Our choice is simply meant as a simplification, and may readily be generalised using the

general form (A.9). We have carefully considered accidental symmetries of the Yukawa

term, to ensure that CP is in fact broken.

Fermions enter in the bosonic equations of motion as two-point correlators. These are

formally divergent, and we introduce counter terms ct11,12 in the following way

SC = C(Φ1,Φ2) =
a2ct11

2

(
Tr
[
Φ†1Φ1

]
+ Tr

[
Φ†2Φ2

])
+
a2ct12

2

(
Tr
[
Φ†1Φ2

]
+ Tr

[
Φ†2Φ1

])
.

(A.23)

We do not consider weaker logarithmic divergences that appear in the gauge equations of

motion. SC should be added to (A.5)–(A.7).

From the complete lattice action, we derive the equations of motion by straightforward

variation. For the fermions, linear equations in the bosonic field background:

0 = −γ0∂̃0Ψ− at
a
γiD̃iΨ +

rat
2a
D′iDiΨ− yukβY [Φ1PU + Φ2PD]PR(χ, ξ)T

− yukβY [Φ2PU + Φ1PD]PL(χ, ξ)T (A.24)

0 = −γ0∂̃0(χ, ξ)T − at
a
γi∂̃i(χ, ξ)

T +
rat
2a
∂′i∂i(χ, ξ)

T − yukβY
[
PUΦ†1 + PDΦ†2

]
PLΨ

− yukβY
[
PUΦ†2 + PDΦ†1

]
PRΨ . (A.25)

For the gauge field

0 =
1

2
βtG (Ean(y)− Ean(y − 0)− 1

2
βsG
∑
m

Dab′
m Tr

[
iσbUy,mUy+m,nU

†
y+n,mU

†
y,n

]
− βsHTr

[
iσaΦ1,y(Uy,nΦ1,y+n)†

]
− βsHTr

[
iσaΦ2,y(Uy,nΦ2,y+n)†

]
− at

2a

[
Ψ̄yγ

niσaUy,nΨy+n + Ψ̄y+nγ
nU †y,niσ

aΨy

]
,

+
rat
2a

[
Ψ̄yiσ

aUy,nΨy+n − Ψ̄y+nU
†
y,niσ

aΨy

]
. (A.26)
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And for the two Higgs fields

0 = −βtH∂′0∂0Φ1 + βsH∂
′
i∂iΦ1

+
βR
2

(
a2µ2

11 − λ1Tr
[
Φ†1Φ1

]
− λ3Tr

[
Φ†2Φ2

])
Φ1

+
βR
2

(
a2µ2

12re − (λ4 + λ5re)Tr
[
Φ†1Φ2

]
+ λ5imTr

[
Φ†1Φ2iσ3

])
Φ2

+
βR
2

(
−a2µ2

12im + (−λ4 + λ5re)Tr
[
Φ†1Φ2iσ3

]
+ λ5imTr

[
Φ†1Φ2

])
Φ2iσ3

− yukβY
2

ka

[
Ψ̄kaPUPR(χ, ξ)T + (χ̄, ξ̄)PUk

a†PLΨ
]

− yukβY
2

ka

[
Ψ̄kaPDPL(χ, ξ)T + (χ̄, ξ̄)PDk

a†PRΨ
]

+ βY a
2ct11Φ1 + βY a

2ct12Φ2 (A.27)

0 = −βtH∂′0∂0Φ2 + βsH∂
′
i∂iΦ2

+
βR
2

(
a2µ2

22 − λ2Tr
[
Φ†2Φ2

]
− λ3Tr

[
Φ†1Φ1

])
Φ2

+
βR
2

(
a2µ2

12re − (λ4 + λ5re)Tr
[
Φ†1Φ2

]
+ λ5imTr

[
Φ†1Φ2iσ3

])
Φ1

+
βR
2

(
a2µ2

12im + (λ4 − λ5re)Tr
[
Φ†1Φ2iσ3

]
− λ5imTr

[
Φ†1Φ2

])
Φ1iσ3

− yukβY
2

ka

[
Ψ̄kaPDPR(χ, ξ)T + (χ̄, ξ̄)PDk

a†PLΨ
]

− yukβY
2

ka

[
Ψ̄kaPUPL(χ, ξ)T + (χ̄, ξ̄)PUk

a†PRΨ
]

+ βY a
2ct11Φ2 + βY a

2ct12Φ1 . (A.28)

In the bosonic equations of motion, all fermion bilinears are replaced by quantum expec-

tation values over the fermion ensemble fields,.

B Counterterms and renormalization

The counterterms are chosen so as to compensate the backreaction terms of the fermion

fields in vacuum, as these terms appear in the bosonic potentials and kinetic terms. Ap-

pearing as relevant or marginal operators, these counterterms include terms quadratically

or logarithmically divergent in the continuum limit. Since we do not intend to take this

limit in our simulations, the counter terms simply provide a subtraction of a finite (yet

generically large) number. In practice, the most severe (quadratic) divergences are our

main concern (A.23).

When the Higgs fields are constant, as in the vacuum, the integration over the fermion

modes yields

i

∫
d4p

(2π)4
ln Det

[
iγµpµ +mD yukK

−yukγ0K†γ0 iγµpµ +mS

]
16×16

=
ct11

2

(
Tr
[
Φ†1Φ1

]
+ Tr

[
Φ†2Φ2

])
+
ct12

2

(
Tr
[
Φ†1Φ2

]
+ Tr

[
Φ†2Φ1

])
+ . . . , (B.1)
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where mD and mS are the masses of the doublets and singlets respectively, and K denotes

the matrix

K = Φ1PU ⊗ PR + Φ2PD ⊗ PR + Φ2PU ⊗ PL + Φ1PD ⊗ PL. (B.2)

Notice in the backreaction of fermion fields, there is a symmetry between Φ1 and Φ2,

owing to the fact that K is invariant under the exchange of Φ1 and Φ2, and up and down

simultaneously, while the latter exchange does not affect the determinant of the matrix.

Therefore, the simplicity of the counterterms (A.23) can be attributed to the symmetry in

Yukawa interactions (A.21).

To obtain the expression of ct11 and ct12, we consider two cases:

(a) Φ2 = Φ1 = φ
yuk

I,

i

∫
d4p

(2π)4
ln Det

[
iγµpµ +mD φ

φ iγµpµ +mS

]
16×16

= 2
ct11

y2
uk

φ2 + 2
ct12

y2
uk

φ2 + . . . . (B.3)

The series on the right-hand side contains a constant term which is the result of the free

massless fermion, as one can see by simply setting φ = 0 on the left-hand side. Thus,

instead of implementing the equation above, we consider its derivative where the constant

term is removed,

i

∫
d4p

(2π)4

d

dφ
ln Det

[
iγµpµ +mD φ

φ iγµpµ +mS

]
16×16

= 4
ct11

y2
uk

φ+ 4
ct12

y2
uk

φ+ . . . , (B.4)

which leads to
ct11

y2
uk

φ+
ct12

y2
uk

φ+ . . .

=

∫
d3p

(2π)3
i

∫
dp0

2π

[
−dω1a

dφ

p0 − ω1a + iε
+

dω1a
dφ

p0 + ω1a − iε
+

−dω2a
dφ

p0 − ω2a + iε
+

dω2a
dφ

p0 + ω2a − iε

]

= −
∫

d3p

(2π)3

[
dω1a

dφ
+
dω2a

dφ

]
. (B.5)

The determinant in the equation has been calculated in the manner that

Det

[
iγµpµ+mD φ

φ iγµpµ+mS

]
16×16

= Det [p0+H] = (p2
0−ω2

1a+iε)4(p2
0−ω2

2a + iε)4, (B.6)

where H refers to the Hamiltonian

H =

[
iγ0iγp+ iγ0mD iγ0φ

iγ0φ iγ0iγp+ iγ0mS

]
16×16

, (B.7)

and its eigenenergies ω1a and ω2a satisfy4

ω2
1a = p2 + φ2 +

(m2
D +m2

S) +
√

(m2
D −m2

S)2 + 4φ2(mD +mS)2

2
, (B.8)

ω2
1a = p2 + φ2 +

(m2
D +m2

S)−
√

(m2
D −m2

S)2 + 4φ2(mD +mS)2

2
. (B.9)

4It is easier to achieve the eigenenergies from H2 than from H.
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(b) −Φ2 = Φ1 = φ
yuk

I,

i

∫
d4p

(2π)4
ln Det

[
iγµpµ +mD φσ3 ⊗ γ5

−φσ3 ⊗ γ5 iγµpµ +mS

]
16×16

= 2
ct11

y2
uk

φ2 − 2
ct12

y2
uk

φ2 + . . . . (B.10)

Similarly, the result is

ct11

y2
uk

φ− ct12

y2
uk

φ+ . . .

=

∫
d3p

(2π)3
i

∫
dp0

2π

[
−dω1b

dφ

p0 − ω1b + iε
+

dω1b
dφ

p0 + ω1b − iε
+

−dω2b
dφ

p0 − ω2b + iε
+

dω2b
dφ

p0 + ω2b − iε

]

= −
∫

d3p

(2π)3

[
dω1b

dφ
+
dω2b

dφ

]
, (B.11)

where

ω2
1b = p2 + φ2 +

(m2
D +m2

S) +
√

(mD −mS)2[(mD +mS)2 + 4φ2]

2
, (B.12)

ω2
2b = p2 + φ2 +

(m2
D +m2

S)−
√

(mD −mS)2[(mD +mS)2 + 4φ2]

2
. (B.13)

To any order of constant Higgs fields, (B.5) and (B.11) must be valid. For our purpose, we

only need the leading terms, which read

−
∫

d3p

(2π)3
φ

[
1

ω1
+

1

ω2
− (mD +mS)2

ω1ω2(ω1 + ω2)

]
=
ct11

y2
uk

φ+
ct11

y2
uk

φ, (B.14)

−
∫

d3p

(2π)3
φ

[
1

ω1
+

1

ω2
− (mD −mS)2

ω1ω2(ω1 + ω2)

]
=
ct11

y2
uk

φ− ct11

y2
uk

φ, (B.15)

for which we find

ct11 = −y2
uk

∫
d3p

(2π)3

[
1

ω1
+

1

ω2
−

m2
D +m2

S

ω1ω2(ω1 + ω2)

]
, (B.16)

ct12 = y2
uk

∫
d3p

(2π)3

[
2mDmS

ω1ω2(ω1 + ω2)

]
, (B.17)

where

ω2
1 = p2 +m2

D, (B.18)

ω2
2 = p2 +m2

S . (B.19)

Considering the continuum theory, one may immediately notice that ct11 is quadratically

divergent, as expected; while the divergence of ct12 is logarithmic, or null for massless

fermions. Conveniently, the solutions may be applied directly to Wilson fermion, in which

case mD = 1
2arD(p2

1 + p2
2 + p2

3) and mS = 1
2arS(p2

1 + p2
2 + p2

3), with Wilson parameters rD
and rS for doublets and singlets separately.
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