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Abstract 15 

Probabilistic sensitivity analysis (PSA) is a simulation-based technique for evaluating 16 

the relative importance of different inputs to a complex process model. It is commonly 17 

employed in decision analysis and for evaluation of the potential impact of uncertainty in 18 

research findings on clinical practice, but has a wide variety of other possible applications. In 19 

this example, it was used to evaluate the association between herd-level udder health and 20 

reproductive performance in dairy herds. 21 

 22 

Although several recent studies have found relatively large associations between 23 

mastitis and fertility at the level of individual inseminations or lactations, the current study 24 

demonstrated that herd-level intramammary infection status is highly unlikely to have a 25 

clinically significant impact on the overall reproductive performance of a dairy herd under 26 

typical conditions. For example, a large increase in incidence rate of clinical mastitis (from 27 

92 to 131 cases per 100 cows per year) would be expected to increase a herd’s modified 28 

FERTEX score (a cost-based measure of overall reproductive performance) by just £4.501 per 29 

cow per year. The herd’s background level of submission rate (proportion of eligible cows 30 

served every 21 days) and pregnancy risk (proportion of inseminations leading to a 31 

pregnancy) correlated strongly with overall reproductive performance and explained a large 32 

proportion of the between-herd variation in performance. 33 

 34 

PSA proved to be a highly useful technique to aid understanding of results from a 35 

complex statistical model, and has great potential for a wide variety of applications within the 36 

field of veterinary science. 37 

                                                 
1 £1 = approx. US$1.61, €1.26 at 17 October 2014 
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Introduction  41 

As the volume and reliability of data routinely recorded by dairy herds grows, the 42 

potential for large-scale epidemiological studies in the field increases. These often require 43 

sophisticated analytical techniques, which can make interpretation of their practical 44 

consequences challenging. In many cases, research yields important information on a 45 

particular aspect of a biological system, but it can be difficult to see the results in the context 46 

of the system as a whole. For example, the reproductive performance of a dairy herd is a 47 

complex, multi-factorial system and, although detailed knowledge exists about many specific 48 

elements of this system, it can be difficult to evaluate how such knowledge fits together to 49 

determine the overall reproductive outcome. For instance, there have been a number of recent 50 

publications demonstrating associations between a cow’s udder health and the probability of 51 

conceiving to a specific insemination or during a given period of lactation (Hertl et al., 2010; 52 

Lavon et al., 2011; Hudson et al., 2012), but the likely importance of this at the herd level is 53 

unclear. For decision makers, it remains difficult to evaluate the potential improvement in a 54 

herd’s reproductive performance that might be expected if udder health on the farm were 55 

improved. 56 

 57 

A prominent technique for studying the relative importance of different inputs into a 58 

complex system is known as probabilistic sensitivity analysis (PSA). PSA is a stochastic, 59 

simulation-based approach, whereby the input values for a system are drawn from pre-60 

defined probability distributions. At each iteration of the simulation, a value for each input is 61 

drawn at random from the relevant distribution. A mathematical model is then used to 62 

convert the inputs into one or more output values, often through complex inter-relationships, 63 

and results are stored for that iteration. The distribution of output values across the iterations, 64 

and the correlations between specific inputs and any output of interest can then be analysed, 65 
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providing a way to evaluate the relative extent to which different model inputs affect 66 

outcome. 67 

 68 

Although PSA is perhaps most commonly applied to cost-effectiveness analysis in 69 

medicine (Spiegel et al., 2003; Anderson et al., 2006; Gillies et al., 2008), it has been used in 70 

a variety of alternative contexts (Steinbach et al., 2012) and has huge potential in the 71 

evaluation of the likely effectiveness of population-level interventions and in integrating 72 

multiple sources of research knowledge. PSA allows a degree of model complexity limited 73 

only by computational power and provides a robust way of evaluating the relative importance 74 

of different inputs to a system even where such inputs are inter-correlated. Despite these 75 

advantages, use of PSA as a tool to understand the action of complex biological systems is 76 

still relatively uncommon, and reports of such approaches in veterinary science are still rare 77 

(Detilleux, 2004; Heller et al., 2011). 78 

 79 

In this study, PSA was used to evaluate the relative importance of different model 80 

inputs where minimal assumptions were made about the distribution of input parameters (i.e. 81 

under conditions of extreme uncertainty): that is, all values within a specified range were 82 

equally likely to be drawn at each iteration. We aimed to evaluate the likely scope for change 83 

in a herd’s reproductive performance which could result from an improvement in 84 

intramammary infection status, relative to the other factors which affect fertility.  85 

Materials and methods 86 

Discrete time survival model 87 

The study was based on a statistical model previously developed to describe 88 

reproductive performance in dairy cows by predicting the probability that a given cow would 89 
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become pregnant in each consecutive 2-day risk period throughout lactation. Explanatory 90 

variables significantly associated with this outcome were used as the input parameters for the 91 

simulation model described here. This statistical model has been described in detail in a 92 

previous publication (Hudson et al., 2012), but is summarised in Appendix A. 93 

 94 

Distributions of simulation input variables 95 

The distributions of the simulation input parameters are described in Table 1. 96 

Independent uniform distributions were selected for all herd-level inputs, covering ranges 97 

considered likely to encompass true values for the vast majority of UK herds. Although these 98 

distributions were not intended to represent the true ‘real world’ distributions of the inputs, 99 

ranges were selected so that evaluation was carried out across the full range of plausible 100 

herd-level scenarios. These were treated as equally likely by assigning a uniform probability 101 

across the range for each input parameter.  102 

 103 

The input parameters for each lactation, and for each risk period within the lactation, 104 

were mostly dependent on herd level inputs, so were drawn from appropriate distributions 105 

based on the relevant herd level parameter (Table 1). The possibility that correlations 106 

between the input parameters would affect the outcome of the simulation was also explored 107 

(for details, see Appendix A). 108 

 109 

Simulation model 110 

The structure of the simulation model is represented diagrammatically in Fig. 1. 111 

Simulation was carried out in Excel 2010 (Microsoft), using Visual Basic for Applications 112 

(Microsoft) for process control. A total of 50,000 herds were simulated, with each one 113 

consisting of 200 lactations.  114 
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 115 

The first step in simulating a herd was to draw the herd level input parameters from 116 

their distributions before simulating the first lactation in the herd (again, beginning by 117 

drawing the lactation level inputs from relevant distributions). Next, a simulated udder health 118 

history was generated for the lactation (Fig. 2; see Appendix A for detail). The logistic 119 

regression model from Hudson et al. (2012; also described in Appendix A) was then used to 120 

calculate the probability of pregnancy occurring during each 2-day risk period of the lactation 121 

(based on the input parameters for that herd, lactation and risk period). This probability was 122 

then adjusted to account for additional marginal (i.e. unexplained by model input parameters) 123 

variation in the herd’s submission rate (proportion of eligible cows served every 21 days) and 124 

pregnancy risk (proportion of inseminations leading to a pregnancy). 125 

 126 

A binary outcome for pregnancy in each 2-day risk period was then drawn from a 127 

binomial distribution based on this adjusted probability, with repeated risk periods simulated 128 

until either pregnancy or 300 days in milk (DIM). The reproductive outcome of the lactation 129 

was recorded using two variables, namely, a binary outcome representing whether the cow 130 

reached 300 DIM without becoming pregnant, and, if the cow did become pregnant, the 131 

number of DIM at which pregnancy occurred. This information was stored along with the 132 

input parameters for the lactation, and simulation of the next lactation begun.  133 

 134 

The process was repeated until the 200 lactations making up the herd were complete, 135 

at which point the mean number of DIM to pregnancy (i.e. calving to conception interval) 136 

and the proportion of lactations where the cow reached 300 DIM without becoming pregnant 137 

were calculated over the herd and stored, along with the herd input parameters. These two 138 

measures were combined to produce a single outcome using a modification of the ‘FERTEX’ 139 
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score (Esslemont and Kossaibati, 2002) (mFX), described in full in Appendix A. Simulation 140 

of the next herd was then begun. 141 

 142 

Analysis of results 143 

Summary data for each of the 50,000 simulated herds were exported to R 2.14.2 (R 144 

Core Development Team,  2010) for analysis. The associations between each herd-level input 145 

parameter and the outcome (mFX score) were initially explored using high-density 146 

scatterplots. High-density (or ‘heatmap’) scatterplots are bivariate density plots where the 147 

density of points at any given location is represented by colour darkness; these were required 148 

as there were a very large number of points (i.e. simulated herds) to be represented. As the 149 

mFX scores were strongly positively skewed (as expected with a cost-based outcome), 150 

Spearman rank correlation coefficients were calculated for the relationships between mFX 151 

score and each input.  152 

 153 

Multiple regression, with the natural logarithm of herd mFX score as the outcome 154 

variable, was used to partition variance in mFX score between the herd input parameters, and 155 

to predict the effect of changes in each individual parameter on herd mFX score. In order to 156 

represent these results graphically as a tornado plot, the predicted change in mFX score was 157 

calculated where each input parameter in turn was increased from the median value of its 158 

input distribution by a value representing 25% of the range of the distribution while the other 159 

inputs were held at their median values. This allowed evaluation of the change in outcome 160 

(mFX score) when each input parameter was altered by a comparable amount, allowing 161 

visualisation of relative effect size. 162 
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Results 163 

Univariate analysis 164 

High density scatterplots showing the associations between each herd-level input 165 

parameter and the herd mFX score (with higher mFX scores indicating poorer overall 166 

performance), along with the Spearman rank correlation coefficient (rs) for each relationship 167 

are shown in Fig. 3. The association between herd submission rate and mFX score was the 168 

most striking, with a clear ‘funnelling’ of points in the bottom right hand corner of the graph, 169 

indicating that herds with high submission rates (especially over 50%) had a much narrower 170 

range of  mFX scores, with a much stronger concentration around the lower mFX scores (i.e. 171 

better reproductive performance). The high-density scatterplots showing relationship between 172 

the udder-health-related input parameters and mFX score showed no correlations, with point 173 

clouds assuming a square appearance and no evident trend in the line of highest point density. 174 

 175 

Multiple regression analysis 176 

The results of variance partition by regression analysis are shown in Table 2. Each 177 

line of the table shows the proportion of variation in mFX score explained by each input 178 

parameter, after accounting for the variation explained by the other input parameters. It is 179 

clear that submission rate (42.9% of total variance) and pregnancy risk (35.2% of total 180 

variance) collectively account for the vast majority of variance in the outcome. 181 

 182 

The predicted effects of changes in inputs are represented graphically as a tornado 183 

plot in Fig. 4. Changing submission or pregnancy risk was predicted to have a large impact 184 

on overall reproductive performance, with a move from median (45%) to upper quartile 185 

(62.5%) submission rate predicted to generate a saving of more than £85 per cow per year: 186 

Cost per additional day on calving index and average 305-day adjusted milk yield were 187 
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associated with smaller changes in mFX score, and cost per cull predicted to lead to a slightly 188 

smaller change again. Udder-health-related inputs were predicted to have little impact on 189 

overall reproductive performance. 190 

 191 

The low degree of association between udder health parameters and herd reproductive 192 

performance is demonstrated further in Fig. 5 – Figs. 5a and b show the distributions (as 193 

kernel density plots) of mFX scores for herds with extremely high or low values for incidence 194 

rates of clinical mastitis or proportion of individual cow somatic cell count (ICSCC) 195 

recordings >200k, respectively. The two lines on each figure follow a very similar shape, 196 

demonstrating that herds at either extreme of the distribution for udder health parameters had 197 

very similar ranges of reproductive performance. By contrast, Fig. 5c shows the distributions 198 

of mFX scores for herds with extremely high and extremely low submission rates; herds with 199 

high submission rates have a much tighter distribution of mFX scores centred on a much 200 

lower mFX score compared to low submission rate herds. 201 

 202 

The analysis was repeated on the subsets of simulated herds with very high marginal 203 

submission rates and pregnancy risks (>70% and 45%, respectively) and very low marginal 204 

submission rates and pregnancy risks (< 20% and 25%, respectively). This revealed very 205 

similar results, with very little clear relationship between udder health parameters and herd 206 

reproductive performance under either scenario (i.e. in herds with exceptionally good or poor 207 

‘background’ performance). 208 

 209 



11 
 

Discussion 210 

Recent work has demonstrated that clinical mastitis around the time of insemination is 211 

associated with a reduction in the probability of pregnancy to the insemination of between 20 212 

and 80% (Hertl et al., 2010; Hudson et al., 2012), and that elevated ICSCC can be associated 213 

with reductions in the order of 20% (Lavon et al., 2011; Hudson et al., 2012). However, 214 

although these effect sizes intuitively appear quite large and are broadly consistent with 215 

earlier work in the area (Loeffler et al., 1999; Schrick et al., 2001; Pinedo et al., 2009), 216 

interpreting their likely impact at herd level has been difficult owing to the large number of 217 

other factors that influence the relationship between mastitis and reproduction (for example, 218 

the frequency and distribution of clinical mastitis cases and elevations of ICSCC throughout 219 

lactation). Specifically, these results did not give farmers or veterinary surgeons any 220 

indication of the potential to improve a herd’s reproduction by maximising udder health. 221 

 222 

Here, development of a simulation model and its use within a PSA framework have 223 

revealed that improvements in udder health at herd level are highly unlikely to lead to useful 224 

improvement in herd fertility performance under the vast majority of plausible scenarios. 225 

Therefore, given the variability in udder health performance typically observed in UK dairy 226 

herds (represented by the ranges chosen for the distributions of the input parameters), it is 227 

highly unlikely that improving a herd’s udder health (either in terms of clinical mastitis or 228 

somatic cell count) would lead to a detectable improvement in the reproductive performance 229 

of the herd. The study also confirmed that the marginal effects of submission rate and 230 

pregnancy risk (after accounting for effects of other model inputs, such as milk yield) are key 231 

drivers of performance, and gave an indication of the potential room for investment in these 232 

areas. 233 

 234 
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Use of stochastic modelling (and associated techniques such as PSA) is becoming 235 

increasingly commonplace in a variety of areas. Essentially, such models have two main 236 

applications. Firstly, they can be used in a research setting to evaluate the likely importance 237 

of different model inputs across a variety of possible scenarios. Results of such research can 238 

then be used to inform clinical guidance, as well as prioritising promotion of existing 239 

knowledge and allocation of resources towards future research. Clinical decision making in 240 

human medicine presents an excellent example here, with PSA widely adopted for cost-241 

effectiveness studies informing blanket clinical guidelines (Andronis et al., 2009). 242 

 243 

 Secondly, stochastic modelling can be used on a case-by-case basis, whereby 244 

simulation using a model can be used to evaluate likely outcomes for a specific real-life 245 

scenario under alternative potential strategies or interventions. Risk management in business 246 

(especially the financial sector) presents perhaps the best example of this process: for 247 

example, use of such tools is extremely common for evaluation of alternative investment 248 

opportunities. It is easy to see excellent uses for both of these approaches in clinical 249 

veterinary medicine (especially in farm animal practice, where decisions regarding potential 250 

interventions at herd level are common). Despite this, early efforts to develop a decision 251 

support tool for dairy herds along these lines (Sørensen et al., 1992) has not led to widespread 252 

uptake, and although there is increasing use of stochastic models in research they tend to be 253 

at a ‘macro’ or ‘whole farm’ level (Geary et al., 2012) rather than the ‘micro’ level described 254 

in this study; and use of PSA in the veterinary literature is still uncommon.  255 

 256 

Recently, there has been more interest in both applications of stochastic modelling to 257 

herd-level management decisions in dairy farms, but it is often considered that such methods 258 

are too complex and cumbersome to be widely employed by farmers or their advisors 259 
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(Walster, 2012). However, the simulation model in this paper was deliberately developed in a 260 

software environment that would allow for development of customised decision support 261 

tools, based on the approach described, which could be widely distributed and used within the 262 

industry. 263 

 264 

Whilst PSA is a robust and well established technique, a common criticism is that 265 

unjustified assumptions are made about parameter input distributions. In this case PSA was 266 

being used to evaluate dairy herd reproduction as a system and assess which input parameters 267 

are most able to perturb the system: effectively this represented simulating hypothetical herds 268 

across as wide a range of plausible situations as possible. This is the reason uniform 269 

distributions were used for the input parameters. Although these clearly do not reflect the 270 

distributions of the same parameters across real life herds, they allow the relative importance 271 

of each parameter to be evaluated across a wide variety of possible scenarios. The udder 272 

health inputs are a good example of this, with clinical mastitis and somatic cell count history 273 

through each lactation were simulated independently. In reality, these are both driven by an 274 

underlying latent variable (the true intramammary infection status through lactation), which is 275 

difficult to evaluate and therefore to simulate realistically. However, as their overall effects 276 

appear to be very small, this is not likely to have made a substantive difference to the results 277 

of this study. In this case, it also appeared that using independent input distributions did not 278 

lead to a different conclusion than that reached using the observed joint distributions from the 279 

original data (see Appendix A).  280 

 281 
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Conclusions 282 

This study has found that the association between herd intramammary infection status 283 

(as measured by clinical mastitis and ICSCC) and herd-level reproductive performance is 284 

likely to be weak under the vast majority of plausible scenarios, despite the relatively large 285 

association sizes at lactation and service level revealed by previous work and used as model 286 

inputs. In this example, development of a stochastic model and PSA were found to be useful 287 

tools to aid understanding of dairy herd reproduction as a system. Importantly, this work has 288 

also provided a model structure that can be extended and built upon in future research. 289 
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Table 1 355 

Input parameters used at each level of simulation and distributions from which inputs were 356 

drawn. 357 

Input variable Type Input distribution 

Herd level 

Submission rate (proportion of eligible cows 

inseminated every 21 days) 

Continuous Uniform (0.1, 0.8) 

Pregnancy risk (proportion of inseminations 

leading to a pregnancy) 

Continuous Uniform (0.1, 0.6) 

Herd average 305 day milk yield (kg) Continuous Uniform (3000, 12500) 

Proportion of herd which are first lactation Continuous Uniform (0.1, 0.4) 

Herd incidence rate of clinical mastitis (cases 

per cow-year of risk) 

Continuous Uniform (0.15, 1.7) 

Proportion of clinical mastitis cases originating 

from dry period infection 

Continuous Uniform (0.1, 0.9) 

Proportion of cows beginning lactation with 

ICSCC >200k 

Continuous Uniform (0.02, 0.4) 

Proportion of cows moving from ICSCC <200k 

to >200k between milk recording test days 

Continuous Uniform (0.02, 0.25) 

Proportion of cows moving from ICSCC >200k 

to <200k between milk recording test days 

Continuous Uniform (0.05, 0.45) 

Cost per day of extension of calving index (£) Continuous Uniform (1.2, 4.2) 

Cost per cow culled for failure to conceive (£) Continuous Uniform (550, 1750) 

Lactation level 
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Lactation number Categorical 

(1, 2, 3, 4, >4) 

Multinomial, based on 

proportion of herd in 

lactation 1 

305 day milk yield (kg) Continuous Beta, centred on herd 

average with standard 

deviation 1.5k 

Risk period level 

Season (quarter of year) Categorical 

(1, 2, 3, 4) 

Multinomial for season 

at calving 

Occurrence of CM 15-28 days before risk period Binary Yes/No 

Occurrence of CM 1-7 days before risk period Binary Yes/No 

Occurrence of CM during risk period Binary Yes/No 

Occurrence of CM 1-7 days after risk period Binary Yes/No 

Occurrence of CM 8-14 days after risk period Binary Yes/No 

Occurrence of CM 15-28 days after risk period Binary Yes/No 

Occurrence of CM 29-42 days after risk period Binary Yes/No 

Occurrence of CM 43-56 days after risk period Binary Yes/No 

Occurrence of CM 57-70 days after risk period Binary Yes/No 

ICSCC 1-30 days after risk period Binary (<=200k, >200k) 

ICSCC, individual cow somatic cell count; CM, clinical mastitis  358 
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Table 2 359 

Partition of variance in modified herd FERTEX score (mFX) between input parameters. 360 

Input parameter % variance explained 

Submission rate 42.9% 

Pregnancy risk 35.2% 

305 day yield 7.4% 

Incidence rate of CM 0.1% 

% ICSCC recordings >200k 0.1% 

% CM cases which are of dry period origin <0.1% 

% of herd in first lactation <0.1% 

Cost per day on calving index 5.5% 

Cost per cull 1.3% 

Total 92.5% 

ICSCC, individual cow somatic cell count; CM, clinical mastitis   361 
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Figures 362 

 363 

Fig. 1: Overview of the simulation model process. Solid black lines indicate process flow, 364 

and dotted lines indicate that information from the source of the line is used in the step of the 365 

process to which the line leads (denoted by a diamond). 366 
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 367 

 368 

Fig. 2: Process for simulation of udder health history throughout a lactation. Solid black lines 369 

indicate process flow, and dotted lines indicate that information from the source of the line is 370 

used in the step of the process to which the line leads (denoted by a diamond). Fig. 2a shows 371 

the proportion of clinical mastitis cases in the dataset from Hudson et al. (2012) by days in 372 

milk, split into likely dry period versus lactation origin using data from Green et al. (2002). 373 

  374 
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 375 

Fig. 3: High-density scatterplots showing associations between overall fertility outcome and 376 

herd-level input variables. Darker colours indicate higher densities of points. rs, Spearman 377 

rank correlation coefficient; FERTEX, modified FERTEX score (representing overall herd 378 

fertility outcome); IRCM, incidence rate of clinical mastitis; SCC, Somatic cell count; CM, 379 

clinical mastitis; DP, dry period. 380 

  381 
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 382 

Fig. 4: Predicted effect of an equivalent increase in each input parameter on overall fertility. 383 

Tornado plots showing the predicted effect of increasing each input parameter in turn by a 384 

value representing 25% of the range of its input distribution from the median value, while the 385 

other input parameters are held at their population medians. The input parameters are listed 386 

on the right hand side of the graph, and the change in each input (from median to upper 387 

quartile) is given in parentheses. For example, the top bar shows that the predicted effect of 388 

moving from a submission rate of 45% (the median of the input distribution for this 389 

parameter) to 62.5% (the upper quartile of the input distribution) would be a decrease of just 390 

under £90/cow/year in herd mFX score.   391 

Note: for the proportion of recordings where SCC>200k parameter (which was the only input 392 

not drawn directly from a uniform distribution), the change in the parameter (+12.4%) 393 

represented  25% of the 95% coverage interval of the distribution of this parameter. 394 

  395 
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 396 

Figure 5: Kernel density plots for simulated herds with extreme input parameter values. 397 

Kernel density plots showing distribution of modified FERTEX score (as a measure of 398 

overall fertility outcome) for herd with extreme values for: (a) IRCM (incidence of clinical 399 

mastitis in cases/100 cows/year: IRCM<0.35 cases/cow-year, solid line; IRCM>1.5 400 

cases/cow-year, dotted line); (b) proportion of somatic cell count recordings >200k 401 

(SCCPrev; proportion <10%, solid line; proportion >40% dotted line); and (c) submission 402 

rate (SR; submission rate <10%, solid line; submission rate >70%, dotted line)  403 

  404 
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Appendix A: Supplementary materials and methods 405 

Discrete time survival model 406 

The discrete time survival model on which the simulation model is based was 407 

described in Hudson et al. (2012), but is briefly summarised below: 408 

The model was fitted using data from 80 dairy herds from across England and Wales. 409 

The main aim was to evaluate associations between reproductive performance and mammary 410 

gland health. A wide variety of potential explanatory variables relating to each cow’s clinical 411 

mastitis (CM) and individual cow somatic cell count (ICSCC) history were used, along with 412 

other variables that potentially confound any relationship with reproduction (e.g. stage of 413 

lactation, 305d milk yield, lactation number, season etc.). A discrete time survival model was 414 

constructed within a multilevel framework, to account for correlations between lactations 415 

from the same cow and between cows in the same herd. A discrete time survival model is 416 

effectively a logistic regression model which predicts the probability that the event of interest 417 

(in this case, conception) occurs during each (discrete) unit of time (in this case, each 2-day 418 

period of a cow’s lactation). The model took the conventional form: 419 

 Pregtij ~ Bernoulli(mean= μtij)  

 
ln (

μtij

1-μtij
) =α+β1lnDIMtij+β2(lnDIMtij)

2
+-β3Xtij+β4Xij+β5Xj+uij+vj 

(

(1) 

 
vj ~ normal distribution (0, 𝜎𝑣

2) 
(

(2) 

 
uij ~ normal distribution (0, 𝜎𝑢

2) 
(

(3) 

 420 

where t represents a 2-day risk period and i and j the ith cow in the jth herd; µtij the fitted 421 

probability of Pregtij (the outcome of the ith cow in the jth herd becoming pregnant during risk 422 

period t); lnDIMtij the natural logarithm of days in milk at the beginning of risk period t; α the 423 

regression intercept; β1 and β2 the coefficients for the terms representing days in milk; Xtij the 424 

vector of risk period level covariates and β3 the corresponding vector of coefficients for 425 
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covariates Xtij; Xij the vector of cow-level covariates and β4 the corresponding vector of 426 

covariates of coefficients Xij; Xj the vector of herd-level covariates and β5 the corresponding 427 

vector of coefficients of covariates Xj; uij the random effect to reflect variation between 428 

individual cows and vj the random effect representing variation between herds, with 𝜎𝑢
2 and 429 

𝜎𝑣
2 the variances of the normal distributions of the respective random effects terms. 430 

 431 

Explanatory variables from this model which were significantly associated with the 432 

probability of a cow becoming pregnant during a 2-day risk period were used as input 433 

parameters for the simulation in this study, with the exception of year of calving (as this 434 

effect was not considered relevant) and three ICSCC related variables which had very small 435 

associations with the outcome (which were omitted for model parsimony). Readers are 436 

referred to the original publication (Hudson et al., 2012) for estimated model coefficients and 437 

interpretation. 438 

 439 

Correlations between input parameters 440 

The possibility that correlations between input parameters would affect the simulation 441 

outcome was investigated using the following method. Distributions of these input 442 

parameters for each of the 80 herds in the original dataset from Hudson et al. (2012) were 443 

evaluated. Assessment of the univariate distribution of each parameter in turn showed that the 444 

ranges of the parameters across herds were very similar to those chosen for the uniform input 445 

distributions shown in Table 1, and that many of the inputs did not appear normally 446 

distributed. As it was plausible that all inputs were jointly correlated in a complex fashion 447 

(and clear that few approximated a normal distribution), attempting to fit a parametric 448 

multivariate distribution to the data was considered inappropriate. Instead, a non-parametric 449 

approach was taken, whereby the simulation exercise was repeated using the observed joint 450 



27 

 

distribution of the parameters across the herds was used as simulation inputs, so that at each 451 

iteration of the simulation the set of observed input parameters for one of the 80 herds was 452 

used as the input for the simulation model. This process was also repeated using the joint 453 

distributions of input parameters observed for each herd-year (i.e. for each herd in each year) 454 

in the original dataset (n=435). 455 

Repeating the simulation and analysis using the observed joint input distributions 456 

from the original dataset (instead of those described in Table 1) affected the results of the 457 

univariate analyses, but multivariate regression analyses produced similar results to those 458 

generated using independent uniform input distributions. Although the regression coefficients 459 

for both udder health related input parameters increased slightly (and the predicted effect of 460 

IRCM became the larger of the two), the predicted effect of changes in these parameters 461 

remained much smaller than the predicted effects of changes to the key drivers of mFX score. 462 

Supplementary Figure 1 shows the tornado plot generated using the observed joint input 463 

distributions of herd-years from the dataset; the joint distribution at herd level produced an 464 

almost identical plot. It therefore appears that the choice between these alternative input 465 

distributions would not have a substantial impact on the biological interpretation of the 466 

results of this study, and the results reported in the main manuscript were derived from the 467 

original uniform input distributions. 468 

 469 

Generation of clinical mastitis and individual cow somatic cell count history for a simulated 470 

lactation 471 

For CM, the herd-level input parameters were the incidence rate of CM and the 472 

proportion of CM cases resulting from intramammary infection during the dry period. In 473 

order to use these parameters to predict occurrence of CM as a binary event for each two-day 474 

risk period, a value for the number of DIM at each case of CM was extracted from the 80-475 
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herd dataset: this determined the distribution of cases of CM over the course of lactation. A 476 

total of 67,994 cases of CM were included in this analysis. Data from Green et al. (2002) 477 

were then used to attribute the proportion of cases at each two-day period through lactation as 478 

either dry period or lactation origin, with a very high proportion of cases in early lactation 479 

being attributed to the dry period (Figure 2a), and a very high proportion of cases in late 480 

lactation attributed as lactation origin. These results were then used to calculate the 481 

proportion of all dry period origin cases and of all lactation origin cases which occurred at 482 

each two-day risk period. For each herd simulated, the input parameters were used to 483 

determine the separate incidence rates for dry period and lactation origin CM (by multiplying 484 

the overall incidence rate by the proportion of cases of dry period origin). This allowed 485 

prediction of the probability of the occurrence of either dry period origin or lactation origin 486 

CM at each two-day risk period during the lactation: the simulation model then assigned 487 

events by drawing from a binomial distribution based on the calculated probability of CM at 488 

each risk period. 489 

 490 

In order to simulate ICSCC history, it was assumed that the cow would have a first 491 

milk test day of the lactation at a random stage within the first 30 DIM (so that DIM at first 492 

test day was drawn from a uniform distribution between 0 and 30), and would have test days 493 

at regular 30 day intervals after this. ICSCC was treated as a binary variable, such that the 494 

cow could occupy one of two states; infected (ICSCC>200k) or uninfected (ICSCC<200k). 495 

The herd-level input parameters were then used to determine the cow’s status at the first 496 

recording of lactation (a draw from a binomial distribution with probability equal to the 497 

overall proportion of cows with a first ICSCC of lactation >200k), and the likelihood that her 498 

status will change at each subsequent test day. 499 
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Combining reproductive outcomes to a single lactation-level measure 500 

To simplify analysis of the results of the simulation, a single outcome representing 501 

herd fertility performance was required. For each simulated herd, the proportion of the herd 502 

which reached 300 DIM without becoming pregnant was calculated (this was used as a proxy 503 

for the rate of fertility-associated culling) along with the mean number of DIM at conception 504 

(which was converted to a mean herd calving index by adding 282 days for gestation). These 505 

were then combined by comparing each to a selected baseline value (345 days for calving 506 

index and 0% for 300 day failure to conceive rate), applying a cost per unit deviation from 507 

the target (with unit cost for each represented as herd-level input parameters) and summing 508 

the total cost per cow to create a modified ‘FERTEX’ (mFX) score for each herd (Esslemont 509 

and Kossaibati, 2002). The baseline values for calving index and failure to conceive at 300 510 

DIM were intentionally set at very low levels to avoid herds which performed better than the 511 

baseline level (and therefore had negative mFX scores). Although this mFX score represented 512 

an appropriate single outcome measure for this study, the absolute value of mFX score for 513 

each simulated herd would therefore not reflect true recoverable loss due to infertility 514 

(although changes in mFX score would be realistic). 515 

 516 

 517 


