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Abstract. In this paper the difficult problem of how to legit- mechanistic legitimacy of a hydrological, data-driven model
imise data-driven hydrological models is addressed using aiDDM). The framework is inspired by earlier concepts em-
example of a simple artificial neural network modelling prob- bedded in the data-based mechanistic modelling (DBM) ap-
lem. Many data-driven models in hydrology have been crit-proach of Young and Beven (1994), although it has a dis-
icised for their black-box characteristics, which prohibit ad- tinctly different emphasis. In the DBM approach mecha-
equate understanding of their mechanistic behaviour and renisms found in data are used to identify appropriate models.
strict their wider heuristic value. In response, presented herén the DDMMF the mechanisms within the models them-
is a new generic data-driven mechanistic modelling frame-selves are used to determine the most appropriate solutions.
work. The framework is significant because it incorporatesThis represents a novel shift within data-driven modelling
an evaluation of the legitimacy of a data-driven model’s inter-as it places an explanation of how data-driven models work
nal modelling mechanism as a core element in the modellingat the centre of the model development and selection pro-
process. The framework’s value is demonstrated by two sim-<cess — thus incorporating information that goes beyond out-
ple artificial neural network river forecasting scenarios. We puts and model fit. We here use the term “mechanistic” to
develop a novel adaptation of first-order partial derivative,refer to the interactions of the internal humerical mecha-
relative sensitivity analysis to enable each model's mechanisnisms that control a model's behaviour and the term “le-
tic legitimacy to be evaluated within the framework. The re- gitimacy” to refer to the degree of conformance between a
sults demonstrate the limitations of standard, goodness-of-fimodel’s mechanistic behaviour and that sought by the mod-
validation procedures by highlighting how the internal mech- eller. The DDMMF is contextualised within the specific sub-
anisms of complex models that produce the best fit scoreset of artificial neural network (ANN) models, and is exem-
can have lower mechanistic legitimacy than simpler counter-plified via two simple neural network , hydrological forecast-
parts whose scores are only slightly inferior. Thus, our studying problems. The paper presents an important new frame-
directly tackles one of the key debates in data-driven, hydro-work through which data-driven modellers in general, and
logical modelling: is it acceptable for our ends (i.e. model fit) ANN-based modellers in particular, can respond to concerns
to justify our means (i.e. the numerical basis by which thatthat their models lack the mechanistic legitimacy necessary
fit is achieved)? if they are to deliver new insights that are widely accepted
and trusted by hydrologists.

If the user of any model is to have confidence in it, the
model development process must be seen to include ade-
1 Introduction guate and explicit assessments of whether the system rep-

resentation that is adopted, the inputs used, and the products
In this paper a new, data-driven mechanistic modellingthat are delivered, are sufficient for the model’s intended pur-

framework (DDMMF) is presented as a response to thepgse (Robinson, 1997). Where the purpose is to develop a
complex, long-standing problem of how to determine the
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hydrological model that has value as a transferrable agentandl. a logical and plausible structure (including input
can support new hydrological insights as well as enhanced  selection);
prediction (i.e. Caswell’'s, 1976, model duality), the model
development and evaluation process should consider the le-
gitimacy of its resultant modelling structures and their inter- 1.1 Evaluating the structure and behaviour of ANN
nal mechanistic behaviours (e.g. Sargent, 2011). In the case  models
of black-box hydrological models, achieving explicit legit-
imisation of implicit modelling mechanisms is a major chal- The logic and plausibility of different ANN model structures
lenge. Consequently, the use of black-box models is moshas been a particular research focus in hydrology for more
commonly limited to catchment-specific, operational predic-than a decade and significant advances have been made (e.qg.
tion tasks where there is usually no expectation of modelMaier and Dandy, 2000, 2001). Research objectives have
transferability. In such applications the model’s validity can included the development of methods to improve input se-
be adequately assessed via the goodness-of-fit of its outputsction by input sensitivity analysis (e.g. Maier and Dandy,
(Klemes, 1986; Refsgaard and Knusden, 1996), but there i4997; Sudheer, 2005) and by accounting for non-linearity
no formal requirement to legitimise the modelling mecha- and cross-correlation between potential inputs (e.g. partial
nism by which the fit is obtained. This constrains the appli- mutual information (May et al., 2008). Similarly, informa-
cation of black-box models in hydrology which, like all mod- tion criteria have been used to identify the optimum number
els, are limited in their use by their conceptual foundations. of hidden units by striking a balance between predictive per-
In recent years the incorporation of increasingly complexformance and model complexity (e.g. Kingston et al., 2008).
machine-learning and artificial intelligence algorithms in hy- The examination of connection weights (Olden and Jackson,
drological modelling applications has resulted in a prolif- 2002) has also proven useful in the forecasting of hydrologi-
eration of new DDMs in the literature (Solomatine et al., cal variables in rivers (Kingston et al., 2003, 2006) by ensur-
2008). Some of these models do deliver explicit documen-ing that the weights obtained during model calibration make
tation of their internal mechanisms (e.g. see Mount et al. physical sense, even if this is at the expense of prediction
2012, who explicitly document their gene expression pro-accuracy (Kingston et al., 2005).
gramming and M5 model tree solutions). However, the nu- By contrast, advances towards delivering methods that can
merical complexity of many models has meant that they arereveal and legitimise the internal, mechanistic behaviours of
applied as black-box tools. These black-box DDMs are ableANN models have been less forthcoming. Existing efforts
to deliver predictive performance that is equal to or betterhave generally focussed on the ways in which an ANN parti-
than their physical or conceptual modelling counterparts (e.gtions the input—output relationship (Wilby et al., 2003; Jain et
Shrestha and Nestmann, 2009). However, an important quesd., 2004; Sudheer and Jain 2004; See et al., 2008; Fernando
tion remains about whether they can ever offer more than thend Shamseldin, 2009; Jain and Kumar, 2009). These studies
optimisation of goodness-of-fit between inputs and outputshave delivered useful hydrological insights into how different
through the delivery of insights to hydrologists (Minns and structural components of the ANN behave. However, they
Hall, 1996; Babovic, 2005; Abrahart et al., 2011). This ques-fall short of a comprehensive analysis of how the model’s
tion is particularly pertinent for ANN-based models, which overall response function behaves and whether the behaviour
represent the most widely used type of a black-box DDMis legitimate. Because ANN models are usually treated as
in hydrology. Whilst we know that ANN-based models per- black-boxes, most researchers do not document their govern-
form well, we do not always understand why. Thus, the po-ing equations as a means to support such an analysis. Even
tential of ANN-based models as transferrable solutions, orif the equations are delivered (e.g. Aytek et al., 2008; Abra-
as models that can deliver new insights into hydrological do-hart et al., 2009), their complexity prevents a straight forward
main knowledge remains poorly demonstrated (Abrahart ebehavioural interpretation.
al., 2012a). Indeed, DDMs in general, and ANN-based mod- Techniques for delivering simplified derivatives of the
els in particular, have been criticised as being little moreANN equations from which meaningful behavioural inter-
than advanced curve-fitting tools with limited heuristic value pretations can be made, together with a generic framework
(e.g. Abrahart et al., 2011). To those engaged in DDM ancto direct their application and interpretation within the model
ANN-based modelling, this view can seem intuitively wrong. development process, represent an important potential step
However, if such views are to be countered, researchers neddrward. Legitimising the mechanistic behaviour then be-
to demonstrate much greater understanding about why andomes a process in which the degree of conformance be-
how such models deliver their results (c.f. Beven, 2002), andween the model’s observed mechanistic behaviours are eval-
the minimum that must be delivered is a demonstration thauated against those sought by the modeller. To this end,
DDMs possess two basic characteristics over and above themechanistic legitimisation is informed by conceptual or hy-
goodness-of-fit performance: drological domain knowledge, and is quite distinct from
model validation (Carson, 1986; Curry et al., 1989; Beven
and Binley, 1992; Rykiel, 1996). It is more akin to model

2. alegitimate mechanistic behaviour.
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1998, 2010), although by focussing on a model’s mechanics performance and

mechanistic behaviour

rather than its physical process representation, it avoids the
difficult philosophical issues of “truth” that verification im-  rig 2 Reordering of the DBM framework to generate the DDMMF.
plies (see Oreskes et al., 1994 for an important discussion). Grey dashed lines indicate where conceptual steps contained within
For this reason it is important to recognise that whilst the DBM approach are incorporated into the DDMMF approach.
mechanistic and physical legitimacy are strongly linked, they
are not the same and should not be conflated (Fig. 1). The
general sensibility of a model's internal structure and be-ical model’s mechanistic behaviours can be evaluated in the
haviour patterns does not necessarily equate to the extent tghsence of explicit, a priori knowledge about its governing
which they can be shown to map to the physical processegquations. In the DBM approach, a model’s mechanistic be-
that are anticipated within a given catchment. Indeed, thergyaviour is assessed using a formal process of statistical infer-
is no reason to assume that adequate physical process knovénce through which the required modelling mechanisms and
edge will always be available to inform a given modelling behaviours are identified prior to building the model, and in-
context. Instead, mechanistic legitimacy may simply reflectterpreted according to the extent to which they conform to
the mechanical behaviour of the model’s response functionthe nature of the system under study (Young et al., 2004)
i.e. its magnitude, stability, continuity and coherency. Mech-(Fig. 2, A1-A4). The model is then accepted, or rejected, on
anistic legitimacyper secan be an important concept for sup- the basis of its conformance.
porting model selection above and beyond goodness-of-fit The direct translation of the DBM approach to any DDM,
metrics. For example, an ANN response function that dis-including ANN-based examples, is prevented due to the
plays low continuity in its mechanistic behaviour is likely to means by which the DDM mechanisms are learnt directly
be indicative of over-fitting. This is an important mechanis- from the data. This limits the a priori application of statisti-
tic characteristic of a model that cannot be easily detecteqtal inference from which a mechanistic interpretation could
via goodness-of-fit, and that reduces the legitimacy of theperhaps be made. The DBM process can, however, be re-
model. Itis also a characteristic that does not have any direcgrdered to address this issue and better reflect the generic
physical interpretation. DDM process. Firstly, the analysis of data as a means of
informing model structure is conflated with model build-
ing to ensure that the structural and performance consider-
2 The data-driven, mechanistic modelling framework ations within the DDM model development process are ad-
equately represented (Fig. 2, B1). Secondly, analysis and
The DBM approach (Young and Beven, 1994) for hydrolog- legitimacy assessment of the resultant DDM’'s mechanisms
ical model development is of particular relevance as it offersfollows the normal model development activities (Fig. 2,
a recognised means by which the legitimacy of a hydrolog-B2—-B3). Finally, model evaluation incorporates both model
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performance (i.e. its validity as assessed by fit metrics) and
the legitimacy of its behaviour to determine whether further 5 4
model development work is required. Input tocalTend

Relative

The result is a new, DDMMF that includes a specific re- sesiviv | .
quirement for mechanistic analysis and assessment to follow Trend o
standard model development activities. This basic framework - Sy T
is generic and should be widely applicable across a range of
data-driven modelling approaches, as well as being of partic- o |-
ular value for ANN-based models. It is more loosely defined Model Output Value
than its DBM counterpart and need not necessarily be con- ) o
strained to a demonstration of adequate representation of 5. 3. Examples of r_elatlve sensitivity trends on the global—lc_)cal
natural system by a model, which is a key feature of the DBMcontlnuum. The relative sensitivity value computed for any given

h Indeed. it Iso b d tool to di (ﬁoint in the model output range indicates its response ratio mag-
approaches. Indeed, it may aiso be used as a ool 1o diré ﬁtude at that point (i.e. the relative rates of change in the input

broader mechgnlstlc Inyestlgatlons, .'nCIUd'ng the complexnyand output). Trends can then be fitted through the scatter of points
and functionality of the internal workings of a model, and the generated by computing the relative sensitivity for any set of in-
extent to which these can be justified by the modelling task. put/output records. Uniform trends are indicative of models where
the local input/output response ratios do not vary across the range
2.1 Enabling the DDMMF for ANN models: revealing of model outputs. Global trends are indicative of input/output re-
mechanistic behaviour. sponse ratios that vary in a consistent manner. Local trends exhibit
high variability in their input/output response ratios.

Uniform Trend

Enabling the DDMMF is reliant on the availability of tech-

niques by which a model’s mechanistic behaviour (i.e. its S , o ) o
magnitude, stability, continuity and coherency) can be |egit_cont|numes in a model’s sensitivity to an input indicates the
imised (Fig. 2, Box B2). Whilst these are not generally well existence of thresholds in the model’'s mechanisms that may
developed for DDMs, conceptual and physically based modJesultin distinctly different internal mechanistic behaviour at
ellers have made extensive use of relative parameter seng€ighbouring locations in the fore?ast range. Coherency re-
tivity analysis (Hamby, 1994) to elucidate the mechanistic€cts the extent to which a model's sensitivity to its inputs
behaviour of their models (Howes and Anderson, 1988) and’aries from point to point. Low coherence is indicative of
strengthen their validation (e.g. Kleijnen, 1995; Kleijnen and @ Mmodel that applies a distinctly different modelling mecha-
Sargent, 2000; Fraedrich and Goldberg, 2000; Smith et al.NSM to each local data point and is a means by which data
2008; Mishra, 2009). Critically, it has been shown to be an©Verfitting may be detected. _ _

important means by which model validation can be extended Although methods for computing relative parameter sen-

beyond fit, to include deeper insights into the legitimacy of g Sitivities are not yet available fc_)r all DDMs, recent work has
model’'s mechanistic behaviours (e.g. Sun et al., 2009). focussed on how it may be achieved for ANN models (Yeung

The pattern of variation in relative sensitivity values ex- €tal-, 2010). This has provided new opportunities for explor-
ists on a continuum between global and local trends (Fig. 3)ing their mechanistic behaviour within the DDMMF. Impor-
Where low variation in relative sensitivity occurs across t@ntly, computational techniques for determining first-order
the output range, the dominance of global mechanistic pebartial .denvatlves of certam ANNSs h.ave been available for
haviours can be inferred. Where higher levels of variation oc-S0mMe time. One such technique, outlined by Hashem (1992),
cur, more complex, locally dominant mechanistic behavioursinvolves the application of a simple backward chaining par-
may be inferred. Taking this basic idea a step further, relativeial differentiation rule. His general rule is adapted in Eg. (1)
parameter sensitivity patterns can be characterised accordor ANNs with sigmoid activation functions, a single hidden
ing to their magnitude, stability, continuity and coherency l2yer.i input units,n hidden units and one output unif,
(Fig. 4). The magnitude of a model’s sensitivity to its inputs SO that the pamal derivative of thg ngtwork’s output can be
characterises the relative extent to which each model forecag@!culated with respect to each of its inputs (1):
is sensitive to variation in each of its inputs. It can therefore 0
reveal the relative importance of each input as a driver of the? @ _ Z wijwjohi(1—h;)O@d—0), (1)
model output at any given point in the forecast range. Thed/; = '
stability of the input sensitivity characterises the consistency
with which each input influences the model output across dif-where,w;; is the weight from input unit to hidden unit;;
ferent forecast ranges. Invariance in an input’s relative sensiw ;o is the weight from hidden unif to the output unitO;
tivity across the entire range (the most stable case) indicatek; is the output of hidden unif; and O is the output from
that it is being used as a constant multiplier by the model’sthe network.
internal mechanism. Lower levels of stability willindicate in-  Sensitivity can be expressed in two ways, with the
creasingly non-linear influences. The existence of local disform that is chosen being dependent on the intended use.
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inputs, and should not be assessed via the comparison of

High Magnitude Low Magnitue individual, global statistics.

Incrcasmg\yG\oba>

Relative Sensitivity
to Input

3 Exemplifying the DDMMF: the simple case of
ANN-based river forecasting.

Relative Sensitivity
to Input

(=]
(=]

Model Output Value Model Output Value

Low Stability To exemplify the use of our DDMMF we here take the rel-
atively simple case of an artificial neural network river fore-
caster (NNRF) as a simple starting point. The basic jobs of
. i a river forecasting model are defined by NOAA (2011) as:
“...to estimate the amount of runoff a rain event will gen-
Model Output Value Model Output Value erate, to compute routing, how the water will move down-
stream from one point to the next, and to predict the flow of
water at a given forecast point through the forecast period.”
P These models have become one of the most popular ap-
I3 plication areas for data-driven modelling in hydrology over
recent years (Abrahart et al., 2012a). In common with estab-
lished, statistical river forecasting approaches (e.g. Hipel et
al., 1977), each NNRF is a simple, short-step-ahead hydro-
Low Coherency logical forecasting model whose predictions are derived from
a core set of lagged, autoregressive model inputs recorded
for the point at which the prediction is required (e.g. Fi-
rat, 2008), and/or gauged locations upstream (Imrie et al.,
2000). These inputs may be augmented by a range of rele-
Model Output Value Model Output Value vant, lagged hydrometeorological variables that act to further

Fig. 4. Characteristic patterns of relative sensitivity. The continuum refine the model output (e.g. Anctil et al.,, 2004); resuiting in

indicated by the arrow on the left indicates the relative focus of each‘;1 black-box model that generally perform§ yvell (eg. Abrg-
sensitivity characteristic on a range between global and local. artand See, 2007), but that lacks an explicit documentation

of its internal mechanisms. The common objective of previ-

ous studies (e.g. Coulibaly et al., 2000; Huang et al., 2004;
Sensitivity values computed in an absolute form (Eq. 1) areKisi and Cigizoglu, 2007; Kisi, 2008) has been to demon-
inappropriate for the comparison of sensitivity values be-strate that improved river forecasting can be achieved using
cause their values vary according to the magnitude of thdNNRFs. NNRFs have the potential to deliver river forecasts
parameters in the equation (McCuen, 1973). Relative senwith reduced error and recent work (de Vos, 2013) has high-
sitivity values (Eq. 2) are invariant to the magnitude of the lighted how the application of more complex, echo state net-
model inputs and thus provide a valid means for comparingworks within NNRF studies may extend the reliable forecast

High Stability

Relative Sensitivity
to Input
Relative Sensitivity
to Input

High Continuity Low Continuity

Relative Sensitivity
to Input
o
Relative Sensitivity
to Input

Model Output Value Model Output Value

High Coherency

ncreasingly Local

Relative Sensitivity
to Input

Relative Sensitivity
to Input

G

sensitivity values. horizon. By contrast, our objective is to exemplify how the
application of input sensitivity analysis, delivered within the

s = 90/0 _ 90 L ) DDMMF, provides an important new means by which NNRF
ol;/l; 91, O modellers can identify the most legitimate model mecha-

The relative sensitivity of each input is thus calculated as nisms occurmng |n3|d§ a set of cgnd|date models. Indeed,

we restrict our modelling to only simple examples that use
90 I n I; temporally lagged discharge; accepting that alternative in-
30" Zwijwjohj(l— hj)0=0)-5 put configurations may possibly be able to deliver superior
j=1 models with an even higher degree of fit.

Our example ANN models incorporate simple structures
and internal mechanistic behaviours that can be very eas-
ily presented and understood. Indeed, the fact that data-
It should be noted that the relative sensitivity values associdriven modellers do not often seek to legitimise their mod-
ated with a model will vary continuously across the input— elling mechanisms suggests that the key concepts and argu-
output space and each input will have a unique pattern of relments presented in Sect. 1 are not fully embedded in prac-
ative sensitivity. A model's relative sensitivity should, there- tice, and so the clearest and most straight-forward examples
fore, be examined by comparison of the characteristic relaare required to exemplify them. Similarly, by using example
tive sensitivity patterns associated with the different modelmodels that do not lend themselves to a detailed, physical

=(1- O)Iizw,'jwj'ohj(l—hj). 3)
=1
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interpretation (autoregressive river forecasting models do nofig. 6. Hydrographs for the four gauging stations showing data par-
have any real physical basis and so cannot and should not B#ioning.

interpreted in these terms), we ensure that the legitimisation

of mechanistic behaviour through the DDMMF remains the

salient focus of the paper. 30yr record to be omitted due to missing records at one or
more gauges.
3.1 Study area, datasets and modelling scenarios The data were partitioned so that the first 75% of the

available record (7762 data points) was used for model

Two differently configured NNRFs are developed for the calibration, leaving 25% (2588 data points) for use in
River Ouse at Skelton, Yorkshire, UK. The first NNRF (Sce- cross-validation (which we hereafter term “validation”) and
nario A) represents the most simplistic, autoregressive rivemodel selection. This split places the three unusually high-
forecasting case, in which at-a-gauge discharge is forecaghagnitude flood peaks observed at Skelton (identified by
from lagged discharge inputs recorded at the same locathe arrows in Fig. 6) in the calibration data. This is impor-
tion. The second, more complex, NNRF (Scenario B) pre-tant in the context of our study, as it ensures that the in-
dicts at-a-gauge discharge from a set of three lagged disternal mechanisms of the calibrated models have been de-
charge inputs recorded at gauges located in tributary riverseloped to accommodate the largest observed floods in our
immediately upstream. dataset. Therefore, any mechanistic interpretation is informa-

The catchment upstream of the Skelton gauge (Fig. 5}tive across the full forecast range for each model. Nonethe-
covers an area of 3315 Kmwvith a maximum drainage path less, we also recognise that the simplicity of this splitting
length of 149.96 km, and an annual rainfall of 900 mm. The procedure contrasts with more complex approaches that have
catchment contains mainly rural land uses wittf2 % ur-  been used by other ANN modellers (e.g. Snee, 1977; Bax-
ban land cover. It exhibits significant areas of steep, mounter et al., 2000; Wu et al., 2012) to deliver improved valida-
tainous uplands that extend over 12 % of the catchment, antlon consistency (LeBaron and Weigend, 1998) by ensuring
includes three sub-catchments, comprising the rivers Swalerepresentative sub-setting procedures. Therefore, exceedance
Ure and Nidd. Each of these tributaries is gauged in its low-curves for the calibration and validation data (Fig. 7) were
land reaches, upstream of its confluence with the Ouse. Dechecked to ensure high conformance in the discharge proba-
tails of these gauges and contributing catchments are prability distributions for calibration and validation data subsets
vided in Table 1. at all gauges.

All NNRFs were developed using daily mean discharge
records, downloaded from the Centre for Ecology and Hy-3.2 Input selection and model development
drology National River Flow Archivevgww.ceh.ac.uk/data/
nrfa). The data extend over a period of 30yr, from 1 Jan-Scenario A is a straightforward, autoregressive NNRF for
uary 1980 to 31 December 2010 (Fig. 6). Several short gapS$kelton that predicts instantaneous discharge {{®m the
exist in the observed records at irregular periods across théhree most recently gauged discharges {SS,_2; S;—3).
different stations; necessitating approximately 8% of theThe modelling is developed directly from the daily mean
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www.ceh.ac.uk/data/nrfa
www.ceh.ac.uk/data/nrfa

N. J. Mount et al.: Legitimising data-driven models 2833

Table 1. Description of the River Ouse catchment and its primary sub-catchments.

Gauge ID Catchment Physiography Land Cover
Ouse at 27009 Area 3315k Woodland 7 %
Skelton Max Elevation 714 m AOD* Arable/Horticultural 31 %
Min Elevation 4.6 m AOD Grassland 44 %
Majority high to moderate Mountain/Heath/Bog 12 %
permeability bedrock Urban 2%
Other 4%
Swale at 27071 Area 1363k Woodland 6 %
Crakehill Max Elevation 714.3m AOD Arable/Horticultural 35 %
Min Elevation 12 m AOD Grassland 41 %
Majority high to moderate Mountain/Heath/Bog 12 %
permeability bedrock Urban 1%
Other 5%
Nidd 27062 Area516krh Woodland 8 %
at Skip Max Elevation 702.6 m AOD Arable/Horticultural 22 %
Bridge Min Elevation 8.2 m AOD Grassland 49 %
Majority high to moderate Mountain/Heath/Bog 13 %
permeability bedrock Urban 3%
Other 5%
Ure at 27007 Area 915krh Woodland 8 %
Westwick Max Elevation 710.0m AOD Arable/Horticultural 14 %
Min Elevation 14.2 m AOD Grassland 56 %
Majority moderate permeability Mountain/Heath/Bog 19 %
bedrock Urban 1%
Other 2%

* Above Ordnance Datum.
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Fig. 8. Lag analysis for the four gauging stations.
discharge record for Skelton, with no pre-processing having
been applied. Three antecedent predictors were used, such
lags having the strongest correlation with observed flow atof lags was used to determine the lag time for each tribu-
Skelton at time (Fig. 8) over the entire 30yr record. Sce- tary that represented the strongest predictor;off8e three
nario B predicts Son the basis of antecedent dischargesinputs to Scenario B are thus G; SB,_1; and W._1.
recorded for the three tributary gauges at Crakehill (C), Skip The proportion of the discharge aj hat is accounted
Bridge (SB) and Westwick (W). The strength of the correla- for by discharge at C1, SB_1 and W_; is summarised
tion between each tributary gauge and Skelton over a rangas a box plot in Fig. 9. For each station, each lagged daily
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160 Table 2. Epochs for preferred NNRFs based on validation data.
140 -
120 Model Scenario Hidden Units
S 100 2 3 4 5
2 g0 A 700 1100 3000 800
g B 1000 7000 20000 20000
-] 60 -
X
P =—
20 7 fewer hidden units is reflected in their generally lower num-
0 ber of training epochs. Following the arguments in Abrahart

Ci1 SBtg Wi and See (2007), and Mount and Abrahart (2011a), we also
include two simple multiple linear regression (MLR) bench-
marks. These are included to make clear the difficulty of the
modelling task and the non-linearity of any required solution.
Their equations are

Fig. 9. Proportional contributions of lagged upstream inputs to dis-
charge forecast at Skelton.

mean discharge value was expressed as a proportion of theCenarno A S, = 6.014+1.12x 51 +0.455+ S 2
daily mean discharge at Skelton; resulting in a distribution of +0.216x% S;_3, (4)
its upstream contribution. The median, inter-quartile range .
and max/min values of these distributions were used to proScenario B S = 5.715+0.424x C, 1 + 1.556x SB; 1
duce Fig. 9. The plot shows that, summarised over the whole +1.055% W, _1. (5)
record, lagged discharge at Crakehill and Westwick accounts
for a similar proportion of the instantaneous discharge at3.3 NNREF relative sensitivity analysis
Skelton, with comparable median values40 %) and inter-
quartile ranges. Skip Bridge is proportionally less impor- Equation (3) presents a generic computational method for de-
tant with a median value of 18 %. This highlights its relative riving first-order partial derivatives of an ANN-based model,
weakness as a physical driver of @hich is in contrastto its  from which mechanistic behaviours can be explored. How-
relative strength as a statistical driver (i.e. it has the secondver, the use of these derivatives as the basis for develop-
highest correlation coefficient at— 1). It should be noted ing a parameter sensitivity analysis of NNRFs is complicated
that, due to timing effects and the use of summary, dailyby the strong temporal dependencies that exist between the
mean data, the maximum proportional contributions valuedagged model inputs. Standard, local-scale sensitivity analy-
in Fig. 9 exceed 100 %. sis techniques (e.g. Turanayi and Rabitz, 2000; Spruill et al.,
In order to reflect the lack of consensus surrounding2000; Holvoet et al., 2005; Hill and Tiedeman, 2007) require
NNRF parameterisation, and the empirical process that unthe establishment of a representative base case (Krieger et al.,
derpins model selection in the majority of previous stud- 1977) for all inputs. This is usually defined according to their
ies, four candidate single-hidden-unit ANNs were developedmean or median values on the assumption that all inputs are
for Scenarios A and B. Each candidate was structurally disindependent of one another. However, in NNRF modelling
tinct, incorporating either 2, 3, 4 or 5 hidden units. In this this assumption is not valid and the identification of a repre-
way, a range of alternative candidate models of varying com-sentative base case is very difficult (Abrahart et al., 2012b).
plexity were developed in each NNRF scenario for subse-Moreover, local scale analyses can only provide mechanis-
guent mechanistic comparison. All candidate model weightgic insights for the specific location in the input hyperspace
were calibrated using the back propagation of error learnto which the base case corresponds, and it should not be as-
ing algorithm (Rumelhart et al., 1986). Learning rate wassumed that mechanistic insights can be generalised beyond it
fixed at 0.1. Momentum was set at 0.9. The objective func-(Helton, 1993).
tion was root mean squared error (RMSE). Each candidate The application of a global (Muleta and Nicklow, 2005;
model was trained for 20000 iterations on the first 75 % Salteli et al., 2008) or regional (e.g. Spear and Hornberger,
of the data record, and cross-validated against the remaint980; Beven and Binley, 1992) sensitivity analysis can over-
ing 25% at 100 epoch intervals. Final model selection wascome this issue by delivering a generalised sensitivity index,
made according to the lowest RMSE value obtained. The prewhich incorporates input probability distributions that de-
ferred number of epochs for each hidden unit configurationscribe all of the input hyperspace, or specific regions within
for the different scenarios is shown in Table 2, with the rel- it. However, these methods are very dependent on the par-
ative strength of the autoregressive relationship in Scenarigicular method used to sample and compute the distribu-
A reflected in its lower number of training epochs. Similarly, tions (Pappenberger et al., 2008), and strong temporal de-
the relative simplicity of the ANN configurations comprising pendence in NNRF inputs makes the determination of an
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Table 3. Calibration performance of candidate models for Scenario Table 4. Validation performance of candidate models for Scenario

A. Best performing ANN models for each metric are in italic. A. Best performing ANN models for each metric are in italic.
Hidden Units ~RMSErms 1 MSRE R-squared Hidden Units ~ RMSErms 1 MSRE R-squared
2 27.19 0.0934 0.7977 2 26.25 0.0825 0.8034
3 27.10 0.0900 0.7992 3 26.26  0.0809 0.8035
4 27.07 0.0875  0.7998 4 26.28 0.0794 0.8034
5 27.21 0.0833  0.7987 5 26.32 0.0752 0.8042
MLR benchmark 27.61 0.1969 0.7909 MLR benchmark 21.69 0.1151 0.8657

appropriate sampling strategy problematic. In addition, thea general, dimensionless measure of model fit that indicates
summary, lumped indices output by global and regional techthe proportion of overall variance in our data that is explained
niques mask the detailed, local patterns of input—output senby each candidate model. RMSE is included because it is a
sitivity that must be understood in order to fully characterisemetric that is disproportionately influenced by the extent to
a model’'s mechanistic behaviour. which each candidate model forecasts high-magnitude dis-
One solution for overcoming these difficulties is to adopt charges. In contrast, the relative metric mean squared rela-
a brute-force approach in which relative first-order partial tive error (MSRE) is included because its scores emphasise
derivatives for all model inputs are computed separately forthe extent to which low-magnitude discharges are correctly
every data point in a given time series, using the specific in-forecast by the candidates. The reported scores were com-
put values recorded at each point as a datum-specific bageuted using HydroTestww.hydrotest.org.uk an open ac-
case. In this way, a “global-local” parameter sensitivity anal-cess website that performs the required calculations in a stan-
ysis is developed in which local-scale input sensitivity analy- dardised manner (Dawson et al., 2007, 2010). The formula
sis is performed across the global set of available data pointdor each metric used can be found in Dawson et al. (2007).
Issues associated with temporal dependence in river forecast- The metric scores highlight almost identical levels of per-
ing data are overcome because every datum in the analyformance across the candidates, irrespective of the metric
sis effectively becomes its own, specific base case. NNRRgainst which fit is assessed, or whether the fit is assessed
mechanisms can then be characterised and interpreted acrosdative to the calibration or validation data. Metric scores
the full forecast range by plotting the relative sensitivity of for the validation data are slightly better than those for the
each input ¢ axis) against the forecast values delivered by calibration data in all metrics, with the greatest differences
the model £ axis), and interpreting the patterns that can beobserved in RMSE scores. This reflects the fact that the three
observed in the plots (Fig. 4). highest magnitude floods are within the calibration data and,
in common with most other autoregressive river forecasting
models, there is a general underestimation of flood peaks.
4 Scenario A: performance, mechanistic interpretation  These two aspects combine to produce the observed improve-

and model choice ment in RMSE in the validation data. Importantly, the MLR
) ] benchmark performs well, with RMSE and R-squared scores
4.1 Candidate model fit that are comparable with the NNRF candidates for the cal-

N N .. ibration data and better for the validation data. This serves
The calibration and validation performance of each candidatg yigpjight the slight characteristic differences between the
NNRF, driven by autoregressive inputs, are presented in Tagqjibration and validation data and the tendency of an ANN
bles 3 and 4. A wide range of metrics has been proposed fog,| i, 1 optimise its fit to the calibration dataset. This ten-
assessing hydrologlc_al model performance, (Dawson ?t ,al'dency is avoided in simple MLR models due to the constraint
2007,_2010), along with a range of mechanisms for their in- ¢ 4+« o del form which can lead to a higher level of gen-
tegration (e.g. Dawson et al.,, 2012). Nonetheless, CONSENSYS5lisation capability. As a result, the MLR performs better

has St'" to be achlev?d on the metrics that should be US_Ed ""han the ANN solution when evaluated against the validation
assessing NNRF performance. Here we restrict our metrics tﬁata, despite its poorer relative performance in calibration.

three simple and widely used examples that cover key aspecis 5 s serves to reinforce the argument that many simple au-

of mrc])de_l fit Th|s| rest_rlcugnl_ls jUScthfL)ed (r)]n the basis thgt the o regressive river forecasting tasks are of a near-linear nature.
mechanistic exploration delivered by the DDMMF re uces Despite there being no clear winner on the basis of metrics

the overall reliance on metric-based assessment and the img . 1o 5_hidden-unit model does achieve the best NNRE
portance of arguments that surround the subtleties of metéandiaate metric scores in three out of six cases

ric choice in model assessment. Pearson’s product—-moment
correlation coefficient, squared (R squared), is included as
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Fig. 10.Global-local relative sensitivity plots for all candidate mod- Fig. 11.Global-local relative sensitivity plots for all candidate mod-
els in Scenario A: calibration data. els in Scenario A: cross-validation data.

4.2 Candidate model mechanisms formance metrics further support this view, with the coeffi-
cients for $_» and S_3 being substantially smaller than for
For each of the four candidate solutions, relative first-orderS—1, and the good metric scores for the calibration and val-
partial derivatives were computed according to the global-idation data (Table 4) highlighting the near-linear nature of
local approach outlined in Sect. 3.3. Equation (3) was usedhe modelling problem. Nonetheless, moderate instability in
to compute local first-order partial derivatives for the entire the relative sensitivity of all candidate models ta Sis evi-
record (i.e. all 10350 data points). Valueswf, w;o, and  dent, with a consistent pattern that approximates a third order
h; were determined for each forecast, according to its spepolynomial. This indicates some non-linearity in the mod-
cific input value set at each point. These values are sepaglling mechanism associated with_%, although this non-
rated into their respective calibration/cross-validation parti-linearity results in little, if any, performance gain over the
tions and plotted against their respective forecasted dischargéLR benchmark.
values in Figs. 10 and 11. One characteristic by which the candidate modelling
Figures 10 and 11 highlight the fact that, mechanistically, mechanisms can be more clearly discerned from one another
all four candidate models behave in very similar ways andis their coherency, with different candidates displaying vary-
this behaviour is consistent across the calibration and valing degrees of scatter in their relative sensitivity plots. Of
idation data partitions. The similarity of relative sensitivity particular note is a moderate reduction in the coherency of
patterns in the calibration and validation data subsets is tdhe relative sensitivity plots for,S; and $_» as the num-
be expected given the large data record being modelled anller of hidden units in the candidate models increases; with
the similarity of each subset’s hydrological characteristics ajower coherency indicating an internal modelling mechanism
demonstrated in Fig. 7. In all cases, the relative sensitivity ofthat is increasingly data point specific (i.e. is tending towards
the model forecast to variation in.§ is substantially greater ~ overfitting the data). As,S1 is the main driver of the forecast
than to either 8 ; or S_3; indicating its primary importance  discharge across all candidates, high coherency in the relative
as the driver of model forecasts. This result is entirely in line sensitivity of the model to this input is desirable; suggesting
with expectations of a simple autoregressive model. Indeedthat the highest level of mechanistic legitimacy can be argued
the overriding importance of,S; is further highlighted by  for the 2-hidden-unit candidate model.
the opposing directionality in the generally low-magnitude,
relative sensitivities associated with-g3and $_3. Thispat- 4.3 Model selection
tern indicates the existence of internal ANN mechanisms that
largely cancel out the influence of these variables, result-The simplistic, near-linear forecasting challenge presented
ing in a modelling mechanism with redundant complexity. by this scenario has, unsurprisingly, resulted in similarity
This mechanism can be observed, to varying extents, in alacross the candidate models, in terms of both their perfor-
candidate models, suggesting a mismatch between the scopeance and internal mechanisms. Indeed, the lack of clear
of the modelling problem and the complexity of technique differentiation between each candidate model’'s metric score
by which it has been solved. The MLR equation and per-performance would suggest that any of the candidates might
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Table 5. Calibration performance of candidate models for Scenario Table 6. Validation performance of candidate models for Scenario

B. Best performing ANN models for each metric are in italic. B. Best performing ANN models for each metric are in italic.
Hidden Units ~ RMSErms 1 MSRE R squared Hidden Units ~RMSErs 1 MSRE R squared

2 22.32 0.0694 0.8665 2 21.94 0.0653 0.8697

3 22.04 0.0841 0.8674 3 21.63 0.0599 0.8708

4 21.85 0.0718 0.8710 4 21.62 0.0567 0.8712

5 21.83 0.0732 0.8710 5 21.58 0.0564 0.8714
MLR benchmark 23.10 0.2151 0.8537 MLR benchmark 23.62 0.1043 0.8513

be reasonably chosen. However, the selection of the mogtoted that, in this scenario, the performance of all NNRF can-
parsimonious model is usually preferable (Dawson et al.didates exceed that of the MLR benchmark; highlighting the
2006), especially for simple modelling problems. Therefore,importance of non-linearity associated with river forecasting
in the absence of conclusive metrics-based evidence, seledased on upstream inputs.

tion of the 2-hidden-unit NNRF could be argued as the most _ )

appropriate. Examination of the internal mechanisms add$-2 Candidate model mechanisms

additional evidence to support this choice. Although there is

little evidence by which the candidates can be distinguisheaG Ic_)bal_—local r_e_lative sensitivity plots f_or the calib_ration and
with respect to mechanistic stability or consistency, the 2_valldatlon partitions of each upstream input used in each can-

hidden-unit model displays a greater degree of coherenc idate model are prgsented n Figs. 1_2_a_nd 13. O”C‘? again,
in its key driver (S_1) than its counterparts. This delivers he resultant similarity of relative sensitivity patterns in the

additional, mechanistic support for its preferential selection.C"j‘“bratlon and validation data subsets is to be expected given

However, the high degree of redundancy observed in all canEhe large data record being modelled and the similarity of

didate model mechanisms raises important questions aboﬁtaCh subset’s hydrological characteristics as demonstrated

the appropriateness of using a NNRF for such a simple mod." Fig. 7. W1 is the strongest driver of,Sparticularly at

elling task at all, and about the number of inputs included.IOW forecast ranges, with moderate sensitivity tg SBalso

Indeed, the mechanistic evidence corresponds with previ-be'ng evident. A clear mechanistic distinction between the

ous criticisms (e.g. Mount and Abrahart, 2011a), which ar-2- and 3-hidden-unit candidates and their 4- and 5-hidden-
gue that, in most cases, standard MLR-based methods Ca{l}inlt counterparts can be observed based on the coherency of

offer a more appropriate means for simple step-ahead rivet <" mechanisms. The 4- and 5-hidden-unit candidates dis-
forecasting tasks. play low coherency, particularly at moderate to high forecast

ranges, and this is particularly evident for inputs_Cand
W, _1. This suggests that modelling mechanisms in the more

5 Scenario B: performance, mechanistic interpretation ~ complex candidates may be overfitting the upper-range data;

and model choice atendency that is well known when ANN-based hydrological
models are used to fit heteroscedastic data (Mount and Abra-
5.1 Candidate model fit hart, 2011b). The importance of avoiding overfitting in ANN

models is well known (Guistolisi and Lauocelli, 2005), and
Calibration and validation performance for the four candi- the lack of coherency in the 4- and 5-hidden-unit candidates
date NNRFs, driven by upstream inputs, are presented in Tathus raises concerns over their mechanistic legitimacy.
bles 5 and 6. The metric scores for Scenario B provide lim- Low sensitivity to variation in the discharge at_G is
ited evidence by which to discern the relative validity of the a particular feature of the 2- and 3-hidden-unit candidates.
candidate models, with all candidates again returning simi-This pattern parallels the MLR coefficients (Eq. 5) that high-
lar metric statistics. However, in contrast to Scenario A, onelight SB,_; as the strongest model driver in the regression
candidate model consistently achieved the best result. The Snodel. However, it contrasts with the proportional contribu-
hidden-unit NNRF produced the best metric scores for twotion that each lagged, upstream discharge makes to overall
of the three calibration metrics, and for all validation met- discharge at S(Fig. 9). Indeed, the significant proportional
rics. On this basis, its preferential selection could be arguedgontribution made by C 1 is minimised by the candidates
and this selection would be in line with previously published — a factor that highlights the signal-based, rather than physi-
data-driven modelling studies in which candidate model pref-cally based nature of their modelling mechanisms. Reduction
erence has been determined on the basis of consistent, bestthe relative sensitivity to SB1 and W_; as the forecast
fit metric scores that represent relatively small overall per-range increases is evident in both the 2- and 3-hidden-unit
formance gains (Kisi and Cigizoglu, 2007). It should also becandidates, and highlights the presence of non-linearity in
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Fig. 12.Global-local relative sensitivity plots for all candidate mod- Fig. 13.Global-local relative sensitivity plots for all candidate mod-
els in Scenario B: calibration data. els in Scenario B: cross-validation data.

coherent and less complex NNRF counterparts. Taking into
account both fit metric scores and the legitimacy of inter-
nal mechanisms, the 2-hidden-unit candidate offers the best
overall modelling solution. It combines high coherency and
an appropriate degree of stability in its modelling mecha-
nisms, with fit metric scores that are only fractionally lower
rthan the best performing 5-hidden-unit candidate.

the modelling mechanism. The high degree of stability in
these plots is indicative of relatively low-complexity in the
non-linearity mechanism.

In differentiating the mechanistic legitimacy of these two
candidates, however, the relative sensitivity plots fer,C
and SB_; are of particular interest. The increase from 2- to
3-hidden-units is accompanied by a moderate reduction i
the coherency of the relative sensitivity to SB at medium
forecast ranges, and the existence of some negative valueg. symmary
To some extent, these negative sensitivity values are counter-
acted by slightly higher positive sensitivity ta.G at sim-  The example analysis presented in this paper demonstrates
ilar forecast ranges. Nonetheless, in the context of an upthat fit metric scores alone are an insufficient basis by which
stream river forecasting model, it is difficult to justify a mod- to assess and discriminate between different NNRFs. The
elling mechanism that acts to reduce downstream discharghigh degree of equifinality in metric scores for our candi-
forecasts as discharge increases upstream. Consequently, tigte models masks important differences in their complexity,
legitimacy of the 3-hidden-unit candidate is difficult to ar- mechanistic behaviour and legitimacy, which is only exposed
gue. Indeed, the 2-hidden-unit candidate appears to have thghen internal modelling mechanisms are explored. The im-
greatest mechanistic legitimacy of the candidates, combinportance of a mechanistic evaluation is particularly evident
ing high coherency and appropriate stability in its relative for Scenario B, where small improvements in metrics are as-
sensitivity to inputs, albeit with the predictive power gf@€  sociated with a substantial reduction in mechanistic legiti-
minimised to near-zero. macy. Thus, the study responds to the issue of whether the
end point of a model (i.e. its fit) is a sufficient basis by which
to justify its means (i.e. the numerical basis by which the fit
is achieved).

Scenario B represents a situation in which the fit metrics as- This question remains a vital one for all hydrological mod-
sociated with different candidate models provide only lim- ellers, but is particularly pertinent to data-driven modellers.
ited evidence to inform model selection. On the basis of fitTo a large extent, the scope and objectives of a hydrological
metrics alone, the 5-hidden-unit model appears to offer themodel will determine the relative emphasis that should be
best modelling solution as it consistently has the best scoreglaced on its mechanistic and performance validation (Jake-
However, the actual performance gains are small, questionman et al., 2006). However, if these are to exceed basic data-
ing whether a simpler model with only marginally lower per- specific curve-fitting tasks, some assessment of the mech-
formance might actually be preferable. Indeed, examinatioranistic legitimacy of the model is required. Indeed, if the
of the 5-hidden-unit candidate’s internal mechanism revealglemonstration of a data-driven model's mechanistic legiti-
low coherency that is very difficult to legitimise over its more macy can be established it should be possible to argue its

5.3 Model selection
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Table 7.Example approaches to exploring and justifying ANN-based hydrological models.

ANN Scope of Example Purpose
Component  Exploration Approaches

Inputs Structural Input sensitivity/saliency analysis (e.g. Maier eOptimises the input selection to ensure that only
and Partial al., 1998; Abrahart et al., 2001; Sudheer, 2005); strong combinations of drivers are used.
Partial mutual information (e.g. May et al., 2008);
Leave-one-out analysis (e.g. Marti et al., 2011);
Gamma function analysis (Ahmadi et al., 2009).

Weights Structural Exploration and regularisation of weights (e.gOptimises network structure and may provide a
and Nodes and Partial Olden and Jackson, 2002; Anctil et al., 2004pasis for its physical interpretation. Inputs may
Kingston et al., 2003, 2005, 2006); sometimes be used as a control on the weights.

Weight optimisation and reduction (e.g. Abrahart
etal., 1999; Kingston et al., 2008).

Node Behavioural ~ Behavioural interpretation of hidden nodes (WilbyPartitions the of the input—output relationships ac-
Partitions and Partial et al., 2003; Jain et al., 2004; Sudheer and Jaioprding to the manner in which they are processed
2004; See et al., 2008; Ferando and Shamseldioy the different nodes present in the model struc-
2009; Jain and Kumar, 2009). ture. Can support useful physical interpretation.
Network Behavioural  Partial derivative sensitivity analysis (HashemElucidates the mechanistic behaviours of the
Response and Holistic ~ 1992*; Yeung, 2010*; Nourani and Fard, 2012). model. Enables legitimacy of the response func-
Function tion to be determined and, potentially supports

physical legitimisation.

Note: * Citations that are not hydrologic examples.

value as a transferrable agent that can support new hydrologsf a model (i.e. the inputs, weights and units) and substan-
ical insights as well as a numerical tool for gaining enhancedtial progress has been made in better understanding the logic
prediction. and physical plausibility of different ANN structures. How-
The current situation in data-driven modelling contrastsever, rather than having the objective of exploring the overall
with the advances made by physical and conceptual modmechanistic behaviour of each ANN, the objective has of-
ellers, which centre on the development of new model evalten been to optimise its structure. Only very limited research
uation methods and incorporate mechanistic insights intceffort has been directed towards developing methods for the
model behaviour and uncertainty (e.g. Beven and Binley,legitimisation of a model’s internal behaviour. This is despite
1992). As a result, data-driven modelling in general, andrecognition that the lack of availability of such methods has
ANN modelling in particular, has often been viewed as abeen a fundamental constraint to progress in the field over
niche area of hydrological research that has had only limitedhe last 20yr (Abrahart el al., 2012a). By adapting a par-
success in convincing the wider hydrological research comdial derivative sensitivity analysis method as the means by
munity of its potential value beyond optimised curve fitting which this is achieved, we here parallel existing approaches
tasks. The DDMMF we have developed provides method-for mechanistic model exploration that are long standing
ological direction that has been absent from many dataand well established within wider hydrology (c.f. McCuen,
driven modelling studies in hydrology. The inclusion of a re- 1973). In so doing we increase the alignment between ANN
quirement for the elucidation and assessment of modellingnodel development methodologies and those applied during
mechanisms within the model development process ensurebie development of their conceptual and physical counter-
that the validation of any data-driven model makes explicitparts: an outcome that should lead to their wider acceptance.
both its performance, and the legitimacy of the means by The input scenarios that we have used to exemplify the
which it is achieved. This aligns it more closely with the de- DDMMF in this paper are more simplistic than those used
velopment and evaluation processes used by conceptual and many NNRFs that include an additional array of hydro-
physically based modellers and opens up the possibility ofmeteorological inputs with varying degrees of temporal de-
developing data-driven models that are dual agents of prependence (c.f. Zealand et al., 1999; Dibike and Soloma-
diction and knowledge creation (c.f. Caswell, 1976). tine, 2001). Similarly, the application of a standard, back-
Our work builds upon more than two decades of ANN- propagation algorithm is not fully representative of the wide
based hydrological modelling in which significant efforts range of ANN variants that have been explored in NNRF
have been directed towards the goal of developing more acstudies (c.f. Hu et al.,, 2001; Shamseldin and O’Connor,
ceptable and justifiable solutions (Table 7). Published explo2001). Consequently, the relative ease with which we have
rations have focussed on individual structural componentdeen able to quantify and interpret input relative sensitivity in
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this study may not be mirrored in more complex studies thatvelopment (e.g. McCuen, 1973). To an extent, this contrasts
use an increased number and diversity of inputs, ANN vari-with current advances in hydrological modelling that use sen-
ants or other forms of DDMs. Thus, developing techniquessitivity analyses as a means of examining the causes and im-
that can deliver clear mechanistic interpretation of input rel-pacts of uncertainty in the outputs of existing models (e.qg.
ative sensitivity patterns in more challenging modelling sce-Pappenberger et al., 2008). Nonetheless, it serves as a use-
narios represents an important consideration for future reful reminder of its importance as an established means for
search efforts. Nonetheless, the results we present serve &gitimising a hydrological model.

a clear demonstration of the dangers associated with evalu-

ating ANN models on the basis of performance validation

approaches alone. Indeed, in our examples we are able tﬁcl_mowledge_mentSNe are_grgteful to two reviewers and the
show that, in order to achieve moderate performance gainé,zd'tor for_ thelr hel_pful and |_n§|ghtful comments which have been
the mechanistic legitimacy of the candidate NNRFs may be’2uable in improving our original manuscript.

substantially reduced. This finding is particularly clear in
Scenario B. It also has important implications for previous
river forecasting studies that have concluded that NNRFs of-

fer benefits over other established techniques based on limReferences
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