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Scanning probe image wizard: A toolbox for automated scanning probe
microscopy data analysis
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We describe SPIW (scanning probe image wizard), a new image processing toolbox for SPM
(scanning probe microscope) images. SPIW can be used to automate many aspects of SPM data
analysis, even for images with surface contamination and step edges present. Specialised rou-
tines are available for images with atomic or molecular resolution to improve image visualisation
and generate statistical data on surface structure. © 2013 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4827076]

I. INTRODUCTION

Analysis of scanning probe microscope (SPM) data, a
standard tool for investigating nanoscale surface structure in
real space, can be a very time consuming task. A huge portion
of researcher time is invested in manual data analysis, often
in multiple software packages, or into writing custom analysis
scripts. Considering, also, the considerable time taken to per-
form SPM experiments, we believe that automation of both
data collection and analysis is of high priority.

While software packages, including Gwyddion,1

WSXM,2 and SPIP,3 are available for manipulating SPM
images, such packages require a user to decide how to process
and extract statistics from the data. This can consume a large
portion of a SPM researcher’s time. Time can be saved by
batch processing (for example, the Gwiddion libraries can
be accessed through gwybatch), such as subtracting a fitted
plane from all images and exporting to a suitable image file.
While this greatly improves the speed of processing for sets
of similar images, it still requires time to manually sort the
images, and decide on the processing needed. In addition, as
the libraries were designed with human interaction in mind,
only a limited amount of batch processing is possible.

Often further data analysis is needed to extract the desired
information from the image. This ranges from measuring lat-
tice constants or step heights, to more complicated feature
location, counting, and measuring. The standard SPM pro-
cessing software mentioned above has little support for such
analysis, instead concentrating on plane subtraction, filtering,
and basic roughness statistics.4 Some support for this analy-
sis is available in software such as ImageJ.5 ImageJ, however,
is designed for conventional optical images and electron mi-
croscopy images, and thus many SPM specific analysis func-
tions are not natively supported. Due to this limitation a great
deal of SPM data analysis is performed by purpose written
scripts,6, 7 or even manual counting and masking in conven-
tional image manipulation software. It is difficult to estimate
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the researcher-time wasted on avoidable manual processing or
on duplicated script functionality, when so many groups write
their own analysis code.

We present Scanning Probe Image Wizard (SPIW),8 a
new open source software toolbox built entirely around the
concept of automated scanning probe data processing. SPIW
is written as a MATLAB toolbox, allowing the user to easily
combine standard SPM image processing functions with new
feature-locating functions designed specifically for SPM im-
ages. For more complicated or specialised analysis it is possi-
ble for researchers to combine SPIW functionality with their
own code as well as with any of the great range data process-
ing operations already included in MATLAB.

II. OVERVIEW OF CAPABILITIES

SPIW was originally written as part of a wider project to
fully automate scanning probe experiments. This project com-
bines SPIW image analysis with machine learning techniques
to successfully automate STM tip conditioning. Initial exper-
iments in ambient conditions with highly oriented pyrolytic
graphite (HOPG) samples9 relied heavily on prior knowledge
of the expected images. Moreover, as STM images of HOPG
often result from the sliding of graphite layers,10 this causes
an averaging effect and thus step edges, lattice defects, and
contamination are rarely seen.

The STM automation project has since moved to ultra
high vacuum (UHV) conditions, with a Si(111) 7 × 7 surface.
In such conditions, the image analysis must reliably recog-
nise step edges with flat terraces, process images accurately
in the presence of contamination, and identify atomic reso-
lution even on areas of the surface with a high defect den-
sity. Figure 1 shows a series of images from an automated tip
conditioning run on the Si(111) 7 × 7 surface. A video of a
full optimisation run has been included in the supplementary
material.11

As no human is present during the automation process,
the image analysis must work autonomously with a wide
range of images. Successful tip conditioning was achieved
with no specific information of the surface reconstruction and
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(a)

(b)

(c)

(d)

(e)

FIG. 1. A sequence of images from automated STM tip conditioning on the
Si(111) 7 × 7 surface, image widths are 128 nm for (a) and (b), and 32 nm for
(c)–(e). (a) First scan shows an unstable tip. (b) Less than 7 min into the run,
a flat area is detected despite, despite the presence of a step in the scan region.
The automation algorithm zooms in for finer tuning. Poor quality atomic res-
olution is detected (c), as are steps in atomic resolution images (d). After less
than 80 min good quality imaging is detected, despite surface contamination
being present. SPIW algorithms are used to determine the surface structure
and image quality after each image is taken.

without target images. Below we provide detailed explanation
of the most important of SPIW’s capabilities.

A. Adaptive masking and flattening

Raw SPM images show the topography traced by the
probe. As the height of the features in an image are gener-
ally much smaller than the width or length of the image, a
very small sample tilt can result in an image where features
are very difficult to recognise (Figure 2(a)). Most SPM soft-
ware avoids this problem by line fitting and subtracting from
each line of data in the fast scan direction, which we will re-
fer to as line-by-line fitting. Although this allows the user to
see structure more clearly, large surface features such as con-
tamination and adsorbates can have a strong effect on only
certain lines, causing previously flat areas to become bowed
(Figure 2(b)). Final processed images are usually plane-
fitted, to provide a realistic impression of the scanned surface
(Figure 2(c)). Certain scanners (such as tube scanners) can ex-
hibit a bowed motion. To correct for this, one can subtract sec-
ond, or higher, order polynomial planes. Again, large surface
features affect the plane fitting algorithm, in this case causing
the surface to remain tilted or (for higher order planes) to even

(a) (b) (c)

FIG. 2. (a) Raw STM image of Si(111) 7×7 reconstruction. (b) Line-by-
line flattening of the same image, resulting in distortion of the surface near
contamination. (c) Iterative plane flattening (with masking) of same image
using a SPIW algorithm. (Scale bars 6 nm.)

become distorted. As such, the user must mask large features
from the surface before fitting.

Erickson et al.12 have produced an automatic method of
adaptive thresholding to produce masks and then used second
order polynomials planes to flatten images.13 This method
does not translate well to images with atomic scale surface
corrugation or molecular networks. SPIW offers similar capa-
bilities, but it also offers more powerful methods in the case of
these corrugated surfaces. The method involves locating ev-
ery atom/molecule on the surface, via the methods described
in Sec. II C. By comparing the median maxima and minima
of the surface the corrugation height can be calculated. High
and low areas are defined as any part of the surface which is
a user defined fraction of the corrugation height above/below
the median maxima/minima height Figure 3(a)). These pixels
are added to a mask (Figures 3(c) and 3(e)), and will not be
included in the plane fitting. Before the plane fitting algorithm
is executed, the mask is processed to remove any small areas
which can arise from artifacts such as feedback instabilities.

The full flattening procedure is as follows. The image is
first flattened with a first order polynomial plane (as the distor-
tions of higher polynomials are undesirable). Next a mask is
produced using the method described above, and the surface
is again flattened, ignoring any masked pixels. This process
can be iterated until the mask does not change within a given
tolerance (Figures 3(b)–3(e)).

A final improvement to the flattening can optionally be
applied. In this method, we fit a second order polynomial
plane through just the surface maxima which are not inside
the masked region (Figures 3(f) and 3(g)). This removes the
effect of scanner bow, without less densely packed areas of the
surface appearing lower and thus distorting the final image.

B. Step edge finding

Other features which commonly appear in high resolu-
tion SPM images are step edges (Figure 4). Step edges pose
problems for both flattening routines and for generating statis-
tics about images. SPIW detects step edges using a Sobel fil-
tering to calculate the square magnitude of the pixel height
gradient.14 These areas are thresholded with respect to the
mean square gradient, to create masks of high gradient re-
gions. The subsequent masks are thinned to single pixel lines.
Further processing consisting of hole filling and dilation fol-
lowed by re-thinning to single pixel. This improves the conti-
nuity of the single pixel mask along the step edge.

Once steps have been located, they can be taken into ac-
count during flattening by using a specially designed plane-
flattening routine. The routine does not fit the whole image,
instead it carries out line fits to each line separately, as in line-
by-line fitting. If a line is broken by a step, then each line
segment is fitted separately. This is repeated for both the fast
and slow scan directions. A weighted average of all gradients
in each direction is used to produce a first order polynomial
plane. As no line segment contains a step, the step does not
affect the calculated gradients, leaving correctly flattened im-
ages. The advantage of this method over defining a plane from
three points in the image, a feature available in most SPM
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(d)

(f) (g)

(e)

(c)

FIG. 3. (a) 2D schematic of masking procedure. Maxima/minima are marked
with red/blue points, their means by solid lines. hc is the calculated corru-
gation height, and m is the fraction of hc above/below which features are
masked. (b) STM image of Si(111) 7×7 reconstruction flattened using a first
order polynomial plane. (c) Resulting mask of high and low areas of (b), us-
ing surface corrugations to set threshold height. (d) Result of 5 iterations of
flattening non-masked regions, and re-masking. (e) Processed mask of (d).
(f) Result of second order polynomial flattening only unmasked peaks in (d).
(g) Computer vision image of (f). Cyan points represent atoms, red/blue out-
lines high/low masked areas. Note that the image is now flat enough that all
defects and corner holes are masked. (Scale bars 3 nm.)

software, is that this be applied automatically, rather than us-
ing manually selected points.

Locating the positions of step edges opens up another op-
portunity for automated image processing, as the image has
now been divided into terraces. SPIW can be set to divide
the image ordering terraces by size, and removing terraces
smaller than a set area. These terraces then can be flattened
and processed separately, to give statistics specific to each
terrace.

(a) (b)

(c)

FIG. 4. (a) STM image of Si(111) step edges flattened using a first or-
der polynomial plane, with computer vision overlay of located step edges.
(b) Image flattened in SPIW with steps taken into account. (c) Histogram
of pixel heights for image flattened with the SPIW step method (red), com-
pared compared to first and second order polynomial plane methods (green
and blue, respectively). z-heights not yet calibrated, see Sec. II D. (Scale bars
20 nm.)

C. Atom/molecule recognition

Locating the position of surface features such as atoms
and molecules is an essential part of many of the SPIW rou-
tines. For images with atomic or molecular resolution the pro-
cess of locating the molecule is relatively simple. The image
is first filtered using a 2D Gaussian kernel. The aim of this
filtering is to remove white noise, not to significantly alter
the image. As such, the default Gaussian kernel has a stan-
dard deviation of just one pixel width. After this, local max-
ima in the filtered image are used as a first approximation of
atom/molecule positions. Local minima can also be located
as they are required for certain functions such as calculating
corrugation heights. Both lists of points can be improved by
removing any points which fall within a masked region. To ac-
curately resolve atoms/molecules the peak to peak separation
should be � 5 pixels. For images with a low signal to noise
ratio the size of the Gaussian kernel may need to be increased
for better results.

Fitting of peaks is not used to improve the accuracy of the
atomic positions, as this was found to considerably increase
the time to process images for no measurable improvement.
Moreover, fitting algorithms were found to regularly fail to
provide a good fit when image features overlap, causing a de-
crease in accuracy.

Further properties of the features can be analysed, such
as the shape and the area. This is done by looping though all
maxima, and comparing to their closest local minima. A local
section of the image is then masked at some fraction of the
minima-to-maxima height (Figure 5). The user has control of
both the height threshold and the local area size, but both are
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(a) (b)

(c)

FIG. 5. (a) STM image of Si(111) 7 × 7 reconstruction flattened using SPIW
mask and flatten routines. (b) Computer vision image of (a) with all well-
resolved atoms masked for shape. (c) Zoom of boxed region of (b). (Scale
bars 3 nm.)

related to image features rather than set values to improve the
applicability of the routine to multiple surfaces. Any masked
feature which is not entirely contained in the local image is re-
moved from the statistics. Thus, badly resolved molecules or
spuriously defined points do not affect the final statistics. Fea-
tures too close to the edge of the image are also not included
as they may overlap the edge of the image, which would dis-
tort the statistics.

D. Generating image statistics

Section II C touched upon SPIW’s ability to generate im-
age statistics. With SPIW it is possible to generate statistics
only for sections of the image defined by masks. Thus con-
tamination, surface defects, and steps have minimal effect on
the final results.

Lattice periodicity and step heights can also be mea-
sured automatically and used to calibrate images. Step edge
heights can be measured using a function which fits Gaussian
functions to each terrace identified in a histogram of pixel
heights. For example, for Figure 4(c), the mean step height
detected was 2.67 Å, giving a calibration factor of 1.17, as
the step height for the Si(111) is 3.135 Å. Lattice periodic-
ity can be measured without knowledge of the expected lat-
tice structure by calculating the distance between each de-
tected atom/molecule and its nearest neighbour. In the case
of adatoms of the Si(111) 7 × 7 reconstruction, the closest
paring is 6.71 Å across the divide between the faulted and
unfaulted halves of the unit cell.15 SPIW measures an aver-
age closest distance of 6.88 Å for Figure 3(f), and 6.64 Å for
Figure 6(c). These values not only have percentage error of
less than 3%, the absolute error is also much smaller than the

(a) (b)

(d)
(c)

FIG. 6. (a) STM image of Si(111) step edge flattened using a first order poly-
nomial plane, with computer vision overlay showing located atoms in cyan.
(b) Image constructed such that each pixel height is equal to the height of
the nearest located atom, with computer vision overlay of located step edge.
(c) Image flattened in SPIW with step taken into account. (d) Histogram of
pixel heights for image flattened with the SPIW step method (red), compared
to first and second order polynomial plane methods (green and blue, respec-
tively). (Scale bars 6 nm.)

pixel width of 0.625 Å. This method was chosen over using a
Fourier transform, as many surface structures produce a num-
ber of peaks in k-space, which are best analysed with specific
routines for the expected structure. The relative intensities and
clarity of Fourier peaks can also be affected significantly by
contamination and defects. These problems are removed by
directly using the atomic positions in real space.

RMS surface roughness (RRMS) can be calculated as a
simple standard deviation of the surface heights. As an ex-
ample, the RMS roughnesses of the four detected terraces in
Figure 4(b), from left to right are RRMS = 53 pm, 29 pm,
39 pm, and 58 pm, after z-calibration. Compare these values
to RRMS = 353 pm for the whole image, or RRMS = 152 pm
for the plane flattened image Figure 4(a). Surface corrugation,
hc, can also be measured for atomic resolution images using
the method explained in Sec. II A (see also Figure 3(a)).

Another benefit of writing SPIW in MATLAB is for more
specialised statistics it is easy to pass data from areas located
or masked in SPIW into the wide range of built-in MATLAB
functions or home-written scripts. This can dramatically
speed up script writing for very specialised image analysis
not available “out of the box” in any software package.

E. Computer vision outputs

Generating image statistics is of little use without being
able to verify that the image analysis they rely on is working
correctly. With this in mind, SPIW is able to produce com-
puter vision outputs which allow the user to see what features
were recognised, the positions of steps or masks, and how the
image was flattened. SPIW can easily be set to loop though
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a large batch of images and save image files with the com-
puter vision outputs along with the statistics. These computer
vision outputs can be used to monitor script behaviour to en-
sure accuracy. All SPM images in this paper are examples of
the possible outputs in SPIW.

III. PERFORMANCE UNDER DIFFERENT CONDITIONS

A. Step edges with atomic resolution

A particularly difficult test for any step edge locating
routine is to find step edges in an image with atomic res-
olution. The problem arises from edge-finding techniques’
use of gradients. Often the gradient from the atomic corru-
gations is as strong as the gradient at the step edge. SPIW
has tools to create images where each pixel is the height
of the nearest located atom. This image can then be fed
into the step edge locating routine with excellent results
(Figure 6).

B. Feature locating for molecular networks

This paper has concentrated on UHV STM images of
Si(111) 7 × 7 as this is a key prototype. The same rou-
tines, however, apply equally well to a number of more
complex surfaces. In Figure 7, we have used the same rou-
tines as for Figure 5 but on a liquid STM image of a
quaterphenyl-tetracarboxylic acid and terphenyl benzene as-
sembly on HOPG.16 The only changes were the size of the
kernel used to generate the peak locations: the standard de-
viation was increased from 1 to 3 pixels due to the more
complex shapes of the surface features. The results com-
pare favourably to the results for masking atoms previously
presented.

C. Known issues

SPM image processing presents a number of very spe-
cific image processing challenges. This is due to the pro-
cess by which the image is acquired. Image artifacts which
can arise from improper imaging parameters, such as feed-
back gains, can be difficult to separate from real surface fea-
tures. Changes at the apex of the scanning probe can cause
sudden changes in height and/or resolution in the middle of
an image. Sample drift or piezoelectric creep from the scan-
ners can cause distortions not only in the x-y plane but also
in z. Images with periodic structure can be corrected in the
x-y plane,17 a method not currently implemented in SPIW.
However, images dominated by such drift or creep in z are
very difficult to process in SPIW as flattening the image is
near impossible, and no tools exist to reliably correct such
distortions automatically. Line-by-line fitting can give visu-
ally pleasing results, yet a combination of inherent distortion
and added distortion from the fitting result in images which
cannot be responsibly used for most purposes. SPIW can be
used to output such images to alert the user to interesting
features, yet the raw data will still need manual processing
elsewhere.

(a) (b)

(d)

(f)(e)

(c)

FIG. 7. (a) and (b) Liquid STM image of quaterphenyl-tetracarboxylic acid
and terphenyl benzene assembly on HOPG. (c) and (d) Computer vision im-
age of (a) and (b), respectively, with all well resolved molecules masked for
shape. (e) and (f) Zoom of boxed region of (c) and (d), respectively. (Scale
bars 10 nm.)

IV. CONCLUSION

We have presented a number of tools from SPIW that
can be used to automatically perform SPM data analysis. The
tools are applicable to a wide range of SPM data sets, and can
be used in numerous ways. From simply flattening SPM im-
ages and saving to image files which can be easily browsed for
interesting data, to scripted routines which select only certain
images to be processed and analysed statistically. SPIW, like
all software projects, in an ongoing development. We hope
that by releasing it as an open source project, SPM and im-
age processing experts also can share their acquired knowl-
edge to improve the toolbox for the benefit of the entire SPM
community.
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