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Abstract In order to construct regularizations of continuous linear functionals acting
on Sobolev spaces such as W 1,q

0 (Ω), where 1 < q < ∞ and Ω is a Lipschitz domain,
we propose a projection method in negative Sobolev spaces W−1,p(Ω), p being the
conjugate exponent satisfying p−1+q−1 = 1. Our method is particularly useful when
one is dealing with a rough (irregular) functional that is a member of W−1,p(Ω),
though not of L1(Ω), but one strives for a regular approximation in L1(Ω). We focus
on projections onto discrete finite element spaces Gn, and consider both discontinu-
ous as well as continuous piecewise-polynomial approximations.

While the proposed method aims to compute the best approximation as mea-
sured in the negative (dual) norm, for practical reasons, we will employ a computable,
discrete dual norm that supremizes over a discrete subspace Vm. We show that this
idea leads to a fully discrete method given by a mixed problem on Vm×Gn. We pro-
pose a discontinuous as well as a continuous lowest-order pair, prove that they are
compatible, and therefore obtain quasi-optimally convergent methods.

We present numerical experiments that compute finite element approximations
to Dirac delta’s and line sources. We also present adaptively generate meshes, ob-
tained from an error representation that comes with the method. Finally, we show
how the presented projection method can be used to efficiently compute numerical
approximations to partial differential equations with rough data.

1 Introduction

In the approximation of solutions to partial differential equations (PDEs), the right-
hand side data (e.g., sources) may not necessarily be representable by the action of an
L2 (or, more generally, L1) function. We will refer to such functionals as being rough,
or irregular. For instance, rough linear functionals f acting on functions v : Ω → R,
with Ω being a d-dimensional Lipschitz domain, include:
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(i) Singular actions over derivatives:

f (v) :=
∫

Ω

~F ·∇v. (where ~F has some kind of singularity in Ω )

(ii) Point sources, defined by a Dirac delta δ(·) distribution or derivatives of it:

f (v) := 〈δx0 ,v〉= v(x0). (for a given x0 ∈Ω )

(iii) Line sources with density ψ:

f (v) :=
∫

C
ψv. (for a given a contour C ⊂Ω )

There are several numerical complications when dealing with rough functionals:

– PDEs with rough data have low-regular solutions, which imply low convergence
rates with quasi-uniform discretizations (e.g., finite element discretizations using
uniformly-refined meshes);

– Adaptive methods may recover optimal convergence rates (in terms of number of
degrees of freedom), however, standard refinement indicators may not be valid or
may be impractical (because of the data being rough, hence does not have an L2

norm);
– Software packages may not support the implementation of rough functionals, but

only facilitate standard domain integrals, i.e.,

f (v) =
∫

Ω

φv , (for a given φ : Ω → R)

to allow for an efficient quadrature treatment.

A natural idea to overcome these complications is to employ regularizations of
the rough functional f ; cf. Hosseini et al. [39]. To explain the effect of regularizations
of f on errors, consider the abstract linear problem

L u = f in V ∗

defined by a continuous and bounded below operator L : U 7→ V ∗, where U and V
are (trial and test) Banach spaces1, and V ∗ is the dual space of V . Let fn ∈ V ∗ be a
regularization of f and let

un := L −1 fn

be the exact solution for the regularized problem. If un,h is a numerical approximation
to un, then by the triangular inequality:

‖u−un,h‖U ≤ ‖u−un‖U︸ ︷︷ ︸
Regularization error

+ ‖un−un,h‖U︸ ︷︷ ︸
Discretization error

. (1)

1 This is the situation commonly encountered in variational formulations of PDEs, where b(u,v) =
〈 f ,v〉V ∗ ,V and L u := b(u, ·), for a given continuous bilinear form b : U×V → R.
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Assuming that the discretization error can be controlled efficiently by standard adap-
tive procedures, the error estimate (1) will be dominated by the regularization error,
for which we know that

‖u−un‖U ≤ γ
−1‖ f − fn‖V ∗ , (2)

where γ > 0 is the stability (inf-sup) constant of the operator L . Thus, the focus of
attention now is on how to control the error ‖ f − fn‖V ∗ (if possible, up to a given
accuracy). Notice that the data regularization error, f − fn, is naturally measured in
the dual norm ‖ · ‖V ∗ , which in typical situations corresponds to a negative Sobolev
space norm.

The main purpose of this paper is to propose and analyse a general methodology,
in the wide context of Banach spaces, to construct a robust projection of f into a
finite dimensional subspace Gn ⊂ V ∗. The projection fn ∈ Gn is constructed to have
the desirable qualities of being regular and being a near-best approximation to f (as
measured by ‖·‖V ∗ ). We focus on projections onto discrete finite element spaces Gn⊂
L∞(Ω), and consider both discontinuous as well as continuous piecewise-polynomial
approximations. Such projections fn allow for exact integration of the usual finite
element domain integrals

∫
Ω

fnv via quadrature.2

Our methodology builds upon the discrete-dual minimal-residual (DDMRes)
method in Banach spaces [42,44]. The principle behind this method is residual min-
imization in dual norms, the idea of which can be traced back to Discontinuous
Petrov–Galerkin (DPG) methods [25]. Applied to the current setting, the problem
is indeed to minimize ‖ f − gn‖V ∗ amongst gn ∈ Gn, which is nothing but a projec-
tion problem in dual (negative) norms. For computability reasons, the dual norm is
replaced by a discrete dual norm ‖ f − gn‖(Vm)∗ , where Vm is a suitable discrete sub-
space of V .

The main contributions of our work are as follows. By means of a mathematical
object known as the duality map (see Section 2.3), we prove the equivalence be-
tween the negative-norm projection problem and a monotone-mixed formulation that
is suitable for finite element discretizations (Theorem 4). The discrete (computable)
counterpart of this monotone-mixed formulation is proved to be well-posed and lead
to quasi-optimal convergence (Theorem 6) under a Fortin compatibility condition on
the trial-test pairing Gn-Vm (cf. [37]), which in turn, is equivalent to a discrete inf-sup
compatibility condition (see, e.g., [31]). Thus, the discrete method delivers projec-
tions f̃n ∈ Gn that are near-best to f ∈V ∗, hence satisfy:

‖ f − f̃n‖V ∗ ≤C inf
gn∈Gn

‖ f −gn‖V ∗ .

Moreover, the discrete method is shown to be equivalent to a best-approximation
problem in a discrete-dual norm (Theorem 5).

We furthermore propose lowest-order pairs of finite element spaces and prove
their Fortin compatibility. The P0/(P1+bubble) compatible pair (Proposition 8) uses

2 Note also that when using piecewise polynomial fn, conveniently, data oscillation may vanish in
standard a posteriori error estimates, as used in adaptive FEM; see, e.g., [20,19].
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a discontinuous piecewise-constant finite element space for Gn and continuous lin-
ears enriched with element bubbles for Vm. The P1 f/P2 compatible pair (Proposi-
tion 9) uses a continuous piecewise-linear finite element space for Gn and continuous
quadratics for Vm. We perform numerical experiments (Section 5) with these pairs
that confirm their stability. We also test numerically the pair consisting of piecewise-
constants for Gn and the lowest-order nonconforming Crouzeix-Raviart space for Vm
(Section 5.2), whose compatibility is an open problem.

The discrete method also has a built-in residual representative. We show that this
leads to a natural a posteriori error estimator, which can be localized and employed
to conduct adaptive mesh refinements showing outstanding convergence rates (see
Section 5). Moreover, we have observed that flatter norms (i.e., W−1,p(Ω)-norms
with exponents p closer to 1) induce a better localization of such mesh refinements.

1.1 Instability when using the L2 projection

We wish to highlight that a naive L2 projection for rough functionals may result in
unexpected or unwanted results. We illustrate this with a simple 1-D example.

Let Ω = (0,1) and consider the rough functional f ∈ H−1(0,1) :=
(
H1

0 (0,1)
)∗

defined by:

f (v) :=
∫ 1

0
x−

1
4 v′(x)dx, ∀v ∈ H1

0 (0,1).

For a given small parameter ε > 0, we are going to approximate this functional using
the one dimensional space generated by the hat function:

φε(x) :=

 xε
−1 if x ∈ (0,ε),

(1− x)(1− ε)−1 if x ∈ (ε,1).

If we intend to compute the L2-projection of the rough functional f (·) onto the one-
dimensional space generated by φε we arrive at the problem of finding α ∈ R such
that:

α‖φε‖2
L2(0,1) =

∫ 1

0
x−

1
4 φ
′
ε(x)dx =

1
ε

∫
ε

0
x−

1
4 dx− 1

1− ε

∫ 1

ε

x−
1
4 dx.

Notice that the right hand side of the above equation is of order ε−1/4 and goes to
infinity as ε → 0. However, the L2-norm of φε equals

√
3/3, irrespective of ε . Thus,

the L2-projection αφε diverges as ε → 0.
On another hand, we have computed the exact H−1-projection of f onto the

one-dimensional span of φε , together with a discrete H−1-projection onto the same
one-dimensional space, but using our proposed methodology with a P2 test space
setting (see Section 4.2 for further details). The L2-norm of these best approximations
are depicted in Figure 1, and compared with the divergent L2-projection. The H−1

projections show stable behaviors as ε → 0+.
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Fig. 1 L2 norm of exact and discrete H−1-projections of a rough functional over the one-dimensional
space generated by φε , for several small values of ε > 0.

1.2 Related literature

Solutions of second-order PDEs driven by rough sources may become singular. In-
deed, it is well-known that the free-space solution of the Poisson problem:

−∆u = δx0 , (3)

exhibits a log-type singularity in two-dimensions; and a singular behavior of the type
1/dist(x,x0) in three-dimensions. In fact, for dimensions d ≥ 2, the solution of (3)
does not reach the Hilbert space H1(Ω), mainly because the Dirac delta distribution
is not in the dual space of H1(Ω). Nevertheless, a regularized version of δx0 (e.g., an
approximation represented by an L2(Ω) function) would produce a regular solution
of the Poisson problem, for which standard adaptive procedures work efficiently (see,
e.g., [27,52,41,12,49,48].

Rough or singular data has taken the attention of finite element analysts since
the early works of Babuška [9] and Scott [46], where they analyzed a priori error
estimates and convergence rates for the Galerkin method applied to elliptic problems
with singular source data, in the context of fractional Sobolev (Hilbert) norms Hs.
In particular, Scott uses explicit regularizations of the delta distribution to estimate
the regularization error. Later on, Eriksson [28] showed optimal convergence order
in L1 and W 1,1 norms, depending on adequate graded meshes adapted for Dirac delta
right-hand sides. In a more general Banach-space setting, Casado-Diaz et al. [18]
proved the W 1,p

0 -convergence and error estimates, for 1≤ p≤ d/(d−1), of piecewise
linear polynomials approximating the solution of second order elliptic equations in
divergence form with right-hand sides in L1 (cf. Example 1). They also showed W 1,p

0 -
weak convergence when the right-hand side is a general Radon measure (see also [22,
34]).

From the point of view of a posteriori error analysis and adaptive finite element
methods, rough right-hand sides in H−1 has been considered in early works of No-
chetto [45] and Stevenson [49,48]. The latter mainly rely on the approximability of
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H−1 functionals by piecewise constants functions. A different approach was taken
by Cohen et al. [23], where they provide H−1-convergent algorithms directly using
indicators based on local H−1 norms. In the same spirit, Blechta et al. [13] study the
localization in negative norms W−1,p for a posteriori error estimates purposes.

Point sources have attracted major attention throughout the existing Literature.
Recall that the exact solutions to these problems are commonly not encountered in
standard Hilbert spaces like H1. To overcome this drawback, we can distinguish
adaptive approaches based on a posterior error estimates in the natural W 1,p-setting
of these equations (see, e.g., [7,8,5,33]); or approaches based on error estimates in
fractional (and Hilbert) Sobolev norms Hs (see, e.g., [35]); or approaches based on
weighted Muckenhoupt norms (see, e.g., [2,3,4]). On another hand, we can also find
methods based on mesh-grading techniques (see, e.g., [6,24]), and methods based on
regularization techniques (see, e.g., [53,51,50,11,39,10,38,32]). Many of the former
results also apply for line sources (see, e.g., [24,36,40]).

1.3 Outline

The outline of the paper is as follows. In Section 2, we present the preliminary con-
cepts related to best approximation in Banach spaces and the functional analysis tools
to be required. Section 3 introduces the abstract regularization methodology of rough
functionals as a best approximation problem (or projection problem) in dual norms,
which in turns is equivalent to a monotone (non-linear) mixed method that can be
approached numerically. We provide discrete well-posedness, stability, and a priori
error analysis in Theorem 6. Additionally, a posteriori error analysis can be found
in Theorem 7. In Section 4, we provide two trial/test compatible pairs for which our
methodology is proved to be well-posed and stable, namely, the P0/P1+bubbles com-
patible pair, and the P1/P2 compatible pair. Due to their technicality, the proofs of
these last results have been shifted to Appendix A and B, respectively. In Section 5,
we perform numerical experiment with point sources and line sources, together with
solutions of PDEs with regularized source. Finally, we outline some conclusions and
future work in Section 6.

2 Preliminaries

2.1 Functional spaces and rough linear functionals

Let (X ,‖ · ‖X ) be a normed space. The dual space of X (i.e., all the real valued con-
tinuous linear functionals defined on X) will be denoted by X∗. The action of F ∈ X∗

over elements x ∈ X will be denoted by a duality pairing between X∗ and X , i.e.,

〈F,x〉X∗,X := F(x).

The norm of the dual space X∗ is defined by

‖ · ‖X∗ := sup
x∈X

〈·,x〉X∗,X
‖x‖X

. (4)
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Let d ∈ N denote a spatial dimension and let Ω ⊂ Rd be a bounded Lipschitz
domain. Consider the standard Lebesgue space Lq(Ω) (for q ≥ 1) and the Sobolev
spaces:

W 1,q(Ω) := {v ∈ Lq(Ω);∇v ∈ [Lq(Ω)]d}, (5)

where the qth-power of the norm is defined by

‖v‖q
W 1,q(Ω)

:= ‖v‖q
Lq(Ω)

+‖∇v‖q
Lq(Ω)

.

Let C ∞
0 (Ω) be the space of smooth functions with compact support on Ω , and

consider the subspace W 1,q
0 (Ω)⊂W 1,q(Ω) defined by:

W 1,q
0 (Ω) := C ∞

0 (Ω)
‖·‖W1,q(Ω) .

By Poincaré’s inequality, it is well-known that ‖ · ‖W 1,q
0 (Ω)

:= ‖∇(·)‖Lq(Ω) defines an

equivalent norm on W 1,q
0 (Ω). The dual of the Sobolev space W 1,q

0 (Ω) will be denoted
with a negative exponent, i.e.,

W−1,p(Ω) :=
(

W 1,q
0 (Ω)

)∗
,

where p−1 +q−1 = 1. The associated dual norm is given accordingly to (4), in which
case we talk about a negative norm.

Remark 1. The reader can refer to [1,26] for the definition of Sobolev spaces W s,q(Ω)
with higher or even fractional derivatives of order s > 0. In general, we will use the
terminology negative norm to denote the supremum norm (4) of the dual of a Sobolev
space W s,q(Ω), with s > 0.

The following examples, typify what we understand by irregular and rough lin-
ear functionals in negative Sobolev spaces.

Example 1 (Irregular functions). For f ∈ Lr(Ω), with r ≥ 1, the application v 7→∫
Ω

f v defines a continuous linear functional over Lq(Ω), for any q≥ r∗ := r/(r−1).
However, it also defines a continuous linear functional over W 1,q(Ω), for a wider
spectrum of values of q≥ 1. Indeed, one can show that∣∣∣∣∫

Ω

f v
∣∣∣∣≤ ‖ f‖Lr(Ω)‖v‖Lr∗ (Ω) . ‖ f‖Lr(Ω)‖v‖W 1,q(Ω),

provided the embedding W 1,q(Ω) ↪→ Lr∗(Ω) holds true continuously. This is always
the case in one dimension, i.e., for d = 1, the embedding holds true continuously
for any q ≥ 1. In higher dimensions extra assumptions are needed. For instance, if
Ω ⊂Rd has the cone property (see [1, Theorem 5.4]), then the embedding holds true
continuously for any q≥ r∗d/(r∗+d). For example, if f ∈ L1(Ω), but f /∈ L1+ε(Ω),
for any ε > 0, then q≥ d is needed.

Example 2 (Actions over derivatives). Let g ∈ [Lr(Ω)]d with r ≥ 1. Then the appli-
cation

v 7→
∫

Ω

g ·∇v,

defines a continuous linear functional over W 1,q(Ω) for any q≥ r∗ := r/(r−1).
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Example 3 (Point sources). Let C (Ω) be the space of continuous real-valued func-
tions over Ω . For x0 ∈ Ω , the application v 7→ v(x0) defines a continuous linear
functional over W 1,q(Ω) provided the embedding W 1,q(Ω) ↪→ C (Ω) holds true con-
tinuously. The usual requirement for that is q> d (see, e.g., Adams [1, Theorem 5.4]).
In such a case, this functional is known as the Dirac delta distribution centered at x0,
and we write

〈δx0 ,v〉(W 1,q)∗,W 1,q := v(x0), ∀v ∈W 1,q(Ω).

Example 4 (Line sources). For d ≥ 2, let Γ ⊂Ω be a bounded Lipschitz curve, and
let φ ∈ Lr(Γ ). For any q≥max{d−1,r/(r−1)}, the linear application

v 7→
∫

Γ

φv, (6)

defines a continuous linear functional over W 1,q(Ω). Indeed, in such a case we have

v
∣∣
Γ
∈W 1− d−1

q ,q(Γ ). So the integral in (6) is well-defined and the whole process is
continuous due to multiple applications of the trace Theorem.

Of course, Example 4 can be extended to surface sources in dimensions d ≥ 3,
and so on and so forth.

2.2 Best approximations in Banach spaces

For a given Banach space, the notion of projection into finite-dimensional subspaces
is deeply related to the notion of best approximation, which is formalized below in
the general context of abstract normed spaces.

Definition 1 (Best approximation). Let X be a normed space and consider a finite
dimensional subspace Xn⊂X. A best approximation to x∈X in the finite dimensional
space Xn, is an element xn ∈ Xn such that:

‖x− xn‖X ≤ ‖x− zn‖X , ∀zn ∈ Xn.

The following geometrical property of normed spaces will be necessary for the
uniqueness of a best approximation (the existence of it, is due to the finite dimension-
ality of Xn; see Proposition 1 below).

Definition 2 (Strictly convex space). A normed space X is strictly convex, if for all
x1,x2 ∈ X, such that x1 6= x2 and ‖x1‖X = ‖x2‖X = 1, it holds that:

‖αx1 +(1−α)x2‖X < 1, ∀α ∈ (0,1).

Remark 2. The Sobolev space W 1,q(Ω) defined in (5) is strictly convex if and only if
1< q<+∞. The same result holds true for the dual space

(
W 1,q(Ω)

)∗ (see, e.g., [17,
21]).

Proposition 1 (Existence and uniqueness of a best approximation). Let X be a Ba-
nach space and Xn ⊂ X be a finite-dimensional subspace. For any element in X, there
exists at least one best approximation of it in Xn. In addition, if X is a strictly convex
Banach space (see Definition 2), then such a best approximation is unique. Moreover,

‖xn‖X ≤ 2‖x‖X . (7)
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Proof. This is a classical result (see, e.g., [47, section 10.2]).

Remark 3. The estimate in (7) is not sharp in general and can be improved using
geometrical constants of the underlying Banach spaces (see [44, section 3]). Indeed,
the reader may observe that in the Hilbert-space case, the constant in (7) must be 1,
since xn corresponds to the orthogonal projection of x.

2.3 Duality maps

The projection method that we are going to propose is based on operators called dual-
ity maps, which allows to characterize best approximations in a computable manner.
We present a particular definition of such an operator in the context of strictly convex
Banach spaces (cf. [17,21]).

Definition 3 (Duality Map). Let X be a normed space and let us assume that its dual
space X∗ is a strictly convex Banach space. For s > 1, the duality map Js,X : X 7→ X∗

is the (unique) operator satisfying:

i. 〈Js,X (x),x〉X∗,X = ‖Js,X (x)‖X∗‖x‖X

ii. ‖Js,X (x)‖X∗ = ‖x‖s−1
X .

Remark 4. The existence of the duality map Js,X given in Definition 3 is guaranteed
by the Hahn-Banach extension Theorem; while the uniqueness of it is due to the strict
convexity of X∗ (see, e.g. [17,21]).

The following duality map identity is crucial for the characterization of best
approximations (see Corollary 1 below).

Proposition 2. Let X be a Banach space, such that X∗ is strictly convex. Let us
consider φ : X → R, defined as φ(·) = 1

s ‖ · ‖
s
X , with s > 1. Then, φ is Gâteaux dif-

ferentiable for all x ∈ X, and we have the following characterization for the duality
map:

Js,X (x) = ∇φ(x). (8)

Proof. See e.g. [21, chapter 1, section 2].

As a consequence of Proposition 2, we have the following Corollary.

Corollary 1 Let X be a Banach space such that X∗ is strictly convex. Let Xn ⊂ X be
a finite dimensional subspace. If xn ∈ Xn is a best approximation of x ∈ X, then by
first-order optimality conditions we have:

〈Js,X (x− xn),zn〉X∗,X =

〈
∇

(
1
s
‖x− xn‖s

X

)
,zn

〉
X∗,X

= 0, ∀zn ∈ Xn.
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Example 5 (Duality map of W 1,q(Ω)). For s = q > 1 and X = W 1,q(Ω), we have
the following characterization of the duality map JW 1,q := Js,X (for any v,w ∈
W 1,q(Ω)):

〈JW 1,q(v),w〉(W 1,q)∗,W 1,q :=
∫

Ω

|v|q−1sgn(v)w+
d

∑
i=1

∫
Ω

|∂iv|q−1sgn(∂iv)∂iw . (9)

Observe that the duality map in (9) is a non-linear operator, except for the Hilbert
case q = 2, where the duality map coincides with the well-known Riesz map.

In general, the duality map of a dual space is difficult to compute in practice
because of the supremum norm (4). However, for smooth Banach spaces (i.e., when
X and X∗ are strictly convex and reflexive) we have the following helpful characteri-
zation.

Proposition 3. If X and X∗ are strictly convex and reflexive Banach spaces, then the
duality map is a bijection. Moreover, identifying X∗∗ with X, the following character-
ization holds true

Js∗,X∗ = J −1
s,X ,

where s∗ = s/(s−1).

Proof. Reflexivity implies surjectivity of duality maps (see [21, chapter II, theo-
rem 3.4]), while strict convexity of X implies injectivity of them (see [21, chapter II,
theorem 1.10]).

Let x∗ ∈ X∗ and let x = J −1
s,X (x∗). Identifying X∗∗ with X , we notice that:

〈x,x∗〉X∗∗,X∗ = 〈x
∗,x〉X∗,X = 〈Js,X (x),x〉X∗,X = ‖Js,X (x)‖X∗‖x‖X = ‖x∗‖X∗‖x‖X∗∗ ,

which implies that x satisfies the first requirement of Definition 3. Moreover,

‖x‖s
X∗∗ = ‖x‖s

X = ‖x‖s∗(s−1)
X = ‖Js,X (x)‖s∗

X∗ = ‖x∗‖s∗
X∗ ,

which implies that x satisfies the second requirement of Definition 3. Hence, by
uniqueness (see Remark 4), we must have x = Js∗,X∗(x∗).

3 The proposed projection methodology

3.1 Exact projection in dual norms

In this section, we establish a methodology to construct regularizations of functionals
belonging to a dual Banach space, as the best-approximation of them over a given
finite-dimensional subspace. For that, we show that the best-approximation problem
is equivalent to a monotone mixed formulation, where a residual representative is
introduced as a new unknown.

Theorem 4. Assume that V and V ∗ are strictly convex and reflexive Banach spaces,
and let us consider a finite dimensional subspace Gn ⊂V ∗. Let Js,V : V 7→V ∗ be the
duality map of Definition 3. Given f ∈V ∗, the following statements are equivalent:
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i. fn ∈ Gn is the unique best approximation satisfying

fn = argmin
gn∈Gn

‖ f −gn‖V ∗ . (10)

ii. For all s > 1, there is a unique residual representative r ∈ V , such that (r, fn) ∈
V ×Gn satisfy the semi-infinite monotone mixed formulation:{

〈Js,V (r),v〉V ∗,V +〈 fn,v〉V ∗,V = 〈 f ,v〉V ∗,V , ∀v ∈V,
〈gn,r〉V ∗,V = 0, ∀gn ∈ Gn.

(11)

Proof. A general proof is given in [43, Theorem 3.B] for a wider class of boundedly
invertible operators B : U → V ∗ (where U is another Banach space), but using the
particular choice of duality map J2,V . It is straightforward to accommodate that
proof to the case where U = V ∗, B is the identity operator in V ∗, and Js,V is any
duality map fulfilling Definition 3. Indeed, just for illustrating we will give a proof of
how (10) implies (11).

Let fn be the best-approximation satisfying (10), which is guaranteed by Propo-
sition 1. Consider the duality map Js∗,V ∗ : V ∗ 7→ V ∗∗, where s∗ = s/(s− 1). By
Corollary 1 and Proposition 3, we have:

0 = 〈Js∗,V ∗( f − fn),gn〉V ∗∗,V ∗ = 〈gn,J
−1

s,V ( f − fn)〉V ∗,V , ∀gn ∈ Gn. (12)

Defining the variable r := J −1
s,V ( f − fn) ∈V and plugging it into eq. (12) we obtain

the second equation of the mixed system (11). Moreover, since Js,V (r) = f − fn ∈
V ∗, we also obtain the first equation of (11).

Remark 5. Using the definition of the duality map (see Definition 3), we get the
following relation between the residual representative and the best-approximation
error:

‖ f − fn‖V ∗ = ‖r‖s−1
V , for s > 1. (13)

Notice that the residual representative r =J −1
s,V ( f − fn) depends on the choice of the

duality map (i.e., the parameter s > 1), while the best-approximation fn is indepen-
dent of that choice.

3.2 The fully-discrete practical method

The monotone mixed formulation (11) is still intractable for computational purposes
unless V has finite dimension. The standard way to overcome this drawback is to
consider a finite dimensional subspace Vm ⊂ V and try to compute the following
fully-discrete mixed problem:Find (rm, f̃n) ∈Vm×Gn such that

〈Js,V (rm),vm〉V ∗,V + 〈 f̃n,vm〉V ∗,V = 〈 f ,vm〉V ∗,V , ∀vm ∈Vm,
〈gn,rm〉V ∗,V = 0, ∀gn ∈ Gn.

(14)
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Observe that we have used the notation f̃n to distinguish between the solution of (14)
and the solution fn of the semi-infinite mixed system (11), or equivalently, the best-
approximation (10).

Of course, many questions arise now:

– Is also f̃n ∈ Gn a best-approximation to f in some sense?
– Is the fully discrete mixed problem (14) well-posed?
– Is the solution f̃n quasi-optimal in the sense that ‖ f − f̃n‖V ∗ . ‖ f − fn‖V ∗?
– Is it possible to use ‖rm‖V as a reliable and efficient error estimate to drive adap-

tivity?

The answer to these queries will guide the following theorems.

Theorem 5. Assume that V and V ∗ are strictly convex and reflexive Banach spaces.
Let f ∈V ∗ and consider finite dimensional approximation spaces Gn ⊂V ∗ and Vm ⊂
V . A discrete functional f̃n ∈Gn solves the fully-discrete mixed system (14) (together
with rm ∈ Vm), if and only if, f̃n is a best-approximation to f ∈ V ∗ in the following
sense:

f̃n = argmin
gn∈Gn

‖ f −gn‖(Vm)∗ , where ‖ · ‖(Vm)∗ := sup
vm∈Vm

〈 · ,vm〉V∗,V
‖vm‖V

. (15)

Proof. See [44, Theorem 4.1].

Remark 6. Observe that the solution of (15) may not be unique, even when (Vm)
∗

is strictly convex. This is because ‖ · ‖(Vm)∗ is indeed a norm in (Vm)
∗, but it is not

a norm in V ∗. In particular, two different elements of Gn may have the same action
over the elements of Vm. The following Theorem 6 provides a sufficient condition to
guarantee the well-posedness of (14), or equivalently (15).

Theorem 6. Let V and V ∗ be strictly convex and reflexive Banach spaces. Assume
that the finite dimensional approximation subspaces Gn ⊂V ∗ and Vm ⊂V satisfy the
existence of a continuous (Fortin) operator Π : V →Vm such that:

i. ‖Πv‖V ≤CΠ‖v‖V , ∀v ∈V and some CΠ > 0. (16)
ii. 〈gn,v−Πv〉V ∗,V = 0, ∀gn ∈ Gn,∀v ∈V. (17)

Then, for any f ∈ V ∗, there is a unique (rm, f̃n) ∈ Vm×Gn solution of problem (14).
The solution satisfies the apriori estimates:

‖rm‖s−1
V ≤ ‖ f‖V ∗ . and ‖ f̃n‖V ∗ ≤ 2CΠ‖ f‖V ∗ . (18)

Moreover, recalling the solution of (10) fn ∈ Gn, we have the quasi-optimality prop-
erties:

‖rm‖s−1
V ≤ inf

gn∈Gn
‖ f −gn‖V ∗ = ‖ f − fn‖V ∗ (19)

‖ f − f̃n‖V ∗ ≤ (1+2CΠ ) inf
gn∈Gn

‖ f −gn‖V ∗ = (1+2CΠ )‖ f − fn‖V ∗ . (20)
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Proof. A general well-posedness proof can be found in [44, Theorem 4.5] (just ac-
commodate it considering the operator B as the identity in V ∗). Nevertheless, we will
show here how to obtain the estimates (18), (19) and (20), since their proof is slightly
different. Indeed, testing the first equation of the fully-discrete mixed problem (14)
with vm = rm, using the ortogonal property of rm, and the definition of the duality
map (see Definition 3), we obtain:

‖rm‖s
V = 〈 f ,rm〉V ∗,V = 〈 f −gn,rm〉V ∗,V ∀gn ∈ Gn,

which gives the first estimate in (18) and also (19) after using Cauchy-Schwarz’s
inequality. For the second estimate in (18) observe that:

‖ f̃n‖V ∗ = sup
v∈V

〈
f̃n,v
〉

V ∗,V

‖v‖V
≤CΠ sup

v∈V

〈
f̃n,Πv

〉
V ∗,V

‖Πv‖V
(by (16) and (17))

≤CΠ‖ f̃n‖(Vm)∗ (since ΠV ⊂Vm)

≤2CΠ‖ f‖(Vm)∗ (by (15) and (7))

≤2CΠ‖ f‖V ∗ . (since Vm ⊂V )

Moreover, it is easy to see that the application Pn : V ∗ → Gn such that Pn( f ) := f̃n
defines a projector for which ‖Pn( f )‖V ∗ ≤ 2CΠ‖ f‖V ∗ and Pn( f − gn) = Pn( f )− gn,
for any gn ∈ Gn. Hence we have:

‖ f − f̃n‖V ∗ = ‖(I−Pn) f‖V ∗ = ‖(I−Pn)( f −gn)‖V ∗ ≤ (1+2CΠ )‖ f −gn‖V ∗ ,

which proves (20).

Remark 7. An operator satisfying (16) and (17) is known as a Fortin operator
(see [14]). The existence of such a Fortin operator requires that

dim(Gn)≤ dim(Vm). (21)

Observe that to ensure stability and quasi-optimality, the constant CΠ > 0 must be
uniformly bounded in terms of the discretization parameters {n,m} of the underlying
discrete spaces Gn and Vm.

Remark 8. The stability constants 2CΠ in (18) and (1+2CΠ ) in (20) are not sharp in
general. They can be improved using geometrical constants of the underlying Banach
spaces V and V ∗. See [44, section 4.4] for the details.

Remark 9. For finite element discretizations on quasi uniform meshes {Th}h>0, one
would expect that the best approximation ‖ f − fn‖V ∗ is bounded by a constant times
hτ , where τ > 0 is limited by the regularity of f ∈ V ∗ and the polynomial degree of
the finite element space. See Section 5 for examples with V ∗ =W−1,p.
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3.3 A posteriori error estimate

In residual minimization methods, it is customary to use the quantity ‖rm‖V as an
error estimate to drive adaptivity procedures. The next Theorem aims to answer the
query about if ‖rm‖V , as an a posteriori error estimate, is indeed reliable and efficient.

Theorem 7 (A posteriori error estimator). Assume the same conditions of Theorem 6.
For any f ∈V ∗, the counterpart rm ∈Vm of the unique solution of the discrete prob-
lem (14) satisfies:

‖rm‖s−1
V ≤ ‖ f − f̃n‖V ∗ ≤ osc( f )+CΠ‖rm‖s−1

V , (22)

where the oscillation term is defined by

osc( f ) := sup
v∈V

〈 f ,v−Πv〉V ∗,V
‖v‖V

.

Proof. The first inequality (from left to right) in (22) is an immediate consequence
of (19). For the second inequality observe that:

‖ f − f̃n‖V ∗ =sup
v∈V

〈
f − f̃n,v−Πv+Πv

〉
V ∗,V

‖v‖V
(since −Πv+Πv = 0)

≤osc( f )+CΠ sup
v∈V

〈
f − f̃n,Πv

〉
V ∗,V

‖Πv‖V
(by (16) and (17))

≤osc( f )+CΠ sup
v∈V

〈Js,V (rm),Πv〉V ∗,V
‖Πv‖V

(by (14))

≤osc( f )+CΠ‖rm‖s−1
V ,

where the last inequality has been obtained using Cauchy-Schwarz’s inequality and
Definition 3.

Remark 10. Using property (17) observe that:

osc( f ) = sup
v∈V

〈 f −gn,v−Πv〉V ∗,V
‖v‖V

, ∀gn ∈ Gn.

Hence, osc( f ) ≤ (1+CΠ ) infgn∈Gn ‖ f − gn‖V ∗ , which combined with (22) and (19)
gives another way to prove (20).

4 Compatible pairs

In this section we introduce two practical options of compatible pairs Gn/Vm veri-
fying the requirements of Theorem 6. The functional context is the following. Let
us consider a bounded Lipschitz domain Ω ⊂ Rd , and V := W 1,q

0 (Ω). Let V ∗ =
W−1,p(Ω) be the dual space of V , where p = q/(q−1), and let Th = {Ti}n

i=1 ⊂Ω be
a simplicial partition of disjoint open elements such that ∪n

i=1Ti = Ω .
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4.1 The P0/(P1 +bubbles) compatible pair

Let Gn := span{G1, ...,Gn} ⊂V ∗,

where 〈Gi,φ〉V ∗,V :=
∫

Ti

φ , ∀φ ∈V, for each Ti ∈Th.
(23)

The space Gn defined above is an analog of the piecewise constant space P0. However,
notice that Gn is a space of functionals or actions, instead of space of functions. In
order to solve the mixed system (14), we need to come up with a discrete test space
Vm ⊂ V satisfying the requirements of Theorem 6. For that, we consider the interior
local bubble functions bi ∈W 1,q

0 (Ti) defined by:

bi(x) =
d+1

∏
j=1

λ j(x), ∀i = 1, ...,n, (24)

where {λ j} are the barycentric coordinates of the simplex Ti. The n-dimensional
space generated by these bubble functions will be denoted by:

Bn(Th) :=
{

v ∈W 1,q
0 (Ω)∩C (Ω);v|Ti ∈ span{bi},∀Ti ∈Th

}
. (25)

Additionally, we consider the piecewise polynomial finite element space

P1(Th) :=
{

v ∈ C (Ω);v|Ti ∈ P1,∀Ti ∈Th
}
. (26)

Proposition 8. Assume that we have a shape-regular family of affine simplicial
meshes {Th}h>0. If Vm ⊂ V is a finite dimensional subspace containing the spaces
Bn(Th) and P1(Th)∩W 1,q

0 (Ω), then Vm and Gn (defined in (23)) satisfy the assump-
tions of Theorem 6, i.e., there exists a Fortin operator Π : V 7→ Vm verifying (16)
and (17), with a mesh-independent constant CΠ > 0.

Proof. See Appendix A.

Remark 11. An alternative to Bn(Th) can be any n-dimensional space generated by
piecewise linear and continuous bubbles supported on each of the elements of Th,
which somehow is a space of extra h-refinements of P1(Th).

Remark 12. Notice that the following practical piecewise polynomial finite element
space contains both Bn(Th) and P1(Th)∩W 1,q

0 (Ω) spaces:

Pd+1(Th)∩W 1,q
0 (Ω) :=

{
v ∈W 1,q

0 (Ω)∩C (Ω);v|Ti ∈ Pd+1,∀Ti ∈Th

}
.
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4.2 The P1/P2 compatible pair

Consider the space P1(Th) defined in (26) and let {ϕi}Nv
i=1 be the set of nodal ba-

sis functions spanning P1(Th)∩W 1,p
0 (Ω), where Nv corresponds to the number of

interior vertices associated with Th. Let{
GNv := span{G1, ...,GNv} ⊂V ∗,

where, 〈Gi,φ〉V ∗,V :=
∫

Ω

ϕi φ , ∀φ ∈V, for each i = 1, ...,Nv.
(27)

Moreover, let
P2(Th) :=

{
v ∈ C (Ω);v|Ti ∈ P2,∀Ti ∈Th

}
. (28)

We next introduce the notion of quasi-uniform patches that will be essential in the
proof of pair-compatibility.

Definition 1 (Quasi-uniform patches) Let {Th}h>0 be a family of affine simplicial
meshes. Let {ϕi}Nv

i=1 be the set of nodal basis functions spanning P1(Th)∩W 1,p
0 (Ω).

For each i= 1, ...,Nv, let Pi := suppϕi be the patch of elements supporting the function
ϕi, and let us denote by hT > 0 the diameter of each element T ⊂ Pi. We say that
the family {Th}h>0 has quasi-uniform patches, if and only if there exists a mesh-
independent constant c > 0 such that hT ≤ chT̃ , for any two elements T and T̃ within
the patch Pi.

Remark 13. A family {Th}h>0 having quasi-uniform patches may seems restrictive
for adaptive mesh refinements, because the condition hT ≤ chT̃ risk being violated at
some level. However, the next Lemma 1 shows that this quasi-uniformity condition is
indeed implied by the standard shape-regularity assumption on the meshes.

Lemma 1 If {Th}h>0 is a shape-regular family of affine simplicial meshes, then such
a family has quasi-uniform patches (see Definition 1).

Proof. For any patch P in the family of meshes, is enough to show the existence of a
mesh independent constant c > 0 such that hT ≤ chT̃ , for any two elements T, T̃ ⊂ P.
By shape-regularity, we know the existence of a mesh-independent constant σ > 1
such that:

hT

ρT
≤ σ ,

for every element T ⊂ P, where ρT denotes the diameter of the largest inscribed ball
in T .

Let Ti and Ti+1 be two adjacents elements in P, with diameters hTi and hTi+1
(respectively), and diameters ρTi and ρTi+1 of the largest inscribed balls within Ti and
Ti+1, respectively. Let ei := Ti∩Ti+1 be the common edge/face between Ti and Ti+1.
In particular, we have

hTi+1 ≥ |ei| ≥ ρTi ,

which, combined with shape-regularity, delivers

hTi

hTi+1

≤ hTi

|ei|
≤ hTi

ρTi

≤ σ . (29)
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Shape-regularity also warranties that the angles of any simplex in any mesh are uni-
formly bounded away from zero (see, e.g., [30, Remark 11.5]). This last implies that
there is a uniform maximum number of N elements allowed per patch. Thus, any two
elements in a patch P (say, T and T̃ ), they can be connected by a sequence of adjacent
elements {T1,T2, ...,TM}, where T1 = T , TM = T̃ , Ti is adjacent to Ti+1, and M ≤ N.
Hence,

hT

hT̃
=

hT1

hTM

=
hT1

hT2

×·· ·×
hTM−1

hTM

≤ σ
N−1,

which proves the statement.

Finally, the upcoming Proposition 9 establishes the compatibility between the
space GNv with a space Vm ⊇ P2(Th)∩W 1,q

0 (Ω), under the following assumption.

Assumption 1. Let {Th}h>0 be a shape-regular family of affine simplicial meshes.
We assume that for every patch Pi of this family, there is a reference patch P̂i ⊂ Rd

of unitary measure, such that every element T̂ ⊂ P̂i is mapped onto a unique element
T ⊂ Pi through an affine transformation FT : T̂ → T of the form FT (x̂) = AT x̂+ yT ,
where:

|detAT |=
|T |
|T̂ |

=: ηi, ∀T ⊂ Pi. (30)

The constant ηi will be referred to as the scaling constant of the patch Pi.

Proposition 9. Under the hypothesis of Assumption 1, if Vm ⊂ V is a finite dimen-
sional subspace containing the space P2(Th)∩W 1,q

0 (Ω), then Vm and GNv (defined
in (27)) satisfy the assumptions of Theorem 6, i.e., there exists a Fortin operator
Π : V 7→Vm verifying (16) and (17), with a mesh-independent constant CΠ > 0.

Proof. See Appendix B.

5 Applications

5.1 Point sources

As a first application, we consider projections of Dirac delta distributions (point
sources, see Example 3). It is well known that this distribution does not belong to
the Hilbert space H−1(Ω) :=W−1,2

0 (Ω) for dimensions higher or equal than two. In
our case, we will consider standard Sobolev spaces3 in which the action of the Dirac
delta is linear and continuous as it was mentioned in Example 3.

3 i.e., of integer order and without weighted norms.
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5.1.1 One dimensional Dirac’s Delta projection

Given a partition Th = {Ti}n
i=1 of Ω := (0,1), we consider the trial spaces Gn and

GNv defined in (23) and (27), together with the test space Vm =P2(Th)∩W 1,q
0 (Ω). We

compute the mixed system (14), using the duality map related with the norm ‖ ·‖W 1,q
0

,
i.e.,

〈
JW 1,q

0
(v),w

〉
W−1,p,W 1,q

0

:=
d

∑
i=1

∫
Ω

|∂iv|q−1sgn(∂iv)∂iw, ∀v,w ∈W 1,q
0 (Ω).

For p = q = 2 the duality map is linear. In Fig. 2 we represent graphically the pro-
jections obtained for δx0 in such a case, with x0 = 0.5 and the trial space GNv . We
have considered uniform meshes of n = 16,32 & 64 elements respectively. Results
are coherent with what is expected (cf. [39]).

0.0 0.5 1.0
−30

0

100

0.0 0.5 1.0
−30

0

100

0.0 0.5 1.0
−30

0

100

Fig. 2 Sequence of Dirac delta projections over uniform meshes of n = 16,32 & 64 elements.

For p = q
q−1 < 2, the duality map is nonlinear. Hence, we have resorted to a

Newton-Raphson continuation method to solve numerically problem (14). That is,
we create a sequence of (k+1) problems with parameters 2 = p0 > · · ·> pk−1 > p,
where in each step, problem (14) is solved using the solution of the previous step
as initial guess. Using the piecewise constant trial space Gn defined in (23), Fig. 3
depicts the convergence of the residual term ‖rm‖q−1

V compared with total degrees
of freedoms (i.e., dim(Gn)+ dim(Vm)) for uniform and adaptive h-refinements, and
for several values of p ∈ (1,2). Recall that, by Sobolev embeddings in 1D, the Dirac
delta action is well-defined in W s,q

0 (Ω) ⊂ C (Ω) whenever sq > 1 (see, e.g., [1]).
The observed convergence rate for h-refinements is 1/p, which can be seen as the
difference between the regularity exponent s = 1 and the critical regularity exponent
s∗ = 1/q (cf. Remark 9). On the other hand, since the source localizes in only one
point, exponential convergence rates are observed for adaptive h-refinements. The
marking criteria has been set to refine all the elements showing local error larger than
the 50% of the maximum local error.
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Fig. 3 1D Dirac delta: convergence rates of uniform and adaptive h-refinements for several values of p.

5.1.2 Elliptic ODE with projected Dirac delta source

In this section, we test the performance of the projected Dirac delta acting as the
source term of an elliptic ODE. Let x0 ∈Ω :=(0,1) and a≥ 0. Consider the following
exact problem: {

−u
′′
+a2u = δx0 in Ω ,

u(0) = u(1) = 0.
(31)

It is easy to check that the analytical solution of (31) is:

u(x) =


eax0 − ea(2−x0)

1− e2a
sinh(ax)

a
if 0≤ x≤ x0,

sinh(ax0)

a
eax− ea(2−x)

1− e2a if x0 ≤ x≤ 1.

(32)

The case a= 0 can be obtained performing the limit when a→ 0 in (32), in whose oc-
currence the solution is piecewise linear and continuous (see Figure 4). Let δn ∈ Gn
be the piecewise constant projection of the Dirac delta, computed using the P0/P2
compatible pair, with p = q = 2. Observe that δn ∈ L2(Ω), which induces the follow-
ing regularized problem: {

−u
′′
n +a2un = δn, in Ω ,

un(0) = un(1) = 0.
(33)

In Figure 4, we show the solutions obtained by approximating equation (33) using
a Galerkin squeme with conforming P2(Th) Lagrange finite elements over the same
mesh that defines δn ∈ Gn, which in this case corresponds to uniform meshes of n =
4,8 & 32 elements. We have chosen x0 =

√
2/2 to make sure that x0 never coincides

with a node of the meshes. Moreover, we have considered a = 0, which implies that
the exact solution of (33) is indeed contained in the discrete space P2(Th), and thus,
there is no discretization error. The convergence rates of the error ‖u−un‖H1

0
coincide
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0 x0 1

0.0

0.2

0 x0 1

0.0

0.2

0 x0 1

0.0

0.2

Fig. 4 Regularized solution un of problem (33) (dashed line), compared with the exact solution (32) (con-
tinuous line), with Dirac delta supported on x0 =

√
2/2 and a = 0. The inputs for un have been obtained

from projected Dirac deltas onto uniform meshes of n = 4,8 & 32 elements, respectively.

with the convergence rates of ‖δx0 −δn‖H−1 (or, more precisely, with ‖rm‖V ), as can
be observed from Figure 5.

Fig. 5 Convergence rates for the solution of the regularized problem (33).

The next experiment intends to answer the question: can we approximate the
solution of problem (31) up to a given desired precision? Inspired in the adaptive
algorithm proposed by Bonito et al. [15], we propose a two-step adaptive procedure.
The first step controls the regularization error, while the second step controls the dis-
cretization error. To fix ideas, let un,h be the discrete approximation of problem (33)
obtained by an adaptive procedure. Observe that:

‖u−un,h‖H1
0
≤ ‖u−un‖H1

0
+‖un−un,h‖H1

0
≤ 1

γ
‖δx0 −δn‖H−1 +‖un−un,h‖H1

0
,

where γ > 0 is the stability constant of our differential operator (γ = 1 in this partic-
ular example). In the first step, we perform an adaptive projection of the Dirac delta
until reaching some prescribed tolerance. This will control the regularization error
‖δx0 − δn‖H−1 and will deliver a projected delta δn together with an adapted mesh
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Th = {Ti}n
i=1. In the second step, we use the source δn obtained in the first step and

solve problem (33) adaptively considering Th as the initial mesh, until reaching the
prescribed tolerance. This will control de discretization error ‖un−un,h‖H1

0
. The gen-

eral procedure is depicted in Algorithm 1. In particular, for the second step we have
used a standard local a posteriori error estimator ηTi , similar to the one used in [15].
Since the RHS δn is a piecewise constant function, there is no data oscillation in this
case (see, e.g. [41]). Figure 6 (left) depicts the error in H1

0 semi-norm of the adapted

Algorithm 1 Approximating the solution of a PDE by regularization
1: Global tol > 0, α1 ∈ (0,1), α2 ∈ (0,1)
2: procedure SOURCE REGULARIZATION ALGORITHM
3: Input← RHS := δx0 ,mesh := Th = {Ti}n

i=1, q > 1
4: (rm,δn)← Solve scheme (14)
5: while tol < ‖rm‖q−1

V do
6: if ‖rm‖q−1

V (Ti)
> α1 max{‖rm‖q−1

V (Ti)
} then

7: Refine the element Ti

8: Update mesh Th and go to step 3
return Th, δn

9: procedure APPROXIMATING THE SOLUTION OF THE REGULARIZED PDE
10: Input← RHS := δn,mesh := Th
11: un,h← Solve the problem (33) by Galerkin method
12: Compute local a posteriori estimators ηTi

13: while tol≤
√

∑η2
Ti

do
14: if ηTi > α2 max{ηTi} then
15: Refine the element Ti

16: Update mesh Th and go to step 10
return Th, un,h.

discrete solution v/s the chosen tolerance in Algorithm 1. We report here that smaller
tolerances would lead to huge condition numbers in the second step of Algorithm 1,
making results unreliable. In Figure 6 (right), the final discrete solution, computed
using Algorithm 1 with tol = 0.001 and α1 = α2 = 0.5, is compared with the exact
solution. We have set the values x0 =

√
2/2 and a = 2 in (31).

5.1.3 Elliptic PDE with projected Dirac delta source on a L-shape domain.

This section is motivated by the examples shown in [7,2]. Let Ω ⊂ R2 be the open
L-shape domain defined by joining vertices (0,0), (0,−1), (1,−1), (1,1), (−1,1),
and (−1,0). For x0 = ( 1

2 ,
1
2 ) ∈Ω , consider the Poisson problem{

−∆u = δx0 in Ω ,
u = g on ∂Ω ,

(34)
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0 x0 1

0.0

0.2
Exact solution

Numerical solution

Fig. 6 Left: Relative ‖u−un,h‖H1
0

error v/s tolerance of Algorithm 1. Right: Exact solution of (31) and its
adapted numerical approximation using Algorithm 1.

where g is chosen to deliver the exact solution

u(x) =− 1
2π

ln |x− x0|+ |x|
2
3 sin

(
2
3
(π− arg(x))

)
, arg(x) ∈ (−π,π]. (35)

The test norm is set to be ‖ · ‖V := ‖∇(·)‖Lq(Ω).

Fig. 7 2D Dirac delta projection. Left: convergence rates of uniform and adaptive h-refinements for several
values of p. Right: influence of the choice of the α1 parameter in Algorithm 1 (the marking criteria).

First, we are going to project the Dirac delta into piecewise polynomial spaces
using the compatible pairs provided in sections 4.1 and 4.2, for different parameter
settings. In Figure 7 (left) we show convergence rates of the projected Dirac delta
using uniform and adaptive h-refinements, computed with the P1/P2 compatible pair,
for diverse choices of p ∈ (1,2). As in the one dimensional case, we observe that the
convergence rates of uniform h-refinements are related with the difference between
the regularity exponent s = 1 and the critical regularity exponent s∗ = 2/q (recall that
in 2D we have W s,q

0 (Ω) ⊂ C (Ω) whenever sq > 2). The graphical representation is
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constructed in terms of the square root of the degrees of freedom (DOFs1/2). In the
case of adaptive h-refinements, for each value of p, we present the first 15 iterations
of the adaptive algorithm using the marking criteria α1 = 0.25 (see Algorithm 1).
Again, exponential convergence is observed due to the fact that the source is localized
in only one point. Moreover, in Figure 7 (right), for a fixed value of p = 1.5 we show
the influence of the choice of the α1 parameter in the adaptive Algorithm 1. The
results were obtained using the P0/(P1 +bubbles) compatible pair. Observe that the
local nature of the source makes it possible to accelerate convergence when α1→ 1.

A sequence of meshes obtained from the application of the first step of Algo-
rithm 1 is depicted in Figure 8. Localization of refinements is quite remarkable.

Fig. 8 Adaptive meshes from 2D Dirac delta projection. From left to right: 24, 146, and 218 elements.

Next, we show the performance of the second step of Algorithm 1. We employ
the a posteriori error estimator given in [15] to catch the L-shape singularity. We
should obtain optimal converge rate of order 1 to the exact solution of the regularized
delta problem. However, as we do not have such a solution in hand, we compute
the error using the exact solution (35). Results using p = 1.2 and conforming P1
piecewise polynomial spaces are depicted in Figure 9. The marking criteria is set to
be α2 = 0.5 (see Algorithm 1). The error, and the global a posteriori error estimator
ηh behave qualitatively the same. The left panel in Figure 9 shows the results obtained
using exactly the same L2-based a posteriori error estimator given in [15]; while
the right panel shows the results obtained using the following Lp-version of such
estimator:

ηh :=

(
∑

T∈Th

η
p
T

) 1
p

,

ηT := hT‖δn +∆un,h‖Lp(T )+

(
∑

e∈∂T
he
∥∥[∂neuh,n

]
e

∥∥p
Lp(e)

) 1
p

,

where he stands for the diameter of the edge e, and [·]e denotes the standard jump
operator on e.

A sequence of meshes obtained from the application of the second step of Al-
gorithm 1 is depicted in Figure 10. Concentration of refinements occurs where is
needed.
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Fig. 9 Convergence of the 2D adaptive regularized PDE (34). Error to the exact solution (red) and a
posteriori error estimator ηh (green). Left panel: adaptivity driven by L2-based a posteriori error estimator.
Right panel: adaptivity driven by Lp-based a posteriori error estimator modification.

Fig. 10 Adaptive meshes from solving regularized PDE (34). From left to right: 402, 786, and 4646
elements.

5.2 Nonconforming Crouzeix-Raviart elements.

In this subsection we cross the limits of our theory by briefly presenting the perfor-
mance of nonconforming Crouzeix-Raviart discrete test spaces (see, e.g., [16, Sec-
tion 10.3], or [29, Section 3.2.3]). The model problem will be the Poisson equa-
tion (34), with Ω = (0,1)2, x0 = (0,0) and g(x) = − 1

2π
ln |x|. The idea will be to

obtain a regularized right hand side, in order to approximate the model problem
with Crouzeix-Raviart finite elements. Hence, the projected right hand side has to ap-
proach the Dirac delta acting on a nonconforming Crouzeix-Raviart space. Of course,
the latter is not well defined when x0 belongs to the border of an element. Hence, we
need to define an extension of the Dirac delta functional to cover this situation. To fix
ideas, consider a mesh Th, and let E i

h denote the set of interior edges of the skeleton
of Th. For any vh in a Crouzeix-Raviart space linked to mesh Th, we consider the
following extension of the Dirac delta action:

δ̃x0(vh) :=
{

vh(x0) if x0 ∈ T ∈Th,
{{vh}}e(x0) if x0 ∈ e ∈ E i

h,

where {{·}}e stands for an average operator on e ∈ E i
h. Using lowest-order Crouzeix-

Raviart discrete test spaces, we adaptively project δ̃x0 onto a piecewise constants
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space P0 using the first step of Algorithm 1, with p = 1.5 and α1 = 0.95. We use the
same test norm and duality map used in the L-shape computations (see Section 5.1.3).
Indeed, the gradient semi-norm becomes a norm in the Crouzeix-Raviart space of
vanishing functions at midpoints of edges in ∂Ω .

Finally, with the projected source and its adapted mesh, we directly solve the
PDE using lowest-order Crouzeix-Raviart finite elements. The result is (horizontally)
depicted in Figure 11.

Fig. 11 Numerical aproximation of the Poisson problem in the unit square using nonconforming Crouzeix-
Raviart elements, with projected Dirac delta source.

5.3 Line Source

The last experiment is inspired by Example 4. Let Ω := (0,1)2 ⊂ R2 be the unit
square, and let Γ ∈Ω be the segment:

Γ :=
{(

t,(t−0.5)2 +0.5
)
∈ R2 : 0.15≤ t ≤ 0.85

}
.

We are going to project the linear functional ` ∈W 1,q(Ω) defined by:

`(v) =
∫

Γ

vds.

More generally, ` is well-defined, linear and continuous, for any v ∈W s,q(Ω), when-

ever sq ≥ 1. Indeed, v|
Γ
∈W s− 1

q ,q(Γ ). Let Th = {TI}n
i=1 be a simplicial mesh (not

necessarily aligned with Γ ), and let us consider the discrete spaces Gn (defined
in (23)) and Vm := P1(Th)∩W 1,q

0 (Ω)+Bn(Th) (see expressions (25) and (26)). In
Figure 12, we show convergence rates of the projection of ` using uniform and adap-
tive h-refinements, for several values of p. We observe that the convergence rates
of uniform h-refinements are close to the difference between the current regularity
exponent s = 1 and the critical regularity exponent s∗ = 1/q (cf. Remark 9). This
graphical representation is constructed in terms of the square root of the degrees of
freedom (DOFs1/2). We have observed that adaptive h-refinements practically double
the rates of uniform h-refinements. On another hand, Figure 13 shows a sequence of
adaptive meshes, obtained for p = 2,1.5 and 1.2, at a comparable number of degrees
of freedom (NDOFs), using the marking criteria parameter α1 = 0.4. As expected, re-
finements are concentrated along the support of the distribution `, i,e., Γ . We observe
better localization of refinements as the value of p decreases.
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Fig. 12 Line source: convergence rates of uniform and adaptive h-refinements for several values of p.

Fig. 13 Line source: Adaptive mesh at a comparable NDOFs, for p = 2,1.5 & 1.2, respectively.

6 Conclusions

Based on the recent theory of residual minimization in Banach spaces developed
in [44], we proposed in this work a method to regularize rough linear functionals,
projecting them into piecewise polynomial spaces. The projections has been per-
formed in terms of discrete-dual Banach norms. Particularly, we have studied func-
tionals involving actions over test functions with a certain regularity, i.e., functionals
in negative Sobolev spaces. Our approach has two remarkable advantages. First, the
regularization can be obtained within low-order piecewise polynomial spaces. There-
fore, if such a regularization is used on the right-hand-side of a finite element sys-
tem, then exact numerical integration can be implemented via Gaussian quadrature
formulae. Second, as every residual minimization approach does, the method com-
putes a built-in residual representative, which is proven to be a reliable and efficient
a posteriori error estimator. Indeed, we have used this estimators to drive adaptive
procedures delivering regularized functionals up to any desired precision in the un-
derlaying discrete-dual norm. We have observed superior performance of adaptive
h-refinements in terms of convergence rates.
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On another hand, in terms of the discrete stability of our method, we exhibit
two compatible trial-test discrete pairing that can be used in every problem involving
rough functionals acting on W 1,q

0 (Ω) (see Propositions 8 and 9).
Some future research challenges may include the extension of our theory to

nonconforming settings and the regularization of rougher functionals, such as dipole
sources in electroestatics [5] or derivatives of Dirac deltas, which appear naturally in
high-order PDEs modeling of elastic plates and beams [54].

A Proof of Proposition 8

Through this proof, the symbol . will denote less or equal up to a mesh-independent
constant. Recall that we are under the hypothesis of shape-regular simplicial meshes
Th = {Ti}n

i=1. Let Π1 :V→P1(Th) be the Scott-Zhang interpolation operator (see [29,
Section 1.6.2]). For any Ti ∈ Th, the restriction Π1(v)|Ti ∈ P1(Ti) satisfies the local
estimation

‖Π1v− v‖Lq(Ti) . hi‖∇v‖Lq(∆Ti )
, ∀v ∈V, (36)

where hi = diam(Ti) and ∆Ti denotes the set of elements in Th sharing at least one
vertex with Ti (see [29, Lemma 1.130]). Moreover, Π1 is uniformly bounded with
respect to mesh parameters, i.e.,

‖Π1v‖V . ‖v‖V , ∀v ∈V. (37)

For each simplex Ti ∈ Th let bi : Ti → R be the bubble function defined in (24).
Consider now the (Fortin) operator Π : V 7→Vm locally defined by:

Πv|Ti := Π1v|Ti
+αibi,

where αi ∈ R is chosen such that the following equality holds true:∫
Ti

Πv =
∫

Ti

v, ∀v ∈V. (38)

Solving for αi we get:

αi =

(∫
Ti

bi

)−1 ∫
Ti

(v−Π1v). (39)

We will proceed to prove that Π satisfies the Fortin conditions (16) and (17).
First, for any gn = ∑

n
i=1 βiGi ∈ Gn, and any v ∈V , we have:

〈gn,Πv〉V ∗,V =
n

∑
i=1

βi

∫
Ti

Πv =
n

∑
i=1

βi

∫
Ti

v = 〈gn,v〉V ∗,V . (by (23) and (46))

Hence, condition (17) is satisfied. To prove (16), let us consider the reference element
T̂ and the affine mapping Fi : T̂ → Ti such that Fi(x̂) = Aix̂+ yi. Thus, if bT̂ denotes
the bubble in T̂ , then:

bi(x) = bT̂ ◦F−1
i (x), ∀x ∈ Ti.
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Moreover, we have the following estimations (see [29, Lemma 1.100]):

|detAi|=
|Ti|
|T̂ |

and ‖A−1
i ‖ ≤

hT̂
ρi

where ρi is the radius of the largest ball inscribed in Ti and ‖ · ‖ is the matrix norm
subordinated to the Euclidean norm in Rd . Notice that hT̂ and |T̂ | do not depend on
the mesh. Using the change-of-variables theorem we get:∫

Ti

bi =
∫

T̂
bT̂ |detAi|=

|Ti|
|T̂ |

∫
T̂

bT̂ =C|Ti|,

where C > 0 is a mesh independent constant. Hence, we can estimate |αi| (see (39))
as follows:

|αi|.
1
|Ti|
‖v−Π1v‖Lq(Ti)|Ti|

1
p =

1

|Ti|
1
q
‖v−Π1v‖Lq(Ti) .

hi

|Ti|
1
q
‖∇v‖Lq(∆Ti )

, (40)

where we have used (36) in the last inequality. Additionally, we estimate the bubble
function semi-norm by the following classical result (see [29, Lemma 1.101]):

‖∇bi‖Lq(Ti) . ‖A
−1
i ‖|detAi|

1
q ‖∇bT̂‖Lq(T̂ ) .

|Ti|
1
q

ρi
. (41)

Combining (40) and (41) we get:

|αi|‖∇bTi‖Lq(Ti) .
hi

ρi
‖∇v‖Lq(∆Ti )

. ‖∇v‖Lq(∆Ti )
, (42)

where the last inequality holds true because of the shape-regularity of the mesh.
Shape-regularity also implies that each element of the mesh is contained in a uni-
formly bounded (say, M ∈ N) number of sets like ∆Ti . Finally, (16) holds true since

‖∇Πv‖q
Lq(Ω)

=
n

∑
i=1
‖∇Πv‖q

Lq(Ti)
≤ 2q−1

n

∑
i=1

(
‖∇Π1v‖q

Lq(Ti)
+ |αi|q‖∇bi‖q

Lq(Ti)

)
. ‖∇Π1v‖q

Lq(Ω)
+M

n

∑
i=1
‖∇v‖q

Lq(Ti)
. ‖∇v‖q

Lq(Ω)
,

where we have used Hölder inequality, together with (37) and (42).

B Proof of Proposition 9

Again, through this proof, the symbol . will denote less or equal up to a mesh-
independent constant. The proof of Proposition 9 requires the following previous
lemma.
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Lemma 2 Under the hypothesis of Assumption 1, let {ϕi}Nv
i=1 be the set of nodal basis

functions spanning P1(Th)∩W 1,p
0 (Ω). There exists a (bi-orthogonal) set {ψi}Nv

i=1 ⊂
P2(Th)∩W 1,q

0 (Ω) such that:∫
Ω

ϕiψ j = ηi δi j, ∀i, j = 1, ...,Nv, (43)

where δi j denotes the Kronecker delta, and ηi denotes the scaling constant of the
patch Pi = suppϕi (see Assumption 1). Moreover we have the estimate:

‖∇ψi‖Lq(Ω) .
η

1
q

i
min
T∈Pi

ρT
, ∀i = 1, ...,Nv, (44)

where ρT denotes the diameter of the largest ball that can be inscribed in T .

Proof. By Assumption 1, the patch Pi supporting the nodal basis function ϕi has a
reference patch P̂i, having the same configuration of elements of Pi. Hence, the patch
P̂i has a single interior vertex denoted by x0. Each other vertex of this patch is linked
to x0 through a unique interior edge. Let ne be the number of exterior vertices of
the patch P̂i (equivalently, the set of interior edges of the patch P̂i). The local P1 trial
basis functions for this reference patch will consist in ne+1 shape functions {ϕ̂ j}ne

j=0,
where ϕ̂0 denotes the trial function associated with the interior vertex x0. We want to
construct a P2 test function ψ̂i, supported on the patch P̂i, such that:∫

P̂i

ϕ̂ jψ̂i = δ0 j, ∀ j = 0,1, ..,ne. (45)

We provide a two-dimensional procedure to construct such a ψ̂i, which can be easily
extended to three dimensions. Let us denote by {T̂1, ..., T̂ne} the set of simplicial el-
ements that make up the patch P̂i, and let {x1, ...,xne} be the set of exterior vertices
of the patch P̂i, enumerated so that T̂1 = conv(x0,x1,x2), T̂2 = conv(x0,x2,x3), . . . ,
T̂ne = conv(x0,xne ,x1). Consider a reference simplex S := {(s, t) ∈ R2 : s ∈ [0,1], t ∈
[0,s]} and observe that each element T̂j can be obtained from S through the affine
transformation (s, t) 7→ x0 + s(x j−x0)+ t(x j+1−x j) whose Jacobian is constant (we
are using the logical convention xne+1 = x1). The shape functions ϕ̂0, ϕ̂ j and ϕ̂ j+1,
restricted to the element T̂j, are such that:

ϕ̂0
(
x0 + s(x j− x0)+ t(x j+1− x j)

)
= 1− s,

ϕ̂ j
(
x0 + s(x j− x0)+ t(x j+1− x j)

)
= s− t,

ϕ̂ j+1
(
x0 + s(x j− x0)+ t(x j+1− x j)

)
= t,

for all (s, t) ∈ S. For a given constant κ 6= 0 (to be determined later), we propose the
following construction of ψ̂i restricted to the element T̂j:

ψ̂i

∣∣∣
T̂j

(
x0 + s(x j− x0)+ t(x j+1− x j)

)
= κ(s−1)(5s−3), ∀(s, t) ∈ S.
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Observe that ψ̂i is invariant with respect to the parameter t, and that ψ̂i vanishes
when restricted to the exterior edge conv(x j,x j+1), i.e., when s = 1. Moreover, this
construction is continuous across interior edges conv(x0,x j) = T̂j ∩ T̂j−1. Indeed,

ψ̂i

∣∣∣
T̂j

(
x0 + s(x j− x0)+0(x j+1− x j)

)
= κ(s−1)(5s−3), (since t = 0)

ψ̂i

∣∣∣
T̂j−1

(
x0 + s(x j−1− x0)+ s(x j− x j−1)

)
= κ(s−1)(5s−3). (since t = s)

Furthermore, ψ̂i is element-wise orthogonal to the shape functions {ϕ̂1, ..., ϕ̂ne}. In-
deed,∫

T̂j

ϕ̂ jψ̂i =
∣∣T̂j
∣∣κ

2

∫ 1

0

∫ s

0
(s− t)(s−1)(5s−3)dt ds =

∣∣T̂j
∣∣κ

4

∫ 1

0
s2(s−1)(5s−3)ds,∫

T̂j

ϕ̂ j+1ψ̂i =
∣∣T̂j
∣∣κ

2

∫ 1

0

∫ s

0
t(s−1)(5s−3)dt ds =

∣∣T̂j
∣∣κ

4

∫ 1

0
s2(s−1)(5s−3)ds,

where it is easy to see that the integral on the right-hand-side vanishes. Finally, we
observe that the integral

∫
T̂j

ϕ̂0ψ̂i do not vanish. So we can adjust the constant κ 6= 0
to get

∫
P̂i

ϕ̂0ψ̂i = 1, as desired.

Now, for each element T ⊂ Pi define ψi
∣∣
T = ψ̂i ◦F−1

T (see Assumption 1) and
take a nodal trial function ϕ j. If the support of ϕ j does not intersect Pi, then

∫
Ω

ϕ jψi =

0. Otherwise, there must be j∗ ∈ {0,1, ...,ne} such that ϕ j
∣∣
T = ϕ̂ j∗ ◦ F−1

T , for all
T ⊂ Pi. In that case, using the change-of-variables theorem and equation (30), we
have:∫

Ω

ϕ jψi = ∑
T⊂Pi

∫
T

ϕ jψi = ∑
T̂⊂P̂i

∫
T̃

ϕ̂ j∗ψ̂i
|T |
|T̂ |

= ηi

∫
P̂i

ϕ̂ j∗ψ̂i = ηiδ0 j∗ = ηiδi j,

since the case j∗ = 0 occurs exactly when j = i.
To estimate the norm of ψi, first observe that for each element T ⊂ Pi:

‖∇ψi‖Lq(T ) . ‖A−1
T ‖|detAT |

1
q ‖∇ψ̃i‖Lq(T̂ ) .

η

1
q

i
min
T∈Pi

ρT
‖∇ψ̃i‖Lq(T̂ ).

Hence,

‖∇ψi‖q
Lq(Pi)

= ∑
T⊂Pi

‖∇ψi‖q
Lq(T ) .

ηi

min
T∈Pi

ρ
q
T

∑
T̂⊂P̂i

‖∇ψ̃i‖q
Lq(T̂ )

=
ηi

min
T∈Pi

ρ
q
T
‖∇ψ̃i‖q

Lq(P̂i)
,

which leads to estimate (44).

Now, let us prove Proposition 9. Recall that we are under the hypothesis that
Th = {Ti}n

i=1 corresponds to a family of shape-regular simplicial meshes. Let Π1 :
V → P1(Th) be the Scott-Zhang interpolation operator, satisfying (for any Ti ∈ Th)
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the local estimation (36), together with the global boundedness property (37). Con-
sider the (Fortin) operator Π : V 7→Vm defined by:

Πv := Π1v+
Nv

∑
j=1

α jψ j,

where ψ j ∈ P2(Th) satisfies (43) and α j ∈R is chosen such that the following equal-
ity holds true: ∫

Ω

ϕi Πv =
∫

Ω

ϕi v, ∀v ∈V, ∀i = 1, ...,Nv. (46)

Solving for αi we get

αi =
1
ηi

∫
Ω

ϕi(v−Π1v). (47)

Observe that (46) implies property (17) of the Fortin operator. To prove property (16)
we start estimating αi. So let Pi := suppϕi be the patch of simplices supporting the
nodal basis function ϕi. We have:

|αi| ≤
1
ηi

∑
T∈Pi

‖ϕi‖Lp(T )‖v−Π1v‖Lq(T ) . ∑
T∈Pi

|T |
1
p

ηi
hT‖∇v‖Lq(∆T ) .

hi

ηi
|Pi|

1
p Ci(v),

where hi = maxT∈Pi hT , while ∆T is the subset of Th containing all the elements
sharing at least one vertex with T , and

Ci(v) :=

(
∑

T∈Pi

‖∇v‖q
Lq(∆T )

) 1
q

.

Let T̃ ⊂ Pi such that ρT̃ = minT∈Pi ρT . By quasi-uniformity of the patches, there is
a mesh-independent constant c > 0, such that hi ≤ chT̃ . Hence, by shape-regularity
we have that hi/ρT̃ . hT̃/ρT̃ is uniformly bounded from above. Next, using the esti-
mate (44) we get:

|αi|‖∇ψi‖Lq(Pi) .
|Pi|

1
p

η

1
p

i

hi

ρT̃
Ci(v).

(
∑

T⊂Pi

|T |
ηi

) 1
p

Ci(v) = |P̂i|
1
p Ci(v).

By shape-regularity, each element T of the mesh, is contained in an uniformly bounded
(say, M ∈ N) number of macro-patches like ∆T . This leads to the estimate:

Nv

∑
i=1
|αi|q‖∇ψi‖q

Lq(Pi)
.

Nv

∑
i=1

∑
T∈Pi

‖∇v‖q
Lq(∆T )

≤ (d +1)M‖∇v‖q
Lq(Ω)

. (48)
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Finally, we have:

‖∇Πv‖q
Lq(Ω)

= ∑
T∈Th

∥∥∥∇Π1v+ ∑
{i/T⊂Pi}

αi∇ψi

∥∥∥q

Lq(T )

≤ (d +2)q−1
∑

T∈Th

(
‖∇Π1v‖q

Lq(T )+ ∑
{i/T⊂Pi}

|αi|q‖∇ψi‖q
Lq(T )

)

. ‖∇Π1v‖q
Lq(Ω)

+
Nv

∑
i=1
|αi|q‖∇ψi‖q

Lq(Pi)
. ‖∇v‖q

Lq(Ω)
.
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