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Abstract: The paper reports on the coupling of Parity-Time (PT)-
symmetric whispering gallery resonators with realistic material and
gain/loss models. Response of the PT system is analyzed for the case of low
and high material and gain dispersion, and also for two practical scenarios
when the pump frequency is not aligned with the resonant frequency
of the desired whispering gallery mode and when there is imbalance in
the gain/loss profile. The results show that the presence of dispersion
and frequency misalignment causes skewness in frequency bifurcation
and significant reduction of the PT breaking point, respectively. Finally,
we demonstrate a lasing mode operation which occurs due to an early
PT-breaking by increasing loss in a PT system with unbalanced gain and
loss.
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1. Introduction

Photonics is emerging as a popular practical platform for the exploration of Parity-Time (PT)-
symmetric systems characterized by balanced loss and gain and having a threshold point at
which real eigenfrequencies of the system coalesce to become complex conjugates [1–4]. The
existence of this threshold point is essential to the unique properties of PT-structures, such as
unidirectional invisibility and simultaneous lasing and absorption [2,3]. This phenomena opens
new avenues for the realization of practical devices such as lasers, optical memory, optical
switches and logic-gates [5–11]. To date, PT-symmetric structures based on Bragg gratings and



coupled optical systems have been investigated both theoretically [2–4, 8, 12–19] and exper-
imentally [20–25]. Recently, a PT-symmetric system based on two coupled microresonators
and two fiber-taper waveguides has been experimentally demonstrated and shown to exhibit
direction-dependent behavior at a record low power of 1µW [21, 25]. This is primarily at-
tributed to strong field localization and build up of energy in the resonant whispering gallery
modes [21, 25], and has further strengthened the argument for using resonant structures rather
than waveguides as building blocks of PT-symmetric systems. In contrast to PT symmetric cou-
pled waveguide systems where the eigenmodes are purely real below the threshold point, the PT
symmetric coupled microresonators have complex eigenfrequencies below the threshold point
due to inherent radiation losses [3, 4, 13, 17].

In this paper we investigate the fundamental properties of the PT resonant system based
on two coupled whispering gallery resonators within the context of both realistic material
properties and practical operating constraints. In particular we discuss how practical disper-
sive properties of material gain and loss that satisfy the Kramers-Kronig relationship affect the
performance of microcavity-based PT resonant structures. Our surprising conclusion is that ac-
counting for large, yet realistic, levels of dispersion preserves the essential threshold-behaviour
predicted by completely PT-symmetric dispersionless models, while more moderate levels of
dispersion can completely change the character of the response of the system to increasing gain
and loss. In particular, when there is moderate dispersion the gain and loss materials respond
differently to frequency shifts in such a way that sharp threshold points give way to gradual
changes over a range of parameters. When dispersion is increased further, the response reverts
to threshold behaviour of the type seen in non-dispersive PT-symmetric systems, albeit with
some breaking of detailed quantitative symmetry.

Our recent work on dispersive PT-Bragg gratings has shown that material dispersion limits
the unidirectional invisibility to a single frequency which is in stark contrast to previous results
that assumed idealized gain/loss profile in order to demonstrate wideband unidirectional behav-
ior [19, 26]. In this paper, the performance of the microresonator-based PT system is analyzed
for practical scenarios involving: a) frequency mismatch between the cavity resonant frequency
and the material gain/loss dispersion peak and, b) imperfect balance of the gain and loss in the
system. The analysis of the microresonator-based PT system is achieved using an exact repre-
sentation of the problem based on boundary integral equations and explicit analytical results
are given for a weakly coupled system using perturbation analysis [27]. We concentrate on the
weakly-coupled limit in our detailed calculations because that captures the essential properties
of the threshold behavior of the PT-symmetry while allowing simple analytical calculations to
be used. Finally, real-time field evolution in a two microresonator PT-symmetric system is an-
alyzed for different levels of dispersion using the numerical time domain Transmission Line
Modelling (TLM) method [9, 28, 29].

2. PT symmetric coupled microresonators

In this section we describe the theoretical background of a PT-symmetric system based on two
coupled microresonators. The system, in which both microresonators have radius a and are sep-
arated by a gap g, is illustrated schematically in Fig. 1. The active and passive microresonators
have complex refractive indices nG and nL respectively, that are typically chosen to satisfy the
PT condition nG = n∗L, where * denotes complex conjugate, n = (n′+ jn′′), and n′ and n′′ rep-
resent the real and imaginary parts of the refractive index. In practice, localized gain might
be achieved by means of erbium doping and optical pumping of the active microresonator,
while masking the lossy microresonator as in [20–22, 25]. Both resonators are assumed to be
surrounded by air.

The refractive index of dispersive materials is frequency dependent but must also satisfy the



Fig. 1. Schematic of two coupled cylindrical microresonators or radius a and separated by a
distance g. Microresonators with gain and loss are denoted by µRG and µRL, respectively.

causality property between the real and imaginary parts of the material refractive index [30,31].
The material properties are conveniently modelled by assuming a linear dielectric constant that
uses a Lorentzian model for dispersion as in [32]

εr(ω) = ε∞− j
σ0

2ε0ω

(
1

1+ j(ω +ωσ )τ
+

1
1+ j(ω−ωσ )τ

)
. (1)

Here ε∞ denotes the permittivity at infinity, ωσ denotes the atomic transitional angular fre-
quency, τ is the dipole relaxation time and σ0 is related to the conductivity peak value that is
set by the pumping level at ωσ . The time-varying component has been assumed to be of the
form e jωt and therefore σ0 > 0 denotes loss while σ0 < 0 denotes gain. The parameter τ controls
the degree of dispersion, with τ = 0 corresponding to a dispersion-less system. Throughout this
paper, the frequency-dependent refractive index is expressed as n =

√
εr(ω) and the material

gain/loss parameter is expressed using the imaginary part of refractive index as γ = ωn
′′
.

3. Analysis of inter-resonator coupling in the frequency domain

We now provide an analysis of coupling between resonators based on boundary integral meth-
ods. This approach is particularly suited to perturbative approximation of the coupling strength
in the weak coupling limit but also provides an efficient platform for exact calculation when
coupling is strong. The calculation is based on an approach used in [27] to describe coupling
between fully bound states in coupled resonators and optical fibers, but adapted here to allow
for radiation losses. It is also similar to methods used in [33–35].

3.1. Notation and assumptions

We assume resonators of radius a, uniform refractive index with the electric field polarized
along the resonator axis. Then the mode taking the form ψL = (Jm(nLkr)/Jm(nLka))e jmθ inside
the isolated lossy resonator is such that the solution and its normal derivative on the boundary
of the resonator can be written as

a
∂ψL

∂n
= FL

m ψL, (2)

where

FL
m =

zJ′m(z)
Jm(z)

and z = nLka, (3)

where, k is the free-space wave number and ψG and FG
m being defined similarly for the gain

resonator. The treatment of coupling in the remainder of this section can be used for other
circularly-symmetric resonators such as those with graded refractive index or with different
boundary conditions, as long as an appropriately modified FL

m is substituted in eq. (2).



3.2. Exact solution using boundary-integral representation

An exact boundary integral representation of the coupled problem is conveniently achieved
by applying Green’s identities to a region Ω which excludes the resonators, along with an
infinitesimally small layer surrounding them (so that the boundaries BG and BL of the resonators
themselves lie just outside Ω). In Ω, we assume that the refractive index takes the value n0 = 1,
so that the free-space Green’s function is

G0(x,x′) =−
j
4

H0(k|x−x′|), (4)

where H0(z) = J0(z)− jY0(z) denotes the Hankel function of the second kind (and the solution
is assumed to have time dependence e jωt ). Then, applying Green’s identities to the region Ω

and assuming radiating boundary conditions at infinity leads to the equation

0 =
∫

BG+BL

(
G0(x,x′)

∂ψ(x′)
∂n′

− ∂G0(x,x′)
∂n′

ψ(x′)
)

ds′ (5)

when x lies on either BL or BG (and therefore just outside of Ω).
We now expand the solution on the respective resonator boundaries as Fourier series,

ψG = ∑
m

α
G
m e jmθG and ψL = ∑

m
α

L
me jmθL , (6)

in the polar angles θG and θL centered respectively on the gain and lossy resonators, running
in opposite senses in each resonator and zeroed on the line joining the two centers. The corre-
sponding normal derivatives can be written

∂ψG

∂n
= ∑

m

1
a

FG
m α

G
m e jmθG and

∂ψG

∂n
= ∑

m

1
a

FG
m α

G
m e jmθG . (7)

Using Graf’s theorem [36] to expand the Green’s function G0(x,x′) analogously in polar coor-
dinates on each boundary, the integral equation (5), evaluated separately for x on BL and on BG,
leads to a pair of matrix equations

DG
α

G +CGL
α

L = 0
CLG

α
G +DL

α
L = 0. (8)

Here,

α
G =


...

αG
m

αG
m+1
...

 and α
L =


...

αL
m

αL
m+1
...

 (9)

are Fourier representations of the solution on the boundaries of the gain and lossy resonators
respectively. The matrices DG and DL are diagonal with entries

DG,L
mm = Jm(u)Hm(u)

(
FG,L

m − uH ′m(u)
Hm(u)

)
, where u = ka, (10)

and provide the solutions of the isolated resonators. The matrices CGL and CLG describe cou-
pling between the resonators. The matrix CGL has entries of the form

CGL
lm = Jl(u)Hl+m(w)Jm(u)

(
FL

m −
uLJ′m(u)
Jm(u)

)
, (11)

where u = ka, w = kb and b is the center-center distance between the gain and lossy resonators.
The matrix CLG is defined analogously by exchanging the labels G and L.



3.3. PT-symmetry in the exact solution

The system eq. (8) can be presented more symmetrically by using the scaled Fourier coefficients

α̃
L
m = Jm(u)

(
FL

m −
uJ′m(u)
Jm(u)

)
α

L
m (12)

(along with an analogous definition of α̃G
m ). Then eq. (8) can be rewritten

D̃G
α̃

G +C̃α̃
L = 0

C̃α̃
G + D̃L

α̃
L = 0, (13)

where the diagonal matrices D̃G,L have entries

D̃G,L
mm =− j

Hm(u)F
G,L
m −uH ′m(u)

Jm(u)F
G,L
m −uJ′m(u)

, where u = ka, (14)

and the same (symmetric) matrix C̃, with entries

C̃lm =− jHl+m(w), (15)

couples solutions in both directions.
We have included an overall factor of− j in these equations to emphasise an approximate PT-

symmetry that occurs when nG = n∗L. Then, in the limit of high-Q whispering gallery resonances
for which we may approximate

jHm(u)' Ym(u) and jHl+m(u)' Yl+m(u), (16)

the matrices in eq. (13) satisfy the conditions(
D̃L)∗ ' D̃G and C̃∗ ' C̃ (17)

which are a manifestation of PT symmetry of the system as a whole: deviation from these
conditions is due to radiation losses.

3.4. Perturbative weak-coupling approximation

The system of eq. (13) can be used as the basis of an efficient numerical method for determining
the resonances of the coupled system with arbitrary accuracy. In practice, once the gap g =
b−2a between the resonators is wavelength-sized or larger, a truncation of the full system to a
relatively small number of modes suffices to describe the full solution.

In the limit of very weak coupling we may achieve an effective perturbative approximation
by restricting our calculation to a single mode in each resonator. We consider in particular the
case of near left-right symmetry in which

nG ≈ nL. (18)

PT symmetry is achieved by further imposing nG = n∗L, but for now we allow for the effects of
dispersion by not assuming that this is the case. We build the full solution around modes for
which

ψ± ≈ ψG±ψL, (19)

where ψG and ψL are the solutions of the isolated resonators described at the beginning of this
section. We use a single value of m for both ψG and ψL and in particular approximate the global



mode using a chiral state in which the wave circulates in opposite senses in each resonator. That
is, we neglect the coupling between m and −m that occurs in the exact solution.

Then a simple perturbative approximation is achieved by truncating the full system of eq.
(13) to the 2×2 system

M
(

α̃G
mm

α̃L
mm

)
= 0, where M =

(
D̃G

mm C̃mm
C̃mm D̃L

mm

)
. (20)

Resonant frequencies of the coupled problem are then realised when

0 = detM = D̃G
mmD̃L

mm−C̃2
mm. (21)

In the general, dispersive and non-PT-symmetric, case this reduces the calculation to a semi-
analytic solution in which we search for the (complex) roots of the known 2× 2 determinant
above, in which matrix elements depend on frequency through both k = ω/c and n = n(ω).

3.5. Further analytic development of the perturbative solution

To develop a perturbative expansion we let

D0
mm =

1
2
(
D̃G

mm + D̃L
mm
)

and DI
mm =

1
2 j

(
D̃G

mm− D̃L
mm
)

(22)

(and note that in the high-Q-factor PT-symmetric case, D̃G ' (D̃L)∗, both D0
mm and DI

mm are
approximately real). We assume that both DI

mm and Cmm are small and comparable in magnitude,
and expand angular frequency

ω1,2 = ω0±
∆ω0

2
+ · · · (23)

about a real resonant angular frequency of an averaged isolated resonator satisfying

D0
mm(ω0) = 0. (24)

Then to first order the coupled resonance condition becomes

0 = detM = ∆ω
2
0 D0

mm
′
(ω0)

2 +DI
mm(ω0)

2−C̃mm(ω0)
2 + · · · (25)

from which the angular frequency shifts can be written

∆ω0

2
=

√
C̃mm(ω0)2−DI

mm(ω0)2

D0
mm
′(ω0)

, (26)

where D0
mm
′
(ω) denotes a derivative of D0

mm(ω) with respect to frequency.
We then arrive at a simple condition

C̃mm(ω0)
2 = DI

mm(ω0)
2

for threshold (at which ∆ω0 and the two resonant frequencies of the coupled system collide). In
the PT-symmetric case, where C̃mm and DI

mm are approximately real (and whose small imaginary
parts represent corrections due to radiation losses), we therefore have a prediction for a real
threshold frequency.



4. Results and discussions

In this section, the impact of dispersion on the performance of the PT coupled microresonators
is analyzed. Frequency mismatch between the resonant frequency of the microresonator and
gain pump frequency is investigated for practical levels of dispersion and the practical impli-
cations of a slight unbalance between the gain and loss in the system are investigated. We
conclude the section with an investigation of how coupling between resonators manifests itself
in the time development of solutions.

4.1. Effects of dispersion on threshold behavior in the frequency domain.

For all cases, weakly coupled microresonators are considered, the coupled resonators with
a dielectric constant ε∞ = 3.5 [32] have radius a = 0.54µm and are separated by distance
g = 0.24µm. Operation at two different whispering-gallery modes is analysed, namely a low
Q-factor mode (7,2) and a high Q-factor mode (10,1), noting that the mode number (m,n) refer
to the azimuthal and the radial order respectively. The corresponding isolated resonator reso-
nant frequencies are respectively f (7,2)0 = 341.59 THz and f (10,1)

0 = 336.85 THz, with Q-factors
Q(7,2) = 2.73×103 and Q(10,1) = 1.05×107.

Figure 2 shows the real and imaginary part of the eigenfrequencies ω1 and ω2 of the PT-
symmetric coupled microresonators with balanced gain and loss, γ0 =−γG = γL, and is depicted
as a function of the gain/loss parameter γ0 = |ω0n

′′
(ω0)| for both the low and high Q-factor

modes. The gain and loss are assumed to be tuned to the resonant frequency of an isolated
microresonator, i.e. ωσ = ω0 ≡ 2π f0. Three different levels of dispersion, controlled by the
parameter τ defined in Sec. 2, are considered. These are ωσ τ = 0 corresponding to the case
of no dispersion, ωσ τ = 212 taken from [32] to exemplify the case of high dispersion and
ωσ τ = 0.7 to exemplify the case of low dispersion.

Figure 2(a) and 2(b) shows the frequency splitting of the real and imaginary part of the com-
plex eigenfrequencies for the case of no dispersion. In the absence of gain/loss, where γ0 = 0,
the supermodes beat at a rate corresponding to the frequency differences ω1−ω2 = 3.823 rad/ps
and 1.164 rad/ps for the (7,2) and (10,1) modes respectively. Figure 2(a) indicates that operation
in a higher Q-factor mode results in weaker coupling between the microresonators compared to
the case of operation in the lower Q-factor mode. Increasing the gain and loss in the system, de-
creases the beating rate and the supermodes coalesce at the threshold points of γ0 = 6.86 rad/ps
and 2.1 rad/ps for the low and high Q-factor modes of operation respectively, confirming that
the high-Q factor mode has a lower threshold point [21]. In the case of operation in the low
Q-factor mode, the eigenfrequencies shown in Fig. 2(b) have a significant constant and posi-
tive imaginary part before the threshold point, which is a consequence of the higher intrinsic
losses due to radiation in that case. The corresponding imaginary part is insignificant in the
case of the high Q-factor mode, for which radiation losses are much smaller. Furthermore it is
noted here that the coupled system first starts to lase, i.e. one of the eigenfrequencies satisfies
Im(ω1,2−ω0)< 0, only when operated significantly beyond the threshold γ0 = 7 rad/ps for the
low Q-factor operation while this onset occurs immediately after the threshold point in the high
Q-factor case.

Figure 2(c) and 2(d) shows the real and imaginary parts of the eigenfrequencies for the case
of strong dispersion, corresponding to the parameter values ωσ τ = 212 taken from [32]. These
are again shown for both high and low Q-factor modes. It is noted that the threshold point for the
low Q-factor mode is reduced from γ0 = 6.86 rad/ps to γ0 = 6.47 rad/ps in this case while for the
high Q-factor mode it remains unchanged at 2.1 rad/ps (compared to the case of no dispersion).
Below the threshold point the imaginary parts of the eigenfrequencies are not constant, but are
instead skewed towards a lossy state with positive and increasing imaginary part. Extension



Fig. 2. Frequency bifurcation of PT-coupled microresonator with a balanced gain (γG =
−γ0) and loss (γL = γ0) as a function of gain/loss parameter at the peak of pumping beam
γ0 = ωσ n

′′
(ωσ ) for three different dispersion parameters, (a,b) ωσ τ = 0, (c,d) ωσ τ = 212

and (e,f) ωσ τ = 0.7

beyond the threshold point shows that the imaginary parts of the eigenfrequencies do not split
evenly and are also skewed towards overall loss, implying that in the highly dispersive case the
eigenfrequencies both are complex but no longer complex conjugates after the threshold point.

The real and imaginary parts of the eigenfrequencies for the case of low levels of dispersion,
for which we take ωσ τ = 0.7, are shown in Fig. 2(e) and 2(f). Figure 2(e) shows that there is no
clear threshold point in this case: the imaginary parts split for very low value of the gain/loss
parameter γ0, with no sharp point of onset. The appearance of a threshold point typically asso-
ciated with PT-behavior is lost and the eigenfrequencies are always complex valued.

The key conclusion to be made from Fig. 2 is therefore that PT-like threshold behavior is
observed in the cases of no dispersion and of high dispersion, but not for cases of intermedi-
ate dispersion. While there is some skewness in the high-dispersion case, which amounts to a
quantitative deviation from strict PT-symmetry, there is an essential qualitative similarity to the
dispersionless case in which there appears to be a sharp threshold. By contrast, in the case of
intermediate dispersion there is no sharp transition point and the imaginary parts of the two
frequencies begin to diverge from the beginning.

To further investigate and explain this phenomenon, we examine the dependence of the real



Fig. 3. (a) Impact of dispersion to the real part of material at atomic transitional angular
frequency ωσ due to the presence of gain and loss for different dispersion parameters; (b)
Contrast between the real part of eigenfrequencies of PT-coupled microresonators for two
different gain/loss parameter, i.e. γ0 = 7.5 rad/ps for (7,2) and 2.54 rad/ps for the (10,1)
mode as function of dispersion parameter τ .

Fig. 4. Frequency bifurcation of coupled microresonators with balanced gain and loss as
function of gain/loss parameters γσ , for two different atomic transitional frequencies ωσ =
2π( f0 +δ ) with δ =−0.1 and 0.1 THz.

part of the complex refractive index on the dispersion parameter 2ωσ τ . This dependence is plot-
ted in Fig. 3(a) for the cases of both gain and loss, for which we respectively take σ0 =±2ε0ωσ

and ωσ = ω0. Figure 3(a) shows that the real parts of the refractive indices behave differently
for the cases of loss and gain in the system, with the maximum difference occurring when
τ = 1/(2ωσ ). However, in two limiting cases τ = 0 (dispersion-less system) and τ→∞ (strong
dispersion), the real parts of the refractive index converge. This means that the PT condition
nG = n∗L can only be satisfied accurately for the cases of no dispersion and of high dispersion.
For the case of intermediate dispersion there is necessarily some discrepancy between the real
parts of the refractive indices of the resonators.

Figure 3(b) shows the minimum difference in the real parts of the two eigenfrequencies



for different dispersion levels and operated at a fixed value of the gain/loss parameter, i.e. at
γ0 = 7.5 rad/ps for the low Q-factor and at 2.54 rad/ps for high Q-factor modes of operation.
These values of the gain/loss parameter are chosen to lie above the expected threshold so that
qualitatively PT-like behavior would imply eigenfrequencies with a common real part. Figures
3(a) and 3(b) confirm that the maximum difference between real parts of the two refractive
indices coincides with the maximum deviation from PT-like threshold behavior, where the dif-
ference between real parts of the eigenfrequencies is greatest. This result further confirms the
fact that realistic levels of dispersion preserve the essential features of PT behavior.

Having confirmed that realistic levels of dispersion preserve PT behavior, Figure 4 considers
a practical scenario in which there is high dispersion ωσ τ = 212 and a frequency mismatch be-
tween the resonant frequency and the gain/loss atomic angular frequency. The material atomic
frequency is defined to be ωσ = 2π( f0 +δ ), where δ is the mismatch parameter. The structure
is operated with balanced gain and loss, i.e. γG =−γL and two values are assumed for the fre-
quency mismatch, namely δ = −0.1 and 0.1 THz. Figure 4(a)-4(b) shows the results for the
low Q-factor mode (7,2) and Fig. 4(c)-4(d) for the high-Q factor mode (10,1). In both cases
there is no sharp threshold point for the real parts of eigenfrequencies and the imaginary parts
begin to diverge at low gain/loss values. Neither are the imaginary parts symmetrically placed
about a branching value. This result confirms the fact that PT behavior is preserved only when
the angular transitional frequency of the dispersive gain/loss profile is aligned with the resonant
frequency of the microresonators. If that is not the case, the frequency misalignment causes the
coupled system to continue to beat after a threshold region.

Fig. 5. Complex eigenfrequency in a PT-coupled microresonator system with variable gain
and fixed loss shown as a function of gain parameter |γG|, dispersion parameter ωσ τ = 212
[32] and shown for 3 different fixed loss value, i.e. γL = 5.565, 6.4281, and 7.291 rad/ps.

Another practical scenario is considered in Fig. 5 where the gain and loss are not balanced,
i.e. µRL has a loss γL while µRG has a gain γG. Figure 5(a) and 5(b) shows the real and imag-
inary parts of the eigenfrequency for three different values of loss namely, γL = 5.565, 6.4281
and 7.291 rad/ps which correspond to values below, at, and above the threshold point of a PT
symmetric structure with balanced gain and loss respectively. The low Q-factor mode is consid-
ered with a practical dispersion parameter of ωσ τ = 212 as taken from [32]. Interestingly, we
now observe that the PT threshold point can also exist for structures with unbalanced gain/loss
as shown by the plots for γL = 5.565 rad/ps and γL = 7.2910 rad/ps in Fig. 5. In the former case,
the PT threshold is increased and in the latter case the PT threshold is decreased compared to
the PT threshold of the balance structure. Of special interest is the observation that increasing
loss results in the reduction of the PT threshold which consequently reduces the levels of gain
at which lasing occurs. This counter-intuitive principle of switching lasing on by increasing
loss has been experimentally demonstrated in [22] where a metal probe is used to enhance loss
in the lossy microresonator.



Fig. 6. (a) Spatial electric field distribution of the coupled microresonators operated in the
(7,2) mode. The black dashed line denotes the monitor line. The temporal evolution (b) and
spectra (c) of the field on the monitor line are shown in the absence of gain and loss.

4.2. Real time operation of PT symmetric coupled microresonators

In this section the real-time operation of the PT-symmetric coupled microresonators is demon-
strated for different levels of dispersion. For this purpose, the two-dimensional (2D) time-
domain Transmission Line Modeling (TLM) numerical method is used. A more detailed de-
scription of the TLM method is given in [28, 29] and the implementation of general dispersive
materials for PT-symmetric Bragg gratings is demonstrated in [10, 19]. In each of the simu-
lations shown in this section, the low Q-factor (7,2) mode is excited by a very narrow-band
Gaussian dipole located in µRG whose frequency is matched to the resonant frequency of this
mode. Depending on the levels of gain and loss, and their relation to the threshold points, we
find in practice, however, that small unintentional initial excitations of the high Q-factor (10,1)
mode may grow to become a significant feature and even dominate the evolved state. In all
cases we find that the TLM simulations are consistent with the frequency-domain calculations
provided in the previous section and in fact have been used to independently validate the pertur-
bation analysis results presented in Figs. 2–5, although the detailed calculations are not reported
here.

We begin with the case of the evolution from the low Q-factor mode using a model with no
dispersion. Figure 6(a) shows the spatial electric field distribution of coupled microresonators
with no gain and loss (γ0 = 0) and operating at the resonant frequency of the low Q-factor (7,2)
mode. The black dashed line denotes the monitor line on which the electric field is observed
during the TLM simulation. Figure 6(b) and 6(c) show the temporal evolution and the spectra
of the electric field observed along the monitor line for the case of no gain and loss.

The case of no gain and loss, reported in Fig. 6(b), shows a typical oscillation of the electric
field between the microresonators having a regular beating pattern in which maximum intensity
being observed in one microresonator corresponds to minimum intensity being observed in the
other. It is noted that the slight modulation in the beating profile pattern is due to the uninten-



Fig. 7. The temporal evolution and spectra of the field on the monitor line are shown for
different gain/loss parameters, (a,b) for γ0 = 4.3 rad/ps and (c,d) for γ0 = 7.5 rad/ps with a
negligible dispersion parameter using the TLM method.

tional excitation of the higher Q-factor mode (10,1). Figure 6(c) shows the frequency content
of the modes, indicating the presence of two resonating frequencies centered around f (7,2)0 , in
agreement with Fig. 2(a).

The real-time performance of PT-coupled microresonators with balanced gain and loss γG =
−γ0, γL = γ0 with no dispersion is depicted in Fig. 7. The temporal evolution and the spectra of
the electric field are observed along the monitor line for two levels of gain and loss: levels of
gain and loss γ0 = 4.3 rad/ps, i.e. lower than the threshold point of the low Q-factor mode but
beyond the threshold of the high Q-factor mode in Fig. 7(a) and 7(b) and levels of gain and loss
γ0 = 7.5 rad/ps, i.e. lying above the threshold points of both modes in Fig. 7(c) and 7(d).

Figure 7(a) shows the energy beating between the microresonators with gain/loss γ0 =
4.3 rad/ps, set below the threshold point of the low-Q-factor mode. It is noticeable that beating
between microresonators is reduced and is no longer periodic. Additionally, Fig. 7(a) indicates
the presence of additional modes, observable at later times. Frequency analysis of the fields
is given in Fig. 7(b) and shows an additional peak at 336.85 THz, which corresponds to the
resonant frequency of the mode (10,1), explaining the high frequency beating in Fig. 7(a). Re-
ferring to Fig. 2(a) it can be seen that at γ0 = 4.3 rad/ps, the (10,1) mode is operating above
its threshold point and thus experiencing amplification, whilst the (7,2) mode is still below its
threshold point.

A further increase in gain/loss to γ0 = 7.5 rad/ps, in Fig. 7(c), shows an exponentially grow-
ing field in the gain microresonator with no beating between the resonators and a stronger
presence of the high Q-factor mode as shown in Fig. 7(d). Referring to Fig. 2(a) and 2(b) it is
confirmed that for γ0 = 7.5 rad/ps both low and high Q-factor modes are operating above the
threshold.

Figure 8 shows corresponding results for the case of high dispersion with ωσ τ = 212. We
once again choose gain/loss parameters γ0 = 4.3 rad/ps and γ0 = 7.5 rad/ps but omit the case of
zero gain/loss here. Figure 8(a) shows a decaying beating pattern. The corresponding spectral



Fig. 8. Temporal and spectra of electric field along the monitor line for coupled PT mi-
croresonators with balanced gain and loss parameters operated for (7,2) mode with prac-
tical dispersion parameters ωσ τ = 212 [32] and for two different gain/loss parameter, i.e.
(a,b) γ0 = 4.3 rad/ps and (c,d) γ0 = 7.5 rad/ps.

analysis in Fig. 8(b) shows that the beating may be attributed to low Q-factor modal frequencies,
indicating that the highly dispersed gain/loss profile has stabilized the operation of PT-coupled
resonators system at a desired mode of operation. For operation with gain/loss parameter γ0 =
7.5 rad/ps, the temporal response in Fig. 8(c) indicates an exponentially growing field with no
presence of high order modes. The spectrum in Fig. 8(d) shows a single peak at the resonant
frequency of the (7,2) mode, confirming that the resonators are operating above the PT threshold
point. The strongly dispersive gain/loss profile limits operation of PT-coupled microresonator
system to the low Q-factor (7,2) mode only in this case. This again confirms the result that when
the material atomic frequency is chosen to be at a desired resonant frequency, the PT-symmetry
is limited to that particular mode only, as in the case of periodic potentials [19, 31].

Figure 9 investigates the real-time operation of the PT structure with unbalanced gain and
loss shown in Fig. 5. Here, we apply the same scenario as in [22] where the gain in the active
microresonator is fixed at γG = −7.053 rad/ps and the loss is varied in the passive microres-
onator. The low Q-factor mode with practical dispersion parameters of ωσ τ = 212 is consid-
erd [32]. Figure 9(a) shows the electric field observed along the monitor line for the case of
loss γL = 5.565 rad/ps, i.e. more gain than loss in the system. It can be seen that there is a
non-periodic and long temporal beating pattern. The field is not growing which indicates that
the system is stable and is not lasing. The spectral decomposition shown in Fig. 9(b) is unable
to distinguish the splitting of the resonant frequency is due to the limited spectral resolution of
the Fourier transformation of the time domain simulation result.

Figure 9(c) shows the temporal evolution of the field for the case of γL = 6.4281 rad/ps. It
can be seen that there is no beating between the resonators and no growing field, suggesting
that structure is operating above the PT threshold point but before the lasing point which occurs
at γG = −7.377 rad/ps (Fig.5(b)). The spectral analysis shows only a single peak centered at
f (7,2)0 .

Figure 9(e) shows the temporal evolution for γL = 7.291 rad/ps and γG = −7.053 rad/ps,



Fig. 9. Temporal and spectra of electric field along the monitor line for coupled PT mi-
croresonators with unbalanced gain and loss operated for (7,2) mode with practical disper-
sion parameters ωσ τ = 212 [32], i.e. (a,b) γL = 5.565 rad/ps, (c,d) γL = 6.4281 rad/ps and
(e,f) γL = 7.291 rad/ps while the gain parameter is kept constant at γG =−7.053 rad/ps.

i.e. more loss than gain in the system. It can be observed that the field is growing with no
beating between the microresonators, suggesting lasing action. This result is in agreement with
observations in [22] where loss induced lasing is demonstrated. Corresponding spectrum is
depicted in Fig. 9(f) has a sharp peak centered at f (7,2)0 .

5. Summary and conclusion

In the paper the impact of material dispersion on PT-symmetric coupled microresonators has
been analyzed. It has been shown that the practical case of high dispersion preserves the require-
ment for a PT structure. However our results shows that this is only the case when the material
atomic frequency is aligned with the resonant frequency of the microresonator. This comes as a
direct consequence of the Kramers-Kronig relationship which implies that changes in the imag-
inary part of the refrective index caused the real part of the refractive index to change too. In ad-
dition, we also demonstrate the principle of loss-induced lasing mechanism which is triggered
by an early PT-symmetry breaking. Real-time operation of PT-coupled microresonators verifies
that the dispersion due to the Kramers-Kronig relationship limits the operation of PT-coupled
microresonators to a single frequency and hence forbids multi-mode PT-symmetry breaking.


