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a b s t r a c t

Large scale studies of spiking neural networks are a key part of modern approaches to understanding the
dynamics of biological neural tissue. One approach in computational neuroscience has been to consider
the detailed electrophysiological properties of neurons and build vast computational compartmental
models. An alternative has been to develop minimal models of spiking neurons with a reduction in the
dimensionality of both parameter and variable space that facilitates more effective simulation studies.
In this latter case the single neuron model of choice is often a variant of the classic integrate-and-fire
model, which is described by a nonsmooth dynamical system. In this paper we review some of the more
popular spiking models of this class and describe the types of spiking pattern that they can generate
(ranging from tonic to burst firing). We show that a number of techniques originally developed for the
study of impact oscillators are directly relevant to their analysis, particularly those for treating grazing
bifurcations. Importantly we highlight one particular single neuronmodel, capable of generating realistic
spike trains, that is both computationally cheap and analytically tractable. This is a planar nonlinear
integrate-and-firemodelwith a piecewise linear vector field and a state dependent reset upon spiking.We
call this the PWL-IF model and analyse it at both the single neuron and network level. The techniques and
terminology of nonsmooth dynamical systems are used to flesh out the bifurcation structure of the single
neuron model, as well as to develop the notion of Lyapunov exponents. We also show how to construct
the phase response curve for this system, emphasising that techniques inmathematical neurosciencemay
also translate back to the field of nonsmooth dynamical systems. The stability of periodic spiking orbits is
assessed using a linear stability analysis of spiking times. At the network level we consider linear coupling
between voltage variables, as would occur in neurobiological networks with gap-junction coupling, and
show how to analyse the properties (existence and stability) of both the asynchronous and synchronous
states. In the former case we use a phase-density technique that is valid for any large system of globally
coupled limit cycle oscillators, whilst in the latter we develop a novel technique that can handle the
nonsmooth reset of the model upon spiking. Finally we discuss other aspects of neuroscience modelling
that may benefit from further translation of ideas from the growing body of knowledge on nonsmooth
dynamics.

© 2011 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Spiking neurons are at the heart ofmany computationalmodels
of the brain that aim to improve our understanding of brain
function and dysfunction. The Blue Brain Project [1] is a case in
point. This has utilised IBM’s Blue Gene parallel supercomputer
to attempt the construction of a biologically accurate model of
neural tissue from first principles. At present initial simulations of
∼104 biophysically detailed neurons have been performed, setting
the scale of the tissue at roughly one neocortical column. Given
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that a whole human brain contains 1010 neurons there has been
a push in the computational neuroscience community to develop
complimentary models that are reduced in their complexity yet
still able to generate the rich repertoire of behaviour seen in a
real nervous system. Perhaps the most famous example of such a
model is the FitzHugh–Nagumomodel [2], comprising two coupled
ordinary differential equations for the generation of continuous
action potential like shapes of spiking voltage activity. In this
case analytical progress has also been possible with one further
step, namely, the introduction of piecewise linear (PWL) nullclines.
This gives rise to the so-called McKean model [3], for which a
number of results about the existence and stability of periodic
orbits are now known [4–6]. Indeed there are now a number of
planar PWL single neuron models for mimicking the behaviour of
tonically firing neurons, and we refer the reader to [7] for a recent
discussion. Moreover, the PWL nature of such models means that
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techniques from nonsmooth dynamics are particularly relevant
to their analysis, and indeed recent progress on understanding
canard explosions has been made by studying PWL models of
FitzHugh–Nagumo type [8]. However, the spiking patterns of such
planar models are typically not as diverse as one needs to mimic
realistic firing patterns, such as bursting.

The currently most successful class of minimal models that
satisfy the criterion of being able to generate realistic firing
patterns are those of the integrate-and-fire (IF) type, where a
simple threshold unit is used to caricature the excitable aspect
of real cells that gives rise to an action potential spike. In
these models the spike shape is discontinuous. Recent work by
Izhikevich has developed a large-scale thalamo-cortical model
with ∼106 neurons using a phenomenological two dimensional
nonlinear IF model [9]. One key aspect of any IF model is
the discontinuous reset of a state variable upon reaching some
threshold for spiking. It is this particular harsh nonlinearity in the
dynamics that endows these models with interesting dynamics
and precludes their description using the machinery of smooth
dynamical systems. Indeed they have much in common with
models of impacting systems that have been developed for the
study of mechanical structures such as rocking blocks [10], rattling
gear boxes [11] and print hammers [12]. For a discussion of
impacting systems in generalwe refer the reader to the recent book
by di Bernardo et al. [13]. Thus it is timely to revisit the dynamics
of IF models using the techniques developed for the study of more
general nonsmooth systems, such as those reviewed in [14], and
develop themathematical insight into network behaviour that can
complement simulation studies that are being performed in the
computational neuroscience community.

In Section 2 we provide a review of some of the more popular
models of IF type that are currently being used as models of
spiking neurons. To illustrate that nonsmooth bifurcations play
a fundamental role in the description of their behaviour we
present an analysis of the periodically forced leaky IF model in
Section 3. Here we show that grazing bifurcations are especially
important in determining the Arnol’d tongue diagram for mode-
locked responses, and note the relevance of this tomodelling spike
trains in the sensory periphery. For modelling the spike trains
in deeper brain regions, such as the cortex, we introduce a new
class of IF model in Section 4. This model is able to reproduce
a range of spiking patterns, from tonic to burst firing, yet is
analytically tractable. In essence the model below the threshold
for firing evolves according to a planar PWL dynamical system.We
present an original bifurcation analysis of this model in response
to constant current injection focusing on local discontinuity
induced bifurcations. Next in Section 5 we show how to construct
periodic orbits and determine their stability as well as calculate
the phase response curve (by adapting techniques originally
developed for the analysis of limit cycles in smooth dynamical
systems). In Section 6 spike-adding bifurcations (for bursting
orbits) are described in terms of bifurcations of an associated one-
dimensional return map. The notion of Lyapunov exponents is
developed in Section 7, using techniques originally developed for
the analysis of impact oscillators. Next in Section 8 we turn to the
construction and analysis of neural networks. We focus on gap-
junction coupling, where the natural way to describe electrically
interacting cells is via an ohmic resistance, which translates into a
linear coupling between voltage state variables. For large globally
coupled networks we show how to determine the properties of
the synchronous and asynchronous states (existence and stability).
Finally we end with a discussion of future challenges in the
understanding of neurodynamical systems that are likely to benefit
from further cross-over of ideas from nonsmooth dynamical
systems.
2. A review of integrate-and-fire models

Although conductance-based models like that of Hodgkin and
Huxley [15] provide a level of detail that helps us to understand
how neural cells generate action-potential electrical spikes, their
high dimensionality (four for Hodgkin–Huxley though rising to
hundreds for compartmental models that express realistic ionic
currents) precludes them from detailed study, especially at the
network level. Thus simpler models are more appealing, especially
if they can be fitted to single neuron data. It is now known that
nonlinear extensions of the basic leaky IF model can accurately fit
intracellular voltage recordings [16]. A one-dimensional nonlinear
IF model takes the form

dv
dt

= f (v) + I(t), (1)

such that v is reset to vR just after reaching the threshold value
vth > vR. Here v is interpreted as a voltage variable and
I(t) is an external drive (that might be under the control of an
experimentalist or arise from the activity of other neurons towhich
a cell is coupled). Firing times are defined iteratively according to

Tn = inf{t|v(t) ≥ vth; t ≥ Tn−1}. (2)

One-dimensional IF models with a fixed voltage threshold are
caricatures of excitable neural systems and as such it is worth
mentioning that they cannot adequately capture the refractory
properties of real neurons. This is often achieved with the
introduction of an absolute time during which they cannot fire
after reaching the threshold or by the introduction of a time
dependent threshold that increases after a firing event and makes
it harder for the neuron to subsequently fire (mimicking a
relative refractory period), as reviewed in [17]. Moreover, real
neurons (andHodgkin–Huxley stylemodels) do not possess a fixed
voltage threshold, and firing ultimately depends on the state of
receptors within a membrane. Although differential equations for
the threshold in IF models can be found that mimic more closely
the properties of real neurons [18], we limit our discussion in this
paper to models with a constant threshold.

2.1. Leaky IF model

The leaky IF model (LIF) is attributed to Lapicque in 1907,
although the phrase ‘‘integrate-and-fire’’ was first coined by Bruce
Knight in the 1960s [19]. It is defined by (1) and (2) with the choice

f (v) = −
v

τ
, τ > 0. (3)

Because of its linear nature we may solve the sub-threshold
dynamics of themodel exactly for v < vth with initial data v(t0) <
vth at time t = t0 (using an integrating factor, variation of constants
or Green’s function):

v(t) = v(t0)e−(t−t0)/τ +

 t

t0
e−(t−s)/τ I(s)ds. (4)

For a periodic input the system may well respond periodically
though without reaching the threshold. This is commonly referred
to as a sub-threshold oscillation and is to be distinguished from
the case when oscillations arise via the reset mechanism. Consider
in particular the case of a constant drive, where the threshold
can only be reached from v(t0) if Iτ > vth. The threshold will
subsequently be reached from vR and a periodic oscillation will
occur. The period of oscillation ∆ = Tn+1 − Tn is determined by
setting v(Tn+1) = vth with v(Tn) = vR, giving

∆ = τ ln


Iτ − vR

Iτ − vth


H(Iτ − vth), (5)
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Fig. 1. Voltage trace for an LIF oscillator with constant drive I = 2 with τ =

1, vth = 1 and vR = 0.

where H is the Heaviside step function. The inclusion of the
Heaviside term reflects the fact that oscillations do not occur for
Iτ < vth. Electrophysiologists often classify neuron response in
terms of the so-called f − I curve, which shows the frequency of
oscillation as a function of the time independent drive I . For the LIF
model this is easily constructed from (5) using f = ∆−1, showing a
sharp rise in f (from zero) as I increases through the critical value
vth/τ . A plot of the response of the LIF model to constant drive I
is shown in Fig. 1. Here one sees that the model does not capture
the essential shape of a real action potential. Rather the IF model is
deemed to be good at capturing the time of generation of an action
potential. Since many models of synaptic (chemical) interaction
are based on spike-times, rather than spike shapes, this favours
the IF model in large scale simulations of synaptically coupled
neurons. The tractability of this single neuron model (linear
dynamics between firing events) means that it is particularly
suited to analysis at the network level with event based models
of chemical synapses. Indeed a theory of phase-locked behaviour
for strong coupling has been developed for just this scenario [20].
However, gap junction (linear) coupling between neurons means
that the action potential shape is communicated from one neuron
to another and so LIF models are (without modification) poor
candidates for use in this case.

2.2. Nonlinear IF models

The quadratic IF (QIF) neuron is the simplest generalisation of
the LIF model that captures qualitatively the behaviour of the f − I
curve of a large family of more realistic models [21]. Interestingly,
this model was apparently already known to Alan Hodgkin, and
used to fit some of his data (and also subsequently analysed by
Bruce Knight). Up to shifts and constant factors it is defined by

f (v) = v2. (6)

Unlike the LIF model the QIF does allow a representation of an
action potential shape (for I > 0 the voltage rises sharply to
threshold), as shown in Fig. 2. For I < 0 there are two equilibria
(one stable and the other unstable) and for I > 0 these disappear
via a saddle–node bifurcation at I = 0. In the oscillatory regime
(I > 0) the trajectory (for constant drive) can be integrated for
Tn < t < Tn+1 to give

v(t) =
√
I tan


tan−1


vR
√
I


+

√
I(t − Tn)


. (7)

The period of oscillation is calculated by setting v(Tn+1) = vth with
v(Tn) = vR giving

∆ =
1

√
I


tan−1


vth
√
I


− tan−1


vR
√
I


H(I).

In the limit vth → ∞ and vR → −∞ we see that ∆ = π/
√
I

(and we have blowup of the voltage trajectory in finite time),
and the f − I curve shows a

√
I dependence, which matches

many cortical neurons much better than the LIF f − I curve. For
a further discussion of this model we refer the reader to the book
by Izhikevich [22].
Fig. 2. Voltage trace for the QIF oscillator with constant drive I = 1 with vth = 10
and vR = −1.
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Fig. 3. Sample voltage traces (mV) as a function of time (s) from the linear-
exponential IF model (green dashed line) and data (red solid line) from a layer-
5 pyramidal cell in response to a noisy current injection (constructed from
two summed Ornstein–Uhlenbeck processes, see [16] for further details). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

With the improvement in neuronalmodelling by simply chang-
ing the shape of the nonlinearity from (3) to (6) this raises the
question as to whether more judicious choices can improve things
further still. Interestingly Fourcaud–Trocmé et al. [23] have shown
that choosing f (v) = exp(v) (up to shifts and scaling) can act as
an approximation of a more detailed conductance-based spiking
model. In fact it has now been shown that real cortical data (from
layer-5 pyramidal cells) can be very accurately fitted with the fol-
lowing choice [16]:

f (v) = −
1
τ

(v − vL) +
κ

τ
e(v−vκ )/κ , (8)

with vth = 30.0, vR = −71.2, vL = −68.5, τ = 3.3, vκ = −61.5
and κ = 4. Fig. 3 nicely illustrates the strong fit of themodel to real
data for a stimulation protocol which is a noisy current injection.
Similarly to the QIF model the linear-exponential IF (LEIF) model
obtained using (8) has two equilibria (defined by f (v) + I = 0)
which disappear in a saddle–node bifurcation when I = −f (v∗),
where v∗ is defined by f ′(v∗) = 0. In common with the QIF model
it is able to support oscillations with arbitrarily low frequency just
beyond the bifurcation point. Both the QIF and LEIF models have
only aweakdependence on the choice of threshold value since they
both blow up in finite time (in the absence of a threshold).

2.3. Planar IF models

Unfortunately, one dimensional nonlinear IF models, as they
stand, are unable to reproduce bursting patterns of activity, which
are typically associated with slow calcium dependent processes.
One way to incorporate such a slow process is by coupling the
voltage dynamics to a recovery or adaptive process in the following
manner:

dv
dt

= f (v) − a + I,
1
ω

da
dt

= βv − a. (9)

Here the parameters β andω, respectively, describe the sensitivity
and decay rate of the adaptive process. Upon reaching the
threshold the voltage is reset (v → vR) and a is adjusted according
to a → a+ k. The Izhikevich model [24,25] is one suchmodel with
f (v) = 0.04v2

+ 5v + 140. Interestingly this model can capture
a number of neuronal firing patterns including tonic (repetitive)
spiking, bursting and fast spiking as illustrated in Fig. 4, despite
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Fig. 4. Firing patterns in the Izhikevich model with I = 10 and vth = 30. Voltage
traces as a function of time for (i) tonic spiking (α = 0.02, β = 0.2, vR = −65, k =

8), (ii) tonic spiking (α = 0.02, β = 0.2, vR = −55, k = 4), (iii) bursting
(α = 0.02, β = 0.2, vR = −50, k = 2), and (iv) fast spiking (α = 0.1, β =

0.2, vR = −65, k = 2).

its sensitivity to the choice of threshold value [26]. It is worth
noting that a similarmodel to that of Izhikevichwas independently
introduced by Gröbler et al. [27] as a model of a pyramidal cell
in hippocampus CA3. The adaptive exponential integrate-and-fire
model is obtained using a linear-exponential term for f (v) (as in
Eq. (8)) [28,29], whilst the quartic model is obtained by choosing
f (v) = v4

+ 2ωv [30]. Both are able to produce a wide variety
of firing patterns, and the quartic model in particular has a very
nice repertoire of responses ranging from tonic spiking to bursting
as well supporting phasic responses, rebound, spike frequency
adaptation, sub-threshold oscillations andmuchmore, all of which
are discussed in detail in [30].

Apart from the LIF model none of the models described above
admits to closed form solutions for arbitrary (non-constant) drive.
A somewhat overlooked tractable (one dimensional) nonlinear IF
model is that of Karbowski and Kopell [31], with a nonlinearity
given by f (v) = |v|, which we shall call the absolute IF model
(AIF). Because of the choice of a PWL form of the nonlinearity
the AIF model can be explicitly analysed. Moreover, it is also
capable of generating behaviour consistent with that of a fast-
spiking interneuron [32]. The generalisation of the model to allow
for bursting behaviour is easily achieved by extending it to the
form of (9). A minimal AIF model with adaptation is obtained
for f (v) = |v| and β = 0. For sufficiently small k the model
fires tonically and for larger values of k the model can also fire
in a burst mode. The mechanism for this behavior in the AIF
model (and indeed all planar models discussed here) is most easily
understood in reference to the geometry of the phase-plane. We
illustrate, in Fig. 5, the phase plane for the AIF model, and refer the
reader to [32] for a more detailed discussion and analysis of this
model. The analysis of how parameter space partitions into tonic,
1-spike per burst, 2-spike per burst, etc. firing patterns is an open
mathematical (classification) challenge. It is worth noting that all
the planar models considered here have much in common and can
generate a very similar repertoire of firing behaviours, though the
AIF model does not have trajectories that blow up in finite time (in
the absence of a threshold).

3. Bifurcations of the periodically forced LIF neuron

Because all IF models include a threshold process spikes can
be created or annihilated as a voltage trajectory tangentially
Fig. 5. Top left: Tonic firing in the AIF model with spike adaptation. Here ω = 1/3
and k = 0.75ω. Top right: Burst firing in the AIF model with spike adaptation.
Here ω = 1/75 and k = 2ω. Bottom left: A periodic orbit in the (v, a) plane
corresponding to the tonic spiking trajectory shown above (green curve). Also
shown is the voltage nullcline (red lines) as well as the value of the reset (blue
dashed line). Bottom right: Burst firing in the AIFmodel with spike adaptation. Here
ω = 1/75, and k = 2ω. Other parameters are vR = 0.2, vth = 1 and I = 0.1. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

intersects the threshold. This is naturally the case when a time-
varying current injection (such as a periodically varying synaptic
current) is considered (and not just a constant drive). Thus it
becomes important not only to assess the stability of spike trains to
perturbations that leave the number of spikes unchanged (though
do modify firing times), but to address any instabilities that may
arise via nonsmooth grazing bifurcations. To show how this can be
done we present an analysis of the periodically forced LIF model,
though stress that the ideas we present here carry over to more
complicated IF models such as those reviewed in Section 2.

The phenomenon of mode-locking is well documented in the
literature on the periodic forcing of nonlinear oscillators. It is
most commonly studied in the context of the standard circle map
(see for example [33]). This map is known to support regions of
parameter space where the rotation number (average rotation per
map iterate) takes the value p/q, where p, q ∈ Z+. These regions
are referred to as p : q Arnol’d tongues. In a neural context mode-
locked solutions are simply identically recurring firing patterns for
which a neuron fires p spikes for every q cycles of forcing. With
an increase of the coupling amplitude from zero, Arnol’d tongues
in the standard circle map typically open as a wedge, centered
at points in parameter space where the natural frequency of the
oscillator is rational. In between tongues, quasi-periodic behaviour
emanating from irrational points on the amplitude/frequency axis,
is observed. The technique for calculating such tongues in IF
modelswas first developed byKeener et al. [34] and later expanded
upon in [35,36].

Consider a LIF neuron with threshold at vth = 1 and reset level
vR = 0 being driven by a ∆ periodic signal I(t) = I(t + ∆). An
implicit map of the firing times may be obtained by integrating
between reset and threshold according to Eq. (4). Introducing the
function

G(t) =

 0

−∞

es/τ I(t + s)ds, G(t) = G(t + ∆), (10)

gives

eTn+1/τ [G(Tn+1) − 1] = eTn/τG(Tn). (11)

Defining

F(t) = et/τ [G(t) − 1], (12)

we obtain an implicit map of the firing times in the form

F(Tn+1) = F(Tn) + eTn/τ . (13)
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A 1:1 mode-locked solution is defined by Tn = (n + φ)∆, with
φ ∈ [0, 1), giving a fixed point equation

G(φ∆) =
1

1 − e−∆/τ
. (14)

Stability is examined by considering perturbations of the form
Tn → Tn + δn, giving

δn+1 = κ(φ)δn, κ(φ) = e−∆/τ I(φ∆)

I(φ∆) − 1/τ
. (15)

Solutions are stable if |κ(φ)| < 1. The borders of the regionswhere
1:1 solutions become unstable are defined by κ(φ) = 1 (tangent
bifurcation) and κ(φ) = −1 (period doubling bifurcation).
However, solutions may also lose stability in a nonsmooth fashion
in two possible ways, which we shall refer to as type (a) and
type (b). In type (a) there is a tangential intersection of the
trajectory with the threshold value such that upon variation of the
bifurcation parameter the local maxima of the voltage trajectory
passes through threshold from above. This is defined by v̇ =

−v/τ + I = 0, so that I(Tn) = 1/τ or equivalently F ′(Tn) = 0. In
type (b) a sub-threshold local maxima increases through threshold
leading to the creation of a new firing event at some earlier time
than usual. This is defined by F(T ∗) = F(Tn)+eTn/τ and F ′(T ∗) = 0
with T ∗ < Tn+1 and Tn+1 is the solution to F(Tn+1) = F(Tn)+eTn/τ .

As an example consider the choice

I(t) = I0 +


+ϵ 0 ≤ t < ∆/2
−ϵ ∆/2 < t < ∆

. (16)

In this case the condition |κ(φ)| = 1 is independent of φ, since
I(φ) = I0 ± ϵ. A tangent bifurcation occurs when κ = 1:

± ϵ = −I0 +
1/τ

1 − e−∆/τ
. (17)

Anonsmoothbifurcation of type (b) is definedby the twoequations

τ(I + ϵ)(1 − e−∆(1/2−φ)/τ ) = 1 (18)

ve−φ∆/τ
+ τ(I + ϵ)(1 − e−φ∆/τ ) = 1, (19)

where 0 < φ < 1/2 and

v = e−∆/2τ
+ τ(I − ϵ)(1 − e−∆/2τ ). (20)

Between them the above two bifurcations define the 1:1 Arnol’d
tongue as shown in Fig. 6 (left) (period doubling and type (a)
bifurcations are not possible for the parameter values shown). The
construction of other tongues with more general values of p : q is
carried out in [35,36], and the resultant tongue structure calculated
for I(t) = I0 + ϵ sin 2π t is shown in Fig. 6 (right). Once again
the right hand borders of Arnol’d tongues are defined by type (b)
nonsmooth bifurcations (and all others by tangent bifurcations of
the firing map).

In a pair of recent papers [37,38] it has been shown that spike
data from stellate cells in the ventral cochlear nucleus are verywell
explained by a LIF model with threshold noise, and that Arnol’d
tongues are a practical way to understand the way in which single
cells in the auditory periphery encode periodic stimuli. Indeed,
responses of LIF models to chaotic forcing have also been shown to
be largely determined by grazing bifurcations [39]. The techniques
described above have also been applied to several variants of the
LIFmodel, including the IF-or-burst model [40], the ‘‘ghostburster’’
model [41] and the resonate-and-fire neuron model [42] as well
as to PWL neuron models [43]. Most recently an IF model with
a slow T-type calcium current has been studied and been shown
to support chaotic behaviour in response to periodic forcing [44].
Interestingly by determining the condition for a grazing bifurcation
it was shown that knowledge of unstable periodic orbits (existence
Fig. 6. Left: 1:1 Arnol’d tongue in the LIFmodel with I(t) a∆-periodic square wave
with amplitude I0 ± ϵ. Note that a type (b) nonsmooth bifurcation significantly
shapes the tongue structure. Here τ = 1 and ∆ = 2. Right: p : q Arnol’d tongues
in the LIF model with I(t) = I0 + ϵ sin 2π t . Here I0 = 2. Below the dashed line the
firing map is invertible.

and stability) could be combined with the grazing condition to
determine an effective one-dimensional map that captured the
essentials of the chaotic behavior. This map is discontinuous and
has strong similarities with the universal limit mapping in grazing
bifurcations derived in the context of impacting mechanical
systems [45]. This latter map was derived for grazing bifurcations
that occur in impacting mechanical oscillators and can support
period adding cascades with or without chaotic bands.

4. A piecewise linear IF model

The aspect of the LIF model that allows one to perform an
analysis such as the one above is obviously its linearity (below
threshold). A similar analysis for say the QIF, LEIF or Izhikevich
model would be much harder owing to the inherent nonlinear
nature of these models. However, the AIF model described in
Section 2 is a natural starting point for the development of a
more general PWL spiking neuron model that can be explicitly
analysed. The use of PWL modelling is already quite common in
neuroscience, with the McKean model [3] being a classic example.
This may be regarded as a variant of the FitzHugh–Nagumo
model [2] that provides a planarmodel of an excitable cell inwhich
the dynamics is broken into simpler linear pieces. An extension of
this approach to develop PWL caricatures of other single neuron
models, including the Morris–Lecar model, has recently been
pursued by Tonnelier and Gerstner [46] and Coombes [7].

In this sectionwe advocate a new type of PWL IFmodel, that we
shall call the PWL-IF model. It is a generalisation of the AIF model
with adaptation that we write in the form of (9) with

f (v) =


v v ≥ 0
−sv v < 0. (21)

For a constant drive I the model may exhibit a number of different
periodic attractors, and in particular we distinguish between those
that remain sub-threshold, and those that cross threshold, which
we shall term spiking solutions. We make further distinctions
between spiking solutions as follows.
Fast spiking orbits: Attracting limit cycles which have v > 0 along
the entire orbit and which have v(t∗) = vth at precisely one value
of t∗ ∈ [t, t + ∆] ∀t , where ∆ is the period of the limit cycle.
Regular (or tonic) spiking orbits: Attracting limit cycles which have
v < 0 for some segment of the orbit and which have v(t∗) = vth
at precisely one value of t∗ ∈ [t, t + ∆] ∀t , where ∆ is the period
of the limit cycle.
n-Spike bursting orbits: Attracting limit cycles which have v < 0 for
some segment of the orbit and which have v(t∗) = vth at precisely
n values of t∗ ∈ [t, t + ∆] ∀t , where ∆ is the period of the limit
cycle.
Sub-threshold oscillations: Attracting limit cycles which have v <
vth along the entire orbit.
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Fig. 7. Variation of the firing frequency under variation of the drive I for: Top:
β = 1.2, Bottom: β = 0.9. We can clearly see how the firing rate changes as
we move between solution types, and that the firing rate of the model during fast
spiking is much more sensitive to changes in I than in the regular spiking mode.

The fast spiking orbits are so called as they may have arbitrarily
fast frequency, whereas the frequency of regular spiking orbits
must be finite. With increasing I the model can make a transition
from regular to fast spiking. Contrary to the case for smooth
systems, periodic orbits in discontinuous systems need not enclose
a fixed point. In fact, the reset mechanism of the PWL-IF model
allows for periodic orbits of (9) in the absence of any fixed
points. For β < 1, the f − I curve (regular spiking) reaches a
maximum value before a bifurcation to fast spiking occurs. The
switch between the two modes for β > 1 may have a further
signature of doublet (2-spike burst) firing (whichwe shall consider
inmore detail below), and leads to a discontinuous f −I curve. Fig. 7
depicts the f − I curve for differing values of β under variation
of I . We can clearly see the transitions between the different
oscillatory regimes, particularly for β = 1.2, where we observe
discontinuities in the frequency response at a grazing bifurcation,
and at the onset and termination of doublet firing.

In order to characterise where in parameter space different
types of solution exist, it is useful to consider the different types
of bifurcation that can occur. The v-nullcline has a characteristic
‘V’ shape, whilst the a-nullcline is a straight line with slope β . By
inspection, we see that there may exist one, two or no fixed points
of (9) with f defined as in (21). There is a slight subtlety, in that the
nullclines may intercept where v > vth, generating a virtual fixed
point. From here on we refer to the branch of the v-nullcline with
v < 0 (v > 0) as the left (right) v-branch. Since the system is PWL
wemay easily construct the eigenvalues of fixedpoints,where they
exist, as

2λ± =


1 − ω ±


(1 − ω)2 − 4ω(β − 1), v > 0,

−s − ω ±


(s + ω)2 − 4ω(β + s), v < 0.

(22)

Thus fixed points on the left v-branch are always stable, and the
stability of fixed points on the right v-branch depends on the sign
of 1 − ω. The exact nature of the fixed points is determined by
the sign of the expression under the square root. Since β must be
less than 1 to have two fixed points, the fixed point on the right
v-branch is a saddle.

The sub-threshold dynamics are described by a continuous but
non-differentiable system, so that the Jacobian matrix (around
a fixed point) at the border separating linear subsystems is not
defined.We shall call this border the switchingmanifold, as crossing
it causes a discontinuous change in the Jacobian. Nonsmooth
bifurcations can occur as fixed points or limit cycles touch the
switching manifold under parameter variation. Importantly, the
presence of a firing threshold in IF systems means that other
nonsmooth bifurcations, and in particular grazing bifurcations as
discussed in Section 3, can arise.

The PWL-IF can generate periodic behaviour via a Hopf bifurca-
tion (HB) of a fixed point on the right v-branch when ω = 1 (with
β > 1) or through a discontinuous Hopf-like (dHB, black line in
Fig. 8) bifurcation at I = 0 (with ω < 1). We describe the sec-
ond of these as being discontinuous since the Jacobian around the
fixed point changes discontinuously. The emergent sub-threshold
limit cycle crosses through the switchingmanifold v = 0. Interest-
ingly, with a variation in I , the frequency of the limit cycle does not
change (and see [8] for a proof of this), whilst the amplitude grows
linearly with I . As the limit cycle grows it can tangentially touch
the firing threshold, causing a grazing bifurcation, whereupon sub-
threshold oscillations are replaced by regular spiking solutions. In
Fig. 8 we may observe both the dHB (black) and the grazing bifur-
cation (blue) in (I, β) parameter space.

Bistability can arise between a stable fixed point on the left
v-branch and a fast spiking orbit when β > 1 and I < 0. In
this parameter regime, there exists a saddle node on the right v-
branch, which is key in delineating the basins of attraction of the
two attractors. The basin of attraction of the stable fixed point is
the set of initial data such that trajectories reach threshold and are
subsequently reset to the right of the separatrix of the saddle on
the right v-branch. A homoclinic bifurcation (HC), indicated by the
blue curve in Fig. 8, will occur when the spiking limit cycle collides
with the saddle, resulting in a homoclinic orbit from the saddle at
the bifurcation point. Another form of bistability is also possible in
this parameter regime, namely when a regular spiking limit cycle
encloses the stable fixed point. The basin of attraction of this limit
cycle is the set of points such that trajectories reach threshold and
are reset to the right of the separatrix of the saddle (which is also
enclosed by the stable spiking orbit). Numerical studies suggest
that the regular spiking orbit is lost as the basin of attraction of
the stable fixed point grows and touches the orbit, and as such
we shall call this an orbit crisis. As with the HC bifurcation, after
this point all trajectories will tend towards the stable fixed point.
A plot of the basins of attraction of the two attractors is shown
in Fig. 9, whilst a plot of parameter values for which we have an
orbit crisis is depicted by the magenta (OC) curve in Fig. 8. For
β < 1, we have a discontinuous saddle node bifurcation (dSN,
orange line in Fig. 8) at I = 0 where the saddle and stable fixed
point come together and annihilate one another. We refer to this
as a discontinuous bifurcation owing to the fact that the Jacobian of
the system is undefined at the bifurcation point. For I > 0 there are
no fixed points, and the only attractor is either the regular spiking
or fast spiking orbit, dependent on the value of β . If β > 1 then the
system only possesses one fixed point, which may be on the left
or right v-branch dependent on the sign of I . As I crosses 0 from
below, there are three scenarios: either ω > 1, in which case no
change of stability occurs and trajectories tend to the fixed point,
else ω < 1 and the fixed point becomes unstable. We either may
observe sub-threshold oscillations or spiking oscillations (either
bursting or tonic) depending on the other parameter values. Using
results from [47] we can say more about the sub- or super-critical
nature of these bifurcations, though we do not pursue this here. As
β decreases through βc = (vth − I)/vth the fixed point no longer
exists and we see spiking solutions only.

In parameter regimes where bursting orbits are stable, spikes
are addedwhen the a value after reset of the last spike of a bursting
orbit crosses some value ac, resulting in a grazing bifurcation. The
graze either occurs at v = 0, when the fixed point of (9), with f
as in (21) is to the right of vR, or at v = vth if the fixed point is
to the left of vR. After this point, trajectories will be forced up to
threshold, so that the orbit gains an additional spike. For the case
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Fig. 8. Bifurcation curves showing where solution types exchange stability in the
(I, β)parameter plane. Other parameters areω = 0.9, s = 0.35, vth = 60, vR = 20
and k = 0.4. The dHB refers to the discontinuous Hopf bifurcation, dSN refers to
the discontinuous saddle node bifurcation, GB is the grazing bifurcation between
sub-threshold oscillations and regular spiking ones, SP is the bifurcation between
the regular and fast spiking solutions, HC is the homoclinic bifurcation occurring
when the fast spiking orbit collides with the saddle node, OC is the orbit crisis,
marking the loss of the regular spiking solution, OB is the bifurcation marking
the onset/termination of bistability between sub-threshold oscillations and spiking
ones, DB is the bifurcation marking the end of doublet firing, the onset of which
occurs along the SP curve. Regions A, B, C, D correspond to bistable parameter
regimes, the solutions of which are depicted in Fig. 10. Solution types in the other
regimes are marked.

Fig. 9. Basins of attraction for the stable fixed point and limit cycle for ω =

0.9, β = 0.8, I = −0.2, s = 0.35, vth = 60, vR = 20 and k = 0.02. Black denotes
the basin of attraction of the stable fixed point whereas white denotes the basin of
attraction of the limit cycle. We see that both basins are the union of disconnected
sets. The green and yellow circles depict, respectively, the stable fixed point and
saddle node whilst the purple dashed lines are the separatrices of the saddle node,
given by the eigenvectors of the Jacobian there. The separatrix separates the basin
of attraction of the two attractors. The large amplitude limit cycle is lost at the point
where it touches the basin of attraction of the stable fixed point. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

where the graze occurs at v = 0, the value of ac may be found
by integrating backwards from (v, a) = (0, I), the point at which
(v, v̇) = (0, 0), a time T , such that v(−T ) = vR. The value of ac
is then equal to a(−T ). T is the flight time (in backwards time)
from v = 0 to v = vR and may be found numerically. For the case
where the graze occurs at v = vth, the same method can be used,
this time integrating from (v, a) = (vth, vth + I). Interestingly,
for bursting orbits, the value of ac may also be found by finding
the curves of inflection of the vector field. These curves separate
trajectories that ‘bend’ rightwards, up to the threshold, and those
which ‘bend’ leftwards, towards the switching manifold, and are
given by the solution to the equation d2a/dv2

= 0. Substituting
v = vR in the resulting equation will give ac. For more discussion
about inflection curves, we refer the reader to [8]. In the singular-
limit as ω → 0, the inflection curve for v > 0 is precisely the right
v-branch.
A B

C D

Fig. 10. Solution types in the regions indicated in Fig. 8. The blue and red solid
curves indicate the periodic solutions; all solutions are stable. The orange dashed
lines are the branches of the v-nullcline, whilst the sky blue dashed line depicts the
a-nullcline. The green circles in the lower two figures are stable fixed points. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

In Fig. 8, we concern ourselves only with non-bursting trajecto-
ries. In this case, the graze at v = vth results either in the transition
from sub-threshold oscillations to spiking ones, or in the transition
from regular spiking orbits to a 2-spike burst. The blue (GB) curve
in Fig. 8 illustrates the first of these cases in (I, β) parameter space.
Where v = 0, a graze results in the transition from fast to regu-
lar spiking, which may occur after a window of doublet firing. The
black curve (SP), in Fig. 8 corresponds to the transition to regular
spiking, either from fast spiking, or from doublet firing, whereas
the pink curve (DB) marks the onset/termination of doublet firing.
We note that in order to have a graze at vth we require that β > βc
since we need the v-nullcline to be below the a-nullcline for v̇ = 0
in this part of the phase-plane.

The number of spikes in a burst is controlled by varying either
ω, I, vR or vth. Decreasing any of these parameters will result in
bifurcationswhich decrease the number of spikes in a burst.Where
vR < 0, the system is unable to burst as trajectories are always
reset to the left of the right v-branch and are attracted to the left
v-branch.Wealso note thatweobserve bursts for larger values ofω
in the casewhere β > βc thanwhere β < βc , and that large values
of I may prohibit bursting, andwe observe only fast spiking, so that
I and β may be used as control parameters to switch between fast
spiking and burst modes.

Owing to the discontinuous nature of the flow at reset, we may
observe spiking orbits that enclose all other stable attractors, be
they fixed points or sub-threshold oscillations. The emergence of
such orbits is controlled by the parameter k. Where k is too small,
trajectories will simply tend towards the attractors whose basin
of attraction they are in. However, when k is large enough, we see
the emergence of large amplitude limit cycles. These occur as the
flows get ‘interrupted’ as they head towards an attractor in the sub-
threshold system. All trajectories starting outside these limit cycles
are in the basin of attraction of such orbits.

We illustrate in Fig. 10 the stable solutions in the various regions
of parameter space indicated in Fig. 8. The curves in Fig. 8 are
generated by numerical continuation of solutions obtained from
the firing map discussed later in Section 6.

5. Periodic orbits and phase response curves

To solve the PWL-IF model it is useful to recast the dynamics in
matrix form so that:

Ẋ =


A1X + µ X1 ≥ 0,
A2X + µ X1 < 0, (23)
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where

A1 =


1 −1

ωβ −ω


, A2 =


−s −1
ωβ −ω


, µ =


I
0


, (24)

with Xi referring to the ith component of X (i.e. X1 = v and X2 = a).
The solution to the equation Ẋ = MX + µ can be written using
matrix exponentials in the form

X(t) = G(t)X(0) + K(t)µ, (25)

where

G(t) = eMt , K(t) =

 t

0
G(s)ds. (26)

Explicit solutions for G and K are easily constructed (and see for
example [7]). Hereafter, we refer to Gi, K i as the above expressions
with the respective matrix M = Ai. To find a fast spiking orbit
of period ∆ (in response to constant forcing) we need only solve
(X1(∆), X2(∆)) = (vth, a0−k) subject to (X1(0), X2(0)) = (vR, a0),
which gives a pair of simultaneous equations for (∆, a0) as:

vth = G1
11(∆)vR + G1

12(∆)a0 + K 1
11(∆)I, (27)

a0 =
G1
21(∆)vR + K 1

21(∆)I + k
1 − G1

22(∆)
. (28)

Bursting orbits may be constructed using similar ideas, though
withmore book-keeping to keep track of the sub-trajectories (each
determined by a linear system) that build the full periodic orbit.
For example, for an orbit with ‘times-of-flight’ T ∗

i , i = 1, . . . ,N ,
(defined by the time spent in a region of phase space before
meeting v = 0 or v = vth) describing a bursting orbit with N − 2
spikes then we have to solve for the unknowns (T ∗

1 , . . . , T ∗

N , a0)
using a system of equations of the form

0
a1


= G1(T ∗

1 )


vR
a0


+ K 1(T ∗

1 )µ,
0
a2


= G2(T ∗

2 )


0
a1


+ K 2(T ∗

2 )µ,
vth
a3


= G1(T ∗

3 )


0
a2


+ K 1(T ∗

3 )µ,

...
vth
an


= G1(T ∗

n )


vR

an−1 + k


+ K 1(T ∗

n )µ, (29)

for n = 4, . . . ,N subject to a0 = aN + k. The period of the orbit is
simply ∆ =

N
i=1 T

∗

i .
It is common practice in neuroscience to then characterise a

neuronal oscillator in terms of its phase response to a perturbation.
This gives rise to the notion of a phase response curve (PRC). The
PRC quantifies the phase shift of an oscillator due to a small, brief
perturbation as a function of the phase of the oscillator when
the perturbation occurred. A positive phase response indicates an
advancement in the timing of the next oscillation, while negative
values indicate a delay. For a detailed discussion of PRCs we refer
the reader to [48]. One way to compute them for a given smooth
dynamical system is via theMalkin adjoint method. Following [49]
we briefly review this approach. Consider a smooth dynamical
system ż = F(z), z ∈ Rn, with a ∆-periodic solution Z(t) =

Z(t + ∆) and introduce an infinitesimal perturbation 1z0 to the
trajectory Z(t) at time t = 0. This perturbation evolves according
to the linearised equation of motion:

d1z
dt

= DF(Z(t))1z, 1z(0) = 1z0. (30)
Here DF(Z) denotes the Jacobian of F evaluated along Z . Intro-
ducing a time-independent phase shift 1θ as θ(Z(t) + 1z(t)) −

θ(Z(t)), we have to first order in 1z that

1θ = ⟨Q (t), 1z(t)⟩, (31)

where ⟨·, ·⟩ defines the standard inner product, and Q = ∇Zθ is
the gradient of θ evaluated at Z(t). Taking the time-derivative of
(31) gives
dQ
dt

, 1z


= −


Q ,

d1z
dt


= −⟨DF T (Z)Q , 1z⟩. (32)

Since the above equationmust hold for arbitrary perturbations, we
see that the gradient Q = ∇Zθ satisfies the linear equation

dQ
dt

= −DF T (Z(t))Q , (33)

subject to the conditions Q T (0)F(z(0)) = 1/∆ and Q (t) = Q (t +

∆). The first condition simply guarantees that θ̇ = 1/T (at any
point on the periodic orbit), and the second enforces continuity
(and periodicity). The (vector) PRC, R, is related to Q according
to the simple scaling R = Q∆. In general (33) must be solved
numerically to obtain the PRC, say, using the adjoint routine in
XPP [50]. However, for PWL models DF(Z) is piecewise constant,
and we can obtain a solution in closed form [7]. Moreover it is also
possible to extend the Malkin method to treat an IF process [32],
which would give rise to a discontinuous PRC (at the spike time).
In this latter case the continuity condition is swapped in favour
of enforcing the normalisation condition Q T (t)F(z(t)) = 1/∆ for
all t .

For the PWL-IF model we may construct Q in given regions of
phase space according to the prescription Q (t) = J(T ∗

i − t)Q (T ∗

i ),
where J = GT (and see [7] for further details). Enforcing the
normalisation condition at the times T ∗

i is enough to define a
periodic (yet discontinuous) form for Q . For example, for a simple
tonic spiking orbit we see that solving (33) and imposing the
normalisation condition at t = 0 and t = ∆ gives a system of
two linear equations in (q1, q2), where qi are the components of Q
as

q1(∆)(vth + I − a0 + k) + q2(∆)ω(βvth − a0 + k) =
1
∆

,

q1(0)(vr + I − a0) + q2(0)ω(βvr − a0) =
1
∆

. (34)

Using the further result that Q (0) = Γ Q (T ) where Γ = J1(∆) for
fast spiking orbits or Γ = J1(T ∗

3 )J2(T ∗

2 )J1(T ∗

1 ) for regular spiking
orbits, gives

q2(∆) =
r1 − r2Γ11 − r4Γ21

T (r1(Γ12r2 + r4Γ22) − (r3r2Γ11 + r3r4Γ21))
,

q1(∆) =
1
r1


1
∆

− r3q2(∆)


, (35)

where

r1 = vth + I − a0 + k, r2 = vR + I − a0, (36)
r3 = ω(vth − a0 + k), r4 = ω(vR − a0). (37)

Hence for a fast spiking orbit the adjoint is given by Q (t) = J(∆ −

t)Q (∆) and for a regular spiking orbit the corresponding Q is

Q (t) =

J1(T ∗

1 − t)J2(T ∗

2 )J1(T ∗

3 )Q (∆) 0 ≤ t ≤ t1
J2(T ∗

2 − t)J1(T ∗

3 )Q (∆) t1 ≤ t ≤ t2
J1(T ∗

3 − t)Q (∆) t2 ≤ t ≤ ∆

, (38)

where tj =
j

i=1 T
∗

i . In both cases the form of Q (∆) is given
by (35). PRCs for bursting solutions may be constructed in the
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Fig. 11. Left: Voltage component of the phase response curve for a regular spiking
orbit (red, solid). Right: Voltage component of the phase response curve for a 3-
spike bursting orbits (red, solid). Parameter values are β = 1.1, s = 0.35, k = 0.4
and ω = 1 for the regular spiking orbit and ω = 0.25 for the bursting orbit.
Corresponding orbits are shown in dashed blue. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

same way, except that discontinuities are now not isolated to
the ends of the periodic orbit, and so we must enforce both the
normalisation condition just before and just after each threshold
crossing. Typically, when studying neural oscillators, we are
primarily concerned with the first (voltage) component of Q , since
perturbations to the system are usually given by changes in the
external current, which acts only on the voltage variable. As an
examplewe plot in Fig. 11 the voltage component ofQ for a regular
spiking orbit and a burst containing three spikes. Knowledge of
the PRC is fundamental in building network descriptions of weakly
coupled oscillators [51], and for PWL models is discussed in more
detail in [7].

To study the stability of tonic spiking orbits (and for simplicity
we focus here on the case that v > 0), we rewrite Eq. (23) as

dX
dt

= MX + µ + d

n

δ(t − Tn), t ≥ 0, (39)

with

d =


vR − vth

k


. (40)

Integrating Eq. (39) between two successive firing times yields the
closed form expression

X−(Tn+1) = G(∆n)[X−(Tn) + d] + K(∆n)µ, (41)

with∆n = Tn+1−Tn. The superscript on X in Eq. (41) indicates that
we evaluate X at the firing event before the reset, i.e. X−(Tn) =

limε↘0 X(Tn − ε). For later reference, we here also introduce
X+(Tn) = limε↘0 X(Tn + ε) and note that X+(Tn) = d + X−(Tn).
A perturbation of the periodic orbit s with a period ∆ leads to
perturbed firing times Tn, for which we make the ansatz Tn =

n∆ + δTn. Similarly, we write the perturbed trajectory as X(t) =

s(t) + δX . Hence, we have from Eq. (41)X−(Tn+1) = G(∆n)[X−(Tn) + d] + K(∆n)µ, (42)

where ∆n = Tn+1 −Tn. Linearising equation (42) then results in

δXn+1 = eM∆δXn − δTneM∆p + δTn+1q, (43)

with

p = M[s−(∆) + d] + µ = ṡ+(∆), (44a)

q = Ms−(∆) + µ = ṡ−(∆), (44b)
where δXn is defined through X(Tn) = s(Tn) + δXn and ṡ =

ds/dt . At first sight, Eq. (43) appears to be implicit since δXn+1
is given in terms of the unknown perturbation of the firing time
δTn+1. However, we need to solve Eq. (43) with the constraint
that v(T−

n ) = vth = v(T−
n ), so that the first component of

δXn+1 vanishes. Defining the row vector γ with components γi =

−[eM∆
]1i/[q]1, we find for the perturbed firing time

δTn+1 = γ (δXn − pδTn), (45)

which immediately leads to

δXn+1 = (eM∆
+ qγ )(δXn − pδTn). (46)

Hence, the perturbations of X at the (n + 1)th firing time are
uniquely determined by the perturbations at the nth firing event.
From Eq. (45), we see that

δXn − pδTn = (eM∆
− Mdγ )(δXn−1 − pδTn−1). (47)

Without loss of generality, we set δT0 = 0 at t = 0, which is
equivalent to saying that there is some perturbation of the periodic
orbit at t = 0. Then, Eqs. (45) and (46) yield δT1 = γ δX0 and
δX1 = (eM∆

+ qγ )δX0, so that we find from Eqs. (46) and (47)

δXn+1 = (eM∆
+ qγ )(eM∆

− Mdγ )nδX0. (48)

Hence, the perturbations grow without bound if there is at least
one eigenvalue of B = (eM∆

−Mdγ )withmodulus larger than one.
Conversely, if all eigenvalues of B have moduli smaller than one,
then any initial perturbation decays towards zero. However, our
analysis indicates that B always possesses exactly one eigenvalue
equal to 1, so that Bn converges against a constantmatrix B for large
n instead of decaying if all other eigenvalues have moduli smaller
than one. The stability of the period one orbit is then determined
by the product (eM∆

+ qγ )B. For the parameter values where fast
spiking orbits exist (e.g. I = 4.0, k = 0.4, vth = 60, vR =

8.1, β = 0.5, s = 0.35, ω = 0.08) we find that this product
equals zero, so that the orbit is asymptotically stable. The above
argument relies on the numerical evaluation of the matrices and
eigenvalues. A more detailed study on the structure of B will be
reported elsewhere.

Next we show how to determine single neuron behaviour
(existence and stability) via an alternative approach based on the
construction of a discontinuous one-dimensional return map.

6. Firing map

Due to the nature of the nonsmooth dynamics of the system at
reset, it is useful to consider a map of the adaptation variable at
successive firing times. This will collapse the dynamics of the full
system to a one-dimensional return map. This has previously been
considered by Touboul and Brette [52] for a broad class of planar
nonlinear IF models. Here, we focus on the construction of such a
map for the PWL-IF model. We consider a set, called the Poincaré
section, Σ = {(v, a)|v = v̄ ∈ R} which is transverse to the flow
for all (v̄, a) ∈ Σ . The value of v̄ above is arbitrary, so that our
sectionmaybe placed anywhere in the phase plane. The first return
map is a function which gives, for each value a0 ∈ R, the value
of a at the next intersection with Σ , of a trajectory starting from
(v̄, a0). The second return map gives the second intersection of
such a trajectory withΣ and so forth. We refer to the firing map as
the first returnmapwith v̄ = vR. We note that trajectories will not
intersect vR upon reaching threshold, but are reset discontinuously
to it, and thus we may consider intersection of the trajectory with
Σ1 = {(v, a)|v = vth} and apply the reset conditions to give
the value of a we seek. Suppose that the trajectory starting from
(vR, an) reaches threshold at time ∆n. Defining the firing map as
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the unique function P : R → R such that P(an) = a(∆n) + k, we
have

P(a) =


G1
21(∆n)vR + G1

22(∆n)a + K 1
21(∆n)I + k a < ac,

G1
22(T

∗

3 )a∗
+ K 1

21(T
∗

3 )I + k a > ac,
(49)

where T ∗

3 is the flight time from v = 0 to v = vth and

a∗
= G2

22(T
∗

2 )(G1
21(T

∗

1 )vR + G2
22(T

∗

1 )a + K 1
21(T

∗

1 )I) + K 2
21(T

∗

2 )I, (50)

where T ∗

1 is the flight time from v = vR to v = 0 and T ∗

2 is the
total flight time in the region v < 0. The flight times are given
by the solutions to transcendental equations are not available
in an explicit form, and so we find the values of T ∗

1 , T ∗

2 and T ∗

3
numerically.

The point ac above is the same as the one described in Section 4,
and separates trajectories, starting from (vR, a), which cross the
switching manifold from those which do not. At a = ac, the map
may have a discontinuity, dependent on the pair (β, ω). For the
map to be discontinuous, we require that the fixed point lies to the
left of vR, and that the matrix A1 has real eigenvalues. An example
of such a map is depicted in Fig. 12.

Fixed points of the map are found by solving a = P(a), and the
points are stable if |J(a)| < 1 where J(a) = P ′(a). Fixed points of
themapmay lose stability via a tangent bifurcationwhere J(a) = 1
or a period-doubling bifurcation where J(a) = −1. They can also
be lost as they pass through the discontinuity at a = ac.

In order to characterise the stability of the fixed points, we
first need to find an expression for J(a). We have, upon setting
an = a, ∆n = ∆, for a < ac that:

vR
P(a)


= G1(∆)


vR
a


+ K 1(∆)µ +


vR − vth

k


. (51)

Differentiating this equation with respect to a yields:
0

J(a)


= G1(∆)


0
1


+

d∆

da


A1G1(∆)


vR
a


+ G1(∆)µ


. (52)

Wemay solve the first of the above equations to find an expression
for d∆/da after which we may then use the second equation to
define J(a) in terms of d∆/da. A similar process determines J(a)
for a > ac (taking care to piece together solutions and derivatives
across v = 0). We observe a qualitatively similar form of the
firing map to that found by Medvedev [53] for the Chay–Keizer
model [54,55] (for bursting in a pancreatic β-cell). The map may
be thought of as divided into two portions at ac, with the left hand
portion, with a < ac, attaining somemaximum value and the right
hand portion having a small and negative slope. Fixed points may
exist in either portion, and it is easy to construct scenarios inwhich
fixed points ‘disappear’ across the discontinuity. As an example,we
plot in Fig. 12 the first, second, third and fourth return maps in a
parameter regime that supports a stable burst with 3 spikes. We
see three fixed points on the third return map, corresponding to
the a-values at the spike times.

Stable fixed points on the left hand portion of the map
correspond to fast spiking solutions, whilst those on the right
correspond to regular spiking solutions. We note that under
parameter variation, it is possible to generate unstable fixed points
in the right hand portion of the map. In this parameter regime, we
observe doublet firing, the onset of which is marked by a period-
doubling bifurcation. Shown in Fig. 13 is the representation of
doublets in the return maps. We plot both the first and second
return maps, along with their respective first derivatives. There
exists an unstable fixed point in the first returnmap, and two stable
fixed points in the second, corresponding to the doublet. As I is
increased (decreased), the fixed point in the first return map will
move leftward (rightward) and stabilise so that the fast (regular)
spiking solution becomes stable and we lose the doublet.
Fig. 12. First, second, third and fourth return maps at ω = 0.19, β = 1.2, I =

4, s = 0.35 and k = 0.4. We see three stable fixed points on the third return map,
(dashed cobwebs) corresponding to a 3-spike burst.

Fig. 13. First and second return maps (top), together with their first derivatives
(bottom), for the doublet firing parameter regime with ω = 0.9, β = 1.2, I =

10, k = 0.04 and s = 0.35. The vertical dashed lines in the lower figures indicate
where the fixed points of themaps are.We can see the fixed point in the first return
map is unstable. Of the three fixed points in the second returnmap, we observe that
one unstable fixed point, corresponds to the unstable fixed point in the first return
map, along with a pair of stable fixed points, corresponding to a doublet.

The bifurcation to doublet firing occurs as fast spiking orbits
approach the switching manifold. We may track the onset
and termination of doublet firing in (I, β) parameter space by
continuing the steady states for which J(a) = −1. We find that for
a given value of β there are necessarily two bifurcation branches;
one to mark the onset and one to mark the termination of doublet
firing. We also observe that below some value of β , the model
no longer fires in doublets, and the transition from regular to fast
spiking occurs exactly as the fast spiking orbit grazes the switching
manifold. Here, all of the steady states have J(a) > −1. The
bifurcation in the firing map is a little subtler here. We see that
the map is no longer discontinuous. The bifurcation from regular
to fast spiking in this case is marked by a discontinuous change in
J ′(a) as the fixed point moves from the right to the left portion of
the map.

As well as doublet firing, we often have bistability of periodic
attractors near bifurcations, as can be seen in the top panel of
Fig. 10, in which the sub-threshold oscillation and spiking orbit are
both stable. Since we cannot always ‘see’ sub-threshold attractors
with the firingmap, wemay repeat the samemethodology, setting
v̄ = 0, thus moving the Poincaré section to Σ2 = {(v, a)|v = 0}.
The emergence of the spiking orbit is marked, as for doublet firing,
by the passing of a steady state through J(ā) = −1 sowemay track
this point in parameter space to give us the boundary onwhich this
occurs. The grazing bifurcation, resulting in the loss of the stable
sub-threshold oscillation occurs as the fixed point corresponding
to the sub-threshold oscillation crosses the discontinuity in the
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Fig. 14. A snap-back repeller. Top: Firingmap, Bottom: First derivative of the firing
map. We see the presence of an unstable fixed point a, in conjunction with a point
ã in its repelling neighbourhood such that P4(ã) = a. It may be shown that the first
derivative of the evolution of ã under P is nowhere equal to zero. Parameter values
here are I = 4, β = 0.9, ω = 0.4, s = 0.35 and k = 0.4. The vertical dashed lines
on the bottom plot indicate the location of a and ã. The chaotic orbit with these
parameters is shown in Fig. 15.

Fig. 15. The chaotic orbit associated with the snap-back repeller in Fig. 14.

return map. Thus, unlike the spiking solution, the sub-threshold
oscillation is always stable where it exists. This does not, however,
preclude the existence of unstable sub-threshold limit cycles,
which we may expect when the dHB is subcritical. We may then
observe where the fixed point ‘disappears’ to track where in
parameter space the grazing bifurcation occurs. Interestingly, we
note that the system may already be in a bistable regime as the
dHB occurs.

The firing map is of the type that allows for a snap-back
repeller, and as such will support chaotic solutions [56]. To define
such a snap-back repeller suppose a is a fixed point of P with
|P ′(a)| > 1, and suppose there exists a point a ≠ a in a repelling
neighbourhood of a, such that aM = a and P ′(ak) ≠ 0 for 1 ≤ k ≤

M , where ak = Pk(a0). Then a is called a snap-back repeller of P .
Zheng and Tonnelier [57] have shown the presence of snap-back
repellers in the QIF model with adaptation. Given the similarities
between the PWL-IF model and the QIF with adaptation, we may
expect similar properties. We show an example of such a point in
the PWL-IF model in Fig. 14, along with an associated chaotic orbit
in Fig. 15. We shall now use the notion of Lyapunov exponents in
nonsmooth systems to demonstrate where chaotic solutions exist
in the PWL-IF model.

7. Maximal Lyapunov exponents

The presence of chaos in a dynamical system may be charac-
terised in terms of Lyapunov exponents (LEs). LEs measure the
exponential rates of divergence of nearby orbits of an attractor
in state space. Stable equilibria have only negative LEs, periodic
attractors have one zero exponent, whilst the rest are negative.
Chaotic attractors, however, have at least one positive LE. Con-
versely, where the attractor has at least one positive LE, we expect
chaotic behaviour.

LEs for continuously differentiable dynamical systems are
generally calculated using the Jacobian of the system along the
orbit that the flow produces, by solving a variational equation. The
PWL-IF system is everywhere linear, except at v = 0, so that the
Jacobian is piecewise constant. Owing to the discontinuity in the
PWL-IFmodel,wemust be carefulwhen consideringwhat happens
to δX at reset, recalling that δX is a small perturbation to some
orbit, whichwe here denote by X . In [58] a framework for studying
the evolution of δX in impacting systems, in a model for which
Ẋ = F(X) between impacts, was developed. This approach was
applied to one-dimensional IF models in [35]. We now use this
framework to develop the notion of LEs for the PWL-IF model.

In a sub-threshold regime the linearised equations of motion
around a trajectory X(t) satisfy

dδX
dt

= DF(X(t))δX . (53)

Since our system is piecewise linear DF(X(t)) = M so that

DF(X(t)) =


A1 v ≥ 0
A2 v < 0 . (54)

We define an indicator function h as

h(X) = X1 − vth (55)

so that the discontinuity in the system occurs at time T where
h(X(T )) = 0. We also define a vector function

g(X) =


vR

X2 + k


, (56)

which governs the transition condition across the discontinuity so
that X+(T ) = g(X−(T )). Suppose thatwe have two trajectories: an
unperturbed trajectory X(t) and a perturbed trajectory X(t) such
that δX(t) = X(t) − X(t), and that the unperturbed trajectory
crosses threshold at time T , and the perturbed trajectory crosses
atT = T + δt . Writing δX−

= δX−(t) and X−
= X−(t), we have,

from [58], that

H(X−)[δX−
+ (A1X−

+ µ)δt] = 0, (57)

where

H(X−) =
∂h(X)

∂XT


X=X−(T )

, (58)

is the Jacobian of the indicator function. For our choice of h, this is
simply the row vector H(X−) = [1, 0]. We then solve (59) to give:

δt = −
H(X−)δX−

H(X−)(A1X− + µ)
= −

δv−

vth + I − a−(T )
, (59)

where δX−
= (δv−, δa−) and X−

= (v−, a−). We note here the
equivalence, upon setting δTn = 0, of (59) and (45). Defining the
Jacobian of the transition condition as

G(X−) =
∂g(X)

∂XT


X=X−(T )

, (60)

we arrive at

δX+
= G(X−)δX−

+ [G(X−)(A1X−
+ µ) − (A1X+

+ µ)]δt, (61)

where δX+
= δX+(T + δt). For vR < 0, we would replace (61) by

δX+
= G(X−)δX−

+ [G(X−)(A1X−
+ µ) − (A2X+

+ µ)]δt. (62)
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Fig. 16. Maximal Lyapunov exponent for the PWL-IF system evaluated at β =

0.8, k = 0.4, vth = 60, vR = 20 and s = 0.35. Light colors indicate positive
values, whereas dark colors correspond to zero or negative values.We see amarked
boundary of chaotic solutions. This boundary marks the transition between burst
firing and fast spiking as we increase I to its critical value. We also observe chaos in
transitions between different burst states.

For the PWL-IF model the matrix G is simply

G(X−) =


0 0
0 1


, (63)

so that (61), using (59) becomes

δX+
=


0

δa−


+

δv−

vth + I − a−


vR + I − a−

− k
ω(β(vR − vth) − k)


. (64)

This is linear in δv− and δa−, so we may write this in matrix form
as

δX+
= K(a−(T ))δX−, (65)

where

K(a) =


k1(a) 0
k2(a) 1


, (66)

with

k1(a) =
vR + I − a − k

vth + I − a
, (67)

k2(a) =
ω(β(vR − vth) − k)

vth + I − a
. (68)

Thus, overall the separation vector δX evolves asG(t−Tk)K(a−(Tk))
· · · K(a−(T1))G(T1)δX(0) for k = 1, 2, 3, . . . , with G(t) =

exp(Mt). The maximal LE (MLE) is then given by the natural log-
arithm of the modulus of the largest eigenvalue of the matrix

L = lim
k→∞

1
∆k

K(a−(Tk))G(Tk) · · · K(a−(T1))G(T1), (69)

where∆k =
k

i=1 Ti. A plot of theMLE in the (I, ω) plane is shown
in Fig. 16. In this region of parameter space, we see bursting orbits
for smaller values of I whereas larger values of I prohibit bursting,
so that we have ‘burst death’ under variation of I . We observe the
presence of chaotic solutions both at this boundary where burst
solutions cease to exist, marked by the large sweeping vertical
arc and at the boundaries of transitions between solutions with
differing numbers of spikes, marked by the thin horizontal arcs.
In these regions of parameter space, we see that the firing map
possesses snap-back repellers, so that themap also predicts chaos.

For a one dimensional nonlinear IF model the above analysis
becomes somewhat simpler. Assume that, below threshold, a
perturbed and unperturbed trajectory, v and v respectively, are
related by the equation

δv(t) = Φ(t, Tm)δv(Tm), (70)

where δv = v − v. Following the propagation of a perturbation
through threshold gives (cf. Eq. (65))
δv+
=

v̇(T+
m )

v̇(T−
m )

δv−. (71)

Hence the LE is

Λ = lim
t→∞

1
t
ln

 δv(t)
δv(0)


= lim

k→∞

1
Tk − T1

k
m=1

ln
Φ(Tm+1, Tm)

v̇(T+
m )

v̇(T−
m )

 . (72)

It is informative to calculate the LE for the example of a ∆-
periodic orbit in a nonlinear IF model under constant input where
v̇ = f (v) + I . In this case, below the threshold, a perturbed and
unperturbed trajectory are related by the equation v(t)

v(0)

dv
f (v) + I

=

 v(t)

v(0)

dv
f (v) + I

. (73)

For small deviations between the two trajectories we may expand
(73) to obtain the result Φ(t, s) = Φ(t − s), where

Φ(t) =
f (v(t)) + I
f (v(0)) + I

. (74)

Hence the LE is

Λ =
1
∆

ln

f (v(∆)) + I
f (v(0)) + I

v̇(∆+)

v̇(∆−)


= 0, (75)

as expected for a periodic orbit. This result nicely illustrates that
although a nonlinear IF model may have a positive exponent in
the absence of a firing threshold (as would be the case for the QIF
model), the firing and resetmechanism can inhibit the exponential
divergence of nearby trajectories.

8. Linearly coupled networks

In this section we explore network dynamics for coupled PWL-
IF neurons, with a focus on electrical synapses. An electrical
synapse is an electrically conductive link between two adjacent
nerve cells that is formed at a fine gap between the pre- and
post-synaptic cells known as a gap junction and permits a
direct electrical connection between them. They are known to
be abundant in the retina and cerebral cortex of vertebrates and
have been directly demonstrated between inhibitory neurons in
the neocortex [59]. In fact it would appear that they are now
ubiquitous throughout the human brain [60], and may play an
essential role in higher brain function as originally suggested by
Schmitt et al. [61]. Indeed they are currently thought to contribute
to both normal [62] and abnormal physiological brain rhythms,
including epilepsy [63].

Indexing neurons in a networkwith the label α = 1, . . . ,N and
defining a gap junction conductance strength between neurons
α and β as gαβ means that neuron α experiences a drive of
the form N−1 N

β=1 gαβ(vβ
− vα) to the equation for v̇α . For a

phase locked state then (vα(t), aα(t)) = (v(t − φα∆), a(t −

φα∆)), (v(t), a(t)) = (v(t + ∆), a(t + ∆)), (for some constant
phases φα ∈ [0, 1)) and we have N equations distinguished by
the driving terms N−1 N

β=1 gαβ(v(t + (φα − φβ)∆) − v(t)). For
globally coupled networks with gαβ = g maximally symmetric
solutions describing synchronous, asynchronous, and cluster states
are expected to be generic [64].

8.1. Synchronous states

For global coupling, gap-junction currents vanish if all the
neurons behave synchronously (φα = 0 for all α). Hence, the
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period of a rhythmic network state is inherited directly from the
period of a single uncoupled oscillating neuron. Wemay probe the
stability of a synchronous network state sN where the voltage of all
N neurons is positive in a similar manner as presented in Section 5.
In the synchronous network state, all neurons follow the same
trajectory s(t), so that sN consists ofN copies of s. Let Tα

n denote the
nth firing time of the neuron with label α, α = 1, . . . ,N , then the
dynamics of the network state Y = (v1, a1, . . . , vN , aN) between
Tα
n and the firing of another neuron, Tβ

m, β ≠ α, is governed by

dY
dt

= MY + F + eα
⊗ dδ(t − Tα

n ), (76)

where⊗ implies the usual tensor product andM = 1N ⊗M+gG⊗

H . 1N corresponds to the identity matrix in RN×N , andM is defined
as in Eq. (39). G ∈ RN×N encodes the topology of the network,
while H ∈ N2×2 determines the variables through which the
coupling of strength g occurs. For example, in the case of a globally
connected network all entries of G are equal to one except those on
the diagonal, which are given by (1−N). Since in the presentmodel
only the voltage equations are coupled and the voltage variable is
the first in each state vector of a single neuron, we have

H =


1 0
0 0


. (77)

The 2N dimensional vector F consists ofN copies ofµ, and the only
non-zero element in eα

∈ R2N is at the (2α−1)th position.µ and d
are defined as earlier (see Section 5). Integration of Eq. (76) results
in

Y−(Tβ
m) = eM(Tβ

n −Tα
n )

[Y−(Tα
n ) + eα

⊗ d] + J, (78)

where the integral

J =

 Tβ
m

Tα
n

eM(Tβ
m−s)Fds, (79)

can be computed by diagonalisingM. As in Section 5, we introduce
perturbations of the network around the synchronous network
state and of the firing times asY (t) = sN(t) + δY andTα

n = nT +

δTα
n , respectively. When we evaluate Eq. (78) at perturbed firing

times and linearise the resulting expression, we need to be careful
about the order in which the neurons fire. To illustrate this point,
we consider two coupled neurons and assume that none of the
neurons fires twice without the other neuron reaching threshold
in between. Suppose that the first neuron has just induced a spike
atT 1

n and the second neuron is close to threshold without having
fired yet. Then the second neuron crosses threshold atT 2

n with the
same index n, since we perturb around the synchronous network
state where all neurons fire simultaneously at Tn = n∆. When we
insert these perturbed firing times into Eq. (78) and linearise it, we
find

δY 2
n = δY 1

n + p1(δT 2
n − δT 1

n ) + e1 ⊗ d, (80)

with

p1 = Ks−N (∆) + F + Me1 ⊗ d, (81)

where δY i
n corresponds to the perturbation of the network when

the ith neuron fires for the nth time. Since Eq. (80) describes the
perturbation of the network statewhen the second neuron reaches
threshold, i.e.v2

= vth, the third component of δY 2
n equals zero, so

that

δT 2
n = γ1δY 1

n + δT 1
n , (82)

which in turn leads to

δY 2
n = (1N + p1γ1)δY 1

n , (83)
where γ1 denotes a row vector with components [γ1]i =

−[eM∆
]3i/[p1]3. The first neuron just passed through the discon-

tinuity, so that the value of X1(T 2
n ) is much closer to s+(Tn) than

to s−(Tn). Therefore, the first two components in δY 2
n are of the or-

der of the discontinuity d and hence can be large. To comply with
the prerequisite of small perturbations for the validity of the linear
stability analysis, we introduce

δY
2
n = δY 2

n − e1 ⊗ d, (84)

the components of which are now all small. Once the second neu-
ron has reached threshold atT 2

n , the next time the first neuron will
fire is atT 1

n+1. We see from Eq. (78) that the perturbed trajectory
then depends on the termY−(T 2

n ) + e2 ⊗ d = s−N (Tn) + δY 2
n + e2 ⊗ d (85)

which we rewrite with the help of Eq. (84) as

Y−(T 2
n ) + e2 ⊗ d = s+N (Tn) + δY

2
n. (86)

Here, we employ that

s−N (Tn) + e1 ⊗ d + e2 ⊗ d = s+N (Tn). (87)

Inserting the perturbed firing timesT 1
n+1 andT 2

n as well as Eq. (86)
into Eq. (78) and linearising the resulting expression leads to

δY 1
n+1 = eM∆(δY

2
n − p2δT 2

n ) + q2δT 1
n+1, (88)

with

p2 = Ks+N (∆) + F , q2 = Ks−N (∆) + F . (89)

From Eq. (80) we see that

δY
2
n = δY 1

n + p1(δT 2
n − δT 1

n ), (90)

so that Eqs. (88) and (90) fully determine the propagation of per-
turbations through the network. For notational convenience, we
drop the overline in Eq. (90) in the remainder of the manuscript.
Since the first neuron elicits a spike atT 1

n+1, the voltage variablev1

reaches threshold at this time. Hence, the first component of δY 1
n+1

vanishes, so that

δT 1
n+1 = γ2[δY 2

n − p2δT 2
n ], (91)

where we introduce the row vector γ2 with components [γ2]i =

−[eM∆
]1i/[q2]1. We then find from Eq. (88)

δY 1
n+1 = (eM∆

+ q2γ2)(δY 2
n − p2δT 2

n ). (92)

Moreover, the above analysis leads to the recursion relation

(δY 2
n − p2δT 2

n ) = BN(δY 2
n−1 − p2δT 2

n−1), (93)

with

BN = (1N + p1γ1 − p2γ1)(eM∆
+ q2γ2) − p2γ2, (94)

which immediately results in

δY 1
n+1 = (eM∆

+ q2γ2)Bn
NδY0. (95)

In arriving at Eq. (95) we assumed without loss of generality that
there is some perturbation δY0 at t = 0 such that the first neu-
ron fires first, i.e. T 1

1 < T 2
1 , so that δT 1

1 = γ2δY0 and δY 1
1 =

(eM∆
+q2γ2)δY0. Eq. (95) has the same form as Eq. (48), so that the

stability of the synchronous network state follows from the same
argument as the stability of the period one orbit for a single neu-
ron. Even more so, since the matrix BN seems to always possess
an eigenvalue equal to one as does the matrix B in Eq. (48). Below
a critical value, at least one eigenvalue has a modulus larger than
one, indicating that the synchronousnetwork state is unstable. This
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is confirmed by direct numerical solutions which show that below
the instability point neurons oscillate with a clear phase lag. On
the contrary, increasing the coupling strength g stabilises the syn-
chronous network state.

The linear stability analysis that we presented in Section 5 for
a single neuron focused on positive voltages with the effect that
the dynamics is described by one matrix M = A1 only. In turn,
this allowed us to write down a single governing equation for all
times and to relate the perturbations at the nth firing event to the
previous one through M alone. However, the model also supports
period one orbits where the reset takes the voltage to negative
values (regular spiking). In this case, we need to consider two
matrices to capture the behavior of the neuron. The linear stability
analysis for such a large amplitude oscillation can be achieved by
combining the present results with those of an earlier study [65],
which demonstrates the linear stability analysis for a PWL system
with multiple switching events along a period one orbit. While we
here investigate state-dependent switching, i.e. the discontinuity
occurs if a given variable reaches a threshold value, applying ideas
from [65] also provides a handle on time-dependent switches. In
turn, this allows us to study nonsmooth PWL systems with an
arbitrary sequence of state- and time-dependent switching events.

Although we illustrated the linear stability analysis of a
synchronous network state in a network of two neurons only, this
holds all the ingredients to study larger networks. Firstly, it is
reasonable to assume that all neurons reach threshold between
consecutive firings of a given neuron because we perturb around
the synchronous network state where all neurons fire at the same
time. Hence, there areN perturbations around the same firing time
Tn and hence (N − 1) iterations of the steps that lead to Eq. (80)
instead of only one. Secondly, the same arguments that result in
Eq. (88) need to be considered in a network, since there once all
of the neurons have reached threshold around some Tn, the next
firing event in the network will occur around Tn+1. It is worth
pointing out that our analysis of the synchronous network state
holds for arbitrary network topologies and an arbitrary number of
components of a single neuron throughwhich the coupling occurs.
All this information is encoded in the matrices G and H , which are
kept general throughout the analysis.Moreover, the analysisworks
for any coupling strength. One caveat of the approach presented
here is that the order inwhich the neurons fire has to be prescribed,
so that we need to restrict our attention to specific classes of
network perturbations. However, at least in globally connected
networks where all neurons are identical, such an order can be
assigned naturally.

8.2. Asynchronous states

Here we shall focus on asynchronous states defined by φα =

α/N . Such solutions are often called splay or merry-go-round
states, since all oscillators in the network pass through some
fixed phase at regularly spaced time intervals of ∆/N . Moreover,
we shall consider a globally coupled network in the large N
limit. Of all possible phase locked-states in a network these so-
called asynchronous states are in some sense, as quantified by a
synchrony measure like that of [66], farthest from synchrony. In
the large N limit we have the useful result that network averages
may be replaced by time averages and the coupling term for an
asynchronous state becomes

lim
N→∞

1
N

N
β=1

v(t + β∆/N) =
1
∆

 ∆

0
v(t)dt, (96)

which is independent of both α and t (assuming v(t) is continuous
for t ∈ [0, ∆)). Hence, for an asynchronous state every neuron in
the network is described by the same dynamical system, namely

v̇ = f (v) − gv + I − a + gv0, ȧ = ω(βv − a), (97)
Fig. 17. Curve showing the bifurcation defined by Re λ = 0 and Im λ ≠ 0.
Parameter values are β = 0, ω = 1/75 and I = 0.1. Beyond an instability point
of the asynchronous solution one typically sees the emergence of synchronised
bursting states, as shown in the inset. Inset: A plot showing an instability of the
asynchronous state in a network with N = 100 neurons, starting from a randomly
perturbed splay state. The solid line is the value of the mean-field signal E(t) =

N−1 N
α=1 vα(t), and the dashed line is the analytically calculated value for the

mean field signal v0 for the asynchronous state. At t = 800 the value of k is switched
from k = 0.02 (where the asynchronous state is stable) to k = 0.028 (just beyond
the border of stability) and at t = 1600 it is switched again to k = 0.03. This nicely
illustrates that as one moves through the stability border that periodic variations
in the mean-field signal can emerge and ultimately lead to a synchronised bursting
state. Parameters are β = 0, ω = 1/75, vR = 0.2, vth = 1, I = 0.1 and g = 0.5.

where

v0 =
1
∆

 ∆

0
v(t)dt. (98)

The asynchronous state can then be found as a∆-periodic solution
of (97), which can either be done numerically (using a boundary
value solver as described in Appendix D of [7]) for a general choice
of f or analytically for the PWL-IF model [32]. The stability of
this state can also be determined using a phase-density technique,
first developed by van Vreeswijk [67] for synaptic coupling and
later extended by Coombes to treat electrical coupling [7,32]. The
eigenvalues determining stability are given as the zeros of the
function E(λ), where

E(λ) =
eλ∆v(λ)

− gλ∆

 1

0
Γ (θ∆)eλθ∆dθ. (99)

Here Γ is the g-dependent voltage component of the adjoint for
the asynchronous state (that has to be determined from (97)) andv(λ) is the Laplace transform of the known periodic orbit v(t). The
asynchronous state is stable if Reλ < 0. The proof of the stability
condition is given in [7].

We illustrate the use of this stability analysis by applying it to
a fast spiking orbit with β = 0. Using the above construction
we find that for fixed g and increasing k a pair of complex
conjugate eigenvalues crosses through the imaginary axis (away
from zero). This signals the onset of a dynamic instability. Because
the underlying model is described by a discontinuous flow then
there is also the possibility that a nonsmooth bifurcation can
occur. For the parameters considered here we find that a dynamic
instability of the splay state is always met before the onset of
a nonsmooth bifurcation [32]. By tracking the bifurcation point
Re λ = 0 in parameter space it is possible tomap out those regions
where the asynchronous state is stable. We do this in Fig. 17 which
shows that if an asynchronous state is stable for fixed g or I then
it can always be destabilised by increasing k beyond some critical
value.

To determine the types of solutions that emerge beyond the in-
stability borders we have performed direct numerical simulations.
Not only do these confirm the correctness of our bifurcation theory,
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they show that a dominant emergent solution is a bursting mode
in which neurons are synchronised at the level of their firing rates,
but not at the level of individual spikes (within a burst). An example
of a network state that switches from asynchronous tonic spiking
to synchronised bursting with a switch in k across the bifurcation
point is shown in the inset of Fig. 17. Here we plot the mean field
signal E(t) = N−1 N

α=1 vα(t) for a network of N = 100 neurons.

9. Discussion

In this paper we have provided an overview of nonlinear
IF models that are currently of interest to the computational
neuroscience community. Their obvious discontinuous nature
means that much can be gained from mathematical studies that
make use of the growing variety of tools and techniques being
developed for the study of nonsmooth systems. By introducing a
particular form of PWL IF model in this paper we have shown that
the time is ripe for the study of not only singe neuron dynamics,
but also networks. Single neuron studies in response to natural
stimuli are highly relevant for understanding sensory processing
and unravelling the neural code, whilst theoretical analysis of large
scale spiking networks is relevant to brain studies at the highest
level, and in particular for neural computation and cognition.

It is worth mentioning a number of explicit next steps for the
mathematical neuroscience community, that can build upon some
of the ideas we have presented here. The construction of Arnol’d
tongues for more general nonlinear IF models and in particular the
PWL-IF model is one obvious next step, generalising the approach
used for the LIF model. Indeed, developing a way to describe the
response of such models to more complicated signals than just
periodic ones is also vital for understanding how neurons process
natural stimuli. At the network level it is quite common to first
consider the behaviour of a set of weakly interacting oscillators,
where knowledge of the PRC is key to making progress. We have
shown how to do this here for the PWL-IF model (and indeed
it is straightforward to do this for any single variable nonlinear
IF model). However, we did not discuss the notion of isochronal
coordinates that underpins the usefulness of a coupled oscillator
theory. Indeed to understand the response of spiking neurons to
perturbation it would be very useful to construct isochrons (which
in the context of smooth dynamical systems can be interpreted
as leaves of the stable manifold of a hyperbolic limit cycle).
Techniques for doing this may well generalise from those used in
smooth systems, such as in [68,69], and it would be interesting to
pursue this further. At the network level we presented examples
of phase-locked states in linearly coupled systems. Although this
is highly relevant to electrical gap junction coupling it does not
describe chemical synaptic coupling. In this case it is natural to
consider event based coupling, as in [20], and it then remains a
challenge to develop a theory of strong interactions. Once again
focusing onmodelswith a sub-threshold PWL dynamicsmay allow
for progress. Moreover, it is a challenge to develop the notion
of Lyapunov exponents for such networks, although progress
in this direction has recently been made for discrete-time LIF
systems [70].

For a further discussion of the role of mathematics in neu-
roscience and other outstanding challenges we refer the reader
to [71] and to the aims and scopes of the newly established Jour-
nal of Mathematical Neuroscience at http://www.mathematical-
neuroscience.com/.
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