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A B S T R A C T

In late 2019, a novel coronavirus, the SARS-CoV-2 outbreak was identified in Wuhan, China and later spread
to every corner of the globe. Whilst the number of infection-induced deaths in Ghana, West Africa are
minimal when compared with the rest of the world, the impact on the local health service is still significant.
Compartmental models are a useful framework for investigating transmission of diseases in societies. To
understand how the infection will spread and how to limit the outbreak. We have developed a modified
SEIR compartmental model with nine compartments (CoVCom9) to describe the dynamics of SARS-CoV-2
transmission in Ghana. We have carried out a detailed mathematical analysis of the CoVCom9, including
the derivation of the basic reproduction number, 0. In particular, we have shown that the disease-free
equilibrium is globally asymptotically stable when 0 < 1 via a candidate Lyapunov function. Using the
SARS-CoV-2 reported data for confirmed-positive cases and deaths from March 13 to August 10, 2020, we
have parametrised the CoVCom9 model. The results of this fit show good agreement with data. We used Latin
hypercube sampling-rank correlation coefficient (LHS-PRCC) to investigate the uncertainty and sensitivity of
0 since the results derived are significant in controlling the spread of SARS-CoV-2. We estimate that over this
five month period, the basic reproduction number is given by 0 = 3.110, with the 95% confidence interval
being 2.042 ≤ 0 ≤ 3.240, and the mean value being 0 = 2.623. Of the 32 parameters in the model, we find
that just six have a significant influence on 0, these include the rate of testing, where an increasing testing
rate contributes to the reduction of 0.
Introduction

The recent COVID-19 pandemic has caused a devastating burden
on the global economy. Since there are currently no widely-available
vaccines to bring down or reduce the infection levels on the susceptible
human population, many governmental decision-makers worldwide
have resorted to intensive non-pharmaceutical interventions such as
wearing of face-masks, social distancing, cleaning of suspected infected
surfaces, avoiding crowded places, the use of hand sanitizers. These
non-pharmaceutical interventions have significantly helped to reduce
the risk of transmission of COVID-19.
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Mathematical and statistical modelling tools are important in pro-
viding key epidemiological parameters of infectious diseases such as
infection or transmission rate, recovery rate, incubation period, iso-
lation and hospitalisation rate, quarantine rate, disease-induced death
rate, vaccination rate (with other factors depending on the model for-
mulation) [1]. Using mathematical models, parametrised to confirmed
reported cases of infection, helps estimate the basic reproduction num-
ber, 0 which is a crucial epidemiological parameter that determines
whether the infection persists in the population or dies out [2–6].

Nonlinear mathematical models have significantly contributed to
the understanding of transmission dynamics of infectious diseases, see,
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e.g., [7–11], and the recent COVID-19 pandemic is of no exception [12–
23]. Qianying et al. [24] have proposed and studied a data-driven
SEIR type epidemic for the recent COVID-19 outbreak in Wuhan which
captures the effects of governmental actions and individuals’ behaviour.
This literature is growing rapidly; Abou-Ismail [25] has reviewed the
fundamentals in SIR/SEIR modelling of the recent COVID-19 outbreak;
here we give a brief overview of literature relevant to our work.

Buonomo [26] describes a susceptible-infected-recovered-infected
compartmental model to investigate the effects of information-
dependent vaccination behaviour on COVID-19 infections. A simple
SEIR COVID-19 epidemic model with nonlinear incidence rates that
capture governmental control has been designed by Rohith and De-
vika [27] to examine the dynamics of the infectious disease in India.
Pang et al. [28] parametrise a nonlinear SEIHR model to estimate the
value and sensitivity of 0 using data from Wuhan from December 31st,
2019. A classic SEIR epidemic is used to study the spreading dynamics
of the 2019 coronavirus disease in Indonesia [29] using vaccination and
isolation as model parameters. They constructed a Lyapunov function
to conduct global stability of the disease-free equilibrium point. A data-
driven epidemiological model that examines the effect of delay in the
diagnosis of the deadly COVID-19 disease is formulated and studied by
Rong et al. [30], who estimate parameters and performed a out global
sensitivity analysis of their model parameters on 0.

A nonlinear SEIQR COVID-19 epidemic model is introduced by Zeb
et al. [31] who present a local and global stability analysis for their
model. The spread of COVID-19 in China due to undetected infections
in is examined by Ivorra et al. [32]. Chen et al. [33] propose a
model based on dividing the total population into five non-overlapping
classes: susceptible, exposed, infected (symptomatic infection), asymp-
tomatic infected, and recovered. Sardar et al. [34], investigate the
effects of lockdown using an SEIR model. Using reported cases of this
highly infectious disease in some cities and the whole of India, they
performed a global sensitivity analysis on the computed 0.

The exposed and infectious epidemiological classes used in formu-
lating infectious diseases models mentioned above have been left as
abstract concepts. In reality, especially regarding SARS-CoV-2, it is
hard to distinguish between individuals exposed to or infected with
SARS-CoV-2, due to the presence of asymptomatic carriers. In this
present study, we introduce two epidemiological classes, which are:
(1) an identified group of exposed individuals suspected to be carriers
of SARS-CoV-2 (denoted by 𝑄); and, (2) individuals who have been
clinically confirmed-positive for SARS-CoV-2 (denoted by 𝑃 ). Those
identified as suspected exposed individuals are denoted by 𝑄 because
they are quarantined as required by the COVID-19 protocols in Ghana.
Likewise, confirmed-positives (𝑃 ) are treated as infectious individu-
als who have clinically tested positive for SARS-CoV-2. Introducing
these distinctions in the epidemiological classes for SARS-CoV-2 is
vital for gaining an understanding of its transmission dynamics within
the Ghanaian population. Using published data from March 13 to
August 10, 2020 [35], we have parametrised our model using a Monte
Carlo-least squares technique together with information derived from
literature.

The purpose of this research is to investigate the transmission
dynamics of SARS-CoV-2 in Ghana using these more specific epidemio-
logical classes to estimate the basic reproduction number, 0. We have
used Latin-Hypercube Sampling-Partial Rank Correlation Coefficient
(LHS-PRCC) technique to quantify the uncertainty in 0 as well as
to identify those parameters to which 0 is most sensitive. We have
organised the subsequent sections of the paper as follows: in Section
‘‘Formulation of the model’’ we present a detailed formulation of an
epidemiological model of SARS-CoV-2 transmission in Ghana, together
with corresponding mathematical analysis of the positivity and bound-
edness of solutions, a derivation of the basic reproduction number,
and global stability analysis of the disease-free equilibrium, which are
given in Section ‘‘Mathematical analysis of CoVCom9 model’’. Section
‘‘CoVCom9 model estimation and numerical simulations’’ is dedicated
2

Table 1
Description of the variables of the CoVCom9 model.

Variable Description

𝑁 Total population
𝑆 Susceptible individuals
𝐸 Exposed individuals
𝐼 Infectious individuals
𝑄 Quarantined individuals
𝑃 Confirmed-positive individuals
𝐻 Hospitalised at ordinary ward individuals
𝐶 Hospitalised at intensive care individuals
𝐹 Self-isolation individuals
𝑅 Recovered individuals

Fig. 1. Transmission diagram for the model of COVID-19 involving nine compartments.
See Tables 1 and 2 for explanations of the parameters and variables used in the model,
respectively.

to parameter estimation and numerical simulation. The uncertainty
and sensitivity analysis of 0 and its implications are presented in
Section ‘‘Uncertainty and sensitivity analysis of the basic reproduction
number’’, together with some simulations predicting possible future
dynamics of the epidemic. Finally, we give a brief discussion and
conclusion of the study in Section ‘‘Discussion and conclusions’’.

Formulation of the model

Compartmental models are useful means of qualitatively under-
standing the dynamics of disease transmissions within a population [1,
36]. In formulating our compartmental model to gain insight into
COVID-19 transmission dynamics, the total human population is di-
vided into nine distinct epidemiological classes which are summarised
in Table 1. The numbers of individuals in each category is treated as a
continuous variable, the classes being: susceptible, 𝑆(𝑡), exposed, 𝐸(𝑡),
infectious, 𝐼(𝑡), quarantined 𝑄(𝑡), confirmed-positive 𝑃 (𝑡), hospitalised
in the ordinary ward 𝐻(𝑡), hospitalised in the intensive care unit 𝐶(𝑡),
self-isolation 𝐹 (𝑡) and recovered, 𝑅(𝑡). The total number of individuals
in the population is thus given by

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) +𝑄(𝑡) + 𝑃 (𝑡) +𝐻(𝑡) + 𝐶(𝑡) + 𝐹 (𝑡) + 𝑅(𝑡). (1)

Fig. 1 summarises the dynamic processes by which individuals
pass from one class to another. The susceptible class (𝑆) represents
individuals not exposed to the SARS-CoV-2 virus, and the exposed
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class (𝐸) represents individuals that have recently been exposed to
he SARS-CoV-2 virus so are still in the incubation period and can
nfect others (that is, asymptomatic individuals). An individual in an
xposed class can infect another person but with a probability lower
han an individual in the infectious class (𝐼). This rate of infection

is given by the nonlinear function 𝑓 which depends on the parame-
ters 𝜑, 𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛽3. Individuals in an infectious class show clear
symptoms and have high infectivity. These individuals have not yet
been clinically confirmed-positive, and thus can spread the disease
to the susceptibles. Individuals in class (𝑄) are quarantined, that is,
individuals identified to have had contact with an infected individual
and so might be carrying the SARS-CoV-2 virus (but this has not
yet been confirmed), this class also includes individuals not infected
with SARS-CoV-2 but are quarantined as a result of enforcement of
COVID-19 protocols. These individuals may either enter the susceptible
class if test is confirmed negative or to the confirmed-positive class if
confirmed to be infected.

Individuals in the confirmed-positive class (𝑃 ) are carriers of the
SARS-CoV-2 virus who have had clinical confirmation of this status.
These individuals may either enter the intensive care hospitalised
class, or be admitted to the ordinary hospitalised class or enter the
self-isolated class after this period. The rates of the these processes
are governed by the parameters 𝛾1, 𝑣1, 𝜌1, 𝜌2, 𝜌3. The individuals in
the ordinary Hospitalised class shows some level of sickness due to
infection that need to be cared for at the ordinary ward. Though there
is chance of entering into recovery class, these individuals’ conditions
may deteriorate causing them to enter the intensive care hospitalised
class. Individuals move between these categories with rates determined
by 𝜅2, 𝜅3, 𝛿2, 𝜂. These individuals can still infect other individuals who
become exposed through close contact. Individuals in intensive care (𝐶)
can still infect other individuals and have a high risk of dying (rates 𝑑𝑗)
although improved care conditions may allow transfer to the ordinary
ward (𝐻 , at rate 𝜂).

Individuals in the self-isolated class (𝐹 ) are on medication at home
and can still infect other individuals. These individuals (𝐹 ) may ei-
ther enter the recovered class (𝑅, at rate 𝛿1) or enter the ordinary
hospitalised class (rate 𝛿2). Individuals who have recovered from SARS-
CoV-2 virus enter into the recovered class (𝑅) but can be re-infected
since there is no life-long immunity, hence there is a flux from 𝑅
to 𝑆 with rate parameter 𝜏. We assume that individuals in all the
compartments can die of COVID-19 (rates 𝑑𝑗) in addition to natural
death (rate 𝜇) with the exception of the susceptible compartment with
only natural death. A summary of all the parameter definitions is given
in Table 2.

The standard form of incidence which is formulated from the ba-
sic principles that effective transmission rates are independent of the
population size 𝑁 for human diseases is used in this study [7,36].
This principle has been shown in many studies to be a plausible
assumption [7]. If 𝛼 is the average number of sufficient contacts for
transmission of an individual per unit time, then 𝛼𝐼∕𝑁 is the average
number of contacts with infectives per unit time of one susceptible, and
(𝛼𝐼∕𝑁)𝑆 is the incidence. That is, the number of new cases per unit
time at time 𝑡 due to susceptibles 𝑆(𝑡) becoming infected [7]. We use 𝜑
to denote the effective transmission rate from an infectious individual
while 𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2 and 𝛽3 denote the transmission probabilities,
of exposed individuals, quarantined individuals, confirmed-positive in-
dividuals, ordinary hospitalised individuals, intensive care hospitalised
individuals, and self-isolated individual, respectively. All these prob-
abilities lie between zero and one. The incidence is therefore given
by

𝑓 (𝑆,𝐸, 𝐼,𝑄, 𝑃 ,𝐻, 𝐶, 𝐹 )

= 𝜑
(

𝛼1𝐸 + 𝐼 + 𝛼2𝑄 + 𝛼3𝑃 + 𝛽1𝐻 + 𝛽2𝐶 + 𝛽3𝐹
𝑁

)

𝑆. (2)
3

Table 2
Description of the CoVCom9 model parameters.

Parameters Description

𝛬 Recruitment rate
𝜇 Natural death rate
𝜑 Transmission rate of infectious individuals (𝐼)
𝛼1 Probability of transmission of exposed individuals (𝐸)
𝛼2 Probability of transmission of quarantined individuals (𝑄)
𝛼3 Probability of transmission of confirmed-positive infectious

individuals (𝑃 )
𝛽1 Probability of transmission of hospitalised at ordinary ward

individuals (𝐻)
𝛽2 Probability of transmission of hospitalised at intensive care

individuals (𝐶)
𝛽3 Probability of transmission of self-isolation at home

individuals (𝐹 )
𝜖1 Progression rate of exposed individuals to infectious class per

day
𝜖2 Progression rate of exposed individuals to quarantined class

per day
𝛾1 Progression rate of infectious individuals to

confirmed-positive per day
𝛾2 Recovery rate of infectious individuals per day
𝜐1 Progression rate of quarantined individuals (𝑄) to confirmed

cases (𝑃 ) per day
𝜐2 Progression rate of quarantined individuals (𝑄) to susceptible

cases per day
𝜌1 Progression rate of confirmed-positive infectives individuals

(𝑃 ) to hospital class (𝐻) per day
𝜌2 Progression rate of confirmed-positive (𝑃 ) to intensive care

class (𝐶) per day
𝜌3 Progression rate of confirmed-positive (𝑃 ) to self-isolation at

home (𝐹 ) class per day
𝜅1 Recovery rate of hospitalised (𝐻) individual per day
𝜅2 Progression rate of hospitalised (ordinary, 𝐻) to intensive

care (𝐶) per day
𝜅3 Progression rate of hospitalised (ordinary ward, 𝐻) to

self-isolation at home (𝐹 ) class per day
𝛿1 Recovery rate of self-isolation at home individual per day
𝛿2 Progression rate of self-isolation at home (𝐹 ) to hospitalised

at ordinary ward (𝐻) class per day
𝜂 Progression rate of intensive care to ordinary ward class per

day
𝜏 Progression rate of recovery individuals to susceptible class

per day
𝑑1 Disease-induced death rate of exposed individuals per day
𝑑2 Disease-induced death rate of infectious individuals per day
𝑑3 Disease-induced death rate of quarantined individuals per day
𝑑4 Disease-induced death rate of confirmed-positive individuals

per day
𝜎5 Disease-induced death rate of intensive care individuals per

day
𝛿6 Disease-induced death rate of self-isolated (𝐹 ) cases per day
𝑑7 Disease-induced death rate of hospitalised individuals per day

Our COVID-19 model (CoVCom9) is obtained by ‘translating’ the

compartmental model summarised in Fig. 1 into nine coupled ordinary
differential equations

𝑑𝑆
𝑑𝑡

= 𝛬 + 𝜐2𝑈 + 𝜏𝑅 − 𝑓 (𝑆,𝐸, 𝐼,𝑄, 𝑃 ,𝐻, 𝐶, 𝐹 ) − 𝜇𝑆, (3a)
𝑑𝐸
𝑑𝑡

= 𝑓 (𝑆,𝐸, 𝐼,𝑄, 𝑃 ,𝐻, 𝐶, 𝐹 ) − (𝜖1 + 𝜖2 + 𝜇 + 𝑑1)𝐸, (3b)
𝑑𝐼
𝑑𝑡

= 𝜖1𝐸 − (𝛾1 + 𝛾2 + 𝜇 + 𝑑2)𝐼, (3c)
𝑑𝑄
𝑑𝑡

= 𝜖2𝐸 − (𝜐1 + 𝜐2 + 𝜇 + 𝑑3)𝑄, (3d)
𝑑𝑃
𝑑𝑡

= 𝛾1𝐼 + 𝜐1𝑄 − (𝜌1 + 𝜌2 + 𝜌3 + 𝜇 + 𝑑4)𝑃 , (3e)
𝑑𝐻
𝑑𝑡

= 𝜌1𝑃 + 𝜂𝐶 + 𝛿2𝑄 − (𝜅1 + 𝜅2 + 𝜅3 + 𝜇 + 𝑑5)𝐻, (3f)
𝑑𝐶
𝑑𝑡

= 𝜌2𝑃 + 𝜅2𝐻 − (𝜂 + 𝜇 + 𝑑6)𝐶, (3g)
𝑑𝐹 = 𝜌 𝑃 + 𝜅 𝐻 − (𝛿 + 𝛿 + 𝜇 + 𝑑 )𝐹 , (3h)

𝑑𝑡 3 3 1 2 7
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𝑑𝑅
𝑑𝑡

= 𝛾2𝐼 + 𝜅1𝐻 + 𝛿1𝐹 − (𝜏 + 𝜇)𝑅, (3i)

with 𝑡 > 0. These are solved subject to the initial conditions

𝑆(0) = 𝑆0 ≥ 0, 𝐸(0) = 𝐸0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0,

𝑄(0) = 𝑄0 ≥ 0, 𝑃 (0) = 𝑃0 ≥ 0, 𝐻(0) = 𝐻0 ≥ 0,

𝐶(0) = 𝐶0 ≥ 0, 𝐹 (0) = 𝐹0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0.

(4)

In this paper, we will use the acronym CoVCom9 to indicate the
nine compartments of the model of SARS-CoV-2 transmission pattern
in Ghana given by Eq. (3). The epidemiologically feasible region of
interest of the model (3) is the domain defined by

𝛺 =
{

(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑃 (𝑡),𝐻(𝑡), 𝐶(𝑡), 𝐹 (𝑡), 𝑅(𝑡)) ∈ R9
+ ∶

𝑆 + 𝐸 + 𝐼 +𝑄 + 𝑃 +𝐻 + 𝐶 + 𝐹 + 𝑅 ≤ 𝛬
𝜇

}

. (5)

In the following sections we present a mathematical analysis of
he model with respect to positivity and boundedness of the feasible
egion, 𝛺, as well as various stability results and the epidemiological
hreshold of interest. In the subsequent sections, we discuss a theorem
emonstrating that solutions of Eq. (3) with initial conditions (4) in 𝛺
emain in 𝛺.

athematical analysis of CoVCom9 model

ositivity, boundedness and invariant region

The CoVCom9 model (3) depicts COVID-19 transmission dynamics
n the human population, so it is vital to show that variables in (3)
emain nonnegative and bounded for all time 𝑡 ≥ 0 and do not leave

the epidemiologically feasible region of interest, 𝛺.

Lemma 1 (Positively Invariant Region). For any given nonnegative initial
conditions in Eq. (4), the CoVCom9 model (3) has a nonnegative solution
{𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑃 (𝑡),𝐻(𝑡), 𝐶(𝑡), 𝐹 (𝑡), 𝑅(𝑡)} of the system (3) for all
time 𝑡 ≥ 0 whenever the parameters are non-negative. Moreover

lim
𝑡→∞

sup𝑁(𝑡) ≤ 𝛬
𝜇
. (6)

roof. Considering the first equation of the CoVCom9 model (3), one
an clearly see that
𝑑𝑆
𝑑𝑡

≥ −(𝜆 + 𝜇)𝑆, (7)

where

𝜆 = 𝜑
(

𝛼1𝐸 + 𝐼 + 𝛼3𝑄 + 𝛼4𝑃 + 𝛽1𝐻 + 𝛽2𝐶 + 𝛽3𝐹
𝑁

)

Next, integrating Eq. (7), we find

𝑆(𝑡) ≥ 𝑆0 exp
[

−∫

𝑡

𝑜
(𝜆(𝜁 ) + 𝜇)𝑑𝜁

]

(8)

Therefore 𝑆(𝑡) ≥ 0 for all 𝑡 ≥ 0.
Following a similar argument, it can be shown that the rest of the

odel variables have nonnegative solutions for all time 𝑡 ≥ 0. That is,
(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0, 𝑄(𝑡) ≥ 0, 𝑃 (𝑡) ≥ 0, 𝐻(𝑡) ≥ 0, 𝐶(𝑡) ≥ 0, 𝐹 (𝑡) ≥ 0,
(𝑡) ≥ 0, ∀𝑡 ≥ 0.

Furthermore, we prove that the solutions are bounded. Adding the
ight-hand side of the CoVCom9 model (3) yields

𝑑𝑁
𝑑𝑡

= 𝛬 − 𝜇𝑁 − 𝑑𝐸 − 𝑑1𝐼 − 𝑑𝑈 − 𝑑2𝑃 − 𝑑3𝐻 − 𝑑4𝐶 − 𝑑5𝐹 ≤ 𝛬 − 𝜇𝑁,

(9)

Since 𝑑𝑁∕𝑑𝑡 ≤ 𝛬 − 𝜇𝑁 , it follows that

lim sup𝑁(𝑡) ≤ 𝛬 . □ (10)
4

𝑡→∞ 𝜇
emma 2 (Positively Invariant Region). The region defined by the closed
set, 𝛺 in Eq. (5) is positively invariant for the model (3) with nonnegative
nitial conditions (4) whenever the parameters are nonnegative.

roof. As in Lemma 1, it follows from the summation of all the
quations of the CoVCom9 model (3) that

𝑑𝑁
𝑑𝑡

≤ 𝛬 − 𝜇𝑁. (11)

Using the initial condition 𝑁(0) > 0 and an integrating factor, we have

0 ≤ 𝑁(𝑡) ≤ 𝛬
𝜇

+𝑁(0) exp(−𝜇𝑡), (12)

here 𝑁(0) is the initial value of the total population. Thus 𝑁(𝑡) ≤ 𝛬∕𝜇,
s 𝑡 → ∞. Therefore all feasible solutions of system (3) enter the region

defined by (5), which is a positively invariant set of the system
3). This implies that all solutions in 𝛺 remain in 𝛺 ∀𝑡 ≥ 0. It is
herefore sufficient to study the dynamics of CoVCom9 model system
3) in 𝛺. □

he basic reproduction number and existence of equilibria

The CoVCom9 model has a disease-free equilibrium point given by

0 = (𝑆0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ 𝛺, 𝑆0 =
𝛬
𝜇
. (13)

The basic reproduction number is defined as the number of secondary
infections produced by a single infectious individual during the en-
tire infectious period [37]. In this study, the reproduction number
defined as the number of secondary SARS-CoV-2 infections generated
by a single active SARS-CoV-2 individual during the entire infectious
period. Mathematically, the basic reproduction number 0 is the dom-
inant eigenvalue of the next generation matrix [37,38]. We apply
the method formulation in Van den Driessche and Watmough [37] to
obtain an expression of 0 for the proposed CoVCom9 (3). Let 𝐱 =
𝐸, 𝐼,𝑄, 𝑃 ,𝐻,𝐶, 𝐹

)𝑇 , then the system (3) can be written in the form

𝑑𝐱
𝑑𝑡

=  (𝐱) − (𝐱), (14)

here

(𝐱) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜑(𝛼1𝐸 + 𝐼 + 𝛼2𝑄 + 𝛼3𝑃 + 𝛽1𝐻 + 𝛽2𝐶 + 𝛽3𝐹 )𝑆
𝑁
0
0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (15)

(𝐱) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜋𝐸𝐸
−𝜖1𝐸 + 𝜋𝐼𝐼
−𝜖2𝐸 + 𝜋𝑄𝑄

−𝛾1𝐼 − 𝜈1𝑄 + 𝜋𝑃𝑃
−𝜌1𝑃 − 𝜂𝐶 − 𝛿2𝐹 + 𝜋𝐻𝐻

−𝜌2𝑃 − 𝜅2𝐻 + 𝜋𝐶𝐶
−𝜌3𝑃 − 𝜅3𝐻 + 𝜋𝐹𝐹

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (16)

nd

𝜋𝐸 =𝜖1 + 𝜖2 + 𝜇 + 𝑑1; 𝜋𝐼 = 𝛾1 + 𝛾2 + 𝜇 + 𝑑2;

𝜋𝑄 =𝜐1 + 𝜐2 + 𝜇 + 𝑑3; 𝜋𝑃 = 𝜌1 + 𝜌2 + 𝜌3 + 𝜇 + 𝑑4;

𝐻 =𝜅1 + 𝜅2 + 𝜅3 + 𝜇 + 𝑑5; 𝜋𝐶 = 𝜂 + 𝜇 + 𝑑6;
(17)
𝜋𝐹 =𝛿1 + 𝛿2 + 𝜇 + 𝑑7.
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Fig. 2. Dynamics of CoVCom9 model showing model fit (blue line) and reported data (red and black dots) for (Left panel) daily numbers of confirmed cases simulated from
the CoVCom9 model and the numbers from the report data (Left panel) daily numbers of confirmed deaths simulated from the CoVCom9 model and the numbers from the report
data from March 13, 2020 to August 10, 2020.
Fig. 3. One-year simulation dynamics of CoVCom9 model from March 13 2020 where 𝐸, 𝐼 , 𝑄, 𝑃 , 𝐻 , 𝐶, 𝐹 and 𝐷 are respectively exposed, infectious, quarantined,
confirmed-positive, hospitalised at ordinary ward, hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale.
The Jacobian of  (𝐱) and (𝐱) evaluated at the disease free equilibrium
𝐸0 are, respectively,

𝐽𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝜑𝛼1 𝜑 𝜑𝛼2 𝜑𝛼3 𝜑𝛽1 𝜑𝛽2 𝜑𝛽3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

, (18)
5

⎣
0 0 0 0 0 0 0

⎦

𝐽𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝜋𝐸 0 0 0 0 0 0
−𝜖1 𝜋𝐼 0 0 0 0 0
−𝜖2 0 𝜋𝑄 0 0 0 0
0 −𝛾1 −𝜈1 𝜋𝑃 0 0 0
0 0 0 −𝜌1 𝜋𝐻 −𝜂 −𝛿2
0 0 0 −𝜌2 −𝜅2 𝜋𝐶 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

. (19)
⎣
0 0 0 −𝜌3 −𝜅3 0 𝜋𝐹 ⎦
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Fig. 4. Uncertainty analysis of the basic reproduction number 0 depicted by the
histogram with plot showing 95% confidence interval (dashed lines), mean (solid line)
and an estimate (red dotted–dashed line) of 0 (20).

Fig. 5. Sensitivity of the basic reproduction number 0 to changes in the CoVCom9
parameters using PRCC index.

The basic reproduction number, 0 is given by the dominant eigen-
value of 𝐽𝐹 𝐽−1

𝑉

0 = 𝜑
{

𝛼1
𝜋𝐸

+
𝜖1

𝜋𝐸𝜋𝐼
+

𝛼2𝜖2
𝜋𝐸𝜋𝑄

+
𝛼3
𝜋𝑃

(

𝜖1𝛾1
𝜋𝐸𝜋𝐼

+
𝜖2𝜐1
𝜋𝐸𝜋𝑄

)

+
𝛽1
𝜋𝑃

(

𝜌1𝜋𝐶𝜋𝐹 + 𝛿2𝜌3𝜋𝐶 + 𝜂𝜌2𝜋𝐹
𝜋𝐻𝜋𝐶𝜋𝐹 − 𝛿2𝜅3𝜋𝐶 − 𝜂𝜅2𝜋𝐹

)(

𝜖1
𝜋𝐸

𝛾1
𝜋𝐼

+
𝜖2
𝜋𝐸

𝜐1
𝜋𝑄

)

+
𝛽2
𝜋𝑃

(

𝜌2𝜋𝐻𝜋𝐹 + 𝜅2𝜌1𝜋𝐹 + 𝛿2(𝜅2𝜌3 − 𝜅3𝜌2)
𝜋𝐻𝜋𝐶𝜋𝐹 − 𝛿2𝜅3𝜋𝐶 − 𝜂𝜅2𝜋𝐹

)(

𝜖1𝛾1
𝜋𝐸𝜋𝐼

+
𝜖2𝜐1
𝜋𝐸𝜋𝑄

)

+
𝛽3
𝜋𝑃

(

𝜌3𝜋𝐻𝜋𝐶 + 𝜅3𝜌1𝜋𝐶 + 𝜂(𝜅3𝜌2 − 𝜅2𝜌3)
𝜋𝐻𝜋𝐶𝜋𝐹 − 𝛿2𝜅3𝜋𝐶 − 𝜂𝜅2𝜋𝐹

)(

𝜖1𝛾1
𝜋𝐸𝜋𝐼

+
𝜖2𝜐1
𝜋𝐸𝜋𝑄

)}

,

(20)

which can be written as

0 = 0𝐸 +0𝐼 +0𝑄 +0𝑃 +0𝐻 +0𝐶 +0𝐹 , (21)

where the effective reproduction number, 0 is made up of contri-
butions from secondary infections from the exposed group 𝐸 (0𝐸)
generated by asymptomatic individuals; the infected (symptomatic)
group 𝐼 (0𝐼 ); asymptomatic quarantined individuals — class-𝑄 (0𝑄);
confirmed positive individuals — class 𝑃 (0𝑃 ); hospitalised cases (𝐻 ,
0𝐻 ); intensive care (𝐶) cases, (0𝐶 ); and those self-isolating at home
(𝐹 , 0𝐹 ). Eq. (20) implies that intervention strategies of SARS-CoV-2
infections should target those in classes 𝐸, 𝐼 , 𝑄, 𝑃 , 𝐻 , 𝐶, and 𝐹 .

According to Theorem 3.2 of Van den Driessche and Watmough
[37], the disease-free steady state 𝐸0 is locally asymptotically stable if
0 < 1 and unstable if 0 > 1. In the next section we provide stability
results for the disease-free equilibrium state.
6

Stability of disease free equilibrium (DFE)

In this section, we prove global stability results for the CoVCom9
model (3). The epidemiological implication of the local stability is
that a small number of the infected individuals will not generate
large outbreaks so in the long run, resulting in SARS-CoV-2 dying out
provided 0 < 1. The global stability result helps demonstrate that
the disappearance of SARS-CoV-2 disease is independent of the size of
the initial subpopulations in the model, provided 0 < 1 [15]. The
global stability of the disease-free equilibrium, 𝐸0 is established using
a candidate Lyapunov function.

Theorem 1. The disease-free equilibrium state, 𝐸0 of the CoVCom9 model
(3) is globally asymptotically stable in 𝛺 if 0 < 1 and unstable if 0 > 1.

Proof. We construct a candidate Lyapunov function (22) for the
CoVCom9 model (3) as

𝑉 (𝐸, 𝐼,𝑄, 𝑃 ,𝐻,𝐶, 𝐹 ) = 𝛷1𝐸+𝛷2𝐼+𝛷3𝑄+𝛷4𝑃+𝛷5𝐻+𝛷6𝐶+𝛷7𝐹 , (22)

where 𝛷𝑖, 𝑖 = 1, 2,… , 7 are (as yet unknown) non-negative coefficients.
Since all the variables are bounded below by zero, then so is 𝑉 . Assum-
ing that the variables are solutions of the model (3), the derivative of
𝑉 with respect to 𝑡 can be bounded by

𝑑𝑉
𝑑𝑡

= 𝛷1

(

𝜑
(

𝛼1𝐸 + 𝐼 + 𝛼2𝑄 + 𝛼3𝑃 + 𝛽1𝐻 + 𝛽2𝐶 + 𝛽3𝐹
)( 𝑆

𝑁
)

− 𝜋𝐸𝐸
)

+ 𝛷2

(

𝜖1𝐸 − 𝜋𝐼𝐼
)

+𝛷3

(

𝜖2𝐸 − 𝜋𝑄𝑄
)

+𝛷4

(

𝛾1𝐼 + 𝜐1𝑄 − 𝜋𝑃𝑃
)

+ 𝛷5

(

𝜌1𝑃 + 𝜂𝐶 + 𝛿2𝐹 − 𝜋𝐻𝐻
)

+𝛷6

(

𝜌2𝑃 + 𝜅2𝐻 − 𝜋𝐶𝐶
)

+ 𝛷7

(

𝜌3𝑃 + 𝜅3𝐻 − 𝜋𝐹𝐹
)

≤
(

𝛷1𝜑𝛼1 +𝛷2𝜖1 +𝛷3𝜖2 −𝛷1𝜋𝐸

)

𝐸 +
(

𝛷1𝜑 +𝛷4𝛾1 −𝛷2𝜋𝐼

)

𝐼

+
(

𝛷1𝜑𝛼3 +𝛷4𝜐1 −𝛷3𝜋𝑄

)

𝑄

+
(

𝛷1𝜃𝛼4 +𝛷5𝜌1 +𝛷6𝜌2 +𝛷7𝜌3 −𝛷4𝜋𝑃

)

𝑃

+
(

𝛷1𝜑𝛽1 +𝛷6𝜅2 +𝛷7𝜅3 −𝛷5𝜋𝐻

)

𝐻

+
(

𝛷1𝜑𝛽2 +𝛷5𝜂 −𝛷6𝜋𝐶

)

𝐶

+
(

𝛷1𝜑𝛽3 +𝛷5𝛿2 −𝛷7𝜋𝐹

)

𝐹 , since 𝑆∕𝑁 < 1.

(23)

Requiring the bracketed coefficients of 𝐸, 𝐼 , 𝑈 , 𝑃 , 𝐻 , 𝐶, and 𝑄 to zero,
we obtain expressions for the previously undetermined parameters 𝛷𝑖,
which are thus given by

𝛷1 = 1, 𝛷2 =
𝜑 +𝛷4𝛾1

𝜋𝐼
, 𝛷3 =

𝜑𝛼2 +𝛷4𝜐1
𝜋𝑄

,

𝛷4 =
1
𝜋𝑃

[

𝜑𝛼3 +
𝜑𝛽2𝜌2
𝜋𝐶

+
𝜑𝛽3𝜌3
𝜋𝑄

+
(

𝜌1 +
𝜂𝜌2
𝜋𝐶

+
𝛿2𝜌3
𝜋𝐹

)

𝛷5

]

,

𝛷5 = 𝜑
(

𝛽1𝜋𝐶𝜋𝐹 + 𝛽2𝜅2𝜋𝐹 + 𝛽3𝜅3𝜋𝐶
𝜋𝐻𝜋𝐶𝜋𝐹 − 𝜂𝜅2𝜋𝐹 − 𝛿2𝜅3𝜋𝐶

)

,

𝛷6 =
𝜑𝛽2 +𝛷5𝜂

𝜋𝐶
, and 𝛷7 =

𝜑𝛽3 +𝛷5𝛿2
𝜋𝐹

,

(24)

where the parameter groupings 𝜋∗ are given by (17).
After some simplifications using (17), the time derivative of the

Lyapunov function can be written as

𝑑𝑉
𝑑𝑡

≤ 𝜋𝐸

(

0 − 1
)

𝐸. (25)

It is now clear that if 0 < 1 then 𝑑𝑉 ∕𝑑𝑡 ≤ 0. Furthermore, 𝑑𝑉 ∕𝑑𝑡 = 0
if 𝐸 = 0 and  < 1. Thus, when  < 1, the largest compact
0 0
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Fig. 6. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 68% reduction in 𝜑, that is, to 𝜑 = 0.008. Here 𝐸, 𝐼 , 𝑄, 𝑃 , 𝐻 , 𝐶, 𝐹 and 𝐷 are
respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward, hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale.
0 changes from 3.110 to 0.995.
invariant set in
{

(𝑆,𝐸, 𝐼,𝑄, 𝑃 ,𝐻, 𝐶, 𝐹 ,𝑅) ∈ 𝛺 ∣ 𝑉̇ ≤ 0
}

is the single
state 0. LaSalle’s Invariance Principle then implies that 0 is globally
asymptotically stable in 𝛺 if 0 < 1. □

CoVCom9 model estimation and numerical simulations

Methodology

In this section, we briefly describe the parameter estimation and
numerical simulation process used to investigate how well the proposed
CoVCom9 model (3) agrees with the confirmed cases and deaths in
Ghana. Here, we consider the SARS-CoV-2 confirmed cases and deaths
from March 13, 2020 to August 10, 2020 as reported in Ghana. The
data are obtained from Our World in Data [35].

The CoVCom9 model (3) has nine state variables; to obtain the
disease-induced mortality (𝐷), we introduce the extra equation
𝑑𝐷
𝑑𝑡

= 𝑑1𝐸 + 𝑑2𝐼 + 𝑑3𝑄 + 𝑑4𝑃 + 𝑑5𝐻 + 𝑑6𝐶 + 𝑑7𝐹 , (26)

which introduces no additional parameters. The CoVCom9 model has
a total of 35 parameters to estimate using limited data (confirmed-
positive cases and deaths only). This results in identifiability issues
causing the non-convergence of the optimisation of the objective func-
tion. We implement the following practical principles to choose reason-
able initial parameter values:

1. Expert review process which involves asking health experts
and/or consulting the relevant literature as well as individuals’
experience of the infection. Accordingly, an estimate of the
model parameters, natural birth rate, 𝜇, recruitment rate, 𝛬,
7

incubation period, 𝜖1, and recovery rate of quarantine/self-
isolation at home individual, 𝛿1 are obtained. We assumed that
the life expectancy of people in Ghana is estimated as 64.35
years [16], then the natural death rate is estimated as 𝜇 =
1∕(64.35 × 365) ≈ 4.258 × 10−5 per day. The population of Ghana
in 2020 is estimated to be 𝑁 = 30, 960, 000 [39], and the
recruitment rate of humans is estimated as 𝛬 = 𝜇𝑁 ≈ 1.318×103

people per day. The incubation period is 3–7 days, here we
choose 𝜖1 = 1∕5.88 per day as estimated by Pang et al. [28]
which is consistent with the wider literature [40,41]. The self-
isolated positive-confirmed individuals on medication take 14
days on average to recover, thus we assume 𝛿1 = 1∕14 per day.

2. Exploring the model using the available data (also known as
‘system exploratory analysis’ (SEA) [42]). This process helps
identify ranges of parameter values where the trajectories of the
CoVCom9 are consistent with the data, and regions of parameter
space where trajectories deviate from the times series data of
confirmed-positive cases and deaths. The motivation for this
approach is to restrict the ranges of the parameters and so reduce
risk of the Monte Carlo simulation getting trapped at a local
optima. Since we have 31 remaining model parameters to infer,
applying this SEA technique yields upper and lower bounds for
the model parameters which are presented in (Table A.1).

We use a Monte Carlo least squares method to infer model pa-
rameter since it is reliable and efficient. This method seeks to gen-
erate the best Monte Carlo estimate (𝜃𝑗) of the model parameters (𝜃,
listed in Table 2) by minimising the error between the observed data
(confirmed-positive cases and deaths), 𝒀 𝑗 and the simulated data from
the CoVCom9 model (3), 𝒀 𝑠𝑖𝑚 given by the variables listed in Table 1.
𝑗
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Fig. 7. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 34% reduction in 𝜑, that is, to 𝜑 = 0.016. Again, 𝐸, 𝐼 , 𝑄, 𝑃 , 𝐻 , 𝐶, 𝐹 and 𝐷 are
respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward, hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale.
The effect on 0 is a change from 3.110 to 2.053.
Denoting the total number of data-points by 𝑛 and using 𝑖 (1 ≤ 𝑖 ≤ 𝑀)
to enumerate the Monte Carlo simulations, we have

𝜽̂
(𝑖)
𝑗 = argmin

𝜃

𝑛
∑

𝑗=1

(

𝒀 𝑗 − 𝒀 𝑠𝑖𝑚
𝑗

)2
, (𝑖 = 1, 2, 3,… ,𝑀). (27)

Finally, for the 𝑀 Monte Carlo samples of 𝜽̂, we obtain the mean
and covariance matrix of the estimator, 𝜃𝑀 of 𝜽 as

𝜽̂𝑀 = 1
𝑀

𝑀
∑

𝑖=1
𝜽̂
(𝑖)
, (28)

𝜮̂𝑀 = 1
𝑀 − 1

𝑀
∑

𝑖=1

(

𝜽̂
(𝑖)

− 𝜽̂𝑀
)(

𝜽̂
(𝑖)

− 𝜽̂𝑀
)𝑇

. (29)

We also give a 95% confidence interval of the Monte Carlo samples
{𝜽̂

(𝑖)
}𝑀𝑖=1 as

(

𝜽̂
∗(0.025)
𝑀 , 𝜽̂

∗(0.975)
𝑀

)

, (30)

where 𝜽̂
∗(0.025)
𝑀 and 𝜽̂

∗(0.975)
𝑀 are respectively the 𝜽̂

∗(𝑖)
in the 2.5% and

97.5% positions of the ordered Monte Carlo samples {𝜽̂
∗(𝑖)

}𝑀𝑖=1.
During parameter estimation, we use a logarithmically transformed

parameter vector, log𝜽, since: (i) this conveniently ensures that all
parameters are positive, 𝜃 > 0; and (ii) this improves the numerical
search of the parameter space across a wide range of 𝜽 [43,44]. All
computations use MATLAB, 2018a .

Results of CoVCom9 model parameter estimation

In this section, the results obtained using the Monte Carlo least-
squares technique described in Section ‘‘CoVCom9 model estimation
8

Table 3
Estimated initial values of model variables for the system ((2) using Monte Carlo least
squares (MC-LS) method).

Variables Initial values 95% Confidence interval Reference

𝑁 30,955,202 [39]
𝑆 30,954,982
𝐸 214.0 79.49 - 261.3 MC-LS

𝐼 0.346689 0.1959 - 3.579033 MC-LS
𝑄 2.932 1.732 - 11.85 MC-LS
𝑃 2 [35]

𝐻 0 [35]
𝐶 0 [35]
𝐹 0 [35]
𝑅 0 [35]

and numerical simulations’’ are presented. Table 3 shows initial values
of the state variables; those for compartments 𝐸, 𝐼 and 𝑄 are estimated
from the reported data. From Table 3, we infer that while on March
13, 2020 two individuals are reported to be confirmed-positive of
SARS-CoV-2 infection, the corresponding number of individuals in the
exposed (𝐸), infectious (𝐼) and quarantined (𝑄) compartments are
approximately 213, 1, and 3 respectively.

Table 4 gives the parameter values obtained together with their
confidence intervals. We note that the infectivity of the individuals in
the infected compartment (𝐼) is stronger than the other compartments:
in decreasing order, the infectivities are due to the groups 𝐸, 𝐹 , 𝑄, 𝐻 ,
𝐶, and 𝑃 . The overall transmission rate of the SARS-CoV-2 infection
in Ghana for the duration of the data considered in this study is 𝜑 =
0.02495 per day.
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Fig. 8. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 84% reduction in 𝜑, that it, to 𝜑 = 0.004. As above, 𝐸, 𝐼 , 𝑄, 𝑃 , 𝐻 , 𝐶, 𝐹 and
𝐷 are respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward, hospitalised at intensive care unit, and deaths with the vertical axis on a
log-scale. The effect on 0 is a change from 3.110 to 0.498.
The corresponding best fits of the model to the reported data and
the two-year simulations based on the estimated parameter estimates
are shown in Fig. 2.

The rate at which individuals transfer from Classes 𝐸 to 𝑄 is
𝜖2 = 0.001144, indicating that each day only 0.11% of the individuals
exposed to the SARS-CoV-2 infection are identified with the suspicion
of carrying the infection, and can be contact traced and quarantine in
order to clinically confirm their status as either positive or negative of
the infection. The rate at which these suspected exposed individuals
are confirmed positive is estimated to be 𝜐1 = 0.000524. For individuals
confirmed-positive with the SARS-CoV-2 infection, we can infer from
Table 4 that the rate at which individuals progress to Intensive Care
(Class 𝐶) is low compared to the rate at which they progress to either
𝐻 or 𝐹 Classes (standard hospital ward or self-isolating at home), with
the rate of progression from 𝑃 to 𝐹 Classes the highest (that is from
positive test to home isolation). The recovery rate of individuals in Class
𝐻 is estimated as 𝜅1 = 0.008619 and the rate at which these individuals
losing immunity and becoming susceptible to the SARS-CoV-2 infection
is 𝜏 = 1.538×10−8; indicating that the rate of SARS-CoV-2 re-infection in
Ghana is extremely low (full details of parameters and ranges is given
in Table 4).

From Eq. (20) and the parameter estimates in Table 4, the basic
reproduction number, 0, is estimated to be 3.110. The breakdown of
this estimate is given, in decreasing order, by

• primarily, symptomatic individuals (class 𝐼 , giving 0𝐼 = 2.417),
• hospitalised cases (class 𝐻 , contributing 0𝐻 = 0.212),
• positively tested individuals (class 𝑃 giving 0𝑃 = 0.207),
• infections due asymptomatic cases (class 𝐸, giving 0𝐸 = 0.123),
• self-isolating individuals (class 𝐹 contributing  = 0.116),
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• intensive care cases (class 𝐶, giving 0𝐶 = 0.020),
• quarantined individuals (class 𝑄 contributing 0𝑄 = 0.015).

The basic reproduction number of COVID-19 based on the proposed
CoVCom9 model for Ghana is higher than that of many other countries,
which indicates a greater epidemic risk in Ghana. A recent study by
Asamoah et al. [16] provides a similar estimate of 0 in Ghana of
2.64, differs by only 15% from our estimate. However, the number of
deaths reported in Ghana is low compared to that of other countries
in the world. For published values for other countries, please see
[15–17,31–34,46–50].

Using the estimated parameter values given in Tables 3 and 4,
the one-year simulation transmission dynamics of the CoVCom9 model
offers insight into the SARS-CoV-2 among Ghanaian with respect to the
COVID-19 protocols which are in place in the country. Fig. 3 depicts the
one-year simulation dynamics for the classes 𝐸, 𝐼 , 𝑄, 𝑃 , 𝐻 , 𝐶, 𝐹 , and
deaths (𝐷).

As shown in Fig. 3, all state variables in the CoVCom9 model
show an increasing trend, indicating that Ghana continuing the same
protocols may not be enough to eradicate the SARS-CoV-2 infection.
This has been further complicated by the opening of the borders,
meaning that new control measures are needed to mitigate the spread
(both in and out). Our projections show that with Ghana exercising
current COVID-19 protocols the actual cases substantially exceed those
reported (whether hospitalised or only positively tested). We thus
expect the exponential growth to continue.

In the next section we discuss the derivation of the basic repro-
duction number from the CoVCom9 model, and identify influential
parameters that intervention strategies should focus on in order to
control the spread of the virus.
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Table 4
Estimated values of the model parameters for the system (2) using Monte Carlo least
squares (MC-LS) method.

Parameter Value 95% Confidence Interval Reference

𝛼1 0.8412 (0.2981, 1.0000) MC-LS
𝜑 0.02495 (0.02300, 0.03969) MC-LS
𝛼2 0.3152 (0.2106, 0.7553) MC-LS

𝛼3 0.05744 (0.02168, 0.08098) MC-LS
𝛽1 0.2606 (0.09697, 0.3576) MC-LS
𝛽2 0.1205 (0.06108, 0.2436) MC-LS

𝛽3 0.4857 (0.1787, 0.6772) MC-LS
𝜖1 1/5.882 (1/7, 1/3) [45]
𝜖2 0.001144 (0.000873, 0.003217) MC-LS

𝛾1 0.01004 (0.008402, 0.02817) MC-LS
𝛾2 0.000163 (8.663×10−5 , 3.300 × 10−4) MC-LS
𝜐1 0.000524 (0.000379, 0.001293) MC-LS

𝜐2 1.418×10−9 (6.864×10−10 , 2.745 × 10−9) MC-LS
𝜌1 0.001971 (0.000749, 0.002364) MC-LS
𝜌2 5.075×10−6 (2.494×10−6 , 9.911 × 10−6) MC-LS

𝜌3 0.004711 (0.001950, 0.005565) MC-LS
𝜅1 0.008619 (0.005728, 0.02076) MC-LS
𝜅2 5.844×10−6 (2.874×10−6 , 1.150 × 10−5) MC-LS

𝜅3 3.009×10−5 (1.488×10−5 , 5.949 × 10−5) MC-LS
𝛿1 1/14 (1/23, 1/11) Assumed
𝛿2 5.865×10−9 (2.863×10−9 , 1.145 × 10−8) MC-LS

𝜂 9.771×10−5 (4.862×10−5 , 0.000194) MC-LS
𝜏 1.538×10−8 (7.741×10−9 , 3.096 × 10−8) MC-LS
𝑑1 7.780×10−10 (3.893×10−10 , 1.557 × 10−9) MC-LS

𝑑2 1.249×10−13 (6.222×10−14 , 2.488 × 10−13) MC-LS
𝑑3 0.002877 (0.001032, 0.003985) MC-LS
𝑑4 6.004×10−10 (2.997×10−10 , 1.199 × 10−9) MC-LS

𝑑5 1.392×10−12 (6.839×10−13 , 2.735 × 10−12) MC-LS
𝑑6 6.967×10−14 (3.413×10−14 , 1.365 × 10−13) MC-LS
𝑑7 2.455×10−12 (1.201×10−12 , 4.804 × 10−12) MC-LS

Uncertainty and sensitivity analysis of the basic reproduction
number

Methodology

The proposed CoVCom9 model (3) has many unknown parameters.
Due to the limited data available, there is substantial uncertainty in
calibrating the values of the 31 CoVCom9 model (3) parameters [51].
However, in all cases the ratio of the upper bounds of the 95% confi-
dence interval is less than five times the lower bound, and more often
four or below, thus so the order of magnitude of all parameters is
well established. Since the intervals are derived using the logarithm
of parameter values, and our best estimates lie in the centre of this
band, each upper bound is approximately twice the estimate and the
lower bound half of it. This uncertainty in model parameters results in
some variability in the prediction of the basic reproduction number 0.
Latin Hypercube Sampling-Partial Rank Correlation Coefficient (LHS-
PRCC) sensitivity analysis was used to evaluate variabilities in the
basic reproduction number 0. The LHS-PRCC approach provides an
opportunity to examine the entire parameter space of the CoVCom9
model (3) with computer simulations.

We analyse the impacts of the LHS parameters on the basic repro-
duction number 0 of the CoVCom9 model (3) via standard Monte
Carlo procedure. The key parameters to which 0, given by (20), is
most sensitive are determined using the PRCCs values, suggesting the
most effective way of controlling SARS-CoV-2 infection. Moreover, this
analysis also identifies which parameters need to be known precisely
when estimating 0 from data [51].

The application of the combined LHS-PRCC methodology in infec-
ious disease modelling are fully described elsewhere, for example,
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n [51,52]. This method generally involves: v
Table A.1
Estimated initial values model variables and parameters for the system
(2).

Parameters Min Max

𝛼1 0.245545 1
𝜑 0.012654 0.050619
𝛼2 0.210646 0.842586
𝛼3 0.020245 0.080978
𝛽1 0.089411 0.357644
𝛽2 0.060902 0.243607
𝛽3 0.169305 0.677222
𝜖1 1/7 1/3a

𝜖2 0.000873 0.003492
𝛾1 0.008402 0.033610
𝛾2 8.662695×10−5 0.000347
𝜐1 0.000379 0.001517
𝜐2 6.863871×10−10 2.745548×10−9
𝜌1 0.000547 0.002188
𝜌2 2.477852×10−6 9.911408×10−6
𝜌3 0.001391 0.005565
𝜅1 0.005728 0.022913
𝜅2 2.874618×10−6 1.149847×10−5
𝜅3 1.488217×10−5 5.952870×10−5
𝛿1 1/23 1/11b

𝛿2 2.862673×10−9 1.145069×10−8
𝜂 4.861253×10−5 0.000194
𝜏 7.740808×10−9 3.096323×10−8
𝑑1 3.892588×10−10 1.557035×10−9
𝑑2 6.221547×10−14 2.488619×10−13
𝑑3 0.000996 0.003985
𝑑4 2.996889×10−10 1.198756×10−9
𝑑5 6.838531×10−13 2.735412×10−12
𝑑6 3.412952×10−14 1.365181×10−13
𝑑7 1.200917×10−12 4.803667×10−12
𝐸 40 300
𝐼 0 10
𝑄 1 70

adenotes literature values.
bdenotes assumed value.

(i) generating LHS parameters in matrix form, together with a ranking
of outcome measures 0;

ii) construction of two linear regression models in response to each
parameter and outcome measure, and

iii) computation of a Pearson rank correlation coefficient for the
residuals from the two regression models to obtain the PRCC
values for that particular parameter [51,53].

e induce the correlation between the input parameters using the
ank-based method of Iman and Conover [54]. The correlation matrix
or the 28 model parameters (listed in Table 2) is obtained from
he parameter estimation in Section ‘‘CoVCom9 model estimation and
umerical simulations’’, where no correlation is assumed between the
arameters 𝜖1 and 𝛿1 and other parameters, since these two parameters
re not included in the parameter estimation.

esults of analysing the LHS-PRCC for the CoVCom9 model

The result of the uncertainty analysis of the basic reproduction
umber, 0(20) of the CoVCom9 obtained by generating 1000 LHS
amples using the Monte Carlo technique is presented in Fig. 4. This
istogram depicts the uncertainty in 0, where the degree of uncer-
ainty quantified via the 95% confidence intervals is indicated by the
ashed lines. Fig. 5 shows the distribution of obtained values for 0,
he mean, 5th, and 95th percentiles being respectively 2.623, 2.042,
nd 3.240.

Using the best-fit values of all the parameters given in Table 4 yields
n estimate of 0 towards the upper end of the distribution, namely a

alue of 3.110 (see the red dotted–dashed line). In general, the higher
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Fig. A.1. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 68% reduction in 𝜑 to 𝜑 = 0.008. Here 𝐸, 𝐼 , 𝑄, 𝑃 , 𝐻 , 𝐶, 𝐹 and 𝐷 are
respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward, hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale.
The effect on 0 is a change from 3.110 to 0.995.
the uncertainty, the wider the spread of the distribution of 0. We
note that there is some uncertainty in 0 due to the model parameter
estimates in Table 4; however, this is less than for most parameters. In
Table 4, for almost all parameters, the upper and lower 95% confidence
intervals differ from the best fit value by a factor of two. However, for
0, the upper and lower ends of the interval are with ±24% of the
mean value; thus overall, the uncertainty in the estimate of 0 is less
than that of the individual parameters.

Fig. 5 shows the sensitivity of the reproduction number 0 to each
of the parameters in the underlying model (3). PRCC assigns each
parameter a value between −1 and +1. The magnitude of PRCC shows
the parameter importance while the sign of PRCC gives the direction
of the relationship between the input parameter and the model output
of interest. Negative PRCC values mean that as the parameter value
increases, the value of the model output of interest decreases and vice
versa. The results of the PRCCs depicted help identify which parameters
are primarily responsible for the uncertainty in 0, which suggests
those interventions which should be most efficacious in controlling the
spread of the virus by reducing 0. A PRCC value of zero gives an
indication of no association between the input parameter and model
output of interest. The most significant model parameters are those
associated with small 𝑝− values (𝑝 < 0.05) and large magnitude PRCC
values (0.5 ≤ |𝑃𝑅𝐶𝐶| ≤ 1).

From Fig. 5, we identify six parameters as most influential on the
basic reproduction number, 0, these are:

• 𝜑 — the transmission rate of infectious individuals,
• 𝛼2 — the probability of transmission of quarantined individuals,
• 𝛼3 — the probability of transmission of confirmed-positive infec-

tious individuals,
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• 𝜖1 — the progression rate of exposed individuals to infectious
class

• 𝛾1 — the progression rate of infectious individuals to confirmed-
positive class, and

• 𝜐1 — the progression rate of quarantined individuals to the class
of confirmed-positive cases.

In particular, 0 increases with increases in 𝜑, 𝛼2 and 𝛼3, while 0
decreases with increases in 𝜖1, 𝛾1 and 𝜐1. It is therefore critical that
intervention strategies should be aimed at decreasing the values of 𝜑,
𝛼2 and 𝛼3 and increasing the values of 𝜖1, 𝛾1 and 𝜐1.

These recommendations should not be interpreted as discounting
the value of considering efforts to alter other significant model pa-
rameters such as probability of transmission of hospitalised individuals
at ordinary ward (𝛽1), the progression rate of exposed individuals to
quarantined individuals class (𝜖2), and recovery rate of hospitalised
individual (𝜅1).

Predicting the effects of lockdown

The simulation presented in Fig. 3 show a worrying trend of expo-
nential growth with no sign of plateau or reduction in the effects of
the pandemic. Many countries have implemented a ‘lockdown’, that is
regulations to restrict social interactions and so reduce the spread of the
disease. Here, we model the effects of lockdown by a simple reduction
in the parameter 𝜑, and simulate the spread by solving the model using
the standard value of 𝜑 for the first 350 days, and a lower value of 𝜑
for the time period 350 ≤ 𝑡 ≤ 700 days. The results are presented in
Figs. 6, 7, 8, for the values 𝜑 = 0.008, 0.016, 0.004, the first value of
𝜑 being chosen so as to reduce the expected value of 0 from 3.110
to 0.995, the threshold required for containment of the epidemic. The
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Fig. A.2. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 34% reduction in 𝜑 to 𝜑 = 0.016. Here 𝐸, 𝐼 , 𝑄, 𝑃 , 𝐻 , 𝐶, 𝐹 and 𝐷 are
respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward, hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale.
The effect on 0 is a change from 3.110 to 2.053.
second and third values are chosen to be double and half of this critical
value. Note that the vertical scales in Figs. 6, 7, and 8 are not identical.

Fig. 6 shows a clear almost instant reduction in the number of
exposed people (𝐸), followed by a plateau, whilst the sizes of most
other sub-populations plateau. However, the numbers of hospitalised
cases (𝐻 and 𝐶) both continue to rise slowly. We see that this strength
of lockdown stops the exponential growth. The less severe lockdown
simulated in Fig. 7 causes a brief reduction in the number of exposed
cases; however, the exponential growth is quickly resumed, in the size
of all sub-populations, albeit with a slightly smaller growth rate. The
more severe lockdown simulated in Fig. 8 shows a sudden and sharp
reduction in the number of exposed (𝐸), followed by a steady exponen-
tial decrease. The numbers of infected, quarantined and positive cases is
also seen to fall exponentially, whilst the cases of hospitalised, intensive
care, and self-isolated all plateau, as the total number of deaths slowly
increases.

It should be noted that these simulations are only a crude model
of the effects of lockdown, in reality a lockdown could cause changes
to other parameters, particularly 𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛽3, in the formula
(2) for the spread of the disease. We leave the topic of more detailed
models of the effects of lockdown for future work.

Discussion and conclusions

We have developed a mathematical model (CoVCom9) in the form
of a system of coupled ordinary differential equations to describe SARS-
CoV-2 transmission dynamics in Ghana. This categorises every member
of the population into one of 9 classes, including various classes well-
defined and measurable classes, such as those who have tested positive
for SARS-Cov-2 and are hospitalised (ordinary wards/intensive care),
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quarantined, etc, as well as unmeasurable but clinically important classes,
such as those who have been exposed to the virus, those who are
infectious but not yet tested positive. We investigated the epidemio-
logical well-posedness of the CoVCom9 model, shown that solutions
remain positive, and analysed the stability of the equilibrium solu-
tion. Using a candidate Lyapunov function, we have shown that the
disease-free equilibrium is globally asymptotically stable when the
basic reproduction number is 0 < 1.

Using the reported data [35] from March 13, 2020, to August 10,
2020, for both confirmed-positive cases and deaths of SARS-CoV-2
disease, we have parametrised the CoVCom9 model, with other param-
eters being estimated based from the literature. During the parameter
estimation exercise, we used system exploratory analysis (SEA) to find
practical parameter spaces. The estimated parameter values provided
best fits that are in good agreement with both reported confirmed-
positive cases and deaths. Also, the results point that on March 13,
2020, while two individuals are confirmed-positive, approximately 213,
3, and 1 persons were respectively exposed, quarantined and infectious.

We have used Latin Hypercube Sampling-Rank Correlation Coeffi-
cient (LHS-PRCC) to investigate the uncertainty and sensitivity of the
reproduction number 0. The results derived are of significant epi-
demiological value in SARS-CoV-2 control. We estimate that over the
period, March–August 2020, the average basic reproduction number
for Ghana was 0 = 3.110, which has the 95% confidence percentile
interval (2.042–3.240, in approximate centre of this interval is the
mean value of 2.623). From Fig. 5, we note that 0 is most sensitive to
six model parameters (𝜑, 𝛼2, 𝛼3, 𝜖1, 𝛾1, and 𝜐1 whose effects are detailed
in Table 2).

The proposed CoVCom9 model is a result of our effort to gain insight
into the vital features of SARS-CoV-2 transmission dynamics in Ghana.
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Fig. A.3. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 84% reduction in 𝜑, to 𝜑 = 0.004. Here 𝐸, 𝐼 , 𝑄, 𝑃 , 𝐻 , 𝐶, 𝐹 and 𝐷 are
respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward, hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale.
The effect on 0 is a change from 3.110 to 0.498.
Future work will be focused on extending the model to account for
inflow into other classes due to opening of Ghana’s borders. Further, we
will consider time-dependent optimal control intervention strategies to
gain insight into the best strategy for Ghana. Other extensions include
the time-dependent force of infection and the maximum capacity of
intensive care units.
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Appendix

In Table A.1 we list the parameter values used in the simula-
tions presented in Section ‘‘CoVCom9 model estimation and numerical
simulations’’.

Figs. A.1, A.2, A.3 show our predictions for how the subpopulation
sizes in the model would have evolved over time if a lockdown had
been imposed as soon as the first cases entered Ghana. These pre-
dictions are obtained by keeping all parameters at the same values
as in the main model, and reducing 𝜑 to the values used in Section
‘‘Predicting the effects of lockdown’’. These graphs should be compared
with Fig. 3. In Fig. A.1 we use 𝜑 = 0.008, which is chosen to make
our estimate of 0 = 1. We see that this has the effect of bringing the
pandemic under some sort of control, but only over an extremely long
timescale. In Fig. A.2 we simulate a partial lockdown, that is, reducing
𝜑 to 0.016 — which is the midpoint of the standard value 𝜑 = 0.02495
and that required to reduce 0 to 1. We see that epidemic still grows,
but at a slower rate than with no lockdown. Finally, in Fig. A.3, we
consider the effect of a much more severe lockdown, where 𝜑 is reduced
to half that needed for 0 = 1, that is 𝜑 = 0.004. This suggests that the
epidemic can be controlled and eliminated within a year.
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