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A series of quantum search algorithms have been proposed recently providing an algebraic speedup
compared to classical search algorithms from N to

ffiffiffiffi

N
p

, where N is the number of items in the search space.
In particular, devising searches on regular lattices has become popular in extending Grover’s original
algorithm to spatial searching. Working in a tight-binding setup, it could be demonstrated, theoretically,
that a search is possible in the physically relevant dimensions 2 and 3 if the lattice spectrum possesses Dirac
points. We present here a proof of principle experiment implementing wave search algorithms and directed
wave transport in a graphene lattice arrangement. The idea is based on bringing localized search states into
resonance with an extended lattice state in an energy region of low spectral density—namely, at or near the
Dirac point. The experiment is implemented using classical waves in a microwave setup containing weakly
coupled dielectric resonators placed in a honeycomb arrangement, i.e., artificial graphene. Furthermore, we
investigate the scaling behavior experimentally using linear chains.
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Introduction.—Currently, one of the most fruitful
branches of quantum information is the field of quantum
search algorithms. It started with Grover’s work [1]
describing a search algorithm for unstructured databases,
which has been implemented experimentally in NMR [2,3]
and in optical experiments [4]. More recently, spatial
quantum search algorithms have been proposed based on
the quantum walk mechanism [5,6]. All of these algorithms
can achieve up to quadratic speedup compared to the
corresponding classical search. For quantum searches on
generic d-dimensional lattices, certain restrictions have
been observed, however, depending on whether the under-
lying quantum walk is discrete [7] or continuous [8]. While
effective search algorithms for discrete walks on square
lattices have been reported for d ≥ 2 [9,10], continuous-
time quantum search algorithms on the same lattice show
speedup compared to the classical search only for d ≥ 4

[11]. Experimental implementations of discrete quantum
walks need time stepping mechanisms such as laser pulses
[12–17]. By switching to a continuous-time evolution
based, for example, on tight-binding coupling between
sites, one can avoid time discretization in an experiment. It
has been shown in Ref. [18] that continuous-time quantum
search in 2D is indeed possible when performed near the
Dirac point in graphene or, more generally, for lattices with
a cone structure in the dispersion relation [19], i.e., a linear
growth of the density of states (DOS). This effect adds a

new dimension to the material properties of graphene
[20,21] with potential applications in sensing and detection
as well as directed charge carrier transport. This may
provide new ways of channeling intensity and information
across lattices and between distinct sites, such as for
single-molecule sensing, as described in Refs. [22,23].
In this Letter, we present the first proof-of-principle

experiment for a continuous 2D search in a tight-binding
setup based on a microwave experiment using artificial
graphene, as discussed in Refs. [24–26]. As was already
noted by Grover and co-workers, “quantum” searching is
often a pure wave phenomenon based on interference alone
and can thus also be implemented using the single particle
Schrödinger equation [27] or classical waves such as
coupled harmonic oscillators [28,29] or wave optics
[30]. A wave search amongst N sites will take place in a
full N-dimensional state space, while a full quantum search
can be implemented with only logN particles. The

ffiffiffiffi

N
p

speedup is independent of this resource compression issue.
In the following, we recapitulate briefly the theory of

quantum searching on graphene and describe the exper-
imental setup. We then demonstrate both searching and
directed transport in graphenelike lattice structures.
The

ffiffiffiffi

N
p

scaling behavior with a number of sites will be
demonstrated experimentally using linear chains.
Theoretical background.—All quantum search algo-

rithms starting from Grover’s search on an unstructured
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database are based on the same principle: the system is set
up by bringing an extended state of the (unperturbed)
system into resonance with a localized state originating
from a perturbation, thereby forming an avoided crossing in
the spectrum of resonances. One then uses the two-level
dynamics at the avoided crossing in order to rotate the
system from the extended state into the localized state, thus
“finding” the position of the perturbation [31,32]. The
subtleties in setting up such a search lie in (i) choosing an
unperturbed system with eigenstates extending uniformly
across all sites, (ii) finding a suitable perturbation which
carries a localized state, and (iii) working in an energy
range with a low density of states, making it possible to
isolate the two-level crossing from the rest of the spectrum.
Note that the starting state can also be a localized state
which couples into the search state via an extended state, as
in the quantum state transfer setup described in Ref. [32]
or the continuous Grover search algorithm presented in
Refs. [29,33,34].
In the following, we will focus on continuous-time walks

on regular, finite lattices in a tight-binding setup. The
entries in the database are represented by the N lattice
sites and associate orthonormal states fjiigNi¼1 spanning an
N-dimensional Hilbert (search) space. The system is
described by a tight-binding HamiltonianH0 with associate
eigenstates fjeigNe¼1. The extended eigenstates most suit-
able for a search are those corresponding to reciprocal
lattice vectors at k ¼ 0 or near the band edge. We introduce
a perturbation of the form H ¼ H0 þW, with W support-
ing a localized state at the “marked site” being in resonance
with a uniform extended state. The interaction at the
avoided crossing is controlled by the overlap integral
jhijeij2 ≈ N−1, which leads to an energy gap of order
1=

ffiffiffiffi

N
p

. The search is started by preparing the system in
an extended state jei. The state then evolves according
to jψðtÞi ¼ e−iHt=ℏjei, describing a rotation taking place
predominantly in the two-dimensional subspace spanned
by jii; jei. Performing a measurement after the system
has evolved into jii at a time tc ¼ Oð ffiffiffiffi

N
p Þ completes the

search.
For generic lattices, the number of states with energy less

than E in d dimensions scales typically as NEd=2. One thus
expects the first state above the ground state to be at
an energy E1 ¼ OðN−2=dÞ. An energy separation between
the states at the avoided crossing [being at a distance
OðN−1=2Þ] and the rest of the spectrum is thus only possible
for d ≥ 4 in the large N limit. Running the search at a Dirac
point overcomes this problem; here the energy scaling is
reduced to E1 ¼ OðN−1=dÞ and searching becomes possible
for d ≥ 2; the search time is then proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi

N lnN
p

,
as shown in the theoretical studies in Refs. [18,19]. In
contrast to the treatment in Ref. [18], the perturbation W
introduced in this Letter is—in terms of coupling an
additional site to the lattice state jii with the perturber’s

on-site energy—tuned to an extended state close to the
Dirac point.
Experiments on artificial graphene.—The experimental

microwave setup is shown in the inset of Fig. 1. A metallic
plate supports ceramic cylinders of height h ¼ 5 mm and
radius r ¼ 4 mm which have a high index of refraction
(n ≈ 6), thus acting as resonators for a transverse electric
resonance, called TE1, at ν0 ≈ 6.65 GHz. The system is
closed from above by a metallic top plate at a distance of
hp ¼ 16 mm (not shown). We form a “graphene flake” by
positioning 216 resonators in a hexagonal lattice (see inset
of Fig. 1), thus creating artificial graphene [24–26]. The top
plate holds a loop antenna coupling via the magnetic field
into the TE1 modewhich can be positioned arbitrarily in the
xy plane above each resonator. A kink antenna is placed at a
fixed position. For details on the experimental setup and its
relations to a tight-binding model, refer to Ref. [26]. In
particular, the reflection of the movable loop antenna at the
center of the resonator is proportional to the intensity of the
eigenmodes jΨðrnÞj2, where n labels the resonator. These
reflection measurements determine the LDOS and, by
integrating over n, the DOS as well (for details, refer to
Ref. [26]). A transmission measurement from the fixed
antenna 1 positioned at r0 to the movable antenna 2
positioned at rn yields amplitudes as well as phases. We
conduct the experiment in the frequency domain, but the
results can be converted from the frequency to the time
domain without any loss of information. The DOS for the
artificial graphene flake close to the Dirac point is shown in
Fig. 1. One can clearly identify two isolated states, which
are extended lattice states. The lower one is denoted by νl
and the upper one by νu. We will use the frequencies of
these states near the Dirac point as working points for our
search algorithm. The boundary has been chosen to contain
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FIG. 1 (color online). (Inset) A photograph of the artificial
graphene flake, including the supporting metallic plate and the
perturber resonators at the boundary (white arrows). The graph
shows the DOS of the unperturbed flake (for details, see
Ref. [26]), i.e., without a single resonator and dimer attached.
The resonance frequencies of the single resonator νsr and the
dimer νdim are marked by the dashed vertical lines.
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only armchair edges, which do not create any edge states
[35]. Edge states are typically present at the Dirac fre-
quency and could potentially disturb the search effect.
In the next step, we attach two perturbations at the side of
the flake; see the inset of Fig. 1. The perturbation in the
foreground is a single resonator with eigenfrequency νs
close to νu, the one in the background consists of a dimer,
that is, two strongly coupled resonators, with its lower
frequency νdim adjusted to νl (see also the dashed lines in
Fig. 1). We have chosen this dimer configuration for having
a parameter to fine-tune the frequency νdim. The perturba-
tions induce new resonance states interacting with the
lattice states νl and νu. This setup allows for a search at two
different frequencies—the search thus acts as a sensitive
switch in frequency space.
We now obtain the transmission function S12ðr0; rn; νÞ

measured at every position rn and frequency ν; the time
dynamics yielding the search is obtained by Fourier trans-
formation (FT) of S12ðr0; rn; νÞ in a small frequency
window around either νl or νu. Such a FT corresponds
to a time dynamics induced by a pulse of the form
expðiνitÞ sinðΔitÞ=t at the position r0 of antenna 1, where
i ¼ l or u and Δi corresponds to the frequency window
around νi. Note that the pulse at a given νi is independent of
the position of the resonator to be searched for and will find
this resonator wherever it is positioned. We would like to
emphasize that the signal obtained by FT is completely
equivalent to a direct measurement in the time domain
using a microwave pulse generator [36,37]. Figures 2(a)
and 2(c) show the thus obtained initial state Pðrn; tÞ ¼
jFT½S12ðrn; νÞ�j2 at t ¼ 0 for the two different initial
frequency windows. The state shown in Fig. 2(a) involves
only frequencies close to νl; in Fig. 2(c) only frequencies
close to νu are included. After some time t ¼ Tdim (t ¼ Ts),

the dimer (the single resonator) is illuminated and the
perturbation is thus found [see Figs. 2(b) and 2(d)]. The
search times Tdim and Ts are slightly different due to
differences in the coupling of the perturbation to the
corresponding extended states.
By working near the Dirac point, the search can be

extended to an arbitrary number of resonators N in
principle; in praxis, the size of our model system is limited
due to the overall absorption (a quality factor around 1000).
A detailed analysis of how the search time scales with N is
thus not possible here. Wewill demonstrate this in a slightly
different setup using a linear chain at the end of the Letter.
Our experiment demonstrates that the effect of spatial

searching can be achieved in a graphenelike setup with
tight-binding interaction. This is encouraging as the model
here differs significantly from the theoretical study pre-
sented in Ref. [18] due to different boundary conditions,
experimental uncertainties, and absorption. Our results
point towards a completely new set of applications in
the actual carbon material—graphene—where the limita-
tions due to absorption are less severe. In addition to
forming the basis of a device with fast searching facility, as
demonstrated above, the results presented in Fig. 2 can also
be interpreted in the framework of directed electron trans-
port. The device can be used as a sensitive switch, where
current will be directed either to the upper (dimer) or
lower (single resonator) port by a small shift in the carrier
frequency of the input pulse.
Spatial quantum search can also be used for communi-

cation and “quantum state transfer” [18,32,39] by per-
turbing the lattice with two equivalent resonators whose
eigenfrequencies are both tuned to a single eigenfrequency
of the unperturbed lattice. This scenario can also be
interpreted as a search starting from one resonator and
finding the other similar to the search algorithm presented
in Refs. [29,34]. The perturbers are attached at two different

FIG. 2 (color online). (a) and (c): The initial lattice state at t ¼ 0
for two different initial frequency ranges is shown (a) for the
range around the lower lattice state νl including the dimer
frequency νdim and (c) the range around νs including νu. (b)
and (d): The illuminated perturber state at the search time
t ¼ Tdim and Ts, respectively. The resonators are indicated by
the black circles and the color code corresponds to the intensity
Pðr; tÞ (dark red: high probability and white: low probability).
The color code is rescaled to the maximal value. See the
Supplemental Material [38] for a video showing the full
dynamics.

Time

(a)

(b)

(c)

FIG. 3 (color online). Intensity propagation in an artificial
graphene flake with two equal perturbing resonators attached.
The initial state at t ¼ 0 (a) is localized at the upper resonator and
is transferred via a lattice state (b) to the state sitting on the
opposite resonator (c). The presentation is as in Fig. 2. See the
SupplementalMaterial [38] for a video showing the full dynamics.
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positions to the lattice and interact only via the lattice state.
Launching an initial pulse at r0 will illuminate both
resonators equally, but with reduced brightness. If we,
however, prepare the initial state in one of the perturbing
resonators and let the system evolve thereafter, the pulse
will actually travel from the initial resonator via the lattice
to the second resonator. The evolution is presented in
Fig. 3. This time the upper resonators [Fig. 3(a)] is
illuminated initially; we then go to a state living both in
the lattice and on the two perturbing resonators [Fig. 3(b)].
Then the other resonator lights up [Fig. 3(c)] and (nearly)
the entire amplitude is transferred from one resonator to the
other. This opens the way towards directed signal transfer
and control in graphene. However, graphene cannot yet be
manipulated on a single atom level, as would be necessary
for making use of the effects described in this Letter; our
results may guide future research efforts in this direction.
Experiment on linear chains.—We demonstrate the

ffiffiffiffi

N
p

scaling behavior of the search time in our experimental
setup on a quasi-one-dimensional system, a linear chain.
Searching is possible here only for small N’s, as the
distance between neighboring resonances scales like N−2

and the number of resonances will flood the avoided
crossing eventually for N > Ncut [18]. A photograph of
the unperturbed chain with N ¼ 11 resonators is depicted
in Fig. 4(a), that is, well below the cutoff Ncut ¼ 27 for the
setup shown here. The reflection spectrum 1 − jS11j2 of
the unperturbed chain containing 11 resonances is shown
in Fig. 4(b) (black line, central spectrum). The central

resonance frequency for a chain with an odd number of
resonators is always at the eigenfrequency of the single
resonator. The lattice mode corresponding to the central
frequency is used for the wave search; it is superimposed
on the photograph. When attaching a perturber resonator,
we find an additional resonance interacting with the lattice
state resulting in resonance splitting (blue line, top spec-
trum). The propagator is calculated by Fourier transforming
the frequency range marked by the dotted vertical lines
in Fig. 4(b).
Figure 5(a) depicts the temporal Pðr; tÞ behavior of the

intensity of the whole chain (black line) and of the perturber
resonator (red line). The initial state (t ¼ 0) is adjusted to
the maximal amplitude on the lattice and normalized to 1.
We observe an oscillatory behavior corresponding to a
beating between the two states, where the search time is
given by half of the beating time T. The insets show the
corresponding intensities of the wave function at the
indicated times. Figure 5(b) shows the time T as a function
of sites N0 ¼ ðN þ 1Þ=2 for a different number of odd sites
N ranging from 5 to 27. We observe the predicted

ffiffiffiffiffi

N0p
behavior.
Conclusion.—We have demonstrated a first proof-of-

principle experiment of a continuous quantum wave search

(a)

(b)

FIG. 4 (color online). (a) Experimental setup of the linear chain
with N ¼ 11 (without a perturber). The top plate and antenna
are not shown. The wave function corresponding to the central
resonance is superimposed. (b) Reflection measurement of a
single resonator (red line, bottom), a regular chain with 11
resonators (black line, center), and a single resonator attached to
the chain (blue line, top). The dotted lines mark the frequency
range used for the Fourier transform (baselines shifted).

(a)

(b)

FIG. 5 (color online). (a) The intensity Pðr; tÞ of the chain
integrated over the 11 resonators (black line) and of the perturber
(red line) is shown. The signals are normalized such that the
initial state in the chain at t ¼ 0 is 1. The corresponding intensity
distributions for specific times are shown as insets. See the
Supplemental Material [38] for a video showing the full dynam-
ics. (b) The beating time as a function of N0; solid (red) line:
square root dependance; dashed (blue) line: linear increase.
The error bars indicate the time difference between different
recurrences.
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on an (artificial) graphene lattice. The search is facilitated
by bringing a lattice state into resonance with a localized
perturber state at an avoided crossing. Apart from searching
perturber states, one can also use this scheme to address
particular sites using a frequency scan, thus initiate a
switching behavior, and to transfer signals between sites
without knowing their positions. The experiment is limited
mainly by losses and absorption. Reducing the resonance
widths further, i.e., obtaining a better quality factor Q, can
be realized using coupled supraconducting cavities (quality
factors of about Q ≈ 108 are possible).

We would like to acknowledge our inspiring discussion
with Klaus Richter and Olivier Legrand.
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