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Abstract

We study an Unruh-DeWitt particle detector that is coupled to the proper
time derivative of a real scalar field in 1+1 spacetime dimensions. Working within
first-order perturbation theory, we cast the transition probability into a regulator-
free form, and we show that the transition rate remains well defined in the limit
of sharp switching. The detector is insensitive to the infrared ambiguity when the
field becomes massless, and we verify explicitly the regularity of the massless limit
for a static detector in Minkowski half-space. We then consider a massless field
for two scenarios of interest for the Hawking-Unruh effect: an inertial detector
in Minkowski spacetime with an exponentially receding mirror, and an inertial
detector in (1 + 1)-dimensional Schwarzschild spacetime, in the Hartle-Hawking-
Israel and Unruh vacua. In the mirror spacetime the transition rate traces the
onset of an energy flux from the mirror, with the expected Planckian late time
asymptotics. In the Schwarzschild spacetime the transition rate of a detector
that falls in from infinity gradually loses thermality, diverging near the singularity
proportionally to r−3/2.
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1 Introduction

For quantum fields living on a pseudo-Riemannian manifold, the experiences of observers
coupled to the field depend both on the quantum state of the field and on the worldline
of the observer [1, 2]. A celebrated example is the Unruh effect [3], in which uniformly
accelerated observers in Minkowski spacetime experience a thermal bath in the quantum
state that inertial observers perceive as void of particles. Other well-studied examples
arise with black holes that emit Hawking radiation [4] and with observers in spacetimes
of high symmetry [5].

A useful tool for analysing the experiences of an observer is a model particle detector
that follows the observer’s worldline and has internal states that couple to the quantum
field. Such detectors are known as Unruh-DeWitt (UDW) detectors [3, 6]. While much of
the early literature on the UDW detectors focused on stationary situations, including the
Unruh effect [7, 8], the detectors remain well defined also in time-dependent situations,
where they can be analysed within first-order perturbation theory [9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21] as well as by nonperturbative techniques [22, 23, 24, 25, 26].
A review with further references can be found in [27].

In this paper we consider a detector coupled to a quantised scalar field in 1+1
spacetime dimensions. A scalar field in 1+1 dimensions has local propagating degrees
of freedom, and it exhibits the Hawking and Unruh effects just like a scalar field in
higher dimensions. However, the dynamics of the field in 1+1 dimensions is signifi-
cantly simpler than in higher dimensions, especially for a massless minimally coupled
field, for which the field equation is conformally invariant and conformal techniques are
available. In particular, the evolution of a massles minimally coupled field on a (1+1)-
dimensional collapsing star spacetime reduces essentially to that of a massless field on
(1+1)-dimensional Minkowski spacetime in the presence of a receding mirror, and the
system is explicitly solvable [28, 29].

The simplifications in the dynamics in 1 + 1 dimensions come however at a cost:
the Wightman function of a minimally coupled field in 1+1 dimensions is infrared di-
vergent in the massless limit. While Hadamard states can still can be defined in terms
of the short distance expansion of the Wightman function [30], the Hadamard expan-
sion contains an additive constant that is not determined by the quantum state. While
this undetermined additive constant does not contribute to stress-energy expectation
values [1, 31, 32], it does contribute to the transition probability of an UDW detector
that couples to the value of the field at the detector’s location. In stationary situations
the ambiguous contribution to transition probablities can be argued to vanish, under
suitable assumptions about the switch-on and switch-off [7, 11, 12], but in nonstation-
ary situations the ambiguity is more severe and has been found to lead to physically
undesirable predictions in examples that include a receding mirror spacetime [19].

In this paper we analyse a detector that is insensitive to the infrared ambiguity of
the (1 + 1)-dimensional Wightman function in the massless minimaly coupled limit: we
couple the detector linearly to the derivative of the field with respect to the detector’s
proper time [9, 22, 33, 34], rather than to the value of the field. Working in first-
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order perturbation theory, the detector’s transition probability involves then the double
derivative of the Wightman function, rather than the Wightman function itself. We show
that the response of the (1+1)-dimensional derivative-coupling detector is closely similar
to that of the (3 + 1)-dimensional detector with a non-derivative coupling [14, 15]. In
particular, the transition probablity can be written as an integral formula that involves
no short-distance regulator at the coincidence limit but contains instead an additive term
that depends only on the switching function that controls the switch-on and switch-off.
A consequence is that in the limit of sharp switching the transition probability diverges
but the transition rate remains finite.

We carry out three checks on the physical reasonableness of the derivative-coupling
detector in stationary situations in which the switch-on is pushed to asymptotically early
times. First, we verify that the transition rate is continuous in the limit of vanishing
mass for an inertial detector in Minkowski space, with the field in Minkowski vacuum,
and we show that the same holds also for a static detector in Minkowski half-space with
Dirichlet and Neumann boundary conditions. This is evidence that the derivative cou-
pling manages to remove the infrared ambiguity of the massless field without producing
unexpected discontinuities in the massless limit. Second, we show that the transition
rate of a uniformly accelerated detector in Minkowski space, coupled to a massless field
in Minkowski vacuum, coincides with that of an inertial detector at rest with a thermal
bath, being in particular thermal in the sense of the Kubo-Martin-Schwinger (KMS)
property [35, 36]. This shows that the derivative-coupling detector sees the usual Unruh
effect for a massless field. Third, we show that in a thermal bath of a massless field
in Minkowski space, the transition rate of an inertial detector that is moving with re-
spect to the bath is a sum of two terms that are individually thermal but at different
temperatures, related to the temperature of the bath by Doppler shifts to the red and
to the blue. As these terms stem respectively from the right-moving and left-moving
components of the field, the temperature shifts are exactly as one would expect.

After these checks, we focus on the massless minimally coupled field in two nonsta-
tionary situations, each of interest for the Hawking-Unruh effect.

We first consider a Minkowski spacetime with a mirror whose exponentially receding
motion makes the field mimic the late time behaviour of a field in a collapsing star
spacetime [1, 28, 29]. We show that at late times the detector’s transition rate is the sum
of a Planckian contribution, corresponding to the field modes propagating away from
the mirror, and a vacuum contribution, corresponding to the field modes propagating
towards the mirror. While the detector couples to the sum of the two parts, the two
parts can nevertheless be unambiguously identified by considering their dependence on
the detector’s velocity with respect to the rest frame in which the mirror was static
in the asymptotic past. We also show numerical results on how the transition rate
evolves from the asymptotic early time form to the asymptotic late time form. These
properties of the transition rate are in full agreement with the energy flux emitted by
the mirror [1, 28, 29].

We then consider a detector falling inertially into the (1 + 1)-dimensional Schwarz-
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schild black hole, with the field in the Hartle-Hawking-Israel (HHI) and Unruh vacua.
Starting the infall at the asymptotic infinity, we verify that the early time transition rate
in the HHI vacuum is as in a thermal state, in the usual Hawking temperature, while
in the Unruh vacuum it is as in a thermal state for the outgoing field modes and in the
Boulware vacuum for the ingoing field modes. The outgoing and ingoing contributions
can again be unambiguously identified by considering their dependence on the detector’s
velocity in the asymptotic past. The transition rate remains manifestly nonsingular on
horizon-crossing, and we present numerical evidence of how the thermal properties are
gradually lost during the infall. Near the black hole singularity the transition rate di-
verges proportionally to r−3/2 where r is the Schwarzschild radial coordinate. These
results are in full agreement with the known properties of the HHI and Unruh vacua,
including their thermality, their invariance under Schwarzschild time translations and
their regularity across the future horizon.

We anticipate that the derivative-coupling detector will be a useful tool for probing a
quantum field in other situations where the infrared properties raise technical difficulties
for the conventional UDW detector. One such instance is when the field has zero modes,
which typically occur in spacetimes with compact spatial sections [37]. Other instances
may arise in analogue spacetime systems [38] or in spacetimes where the back-reaction
due to Hawking evaporation is strong (for a small selection of references see [39, 40, 41,
42, 43]).

The structure of the paper is as follows. In Section 2 we introduce the derivative-
coupling detector, write the transition probability in a regulator-free form and provide
the formula for the transition rate in the sharp switching limit. Consistency checks
in three stationary situations are carried out in Section 3. Sections 4 and 5 address
respectively the receding mirror spacetime and the Schwarzschild spacetime. The results
are summarised and discussed in Section 6. Details of technical calculations are deferred
to four appendices.

Our metric signature is (−+), so that the norm squared of a timelike vector is
negative. We use units in which c = ~ = kB = 1, so that frequencies, energies and
temperatures have dimension inverse length. Spacetime points are denoted by Sans
Serif characters (x) and spacetime indices are denoted by a, b, . . .. Complex conjugation
is denoted by overline. O(x) denotes a quantity for which O(x)/x is bounded as x→ 0,
o(x) denotes a quantity for which o(x)/x → 0 as x → 0, O(1) denotes a quantity that
is bounded in the limit under consideration, and o(1) denotes a quantity that goes to
zero in the limit under consideration.

2 Derivative-coupling detector

In this section we introduce an UDW detector that couples linearly to the proper time
derivative of a scalar field [9, 22, 33, 34]. We show, within first-order perturbation
theory, that in (1 + 1) spacetime dimensions the detector’s transition probability and
transition rate are closely similar to those of a (3 + 1)-dimensional UDW detector with
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a non-derivative coupling [14, 15].

2.1 Derivative-coupling detector in d ≥ 2 dimensions

Our detector is a spatially point-like quantum system with two distinct energy eigen-
states. We denote the normalised energy eigenstates by |0〉D and |ω〉D, with the respec-
tive energy eigenvalues 0 and ω, where ω 6= 0.

The detector moves in a spacetime of dimension d ≥ 2 along the smooth timelike
worldline x(τ), where τ is the proper time, and it couples to a real scalar field φ via the
interaction Hamiltonian

Hint = cχ(τ)µ(τ)
d

dτ
φ
(
x(τ)

)
, (2.1)

where c is a coupling constant, µ is the detector’s monopole moment operator and the
switching function χ specifies how the interaction is switched on an off. We assume that
χ is real-valued, non-negative and smooth with compact support.

Where Hint (2.1) differs from the usual UDW detector [3, 6] is that the interaction
is linear in the proper time derivative of the field, rather than in the field itself. An
alternative expression is Hint = cχ(τ)µ(τ) ẋa∇aφ

(
x(τ)

)
, where the overdot denotes d/dτ .

We take the detector to be initially in the state |0〉D and the field to be in a state |ψ〉,
which we assume to be regular in the sense of the Hadamard property [30]. After the
interaction has been turned on and off, we are interested in the probability for the
detector to have made a transition to the state |ω〉D, regardless the final state of the
field. Working in first-order perturbation theory in c, we may adapt the analysis of the
usual UDW detector [1, 2] to show that this probability factorises as

P (ω) = c2|D〈0|µ(0)|ω〉D|2F(ω) , (2.2)

where |D〈0|µ(0)|ω〉D|2 depends only on the internal structure of the detector but neither
on |ψ〉, the trajectory or the switching, while the dependence on |ψ〉, the trajectory and
the switching is encoded in the response function F . With our Hint (2.1), the response
function is given by

F(ω) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′ e−iω(τ ′−τ ′′) χ(τ ′)χ(τ ′′) ∂τ ′∂τ ′′W(τ ′, τ ′′) , (2.3)

where the correlation function W(τ ′, τ ′′)
.
= 〈ψ|φ

(
x(τ ′)

)
φ
(
x(τ ′′)

)
|ψ〉 is the pull-back of

the Wightman function 〈ψ|φ(x′)φ(x′′)|ψ〉 to the detector’s world line.
From now on we drop the constant prefactors in (2.2) and refer to the response

function as the transition probability.
As |ψ〉 is Hadamard and the detector’s worldline is smooth and timelike, the cor-

relation function W is a well-defined distribution on R × R [44, 45, 46, 47]. As χ is
smooth with compact support, it follows that F (2.3) is well defined: given a family of
functions Wε that converges to the distribution W as ε → 0+, F is evaluated by first
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making in (2.3) the replacement W → Wε, then performing the integrals, and finally
taking the limit ε→ 0+. The limit ε→ 0+ may however not necessarily be taken under
the integrals. For the usual UDW detector, for which the response function is given as
in (2.3) but without the derivatives, this issue is known to become subtle if one wishes
to define an instantaneous transition rate by passing to the limit of sharp switching: the
subtleties start in three spacetime dimensions and increase as the spacetime dimension
increases and the correlation function becomes more singular at the coincidence limit
[14, 15, 16, 17]. We may expect similar subtleties for the derivative-coupling detector,
and since the derivatives in (2.3) increase the singularity of the integrand at the coinci-
dence limit, we may expect the subtleties to start in lower spacetime dimensions than
for the usual UDW detector.

We confirm these expectations in subsections 2.2, 2.3 and 2.4 by analysing the re-
sponse function (2.3) and the transition rate in (1 + 1) spacetime dimensions.

2.2 (1 + 1) response function: isolating the coincidence limit

We now specialise to (1 + 1) spacetime dimensions. In this subsection we write the
response function (2.3) in a way where the contribution from the singularity of the
integrand at the coincidence limit has been isolated.

We start from (2.3) and write W = (W −Wsing) +Wsing, where Wsing is the locally
integrable function

Wsing(τ ′, τ ′′)
.
=

−
i sgn(τ ′ − τ ′′)

4
− ln |τ ′ − τ ′′|

2π
for τ ′ 6= τ ′′ ,

0 for τ ′ = τ ′′ ,
(2.4)

and sgn denotes the signum function,

sgnx
.
=


1 for x > 0 ,

0 for x = 0 ,

−1 for x < 0 .

(2.5)

We obtain

F(ω) = Freg(ω) + Fsing(ω) , (2.6a)

Freg(ω) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′ e−iω(τ ′−τ ′′) χ(τ ′)χ(τ ′′) ∂τ ′∂τ ′′
[
W(τ ′, τ ′′)−Wsing(τ ′, τ ′′)

]
,

(2.6b)

Fsing(ω) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′ e−iω(τ ′−τ ′′) χ(τ ′)χ(τ ′′) ∂τ ′∂τ ′′Wsing(τ ′, τ ′′) , (2.6c)

where the derivatives are understood in the distributional sense.
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Consider first Freg (2.6b). The Hadamard short distance form of the Wightman
function [30] implies that bothW(τ ′, τ ′′) and ∂τ ′∂τ ′′

[
W(τ ′, τ ′′)−Wsing(τ ′, τ ′′)

]
are repre-

sented in a neighbourhood of τ ′ = τ ′′ by locally integrable functions. It follows that the
integral in (2.6b) receives no distributional contributions from τ ′ = τ ′′, and the integral
can hence be decomposed into integrals over the subdomains τ ′ > τ ′′ and τ ′ < τ ′′. In
the subdomain τ ′ > τ ′′ we write τ ′ = u and τ ′′ = u − s, where u ∈ R and 0 < s < ∞,
and in the subdomain τ ′ < τ ′′ we write τ ′′ = u and τ ′ = u − s, where again u ∈ R
and 0 < s < ∞. Using the property W(τ ′, τ ′′) = W(τ ′′, τ ′) and the explicit form of
Wsing(τ ′, τ ′′) (2.4), we obtain

Freg(ω) = 2

∫ ∞
−∞

du

∫ ∞
0

ds χ(u)χ(u− s) Re

[
e−iωs

(
A(u, u− s) +

1

2πs2

)]
, (2.7)

where

A(τ ′, τ ′′)
.
= ∂τ ′∂τ ′′W(τ ′, τ ′′) . (2.8)

Note that the integrand in (2.7) is still a distribution, but it is represented by a locally
integrable function in a neighbourhood of s = 0, and any distributional singularities are
hence isolated from s = 0.

We evaluate Fsing (2.6c) in Appendix A. Combining (2.7) and (A.6), we find

F(ω) = −ωΘ(−ω)

∫ ∞
−∞

du [χ(u)]2 +
1

π

∫ ∞
0

ds
cos(ωs)

s2

∫ ∞
−∞

duχ(u)[χ(u)− χ(u− s)]

+ 2

∫ ∞
−∞

du

∫ ∞
0

ds χ(u)χ(u− s) Re

[
e−iωs

(
A(u, u− s) +

1

2πs2

)]
, (2.9)

where A is given by (2.8) and Θ is the Heaviside function,

Θ(x)
.
=

{
1 for x > 0 ,

0 for x ≤ 0 .
(2.10)

An equivalent form, using for Fsing the alternative expression (A.7) given in Appendix A,
is

F(ω) = −ω
2

∫ ∞
−∞

du [χ(u)]2 +
1

π

∫ ∞
0

ds

s2

∫ ∞
−∞

duχ(u) [χ(u)− χ(u− s)]

+ 2

∫ ∞
−∞

du

∫ ∞
0

ds χ(u)χ(u− s) Re

[
e−iωsA(u, u− s) +

1

2πs2

]
. (2.11)

The integral over s in the second term in (2.9) and (2.11) is convergent at small s since
the integral over u produces an even function of s that vanishes at s = 0.

The expression (2.11) for the response function is closely similar to that obtained
in [14, 15] for the usual, non-derivative UDW detector in (3 + 1) dimensions. This
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happens because of the similarity between the coincidence limit singularities of the
twice differentiated (1 + 1)-dimensional correlation function, appearing in (2.3), and
the undifferentiated (3 + 1)-dimensional correlation function that appears in the similar
expression for non-derivative coupling.

We re-emphasise that the last term in (2.9) and (2.11) may contain distributional
contributions from s > 0. Similar distributional contributions were not considered
for the (3 + 1)-dimensional non-derivative UDW detector in [15], but they can occur
also there, and the analysis in [15] can be amended to include these contributions by
proceeding as in the present paper. Similar distributional contributions can arise in
any spacetime dimension: in (2 + 1) dimensions, examples on the Bañdados-Teitelboim-
Zanelli black hole were encountered in [17].

2.3 (1 + 1) sharp switching limit: transition rate

In this subsection we consider the sharp switching limit of the derivative-coupling de-
tector in (1 + 1) dimensions.

Following [14, 15], we consider a family of switching functions given by

χ(u) = h1

(
u− τ0 + δ

δ

)
× h2

(
−u+ τ + δ

δ

)
, (2.12)

where τ and τ0 are pararameters satisfying τ > τ0, δ is a positive parameter, and h1

and h2 are smooth non-negative functions such that h1(x) = h2(x) = 0 for x ≤ 0 and
h1(x) = h2(x) = 1 for x ≥ 1. In words, the detector is switched on over an interval of
duration δ before time τ0, stays on at constant coupling from time τ0 to time τ , and
is finally switched off over an interval of duration δ after time τ . The profile of the
switch-on is determined by h1 and the profile of the switch-off is determined by h2.

We are interested in the limit δ → 0. To begin with, suppose that A(τ ′, τ ′′) (2.8)
is represented by a smooth function for τ ′ 6= τ ′′. Given the similarity between (2.11)
and the (3 + 1)-dimensional non-derivative response function given by equation (3.16)
in [15], we may follow the analysis that led to equations (4.4) and (4.5) in [15]. For the
response function, we find

F(ω, τ) = −ω∆τ

2
+ 2

∫ τ

τ0

du

∫ u−τ0

0

ds Re

[
e−iωsA(u, u− s) +

1

2πs2

]
+

1

π
ln

(
∆τ

δ

)
+ C +O(δ), (2.13)

where ∆τ
.
= τ − τ0, C is a constant that depends only on h1 and h2, and we have

included in F(ω, τ) the second argument τ to indicate explicitly the dependence on τ .
The response function (2.13) hence diverges logarithmically as δ → 0, but the diver-

gent contribution is a pure switching effect, independent of the quantum state and of

8



the detector’s trajectory. The transition rate, defined as Ḟ(ω, τ)
.
= ∂

∂τ
F(ω, τ), remains

finite as δ → 0, and is in this limit given by

Ḟ(ω, τ) = −ω
2

+ 2

∫ ∆τ

0

dsRe

[
e−iωsA(τ, τ − s) +

1

2πs2

]
+

1

π∆τ
. (2.14)

An equivalent expression, obtained by writing 1 = cos(ωs) + [1 − cos(ωs)] under the
integral in (2.14), is

Ḟ(ω, τ) = −ωΘ(−ω) +
1

π

[
cos(ω∆τ)

∆τ
+ |ω| si(|ω|∆τ)

]

+ 2

∫ ∆τ

0

dsRe

[
e−iωs

(
A(τ, τ − s) +

1

2πs2

)]
, (2.15)

where si is the sine integral in the notation of [48]. When the switch-on is in the
asymptotic past and the fall-off of A(τ, τ − s) is sufficiently fast as large s, the ∆τ →∞
limit of (2.15) gives

Ḟ(ω, τ) = −ωΘ(−ω) + 2

∫ ∞
0

dsRe

[
e−iωs

(
A(τ, τ − s) +

1

2πs2

)]
. (2.16)

The observational meaning of the transition rate relates to ensembles of ensembles of
detectors (see Section 5.3.1 of [12] or Section 2 of [15]).

When A(τ ′, τ ′′) (2.8) is not represented by a smooth function for τ ′ 6= τ ′′, the esti-
mates leading to (2.13) and (2.14) need not hold, and the transition rate need not have
a well-defined δ → 0 limit for all τ0 and τ . In particular, if the detector is switched on
at a finite time τ0 and A(τ ′, τ ′′) has a distributional singularity at (τ ′, τ ′′) = (τ, τ0), the
integral expressions in (2.14) and (2.15) would not be well defined because the singular-
ity occurs at an end-point of the integration. If the switch-on is in the asymptotic past,
however, the transition rate formula (2.16) is well defined even when A(τ ′, τ ′′) has dis-
tributional singularities for τ ′ 6= τ ′′ provided these singularities are sufficiently isolated.
We shall encounter examples of such singularities in subsection 3.1 and Section 4.

Similar remarks about singularities of the correlation function at timelike-separated
points apply also to the sharp switching limit of the non-derivative UDW detector in
(3 + 1) dimensions. The transition rate results given in [15] for a switch-on at a finite
time hold when no such singularities are present.

2.4 Stationary transition rate

Suppose that the Wightman function is stationary with respect to the detector’s tra-
jectory, in the sense that W(τ ′, τ ′′) depends on τ ′ and τ ′′ only through the difference
τ ′ − τ ′′. When the detector is switched on in the asymptotic past, the transition rate
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(2.16) reduces to

Ḟ(ω) = −ωΘ(−ω) + 2

∫ ∞
0

dsRe

[
e−iωs

(
A(s, 0) +

1

2πs2

)]
= −ωΘ(−ω) +

∫ ∞
−∞

ds e−iωs

[
A(s, 0) +

1

2πs2

]
= −ωΘ(−ω) +

∫
C

ds e−iωs

[
A(s, 0) +

1

2πs2

]
=

∫ ∞
−∞

ds e−iωsA(s, 0) , (2.17)

where we have dropped the second argument τ from Ḟ as the transition rate is now
independent of τ , and A(s, 0) is understood as a distribution everywhere, including
s = 0. In (2.17) we have first used the propertiesA(τ ′, τ ′′) = A(τ ′−τ ′′, 0) andA(τ ′, τ ′′) =
A(τ ′′, τ ′). Next, we have deformed the real s axis into a contour C in the complex s
plane, such that C follows the real axis except that it dips into the lower half-plane
near s = 0; this deformation is justified by the Hadamard short separation form of the
Wightman function [30]. In the contour integral over C, we have then separated the two
terms in the integrand, evaluated the integral of the second term by a standard contour
technique, and noted that in the first term C can be deformed back to the real s axis
provided the integrand is understood as a distribution for all s, including s = 0.

The result (2.17) coincides with the transition rate that one obtains from the response
function (2.3) by the usual procedure of setting χ = 1 and formally factoring out the
infinite total detection time [1].

3 Stationary checks: massless limit, the Unruh ef-

fect, and inertial response in a thermal bath

In this section we perform reasonableness checks on the derivative-coupling detector
in three stationary situations. First, we verify that the transition rate is continuous
in the massless limit for a static detector in Minkowski space, and also in Minkowski
half-space with Dirichlet and Neumann boundary conditions. Second, we verify that the
detector sees the usual Unruh effect when the field is massless. Third, we verify that
the transition rate of an inertial detector in the thermal bath of a massless field sees a
Doppler shift when the detector has a nonvanishing velocity in the inertial frame of the
bath.

3.1 Static detector in Minkowski (half-)space

Let M be (1 + 1) Minkowski spacetime, with standard Minkowski coordinates (t, x) in

which the metric reads ds2 = −dt2 + dx2, and let M̃ be the submanifold ofM in which
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x > 0. We consider inM and M̃ a scalar field of mass m ≥ 0, and in M̃ we impose the
Dirichlet or Neumann boundary condition that the field or its normal derivative vanish
at x = 0.

We set the field in M in the Minkowski vacuum |0〉, and the field in M̃ in the
Minkowski-like vacuum |0̃〉 that is the no-particle state with respect to the timelike
Killing vector ∂t.

Now, consider in M and M̃ a detector on the static worldline

x(τ) = (τ, d) , (3.1)

where d is a positive constant. InM the value of d has no geometric significance, but in
M̃ d is the distance of the detector from the mirror at x = 0. We take the detector to be
switched on in the asymptotic past, so that the detector’s transition rate is stationary
and given by (2.17). We shall show that the transition rate is continuous in the limit
m→ 0.

3.1.1 m > 0

For m > 0, the Wightman function in M is [1]

〈0|φ(x)φ(x′)|0〉 =
1

2π
K0

[
m
√

(∆x)2 − (∆t− iε)2
]
, (3.2)

where ∆x = x−x′, ∆t = t−t′, K0 is the modified Bessel function of the second kind [48],
and the expression is understood as a distribution in the sense of ε → 0+. The square
root is positive when x and x′ are spacelike separated and ε→ 0+, and the continuation
to general x and x′ is specified by the iε prescription. By the method of images, the
Wightman function in M̃ is the sum of (3.2) and the image piece

〈0̃|φ(x)φ(x′)|0̃〉 − 〈0|φ(x)φ(x′)|0〉 =
η

2π
K0

[
m
√

(x+ x′)2 − (∆t− iε)2
]
, (3.3)

where η = −1 for Dirichlet and η = 1 for Neumann.
We evaluate the transition rate (2.17) in Appendix B. We obtain

M : Ḟ(ω) =
ω2

√
ω2 −m2

Θ(−ω −m) , (3.4a)

M̃ : Ḟ(ω) =
ω2
[
1 + η cos

(
2d
√
ω2 −m2

)]
√
ω2 −m2

Θ(−ω −m) . (3.4b)

The transition rate is non-negative, and it is nonvanishing only for ω < −m, that is, for
de-excitations exceeding the mass gap. These are properties that one would expect of a
reasonable detector coupled to a massive field.
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3.1.2 m = 0

OnM, the massive Wightman function (3.2) diverges as m→ 0. However, the quantity
〈0|φ(x)φ(x′)|0〉+ 1

2π
ln[meγ/(2µ)], where γ is Euler’s constant and µ is a positive constant

of dimension inverse length, has at m→ 0 a finite limit, given by [48]

〈0|φ(x)φ(x′)|0〉 .= − 1

2π
ln
[
µ
√

(∆x)2 − (∆t− iε)2
]
. (3.5)

We take (3.5) as the definition of the Wightman function for m = 0. The constant µ
is required for dimensional consistency, and its arbitrariness means that 〈0|φ(x)φ(x′)|0〉
(3.5) is unique up to an additive constant. The massless Wightman function on M̃ is
the sum of (3.5) and the image piece

〈0̃|φ(x)φ(x′)|0̃〉 − 〈0|φ(x)φ(x′)|0〉 = − η

2π
ln
[
µ
√

(x+ x′)2 − (∆t− iε)2
]
, (3.6)

where again η = −1 for Dirichlet and η = 1 for Neumann. Note that for η = −1,
the massless Wightman function on M̃ is independent of µ and can be obtained as the
m→ 0 limit of the massive Wightman function on M̃ without introducing a subtraction
by hand.

We show in Appendix B that the transition rate is given by

M : Ḟ(ω) = −ωΘ(−ω) , (3.7a)

M̃ : Ḟ(ω) = −ω [1 + η cos(2dω)] Θ(−ω) . (3.7b)

The transition rate is non-negative, and it is nonvanishing only for de-excitations, as
one would expect of a reasonable detector coupled to a massless field.

We see from (3.4) and (3.7) that the massless transition rate is equal to the massless
limit of the massive transition rate. This is the property that we wished to verify.

3.2 Unruh effect

Let againM be (1 + 1) Minkowski spacetime, and consider inM a massless field in the
Minkowski vacuum. We consider a detector on the uniformly accelerated worldline

x(τ) =
(
a−1 sinh(aτ), a−1 cosh(aτ)

)
, (3.8)

where the positive constant a is the magnitude of the proper acceleration. The trajectory
is stationary with respect to the boost Killing vector t∂x+x∂t, and |0〉 is invariant under
this Killing vector. With the detector switch-on pushed to the asymptotic past, the
transition rate is independent of time and given by (2.17).

From (2.8), (3.5) and (3.8), we find

A(τ ′, τ ′′) = − a2

8π sinh2
(
a(τ ′ − τ ′′ − iε)/2

) . (3.9)
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Substituting (3.9) in (2.17), deforming the contour of s-integration to s = −iπ/a + r
where r ∈ R, and using formula 3.985.1 in [49], we find

Ḟ(ω) =
ω

e2πω/a − 1
. (3.10)

The transition rate (3.10) satisfies the KMS relation [35, 36],

Ḟ(ω) = e−ω/T Ḟ(−ω) , (3.11)

with T = a/(2π), and is hence thermal at temperature a/(2π) in the KMS sense. We
conclude that the detector does see the usual Unruh effect [3, 7]. The Planckian form
of the transition rate (3.10) is identical to that of a non-derivative detector coupled to
a massless field on a uniformly accelerated trajectory in (3 + 1) dimensions [3, 7].

3.3 Inertial detector in a thermal bath

We consider again a massless field in (1 + 1) Minkowski spacetime M, but now in the
thermal state |T 〉 of positive temperature T . Working in Minkowski coordinates (t, x)
in which the thermal bath is at rest, the thermal Wightman function is obtained from
the vacuum Wightman function by taking an image sum in t with period i/T [1]. With
the vacuum Wightman function (3.5), the sum reads

〈T |φ(x)φ(x′)|T 〉 = − 1

4π

∞∑
n=−∞

ln
{
µ2
[
(∆x)2 − (∆t− iε+ in/T )2

]}
, (3.12)

and does not converge. However, differentiation of the sum in (3.12) term by term with
respect to ∆x gives a new sum that converges and can be summed by residues into
an elementary function. We integrate the elementary function with respect to ∆x and
fix the ∆t-dependent integration constant by requiring that the massless Klein-Gordon
equation is satisfied, and requiring evenness in ∆t for (∆x)2 − (∆t)2 > 0. The outcome
is

〈T |φ(x)φ(x′)|T 〉 .= − 1

4π
ln{sinh[πT (∆x+ ∆t− iε)]}

− 1

4π
ln{sinh[πT (∆x−∆t+ iε)]} , (3.13)

uniquely up to an additive constant, and we take (3.13) as the definition of the thermal
Wightman function. Note that (3.13) decomposes into the right-mover contribution that
depends on ∆(x− t) and the left-mover contribution that depends on ∆(x+ t).

We consider the inertial detector worldline

x(τ) = (τ coshλ,−τ sinhλ) , (3.14)
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where λ ∈ R is the detector’s rapidity parameter with respect to the rest frame of the
bath. For later convenience, we have chosen the sign in (3.14) so that a detector with
positive λ is moving towards decreasing x. From (2.8), (3.13) and (3.14) we find

A(τ ′, τ ′′) = − 1

16π

(
(2πT+)2

sinh2[πT+(τ ′ − τ ′′ − iε)]
+

(2πT−)2

sinh2[πT−(τ ′ − τ ′′ − iε)]

)
, (3.15)

where T±
.
= e±λT . Taking the detector to be switched on in the asymptotic past, and

proceeding as with (3.9), we find that the transition rate is given by

Ḟ(ω) =
ω

2

(
1

eω/T+ − 1
+

1

eω/T− − 1

)
, (3.16)

simplifying in the special case λ = 0 to

Ḟ(ω) =
ω

eω/T − 1
. (3.17)

The λ = 0 transition rate (3.17) satisfies the KMS relation (3.11) in temperature T ,
and it coincides with the transition rate (3.10) of a uniformly accelerated detector when
T = a/(2π). The λ 6= 0 transition rate (3.16) is a sum of the right-mover and left-mover
contributions, each satisfying the KMS relation but in the respective Doppler-shifted
temperatures T±. These are properties that one would expect of a reasonable detector.

3.4 Inertial detector with vacuum left-movers and thermal
right-movers

In preparation for the nonstationary situations that will be addressed in Sections 4 and 5,
we consider here the inertial detector (3.14) in the state in which the left-movers are in
the Minkowski vacuum but the right-movers are in a thermal bath with temperature T .
As the left-movers and the right-movers decouple, the results can be read off from those
given above in a straightforward way. Taking the switch-on to the asymptotic past, we
find

Ḟ(ω) = −ω
2

Θ(−ω) +
ω

2 (eω/T+ − 1)
. (3.18)

The first term in (3.18) is the left-mover contribution, equal to half of the Minkowski
transition rate. The second term is the right-mover contribution, which is Planckian in
the Doppler-shifted temperature T+ = eλT .

4 The receding mirror spacetime

In this section we consider a massless field in (1 + 1)-dimensional Minkowski spacetime
with a receding mirror that asymptotes at late times to a null line, in a fashion that
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mimics the late time redshift that occurs in a collapsing star spacetime [1, 28, 29].
Focusing on a specific mirror trajectory that is asymptotically inertial at early times, and
choosing a vacuum with no incoming radiation from infinity, we compute the transition
rate of an inertial, sharply-switched detector that is turned on in the asymptotic past.
We show that the early time transition rate is Minkowskian and the late time transition
rate has the expected form of Planckian radiation emitted from the mirror.

4.1 Mirror spacetime and the in-vacuum

Denoting a standard set of Minkowski coordinates by (t, x), we work in the double null
coordinates

u = t− x , (4.1a)

v = t+ x , (4.1b)

in which ds2 = −du dv. We take the mirror trajectory to be

v = −1

κ
ln(1 + e−κu) , (4.2)

where κ is a positive constant. When parametrised in terms of the proper time τ , the
trajectory reads

u = −2

κ
ln[sinh(−κτ/2)] , (4.3a)

v = −2

κ
ln[cosh(−κτ/2)] , (4.3b)

where −∞ < τ < 0. The velocity and acceleration are towards decreasing x, and the
proper acceleration has the magnitude κ/ sinh(−κτ). At early times the trajectory is
asymptotically inertial, asymptoting to x = 0 from the left, with proper acceleration
that vanishes exponentially in τ . At late times the trajectory asymptotes to the null line
v = 0 from below, receding to infinity as τ → 0−, and the proper acceleration diverges
as −1/τ . A spacetime diagram is shown in Figure 1.

We consider the spacetime that is to the right of the mirror. The mirror is hence
receding, and the constant κ is analogous to the surface gravity in a collapsing star
spacetime at late times [1, 28, 29].

We consider a massless scalar field φ with Dirichlet boundary conditions at the
mirror. As the positive frequency mode functions, we choose [1, 28, 29]

uk = i(4πk)−1/2
[
e−ikv − e−ikp(u)

]
, (4.4)

where k > 0 and

p(u) = −1

κ
ln(1 + e−κu) . (4.5)
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Figure 1: Minkowski spacetime with the receding mirror (4.2) and an inertial detector
(3.1) that is static with respect to the mirror in the asymptotic past. Dashed lines show
a selection of null geodesics that bounce off the mirror.

These modes satisfy the massless Klein-Gordon equation, they satisfy the Dirichlet
boundary condition at the mirror, and they are Dirac orthormal, (uk, uk′) = −(uk, uk′) =
δ(k − k′) and (uk, uk′) = (uk, uk′) = 0, where ( · , · ) is the Klein-Gordon inner product
on a hypersurface of constant t. In the distant past, the modes reduce to the usual
Dirichlet boundary condition modes in the static half-space x > 0. We note that to
verify the orthonormality, it suffices to consider the static half-space limit on a constant
t hypersurface in the distant past: the inner product is constant in t due to the Klein-
Gordon equation and the Dirichlet boundary condition.

We denote by |0, in〉 the no-particle state with respect to the modes (4.4). In the
distant past, |0, in〉 coincides with the usual no-particle state in the half-space x > 0,
and we call it the in-vacuum. Computing the Wightman as a mode sum from (4.4)
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gives [1]

〈0, in|φ(x)φ(x′)|0, in〉 = − 1

4π
ln

[ (
p(u)− p(u′)− iε

)
(v − v′ − iε)(

v − p(u′)− iε
)(
p(u)− v′ − iε

)] , (4.6)

where iε arises from the conditional ultraviolet convergence as usual. The mode sum is
infrared convergent because of the Dirichlet boundary condition.

4.2 Inertial detector: static in the distant past

We consider a detector on the inertial worldline (3.1), where d is again a positive con-
stant. In the asymptotic past, the detector is hence at distance d from a static mirror.
We take the detector to be switched on in the asymptotic past, and we take the field to
be in the in-vacuum |0, in〉.

Using (3.1), (4.1) and (4.6), we find

A(τ ′, τ ′′) = − 1

4π

(
p′(u′)p′(u′′)

[p(u′)− p(u′′)− iε]2
+

1

(v′ − v′′ − iε)2

− p′(u′′)

[v′ − p(u′′)− iε]2
− p′(u′)

[p(u′)− v′′ − iε]2

)
, (4.7)

where u′ = τ ′ − d, v′ = τ ′ + d, u′′ = τ ′′ − d and v′′ = τ ′′ + d. The prime on p denotes
derivative with respect to the argument. From (2.16) we then have

Ḟ(ω, τ) = Ḟ0(ω, τ) + Ḟ1(ω, τ) + Ḟ2(ω, τ) , (4.8a)

Ḟ0(ω, τ) = −ωΘ(−ω) +
1

2π

∫ ∞
0

ds cos(ωs)

(
− p′(τ − d)p′(τ − d− s)

[p(τ − d)− p(τ − d− s)]2
+

1

s2

)
,

(4.8b)

Ḟ1(ω, τ) =
1

2π

∫ ∞
0

ds
cos(ωs) p′(τ − d− s)

[τ + d− p(τ − d− s)]2
, (4.8c)

Ḟ2(ω, τ) =
1

2π

∫ ∞
0

ds Re

(
e−iωs p′(τ − d)

[p(τ − d)− τ − d+ s− iε]2

)
. (4.8d)

In (4.8b) and (4.8c) we have set ε = 0 as the integrand has no singularities. The ε in
(4.8d) needs to be kept as the integrand has a singularity, arising because the points
τ−s and τ on the detector’s trajectory are connected by a null ray that is reflected from
the mirror, as shown in Figure 1. The integral is well defined despite this singularity
since the switch-on is in the asymptotic past so that the range of s cannot end at the
singularity.
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We show in Appendix C that the early and late time forms of the transition rate
(4.8) are

Ḟ(ω, τ) = −ω [1− cos(2dω)] Θ(−ω) +O(eκτ ) as τ → −∞ , (4.9a)

Ḟ(ω, τ) = −ω
2

Θ(−ω) +
ω

2 (e2πω/κ − 1)
+ o(1) as τ →∞ . (4.9b)

4.3 Inertial detector: travelling towards the mirror in the dis-
tant past

We next consider a detector on the inertial worldline

x(τ) = (τ coshλ,−τ sinhλ) , (4.10)

where λ > 0. In the asymptotic past, where the mirror is static, the detector is moving
towards the mirror with speed tanhλ.

Proceeding as above, we find

Ḟ(ω, τ) = Ḟ0(ω, τ) + Ḟ1(ω, τ) + Ḟ2(ω, τ) , (4.11a)

Ḟ0(ω, τ) = −ωΘ(−ω) +
1

2π

∫ ∞
0

ds cos(ωs)

(
−
p′(eλτ)p′

(
eλ(τ − s)

)
e2λ[

p(eλτ)− p
(
eλ(τ − s)

)]2 +
1

s2

)
,

(4.11b)

Ḟ1(ω, τ) =
1

2π

∫ ∞
0

ds
cos(ωs) p′

(
eλ(τ − s)

)[
e−λτ − p

(
eλ(τ − s)

)]2 , (4.11c)

Ḟ2(ω, τ) =
1

2π

∫ ∞
0

ds Re

(
e−iωs p′(eλτ)

[p(eλτ)− e−λ(τ − s)− iε]2

)
, (4.11d)

and we show in Appendix C that the early and late time forms are

Ḟ(ω, τ) = −ω
[
1− e2λ cos(2τ sinhλ eλω)

]
Θ(−ω) +O(τ−1) as τ → −∞ , (4.12a)

Ḟ(ω, τ) = −ω
2

Θ(−ω) +
ω

2 (e2πe−λω/κ − 1)
+ o(1) as τ →∞ . (4.12b)

4.4 Onset of thermality

We are now ready to discuss the sense in which the transition rate exhibits the onset of
thermality as the mirror continues to recede.

Consider first the distant past. For the detector (3.1), static with respect to the
mirror, the transition rate (4.9a) agrees with that (3.7b) of the same detector in the

static half-space M̃. For the detector (4.10), drifting towards the mirror, the transition

rate (4.12a) can be verified to agree with that of the same detector in M̃. Compared
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with (4.9a), the non-Minkowski part of (4.12a) has the static distance d replaced by the
time-dependent distance −τ sinhλ, ω replaced by the blueshifted frequency eλω, and an
additional blueshift factor eλ.

Consider then the distant future. The distant future transition rates (4.9b) and
(4.12b) agree with the transition rate (3.18) of an inertial detector in Minkowski space
when the left-movers are in the Minkowski vacuum and the right-movers are thermal in
temperature κ/(2π). Note that the detector’s velocity shows up by a Doppler blueshift
in the right-mover contribution.

The late time transition rates (4.9b) and (4.12b) can hence be interpreted to consist
of a contribution from the left-moving part of the field, undisturbed by the mirror,
and and a contribution from the right-moving part of the field, excited by the mirror
to induce a Planckian response. This interpretation is consistent with the fact that
the stress-energy tensor of the field contains at late times an energy flux to the right
[1, 28, 29, 50, 51].

This late time result is consistent with that quoted in [1] for a non-derivative UDW
detector with a mirror trajectory with similar late time asymptotics, in the sense that
the left-mover contribution was not explicitly written out in [1].

Figures 2 and 3 show numerical plots for the evolution of the transition rate from
early to late times, for the detector (3.1) that is static with respect to the mirror in the
distant past. The asymptotic late time value is reached via a ring-down of oscillations
whose period equals 2π/κ within the range of the numerical experiments. We have not
attempted to examine this oscillation analytically.

5 (1 + 1) Schwarzschild spacetime

In this section we consider a detector in the (1+1)-dimensional Schwarzschild spacetime,
obtained by dropping the angular dimensions from the (3+1)-dimensional Schwarzschild
metric [52]. We first establish the notation, recall the definitions of the Boulware, HHI
and Unruh vacua [1], and discuss briefly the case of a static detector in the exterior.
The main objective is to study a geodesically infalling detector.

5.1 Spacetime and vacua

We write the metric of the (1+1)-dimensional maximally extended Schwarzschild space-
time in the notation of [1] as

ds2 = −2Me−r/(2M)

r
dū dv̄ , (5.1)

where M > 0 is the Schwarzschild mass parameter, the Kruskal null coordinates ū and
v̄ increase towards the future and satisfy ūv̄ < (4M)2, and r ∈ R+ is the unique solution
to

−ūv̄ = (4M)2[r/(2M)− 1
]
er/(2M) . (5.2)
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Figure 2: The figure shows a perspective plot of the transition rate Ḟ(ω, τ) (4.8) for
the detector (3.1) that is asymptotically static with respect to the mirror in the distant
past, with d = 1/κ.
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Figure 3: Cross-sections of the plot in Figure 2 at (a) ω = −κ and (b) ω = κ. The
dashed horizontal lines show the past and future asymptotic values (4.9).
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The metric has the Killing vector ξ = (4M)−1(−ū∂ū+ v̄∂v̄), which is timelike for ūv̄ < 0
(r > 2M), spacelike for ūv̄ > 0 (r < 2M) and null at the Killing horizon ūv̄ = 0
(r = 2M). The right-going (respectively left-going) branch of the Killing horizon is
ū = 0 (v̄ = 0). The Killing horizon divides the spacetime into four quadrants as
summarised in Table 1.

We denote by u and v the tortoise null coordinates defined by

u = −4M ln[−ū/(4M)] for ū < 0 , (5.3a)

v = 4M ln[v̄/(4M)] for v̄ > 0 . (5.3b)

In Quadrant I (right-hand exterior), where r > 2M , we can hence introduce the usual
exterior Schwarzschild coordinates (t, r) by

u = t− r − 2M ln[r/(2M)− 1] , (5.4a)

v = t+ r + 2M ln[r/(2M)− 1] , (5.4b)

so that

t = 2M ln(−v̄/ū) , (5.5)

the metric reads

ds2 = −(1− 2M/r) dt2 +
dr2

(1− 2M/r)
, (5.6)

and ξ = ∂t. In Quadrant II, where r < 2M , we can similarly introduce the Schwarzschild-
like coordinates (t̃, r) by (5.2) and

t̃ = 2M ln(v̄/ū) , (5.7)

so that the metric takes the form

ds2 = − dr2

[(2M/r)− 1]
+ [(2M/r)− 1] dt̃2 (5.8)

Quadrant ū v̄ ξaξa r
I: right-hand exterior − + − 2M < r <∞
II: black hole interior + + + 0 < r < 2M
III: left-hand exterior + − − 2M < r <∞
IV: white hole interior − − + 0 < r < 2M

Table 1: The four quadrants of the extended Schwarzschild spacetime. The columns
show the signs of the Kruskal coordinates ū and v̄, the norm squared of the Killing
vector ξ, and the range of the function r. In the exteriors, where ξ is timelike, it is
future-pointing in Quadrant I and past-pointing in Quadrant III.
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and ξ = ∂t̃. A pair of coordinates that covers Quadrants I and II and the black hole
horizon that separates them is (ū, v). We shall not need the explicit form of the metric
in these coordinates.

We consider a massless minimally coupled scalar field in three distinguished states.
First, in Quadrant I we consider the Boulware vacuum |0B〉, defined by the positive and
negative frequency decomposition with respect to ∂t in (5.6) [53]. At the asymptotically
flat infinity of Quadrant I, |0B〉 reduces to the Minkowski vacuum. Second, on the
whole spacetime we consider the HHI vacuum |0H〉, defined by the positive and negative
frequency decomposition with respect to ∂ū and ∂v̄ on the Killing horizon [54, 55]. In
Quadrant I, |0H〉 is a thermal equilibrium state with respect to ∂t, at the local Hawking
temperature

Tloc =
1

8πM
√

1− 2M/r
. (5.9)

Third, in Quadrants I and II and on the black hole horizon that separates them, we
consider the Unruh vacuum |0U〉, defined by the positive and negative frequency de-
composition with respect to ∂ū and ∂v in the coordinates (ū, v) [3]. |0U〉 mimics a state
that results from the collapse of a star at late times when there is initially no incoming
radiation from infinity, and it has the left-moving part of the field in a Boulware-like
state and the right-moving part of the field in a HHI-like state.

The Wightman functions for the three vacua are [1]

〈0B|φ(x)φ(x′)|0B〉 = − 1

4π
ln[(ε+ i∆u)(ε+ i∆v)] , (5.10a)

〈0H |φ(x)φ(x′)|0H〉 = − 1

4π
ln[(ε+ i∆ū)(ε+ i∆v̄)] , (5.10b)

〈0U |φ(x)φ(x′)|0U〉 = − 1

4π
ln[(ε+ i∆ū)(ε+ i∆v)] , (5.10c)

where ∆u = u − u′ and similarly for the other coordinates. Each of the Wightman
functions is unique up to a real-valued additive constant. The Boulware and HHI vacuum
Wightman functions are invariant under the isometries generated by the Killing vector ξ.
The Unruh vacuum Wightman function changes under these isometries by an additive
constant; however, the Unruh vacuum may nevertheless be considered invariant under
the isometries since the stress-energy tensor and other quantities built from derivatives of
the Wightman function are invariant [31, 32]. The non-invariance of the Unruh vacuum
Wightman function is due to the infrared properties of the (1+1)-dimensional conformal
field and has no counterpart in higher dimensions [56].

5.2 Static detector

We consider first a detector in Quadrant I on the static, noninertial trajectory r = R,
where R > 2M is a constant. Using (2.17) and (5.10), the calculations are closely similar
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to those in Section 3, and we omit the detail. We find

ḞB(ω) = −ωΘ(−ω) , (5.11a)

ḞH(ω) =
ω

eω/Tloc − 1
, (5.11b)

ḞU(ω) = −ω
2

Θ(−ω) +
ω

2 (eω/Tloc − 1)
, (5.11c)

for respectively the Boulware, HHI and Unruh vacua, where Tloc is the local Hawking
temperature (5.9) evaluated at r = R.

These results conform fully to expectations. The Boulware vacuum transition rate
is that of an inertial detector in Minkowski space in Minkowski vacuum, while the HHI
vacuum transition rate is thermal in the local Hawking temperature (5.9). The Unruh
vacuum transition rate is the average of the two, with the two pieces arising respectively
from the left-moving and right-moving parts of the field.

These results are also consistent with what was reported for the non-derivative UDW
detector in [1], in the sense that the left-mover contribution in (5.11c) was not explicitly
written out in [1]. Finally, the similarity between (5.11c) and our receding mirror space-
time results (4.9b) and (4.12b) is an additional confirmation that the Unruh vacuum
mimics the late time properties of a state created in a collapsing star spacetime [1, 3].

5.3 Interlude: geodesics

We next turn to inertial detectors. In this subsection we recall a convenient parametri-
sation for the geodesics. We give the full expressions in a form that applies only to
Quadrant I, where the equations of a timelike geodesic in the Schwarzschild coordinates
(5.6) take the form

ṫ =
E

1− 2M/r
, (5.12a)

ṙ2 = E2 − 1 + 2M/r , (5.12b)

where E is a positive constant and the overdot denotes derivative with respect to the
proper time τ . The continuation beyond Quadrant I can be done by passing to the
Kruskal coordinates (ū, v̄).

When E > 1, the geodesic has at infinity the nonvanishing speed
√

1− E−2 with
respect to the Killing vector ξ. We consider a geodesic that is sent in from the infinity,
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so that ṙ < 0. The geodesic can be parametrised as

τ =
M

(E2 − 1)3/2
(sinhχ− χ) , (5.13a)

r =
M

(E2 − 1)
(coshχ− 1) , (5.13b)

t =
ME

(E2 − 1)3/2

[
sinhχ+ (2E2 − 3)χ

]
+ 2M ln

(
− tanh(χ/2) +

√
1− E−2

− tanh(χ/2)−
√

1− E−2

)
, (5.13c)

where the parameter χ takes values in (−∞, 0), so that the trajectory starts at the
infinity in the asymptotic past at χ → −∞ and hits the singularity at χ → 0. The
additive constant in (5.13a) is chosen so that −∞ < τ < 0. The horizon-crossing occurs
at χ = χh

.
= −2 arctanh

(√
1− E−2

)
. Equation (5.13c) applies only in Quadrant I,

where −∞ < χ < χh.
When E = 1, the geodesic has at infinity a vanishing speed with respect to ξ. We

consider again a geodesic that is sent in from the infinity. The geodesic takes the form

r = 2M [−3τ/(4M)]2/3 , (5.14a)

t = τ − 4M [−3τ/(4M)]1/3 + 2M ln

(
[−3τ/(4M)]1/3 + 1

[−3τ/(4M)]1/3 − 1

)
, (5.14b)

where −∞ < τ < 0. The horizon-crossing occurs at τ = τh
.
= −4M/3, and the

singularity is reached as τ → 0. Equation (5.14b) applies only in Quadrant I, where
−∞ < τ < τh.

When 0 < E < 1, the geodesic has a maximum value of r. The geodesic can be
parametrised as

τ =
M

(1− E2)3/2
(ϕ+ sinϕ) , (5.15a)

r =
M

(1− E2)
(1 + cosϕ) , (5.15b)

t =
ME

(1− E2)3/2

[
sinϕ+ (3− 2E2)ϕ

]
+ 2M ln

(
1 +
√
E−2 − 1 tan(ϕ/2)

1−
√
E−2 − 1 tan(ϕ/2)

)
, (5.15c)

where the parameter ϕ takes values in (−π, π), so that the trajectory starts at the
white hole singularity at ϕ → −π and ends at the black hole singularity at ϕ →
π. The additive constant in (5.15a) is chosen so that τ = 0 at the moment when
r reaches its maximum value, 2M/(1 − E2). The total proper time elapsed between

the singularities is 2πM(1− E2)
−3/2

. The horizon-crossings occur at ϕ = ∓ϕh where
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ϕh
.
= 2 arctan

(√
E−2 − 1

)
. Equation (5.15c) applies only in Quadrant I, where −ϕh <

ϕ < ϕh.
Finally, there exist also timelike geodesics that pass from the white hole to the black

hole through the horizon bifurcation point ū = v̄ = 0, without entering Quadrant I (or
Quadrant III). These geodesics take the form

ū = v̄ = 4M sin(ϕ/2) exp
[

1
2

cos2(ϕ/2)
]
, (5.16)

where the parameter ϕ takes values in (−π, π), and τ and r are given by (5.15a) and
(5.15b) with E = 0. The isometry generated by ξ has been used in (5.16) to set ū = v̄
without loss of generality.

5.4 Inertial detector

The transition rate of the inertial detector is obtained by inserting the Wightman func-
tions (5.10) and the geodesic trajectories of subsection 5.3 into the integral formulas
of subsection 2.3. The transition rate is expressible as the integral of an elementary
function for all values of E; for E > 1 (respectively E < 1) this is accomplished by
writing the differentiations and the integration in terms of χ (ϕ).

We address the near-infinity and near-singularity limits analytically and the inter-
mediate regime numerically.

5.4.1 Near the infinity

We consider the E > 1 trajectories (5.13) and the E = 1 trajectory (5.14), all of which
fall in from the infinity, and we push the switch-on to the infinite past. It is shown in
Appendix D that at early times, τ → −∞, we have

ḞB(ω, τ) = −ωΘ(−ω) + o(1) , (5.17a)

ḞH(ω, τ) =
ω

2 (eω/T− − 1)
+

ω

2 (eω/T+ − 1)
+ o(1) , (5.17b)

ḞU(ω, τ) = −ω
2

Θ(−ω) +
ω

2 (eω/T+ − 1)
+ o(1) , (5.17c)

where T±
.
= e±λ/(8πM) and λ

.
= arctanh

(√
1− E−2

)
. For E = 1, we have T+ = T− =

1/(8πM), so that the two terms in (5.17b) are equal and combine to the Planckian
response.

The asymptotic past results (5.17) conform fully to physical expectations. The
Boulware vacuum transition rate is that in Minkowski vacuum (3.7a), consistently with
the interpretation of the Bouware vacuum as the no-particle state with respect to ξ.
The HHI vacuum transition rate is that of an inertial detector in a thermal bath in
Minkowski space (3.16), with the temperature given by the Hawking temperature at
the infinity, 1/(8πM), and with each of the two Planckian terms containing a Doppler
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shift factor that accounts for the detector’s velocity at the infinity. The Unruh vacuum
transition rate sees a Planckian term only in the outgoing part of the field, as confirmed
by the Doppler shift to the blue in this term, while the term that corresponds to the
ingoing part of the field is Minkowski-like.

5.4.2 Near the singularity

We consider the transition rate in the HHI and Unruh vacua in the limit where the
detector approaches the black black hole singularity. We allow all values of the non-
negative constant E. We also allow the switch-on moment to remain arbitrary, subject
only to the condition that for 0 ≤ E < 1 the switch-on in the HHI vacuum takes place
after the trajectory emerges from the white hole singularity, and the switch-on in the
Unruh vacuum takes place after the trajectory crosses the past horizon.

It is shown in Appendix D that in this near-singularity limit we have

Ḟ(ω, τ) =
1

8πM

[(
2M

r(τ)

)3/2

+
1 + E2

2

(
2M

r(τ)

)1/2
]

+O(1) , (5.18)

for both the HHI vacuum and the Unruh vacuum: the differences between the two
vacua show up only in the O(1) part. In terms of τ , the leading term in (5.18) is
1/[6π(τsing − τ)], where τsing is the value of τ at the black hole singularity.

5.4.3 Intermediate regime: loss of thermality

For a trajectory falling in from the infinity in the HHI and Unruh vacua, it is seen from
the limits (5.17) and (5.18) that the thermal character of the transition rate is lost during
the infall. Numerical evidence of how this loss takes place for the E = 1 trajectory is
shown in Figures 4 and 5. The numerical evidence shows that the Planckian form of
the transition rate is lost before the trajectory crosses the horizon.

Numerical evidence also corroborates that the overall magnitude of the transition
rate increases during the infall and grows without bound near the singularity. A sample
plot for the E = 1 trajectory in the HHI vacuum is shown in Figure 6.

Finally, suppose the field is in the HHI vacuum, and consider the trajectory that
passes from the white hole to the black hole through the horizon bifurcation point.
We use the parametrisation (5.16), so that (5.15a) and (5.15b) hold with E = 0. We
switch the detector on at ϕ = −9π/10, close to but well separated from the white hole
singularity at ϕ = −π. Figure 7 shows a perspective plot of the transition rate as a
function of ω and τ . The plot shows clearly both the divergence when τ approaches
the switch-on time, arising from the last term in (2.14), and the divergence when the
trajectory approaches the black hole singularity.

To examine the thermal character of the transition rate, we have evaluated numeri-
cally the quantity

Tas,KMS(ω, τ)
.
=

ω

ln
(
Ḟ(−ω, τ)/Ḟ(ω, τ)

) . (5.19)
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Figure 4: The solid (red) curve shows MḞ as a function of Mω for the E = 1 trajectory
in the HHI vacuum, at the times (a) τ = −10M , (b) τ = −3.5M and (c) τ = −1.5M ,
all of them before the horizon-crossing, which occurs at τ = τh = −(4/3)M . The
dashed (blue) curve shows M times the Minkowski thermal bath response (3.16) at
the local Hawking temperature Tloc (5.9) and with the Doppler shift factor λ = λloc =
arctanh

(√
2M/r

)
, as a function of Mω. The discrepancy between the two curves shows

that the Planckian character of the transition rate is lost as τ approaches τh, where the
solid curve remains finite but the dashed curve disappears to +∞.
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Figure 5: The solid (red) curve is as in Figure 4 but for the Unruh vacuum. The dashed
(blue) curve shows M times the Minkowski response (3.18) in a state with vacuum left-
movers and thermal right-movers, at the local Hawking temperature Tloc (5.9) and with
the Doppler shift factor λ = λloc = arctanh

(√
2M/r

)
. The discrepancy between the two

curves again shows loss of the Planckian character as τ approaches τh, where the solid
curve remains finite but the dashed curve disappears to +∞. Note the discontinuous
slope of the dashed curve at ω = 0.
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Figure 6: (a) The solid (blue) curve shows MḞ
(
1/(4πM)

)
as a function of τ/M for the

E = 1 trajectory in the HHI vacuum. The dashed (red) line shows the value 1/[4π(e2−1)]
to which the solid curve asymptotes at τ/M → −∞. (b) The solid (blue) curve shows a
close-up of (a) near the horizon-crossing, τ/M = −4/3. The dash-dotted (green) curve
shows the τ -dependent terms included in the asymptotic τ → 0 expression (5.18).

Figure 7: The transition rate for a detector on the E = 0 trajectory (5.16) in the HHI
vacuum, with the switch-on at ϕ = −9π/10, where τ ≈ −3.136M . The white hole
singularity is at ϕ = −π, where τ = −πM . The divergence of the transition rate in the
limit of short detection time and in the limit of approaching the black hole singularity
is evident in the plot.
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If Tas,KMS were (approximately) independent of ω for fixed τ , the transition rate would
satisfy (approximately) the KMS condition (3.11) and Tas,KMS would be equal to (approx-
imate) KMS temperature, which could possibly be τ -dependent. Within the parameter
range that our numerical experiments have been able to probe, we have however found
no regimes in which Tas,KMS would be (approximately) independent of ω.

6 Conclusions

In this paper we have analysed an UDW detector that is coupled to the proper time
derivative of a scalar field in a (1+1)-dimensional spacetime. Working within first-order
perturbation theory, we showed that although the derivative makes the interaction be-
tween the detector and the field more singular, the singularity is no worse than that of
the non-derivative UDW detector in (3 + 1) spacetime dimensions, and issues of switch-
ing can be handled by the same techniques. In particular, even though the transition
probability diverges in the sharp switching limit, the transition rate remains well defined
and allows the detector to address strongly time-dependent situations.

Our main aim was to show that the derivative-coupling detector provides a viable
tool for probing a (1 + 1)-dimensional massless field, whose infrared properties create
ambiguities for the conventional UDW detector in time-dependent situations. We pre-
sented strong evidence that the derivative-coupling detector does remain well-behaved
for the massless field, with and without time-dependence. As specific time-dependent
examples, we analysed an inertial detector in a Minkowski spacetime with an expo-
nentially receding mirror and a detector falling inertially into the (1 + 1)-dimensional
Schwarzschild black hole. In both cases we recovered the expected thermal results due
to the Hawking-Unruh effect in the appropriate limits. In the receding mirror space-
time we saw the thermality gradually set in as the mirror’s acceleration approaches the
asymptotic late time behaviour, tailored to model the late time effects of a gravitational
collapse. In the (1 + 1)-dimensional Schwarzschild spacetime we saw thermality grad-
ually lost as the detector falls, and we saw the transition rate diverge as the detector
approaches the black hole singularity, for both the HHI and Unruh vacua.

Our results about the time-dependence of the Hawking-Unruh effect complement
those obtained via Bogoliubov coefficient techniques or via a quasi-temperature approx-
imation to the Wightman function [57, 58, 59, 60]. A key input in our analysis was to
characterise the time-dependence of the response in terms of the instantaneous transi-
tion rate, defined by taking the sharp switching limit, and mathematically well defined
in our spacetimes even when the time-dependence is strong. A conceptual disadvantage
of the instantanous transition rate is however that it cannot be measured by a single
detector, or even by an ensemble of detectors, but the measurement requires an ensem-
ble of ensembles of detectors [12, 15]. A technical disadvantage is that the instantanous
transition rate becomes singular when the Wightman function has singularities that
typically occur with spatial periodicity [37]. Further, the limit of sharp switching and
the limit of large energy gap need not commute [61], which becomes an issue when one
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attempts to identify characteristics of thermal behavour in the response of a detector
that operates for a genuinely finite interval of time. While we hence do not advocate
the instantaneous transition rate as a definitive quantifier of time-dependence in the
detector’s response, our results strongly suggest that the instantaneous transition rate
conveys a physically expected picture about the onset and decay of the Hawking-Unruh
effect.
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additional support from Sistema Estatal de Becas de Veracruz, Mexico. JL was sup-
ported in part by STFC (Theory Consolidated Grant ST/J000388/1).

A Evaluation of Fsing (2.6c)

In this appendix we show that Fsing (2.6c) can be written as (A.6) or (A.7).
Starting from (2.6c) and integrating the distributional derivatives by parts, we have

Fsing(ω) =

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′Q′ω(τ ′)Q′ω(τ ′′)Wsing(τ ′, τ ′′) , (A.1)

where Qω(τ)
.
= e−iωτχ(τ) and the prime denotes derivative with respect to the argu-

ment. Note that the integrand in (A.1) is a locally integrable function, containing no
distributional parts. Using the explicit form of Wsing (2.4), we obtain

Fsing(ω) = Fsing,1(ω) + Fsing,2(ω) , (A.2a)

Fsing,1(ω) = − i

4

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′Q′ω(τ ′)Q′ω(τ ′′) sgn(τ ′ − τ ′′) , (A.2b)

Fsing,2(ω) = − 1

2π

∫ ∞
−∞

dτ ′
∫ ∞
−∞

dτ ′′Q′ω(τ ′)Q′ω(τ ′′) ln |τ ′ − τ ′′| . (A.2c)
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For Fsing,1, integrating over τ ′′ in (A.2b) gives

Fsing,1(ω) = − i

2

∫ ∞
−∞

duQ′ω(u)Qω(u)

= − i

2

∫ ∞
−∞

du [χ′(u)− iωχ(u)]χ(u)

= −ω
2

∫ ∞
−∞

du [χ(u)]2 , (A.3)

where we have renamed τ ′ as u, used the definition of Qω, and finally noted that∫∞
−∞ duχ

′(u)χ(u) = 1
2

∫∞
−∞ du

d
du

[χ(u)]2 = 0.
For Fsing,2, we break the integral in (A.2c) into the subdomains τ ′ > τ ′′ and τ ′ < τ ′′.

In the subdomain τ ′ > τ ′′ we write τ ′ = u and τ ′′ = u− s, where u ∈ R and 0 < s <∞,
and in the subdomain τ ′ < τ ′′ we write τ ′′ = u and τ ′ = u− s, where again u ∈ R and
0 < s <∞. This gives

Fsing,2(ω) = − 1

π

∫ ∞
0

ds ln s

∫ ∞
−∞

duRe
[
Q′ω(u)Q′ω(u− s)

]
=

1

π

∫ ∞
0

ds ln s

∫ ∞
−∞

duRe
[
Qω(u)Q′′ω(u− s)

]
=

1

π

∫ ∞
0

ds ln s
d2

ds2

∫ ∞
−∞

duRe
[
Qω(u)Qω(u− s)

]
=

1

π

∫ ∞
0

ds ln s
d2

ds2

(
cos(ωs)

∫ ∞
−∞

duχ(u)χ(u− s)
)

= − 1

π

∫ ∞
0

ds

s

d

ds

(
cos(ωs)

∫ ∞
−∞

duχ(u)χ(u− s)
)
, (A.4)

where we have first integrated by parts in u, then written the derivatives in Q′′ω(u− s) as
s-derivatives outside the u-integral, then used the definition of Qω, and finally integrated
by parts in s. The substitution term from s = 0 in the integration by parts vanishes
because cos(ωs)

∫∞
−∞ duχ(u)χ(u − s) is even in s, and the integral over s in the last

expression in (A.4) is convergent at small s for the same reason.
In the last expression in (A.4), writing χ(u)χ(u−s) = [χ(u)]2−χ(u)[χ(u)−χ(u−s)]
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gives

Fsing,2(ω) =
ω

π

(∫ ∞
−∞

du [χ(u)]2
)∫ ∞

0

ds
sin(ωs)

s

+
1

π

∫ ∞
0

ds

s

d

ds

(
cos(ωs)

∫ ∞
−∞

duχ(u)[χ(u)− χ(u− s)]
)

=
|ω|
2

∫ ∞
−∞

du [χ(u)]2 +
1

π

∫ ∞
0

ds
cos(ωs)

s2

∫ ∞
−∞

duχ(u)[χ(u)− χ(u− s)] ,

(A.5)

where in the first term we have used the identity
∫∞

0
ds s−1 sin(ωs) = 1

2
π sgnω, and in

the second term we have integrated by parts. The integral over s in the second term
is convergent at small s because

∫∞
−∞ duχ(u)[χ(u)− χ(u− s)] vanishes at s = 0 and is

even in s.
Combining (A.3) and (A.5), we obtain

Fsing(ω) = −ωΘ(−ω)

∫ ∞
−∞

du [χ(u)]2

+
1

π

∫ ∞
0

ds
cos(ωs)

s2

∫ ∞
−∞

duχ(u)[χ(u)− χ(u− s)] . (A.6)

An alternative expression is

Fsing(ω) = −ω
2

∫ ∞
−∞

du [χ(u)]2 +
1

π

∫ ∞
0

ds

s2

∫ ∞
−∞

duχ(u) [χ(u)− χ(u− s)]

+
1

π

∫ ∞
−∞

du

∫ ∞
0

ds χ(u)χ(u− s) [1− cos(ωs)]

s2
, (A.7)

which may be obtained from (A.6) by writing cos(ωs) = 1− [1− cos(ωs)] and using the
identity ∫ ∞

0

ds
1− cos(ωs)

s2
=
π|ω|

2
. (A.8)

B Evaluation of the static detector’s transition rate

in Minkowski (half-)space

In this appendix we verify formulas (3.4) and (3.7) for the transition rate of a static
detector in Minkowski space and Minkowski half-space. We use the Wightman functions
found in subsection 3.1 and evaluate the transition rate from (2.17).
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B.1 m = 0

We consider first the massless field, with the Wightman function given by (3.5) and (3.6).
In M, we find from (2.8), (3.1) and (3.5) that A(τ ′, τ ′′) = −1/

[
2π(τ ′ − τ ′′ − iε)2

]
.

Evaluating (2.17) as a contour integral gives (3.7a).

In M̃, we find from (3.6) that the integrand in (2.17) contains the additional piece

∆A(τ ′, τ ′′) = − η

2π

(τ ′ − τ ′′ − iε)2 + 4d2

[(τ ′ − τ ′′ − iε)2 − 4d2]2
. (B.1)

Evaluating the contribution to (2.17) as a contour integral leads to (3.7b).
We note that ∆A(τ ′, τ ′′) (B.1) has distributional singularities at τ ′− τ ′′ = ±2d. The

geometric reason for these singularities is that the points τ ′ and τ ′′ on the detector’s
trajectory are connected by a null ray that is reflected from the mirror. As we have
seen, the stationary transition rate is well defined despite these singularities. Were we
however to consider a detector that operates for a finite duration, the singularities would
interfere with the sharp switching limit manipulations that led to (2.14) when ∆τ = 2d.

B.2 m > 0

For the massive field, the Wightman function is given by (3.2) and (3.3). We consider

M and M̃ in turn.

B.2.1 M

In M, we find from (2.8), (3.1) and (3.2) that

A(τ ′, τ ′′) =
m2

2π
K ′′0
[
m
(
ε+ i(τ ′ − τ ′′)

)]
, (B.2)

where the prime denotes derivative with respect to the argument. From (2.17) we then
obtain

Ḟ(ω) =
m2

2π

∫
C

ds e−iωsK ′′0 (ims) , (B.3)

where the contour C in the complex s plane follows the real axis from −∞ to +∞ except
that it drops in the lower half-plane near s = 0, and K0 has its principal branch when s
is negative imaginary. We now assume ω 6= −m: it follows then from the asymptotics of
K0 at large imaginary argument [48] that (B.3) is convergent as an improper Riemann
integral.

From (B.3) we obtain

Ḟ(ω) =
ω2

2π

∫
C

ds e−iωsK0(ims)

=
ω2

2
Im

∫ ∞
0

ds e−iωsH
(2)
0 (ms) , (B.4)
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where we have first integrated by parts twice, as allowed by the large s behaviour of
the integrand, then deformed C to the real s axis, as allowed by the merely logarithmic
singularity of the integrand at s = 0, and finally used the Bessel function analytic
continuation formulas [48]. The integral in (B.4) was encountered in [19] in the context
of a non-derivative detector, and from equations (5.11) and (5.14) therein we have

Ḟ(ω) =
ω2

√
ω2 −m2

Θ(−ω −m) , (B.5)

which is the result (3.4a) used in the main text.

B.2.2 M̃

In M̃, we find from (3.3) that the integrand in (2.17) contains the additional piece

∆A(τ, τ ′′) = − η

2π

d2

dτ ′2
K0

[
m
√

4d2 − (τ ′ − τ ′′ − iε)2
]
, (B.6)

where the branch of the square root is as explained in the main text. The additional
piece in the transition rate (2.17) is hence

∆Ḟ(ω) = − η

2π

∫ ∞
−∞

ds e−iωs d
2

ds2
K0

[
m
√

4d2 − (s− iε)2
]

=
ηω2

2π

∫ ∞
−∞

ds e−iωsK0

[
m
√

4d2 − (s− iε)2
]

=
ηω2

π
Re

∫ ∞
0

ds e−iωsK0

[
m
√

4d2 − (s− iε)2
]
, (B.7)

again assuming ω 6= −m and integrating by parts twice. The integral in (B.7) was
encountered in [19], and from equations (5.15) and (5.25) therein we have

∆Ḟ(ω) =
ηω2 cos

(
2d
√
ω2 −m2

)
√
ω2 −m2

Θ(−ω −m) , (B.8)

which leads to the result (3.4b) in the main text.

C Asymptotic past and future transition rate in the

receding mirror spacetime

In this appendix we find the asymptotic past and future forms (4.9) and (4.12) of the
transition rate of an inertial detector in the receding mirror spacetime of Section 4.
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C.1 Static in the distant past

We wish to extract the asymptotic behaviour of (4.8) as τ → −∞ and as τ →∞.

C.1.1 τ → −∞

Consider (4.8b). Using (4.5) and letting h
.
=
(
1 + eκ(d−τ)

)−1
, we have

Ḟ0(ω, τ) = −ωΘ(−ω) +
1

2π

∫ ∞
0

ds cos(ωs)

(
1

X
+

1

s2

)
, (C.1)

where

X = −
[1− h(1− e−κs)]

{
κs+ ln[1− h(1− e−κs)]

}2

κ2(1− h)2 . (C.2)

The limit τ → −∞ is now the limit h→ 0+.
Following the technique used in subsection 5.3 of [13], we make in the integrand of

(C.1) the re-arrangement

1

X
+

1

s2
=
−X − s2

s4

(
1 +
−X − s2

s2

)−1

. (C.3)

Taylor expanding the numerator of (C.2) to quartic order in h(1− e−κs) shows that the
second factor in (C.3) is of the form 1 + O(h), uniformly in s, and yields for the first
factor in (C.3) an estimate that can be applied under the integral over s and whose
leading term is proportional to h. We hence have

Ḟ0(ω, τ) = −ωΘ(−ω) +O(h) . (C.4)

Consider then (4.8c). Proceeding similarly, we find

Ḟ1(ω, τ) =
1

4πd
+
|ω|
2π

[
cos(2dω) si(2d|ω|)− sin(2d|ω|) Ci(2d|ω|)

]
+O(h) , (C.5)

where si and Ci are the sine and cosine integrals in the notation of [48].
Consider finally (4.8d). Integrating by parts once reduces the integral to a form that

can be evaluated exactly in terms of the sine and cosine integrals [48], with the result

Ḟ2(ω, τ) =
1− h

2π

{
− 1

B
+ |ω|

[
sin(B|ω|) Ci(B|ω|)− cos(Bω) si(B|ω|)

]
+ 2πω cos(Bω)Θ(−ω)

}
, (C.6)
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where B
.
= 2d− κ−1 ln(1− h). A small h expansion in (C.6) gives

Ḟ2(ω, τ) = − 1

4πd
+
|ω|
2π

[
sin(2d|ω|) Ci(2d|ω|)− cos(2dω) si(2d|ω|)

]
+ ω cos(Bω)Θ(−ω) +O(h) . (C.7)

Combining (C.4), (C.5) and (C.7), we have

Ḟ(ω, τ) = −ω [1− cos(2dω)] Θ(−ω) +O(eκτ ) as τ → −∞ . (C.8)

C.1.2 τ →∞

Consider (4.8b). Letting f
.
= 1/(1 + eκ(τ−d)), and adding and subtracting

κ2 cos(ωs)[8π sinh2(κs/2)]−1 in the integrand, we obtain

Ḟ0(ω, τ) = −ωΘ(−ω) +
1

2π

∫ ∞
0

ds cos(ωs)

(
1

s2
− κ2

4 sinh2(κs/2)

)

+
κ2

2π

∫ ∞
0

ds cos(ωs)

(
1

4 sinh2(κs/2)
− f 2 eκs

[1 + f(eκs − 1)]
{

ln[1 + f(eκs − 1)]
}2

)
.

(C.9)

In the last term in (C.9), the integrand goes to zero pointwise as f → 0, and a monotone
convergence argument shows that the integral vanishes as f → 0. The second term plus
half of the first term is equal to half of the transition rate encountered in subsection 3.2
(with a→ κ) and evaluated to (3.10). We hence have

Ḟ0(ω, τ) = −ω
2

Θ(−ω) +
ω

2 (e2πω/κ − 1)
+ o(1) as f → 0 . (C.10)

In (4.8c), a straightforward monotone convergence argument gives Ḟ1(ω, τ) = o(1).
In (4.8d), (C.6) gives Ḟ2(ω, τ) = O(f).

Combining, we have

Ḟ(ω, τ) = −ω
2

Θ(−ω) +
ω

2 (e2πω/κ − 1)
+ o(1) as τ →∞ . (C.11)

C.2 Travelling towards the mirror in the distant past

We wish to extract the asmptotic behaviour of (4.11) as τ → −∞ and as τ →∞.

C.2.1 τ → −∞

For (4.11b), proceeding as in (C.1)–(C.4) gives

Ḟ0(ω, τ) = −ωΘ(−ω) +O
(
eeλκτ

)
. (C.12)
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For (4.11c), we have

Ḟ1(ω, τ) =
1

2π

∫ ∞
0

cos(ωs) ds(
1 + ge−κseλ

) [
seλ − 2τ sinhλ+ κ−1 ln

(
1 + ge−κseλ

)]2 , (C.13)

where g = eκτeλ . When τ < 0, we may bound the absolute value of Ḟ1(ω, τ) by the
replacements cos(ωs)→ 1 and g → 0 in (C.13), and evaluating the integral that ensues
gives Ḟ1(ω, τ) = O(τ−1).

For (4.11d), we proceed as with (C.6), obtaining the exact result

Ḟ2(ω, τ) =
(1− h) e2λ

2π

{
− 1

C
+ |ω|

[
sin(C|ω|) Ci(C|ω|)− cos(Cω) si(C|ω|)

]
+ 2πω cos(Cω)Θ(−ω)

}
, (C.14)

where h = g/(1 + g) and C
.
= −(e2λ − 1)τ − κ−1eλ ln(1 − h). As τ → −∞, we have

C →∞, and using formulas (6.2.17) and (6.12.3) in [48] gives

Ḟ2(ω, τ) = e2λ ω cos(2τ sinhλ eλω)Θ(−ω) +O(τ−3) . (C.15)

Combining, we have

Ḟ(ω, τ) = −ω
[
1− e2λ cos(2τ sinhλ eλω)

]
Θ(−ω) +O(τ−1) . (C.16)

C.2.2 τ →∞

For (4.11b), proceeding as in (C.9) gives

Ḟ0(ω, τ) = −ω
2

Θ(−ω) +
ω

2 (e2πe−λω/κ − 1)
+ o(1) as τ →∞ . (C.17)

For (4.11c), using (C.13) and substituting s = τ + r gives

Ḟ1(ω, τ) =
κ2

2π

∫ ∞
−τ

cos[ω(τ + r)] ds(
1 + e−κreλ

) [
κτe−λ + ln

(
1 + eκreλ

)]2 . (C.18)

We may assume τ > 0. To bound the absolute value of (C.18), we make in the integrand
the replacement cos[ω(τ + r)] → 1 and extend the integration to be over the full real
axis in r. Elementary estimates then show that the contribution from −∞ < r < 0 is
O(τ−2) and the contribution from from 0 < r <∞ is O(τ−1). Hence Ḟ1(ω, τ) = O(τ−1).

For (4.11d), (C.14) gives Ḟ2(ω, τ) = O
(
e−eλκτ

)
.

Combining, we have

Ḟ(ω, τ) = −ω
2

Θ(−ω) +
ω

2 (e2πe−λω/κ − 1)
+ o(1) as τ →∞ . (C.19)
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D Near-infinity and near-singularity transition

rates in the (1 + 1)-dimensional Schwarzschild

spacetime

In this appendix we verify the near-infinity and near-singularity transition rate formu-
las (5.17) and (5.18) for the inertial detector in the (1 + 1)-dimensional Schwarzschild
spacetime.

D.1 Near-infinity transition rate

We consider the E ≥ 1 trajectories (5.13) and (5.14) in Quadrant I. We wish to find
the transition rate in the early time limit, assuming that the detector is switched on in
the asymptotic past.

Using (2.16) and (5.10), we find

ḞB(ω, τ) = −ωΘ(−ω) + 2

∫ ∞
0

ds cos(ωs)

(
Au(τ, τ − s) +Av(τ, τ − s) +

1

2πs2

)
,

(D.1a)

ḞH(ω, τ) = −ωΘ(−ω) + 2

∫ ∞
0

ds cos(ωs)

(
Aū(τ, τ − s) +Av̄(τ, τ − s) +

1

2πs2

)
,

(D.1b)

ḞU(ω, τ) = −ωΘ(−ω) + 2

∫ ∞
0

ds cos(ωs)

(
Aū(τ, τ − s) +Av(τ, τ − s) +

1

2πs2

)
,

(D.1c)

where

Au(τ, τ ′) = − u̇(τ)u̇(τ ′)

4π[u(τ)− u(τ ′)]2
, (D.2a)

Av(τ, τ ′) = − v̇(τ)v̇(τ ′)

4π[v(τ)− v(τ ′)]2
, (D.2b)

Aū(τ, τ ′) = −
˙̄u(τ) ˙̄u(τ ′)

4π[ū(τ)− ū(τ ′)]2
, (D.2c)

Av̄(τ, τ ′) = −
˙̄v(τ) ˙̄v(τ ′)

4π[v̄(τ)− v̄(τ ′)]2
. (D.2d)

Using (5.13) and (5.14), it is straightforward to verify that as τ → −∞ with fixed
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positive s, we have

Au(τ, τ − s)→ −
1

4πs2
, (D.3a)

Av(τ, τ − s)→ −
1

4πs2
, (D.3b)

Aū(τ, τ − s)→ −
e2λ

4π(8M)2 sinh2
(
eλs/(8M)

) , (D.3c)

Av̄(τ, τ − s)→ −
e−2λ

4π(8M)2 sinh2
(
e−λs/(8M)

) , (D.3d)

where λ = arctanh
(√

1− E−2
)
. Taking the τ → −∞ limit under the integrals in (D.1),

justified by the monotone convergence argument given below, and proceeding as in
subsection 3.2, leads to the formulas (5.17) in the main text.

What remains is to provide the monotone convergence argument. Let q stand for
either u̇ or v̇, and note from (5.4) and (5.12) that

ṙ = −
√
E2 − 1 + 2M/r , (D.4a)

q =
1

E + η
√
E2 − 1 + 2M/r

, (D.4b)

q̇ = − ηM

r2
(
E + η

√
E2 − 1 + 2M/r

)2 , (D.4c)

where η = 1 for q = v̇ and η = −1 for q = u̇. The expressions∫ τ
τ−s q(τ

′) dτ ′√
q(τ)q(τ − s)

, (D.5a)

sinh
(

1
8M

∫ τ
τ−s q(τ

′) dτ ′
)

√
q(τ)q(τ − s)

, (D.5b)

are hence well defined for all s > 0 when τ is sufficiently large and negative. For mono-
tone convergence, it suffices to show that each of the expressions in (D.5) is monotone
in τ for all s > 0 when τ is sufficiently large and negative. Differentiating (D.5) with
respect to τ , it suffices to show that each of the expressions∫ τ

τ−s
q(τ ′) dτ ′ − 2[q(τ)− q(τ − s)]

(
q̇(τ)

q(τ)
+
q̇(τ − s)
q(τ − s)

)−1

, (D.6a)

tanh

(
1

8M

∫ τ

τ−s
q(τ ′) dτ ′

)
− 1

4M
[q(τ)− q(τ − s)]

(
q̇(τ)

q(τ)
+
q̇(τ − s)
q(τ − s)

)−1

, (D.6b)
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has a fixed sign for all s > 0 when τ is sufficiently large and negative. Introducing in
(D.6) a new integration variable by p′ =

√
E2 − 1 + 2M/r(τ ′) , we see that it suffices to

show that each of the functions

f1(p) =
1

2

∫ pf

p

dp′

(E + ηp′)[p′2 − E2 + 1]
2

− pf − p
(E + ηp)[p2

f − E2 + 1]
2

+ (E + ηpf )[p2 − E2 + 1]2
, (D.7a)

f2(p) = tanh

(
1

2

∫ pf

p

dp′

(E + ηp′)[p′2 − E2 + 1]
2

)

− pf − p
(E + ηp)[p2

f − E2 + 1]
2

+ (E + ηpf )[p2 − E2 + 1]2
, (D.7b)

defined on the domain
√
E2 − 1 < p < pf , where pf ∈

(√
E2 − 1 , E

)
is a parameter,

has a fixed sign when pf is sufficiently close to
√
E2 − 1.

Consider f1. f ′1 is a rational function whose sign can be analysed by elementary
methods, with the outcome that f ′1 is negative when pf is sufficiently close to

√
E2 − 1.

Hence f1 is positive when pf is sufficiently close to
√
E2 − 1.

Consider then f2. When pf is sufficiently close to
√
E2 − 1, an elementary analysis

shows that the second term in (D.7b) is negative and strictly increasing, and there is
a p1 ∈

(√
E2 − 1 , pf

)
such that this term takes the value −1 at p = p1. With pf this

close to
√
E2 − 1, it follows that f2 is negative for p ≤ p1, whereas for p1 < p < pf f2

has the same sign as

f3(p) =
1

2

∫ pf

p

dp′

(E + ηp′)[p′2 − E2 + 1]
2

− arctanh

(
pf − p

(E + ηp)[p2
f − E2 + 1]

2
+ (E + ηpf )[p2 − E2 + 1]2

)
. (D.8)

f3 can be analysed by the same methods as f1, with the outcome that f3 is negative
when pf is sufficiently close to

√
E2 − 1. Collecting, we see that f2 is negative when pf

is sufficiently close to
√
E2 − 1.

This completes the monotone convergence argument.

D.2 Near-singularity transition rate

We consider the trajectories (5.13), (5.14), (5.15) and (5.16), with E ≥ 0, and with
the field in the HHI and Unruh vacua. The switch-off moment τ is assumed to be in
Quadrant II. The switch-on-moment τ0 either is finite and in a region of the spacetime
where the vacuum is regular, or for E ≥ 1 may alternatively be pushed to the asymptotic
past.
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Let τsing be the value of τ at the black hole singularity, and let τ1 be a constant such
that the detector is somewhere in Quadrant II at proper time τ1. In the limit τ → τsing

with everything else fixed, we have

ḞH(ω, τ) = Gū(ω, τ, τ1) +Gv̄(ω, τ, τ1) +O(1) , (D.9a)

ḞU(ω, τ, τ1) = Gū(ω, τ, τ1) +Gv(ω, τ, τ1) +O(1) , (D.9b)

where

Gv(ω, τ, τ1) = 2

∫ τ

τ1

dτ ′ cos[ω(τ − τ ′)]
(
Av(τ, τ ′) +

1

4π(τ − τ ′)2

)
, (D.10a)

Gv̄(ω, τ, τ1) = 2

∫ τ

τ1

dτ ′ cos[ω(τ − τ ′)]
(
Av̄(τ, τ ′) +

1

4π(τ − τ ′)2

)
, (D.10b)

Gū(ω, τ, τ1) = 2

∫ τ

τ1

dτ ′ cos[ω(τ − τ ′)]
(
Aū(τ, τ ′) +

1

4π(τ − τ ′)2

)
, (D.10c)

and Av, Av̄ and Aū are given in (D.2).
Consider first Gv(ω, τ, τ1), and assume τ1 < τ < τsing. Working in the coordinates

(v, r), well defined in Quadrant II, the equations for the trajectory read

ṙ = −
√
E2 − 1 + 2M/r , (D.11a)

v̇ =
1

E +
√
E2 − 1 + 2M/r

, (D.11b)

from which it follows that

v̈ = − M

r2
(
E +

√
E2 − 1 + 2M/r

)2 . (D.12)

From (D.2b) and (D.10a) we hence have

Gv(ω, τ, τ1) =
1

2π
lim
τ ′→τ

[
cos[ω(τ − τ ′)]

(
− v̇(τ)

v(τ)− v(τ ′)
+

1

τ − τ ′

)]
+O(1)

=
1

16πM

[(
2M

r(τ)

)3/2

− E
(

2M

r(τ)

)
+

1 + E2

2

(
2M

r(τ)

)1/2
]

+O(1) , (D.13)

where we have first integrated by parts, observing that the new integral term is O(1)
by virtue of near-singularity estimates that ensue from (D.11) and (D.12), and then
evaluated the limit using (D.11) and (D.12).

For Gv̄(ω, τ, τ1) we may proceed similarly, using v̄ = 4M exp[v/(4M)]. The differ-
ences from Gv(ω, τ, τ1) turn out to be O(1), so that

Gv̄(ω, τ, τ1) =
1

16πM

[(
2M

r(τ)

)3/2

− E
(

2M

r(τ)

)
+

1 + E2

2

(
2M

r(τ)

)1/2
]

+O(1) . (D.14)
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For Gū(ω, τ, τ1) the analysis is as for Gv̄(ω, τ, τ1) but with E → −E, with the result

Gū(ω, τ, τ1) =
1

16πM

[(
2M

r(τ)

)3/2

+ E

(
2M

r(τ)

)
+

1 + E2

2

(
2M

r(τ)

)1/2
]

+O(1) . (D.15)

Combining (D.9), (D.13), (D.14) and (D.15) yields (5.18).
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