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Abstract
Synaptic channels are stochastic devices. Even recording from large ensembles of channels, the
�uctuations, described by Markov transition matrices, can be used to extract single channel
properties. Here we study �uctuations in the open time of channels, which is proportional
to the charge �owing through the channel. We use the results to implement a novel type of
noise analysis that uses the charge rather than the current to extract fundamental channel
parameters. We show in simulations that this charge based noise analysis is more robust
if the synapse is located on the dendrites and thus subject to cable �ltering. However, we
also demonstrate that when multiple synapses are distributed on the dendrites, noise analysis
breaks down. We �nally discuss applications of our results to other biological processes.
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Introduction

Neural activity and neural transmission rely on ion channels (Hille, 2001). Ion channels
�ux ions depending on either the presence of some neurotransmitter (ligand-gated channels,
such as the AMPA channel), or the voltage across the channel (voltage-gated channels, such as
the Na-channel). Ion channels are stochastic devices and are commonly described by Markov
state diagrams. Typical states are the closed resting state and an open state, but many more
intermediate states might be needed to accurately describe the kinetics. The actual transitions
between states are stochastic, and the transition probabilities between the various states can
depend on voltage or ligands. Ion channels are one of the main noise sources in the nervous
system, and noise from channels can manifest itself in many ways, such as variations in spike
timing or variability in the synaptic current.

In this study we consider stochastic synaptic channels, which are rapidly opened by some
neurotransmitter. The �uctuations in the amplitude of the current through such a channel
have been studied extensively. Typically there is one open state and thus the current is either
maximal or zero. As a result the current through multiple independent parallel channels is
distributed according to the binomial distribution. This observation forms the basis for noise
analysis. Noise analysis extracts the unitary conductance of single channels from the noise in
the current from an ensemble of channels.

As important as the current is the temporally integrated current, i.e. the total charge
transported through the channel Q =

∫
I(t) dt. Its �uctuations have physiological importance.

In an integrate-and-�re neuron a spike is generated whenever the voltage reaches a threshold.
Hence if inputs are much faster than the leak time-constant, the spiking occurs when the net
charge in�ux has reached a threshold. Here we calculate the mean charge and its �uctuations,
�rst for a simple two-state model, and then for arbitrary state diagrams. We use these results
to gain insight to the charge noise of synaptic channels, and to introduce a novel noise analysis
technique based on charge.

Fluctuations in single two-state channels

Fluctuations in currents
We start with the simplest synaptic channel, a 2-state channel. We assume that at time

0 it is in the open state (due to the action of some transmitter), and subsequently closes at a
random time with a rate constant k = 1/τ ,

C ↼ O

where C denotes the closed state, and O the open state. In the open state a current i0 �ows
which we will call the unitary current of the channel, Fig. 1A shows the setup. Assuming
Ohmic conductance the current is the product of the unitary conductance and the di�erence
between membrane and synaptic potential, i0 = g0(V −Vsyn). Throughout we will assume that
the voltage di�erence is constant, for instance due to the presence of a voltage clamp, so that
conductance and current are up to a factor identical. Note however, that for large synapses
located far away from the clamping site, the synaptic current can substantially depolarize the
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Figure 1: A). Schematic of the synaptic currents. After transient application of transmitter at time zero, a
certain number of channels opens, each with a unitary current i0. They close independently at a random
time. The charge Q(T ) is de�ned as the integral of the current from time T until all channels close (shaded
area). B+C). Current based noise analysis (B) and charge based noise analysis (C). When the variance of
the current or charge is plotted against its mean, a parabola results, albeit with di�erent parameters. Both
analysis techniques lead to a reliable extraction of the number of channels in the synapse and the single channel
properties (see text).

membrane so that this assumption no longer holds (the space-clamp problem) (Spruston et al.,
1993).

At some random time the channel will close and it will not open again until transmitter is
again released and binds to the channel. At any instance the channel will have a certain open
probability p(t), where t denotes the time since the neurotransmitter pulse. When averaged
over many trials, the average current is 〈I(t)〉 = i0p(t), where the angular brackets denotes
the average over multiple trials. Because the di�erent trials are independent the variance is

〈δI(t)2〉 = 〈I(t)2〉 − 〈I(t)〉2
= i20p(t)− 〈I(t)〉2
= i20p(t)[1− p(t)]. (1)

where we denote the variance of a variable x as 〈δx2〉, de�ned as 〈δx2〉 = 〈x2〉 − 〈x〉2.
When N parallel, independent channels are present in the synapse, both the average and

variance are N times larger. Thus the mean is 〈I(t)〉 = Ni0p(t) and the variance 〈δI(t)2〉 =
Ni20p(t)[1− p(t)], which equals the well-known binomial variance. Eliminating p(t) yields,

〈δI(t)2〉 = i0〈I(t)〉 − 1
N
〈I(t)〉2. (2)

The relation can be interpreted as follows: when at various time points the variance is plotted
as a function of the mean current, a parabola results. A �t of a second order polynomial to this
curve can thus extract the unitary current (from the linear term) and the number of channels
(from the quadratic term). This is known as non-stationary noise analysis, and is valid for
any kinetic scheme as long as there is only one open state (see appendix and Sigworth, 1980).
An example is shown in Fig. 1B, further explained below. Noise analysis is a widely applied
tool (Traynelis and Jaramillo, 1998). It can for instance be applied to determine if a change
in synaptic strength is due to an increase in the number of channels, or a modulation of the
single channel current, yielding insight in the underlying processes that caused the change.
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Fluctuations in charge
We now calculate the average charge and its �uctuations for this two-state channel. The

time of the switch to the closed state is a random (Poisson) process, therefor the open-time of
the channel has an exponential distribution P (topen) = 1

τ exp(−topen/τ), where τ is the mean
open time of the channel. The charge follows directly from the open-time as Q =

∫∞
0 dt I(t) =

i0topen. (For practical application the upper integration bound is taken so that all channels
are very likely to have closed). Like the open time, the charge thus also has an exponential
distribution, with a mean q0 and a standard deviation that is equal to the mean, where we
de�ne the mean unitary charge as

q0 = i0τ.

The mean unitary charge is the average charge that �uxes through a single channel following
a single synaptic event. For N parallel channels the total charge follows a gamma distribution
of order N ,

P (Q) =
1

(N − 1)!
1
q0

(
Q

q0

)N−1

exp(−Q/q0). (3)

This result can be easily understood. The gamma distribution describes the total waiting time
of waiting for N subsequent Poisson events. Due to the direct relation between charge and
time, Fig. 1A, the total charge behaves as the total waiting time.

Next, we generalize two-fold. First we consider that the transmitter opens the single
channel at time zero with only a limited probability p(0). Secondly, we measure the charge as
measured from an arbitrary time T until all channels have closed, that is Q(T ) =

∫∞
T I(t) dt,

see Fig. 1A. One �nds for the mean of this quantity

〈Q(T )〉 = p(T )q0,

and for the variance 〈
δQ2(T )

〉
= q2

0p(T )[2− p(T )]. (4)
It is of interest to compare this to the equation for the current noise. The term in the square
brackets in Eq.4 is larger than in the corresponding equation for the current, Eq. 1. In other
words, the charge in this kinetic scheme is for any open probability noisier than the current.
This can be understood easiest in the case that at peak the channel is always opened by
the transmitter, i.e. p(0) = 1. In that case there will be no �uctuations at all in the peak
amplitude 〈δI2〉 = 0. In contrast, Eq.4 yields

〈
δQ2(0)

〉
= q2

0, as the charge will still show
�uctuations as the decay back to the rest-state occurs randomly. Equivalently, we can use the
Coe�cient of Variation to quantify the noise relative to the mean. The squared Coe�cient of
Variation of the charge is CV 2

Q = 2/p(0) − 1, hence minimally CVQ = 1, but for the current
only CV 2

I = 1/p(0)− 1.
It is again possible to express the variance as a function of the mean, which for N channels

becomes 〈
δQ2(T )

〉
= 2q0〈Q(T )〉 − 1

N
〈Q(T )〉2 (5)

In analogy with the non-stationary current noise analysis, this relation can be used to extract
the unitary q0 and the number of channels from a set of records of synaptic currents. For this
two-state channel the unitary current can be extracted as i0 = q0/τ .
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Noise analysis based on charge
The above result can be used to do noise analysis based on the noise in the charge. The

procedure is to plot the variance versus the mean charge as the time T is varied parametrically.
The linear and quadratic coe�cients of the polynomial �t will yield q0 and N , respectively.
This �charge-based� noise analysis is illustrated in Fig. 1C and compared to the current based
noise analysis, Fig. 1B. For the �gure we simulated 50 channels with 50% open probability at
time zero, 1pA unitary current and 1ms time constant, so that the unitary charge was 1fC. A
perfect clamp was assumed. White noise with a standard deviation of 2pA was added to mimic
experimental noise (code online, see Appendix). Averages and variances of currents and charges
were measured across 200 simulated events. To determine the accuracy and reliability of the
method, we ran the simulation 50 times. The charge based analysis estimated N = 51 ± 25,
q0 = (1.03±0.10)fC, while the current based analysis yielded N = 55±14, i0 = (0.98±0.09)pA.
So both methods are comparable, however, there are di�erences to point out:

1) In contrast with the current based analysis, the equation for the charge �uctuation is
only valid for the simple kinetic scheme used here (see below for the generalization). The
underlying reason is that the charge is determined not only by the instantaneous state of the
channel but also by the future states. Thus the dynamics of the channel will matter.

2) The curve of the charge variance versus mean charge is much smoother than the curve
for the current, compare Fig. 1B to Fig. 1C. The reason is that neighboring data points in the
charge curve are highly correlated; Q(t) and Q(t + δt) share a large part of the time integral
over the current. As a practical issue, most �tting algorithms assume independent noise and
might over-estimate the con�dence intervals of the �ts. Fitting on subsets of the data as we
did above will give reliable error bars.

3) Although the estimates for unitary current/charge are of comparable accuracy, the
charge based analysis gave more variable results for the estimate of N . The reason is that es-
timating N corresponds to estimating how strongly the parabola in Fig. 1C bends over, which
is harder for the current than for the charge parabola. Estimating the unitary current/charge
corresponds to estimating the slope near the origin, which is equally easy in both cases. In
an e�ort to reduce the variability we tried �tting algorithms that correct for the correlation
in the data (Heinemann and Conti, 1992; Ste�an and Heinemann, 1997). However, neither a
weighted least squares �t (assuming uncorrelated data with unequal variance), nor a general
least squares �t (assuming correlations in the data), lead to marked improvement.

Charge �uctuations for arbitrary channels

In the appendix we derive the charge �uctuations for channels with an arbitrary state
diagram. In case there is just one conducting state, it turns out that the variance in the
charge behaves as

〈
δQ2(T )

〉
= γ〈Q(T )〉 − 1

N
〈Q(T )〉2 (6)

The variance vs. mean relation has a quadratic form. The linear term, γ, has the dimension
of charge, and we call it the charge noise constant. It is completely determined by the kinetics
of the channel (see Appendix) and is independent of the initial state of the channel. For
the simple two-state channel above one has γ = q0 = i0τ . For more complicated channels
γ is proportional to i0, but knowledge of the state diagram is needed to recover i0 exactly.

5



Independently of the channel's kinetic scheme, the number of channels can be extracted from
the quadratic term.

Examples of charge �uctuations in various state diagrams

As an illustration of the results above and in the Appendix, we analyze three simple state
diagrams. For compactness we set N = 1 and i0 = 1. In the �rst state diagram there are
two closed states: the resting state C, and an intermediate closed state C ′ which can have
transitions back and forth to the open state. This channel will �icker before �nally closing.

C ↼ C ′ ­ O

For this state diagram, the mean charge is 〈Q(0)〉 = [kC′Oπ2(0)+(kC′O+kC′C)π3(0)]/kOC′kC′C ,
where π2(0) is the probability that the channel is in the C ′ state at time zero, and kC′O denotes
the rate for the transition from C ′ to O. The charge noise constant is γ = 2kC′O+kC′C

kC′CkOC′
. The

CV 2 = 2(kC′O+kC′C)
kC′Oπ2(0)+(kC′O+kC′C)π3(0) − 1. It can be seen that min(CV ) = 1, as in the two-state

channel above. So the charge of the channel is equally noisy as the two-state channel.
In the second example the open state can decay to the resting state and a desensitized

state, C ′.
C ↼ O ­ C ′

For this case, the mean charge is 〈Q(0)〉 = [π2(0) + π3(0)]/kOC and the charge noise constant
is γ = 2/kOC . The CV 2 = 2

π2(0)+π3(0) −1, which again is minimally one. Although we haven't
proven this, these results suggest that a minimal CV of one for channels with one open state.

Finally, we consider a multi-step shuto� channel. There are two open states, with identical
conductance

C ↼ O ↼ O′

In addition we assume that both transitions are equal kOC = kO′O = k. In analyzing this
scheme one �nds that the Markov matrix M can not be diagonalized if both transitions are
identical. We have ignored this case so far, as its treatment is standard, but somewhat tedious
(Greenberg, 1998). One can simply set the transition rates arbitrarily only to equate them in
the �nal formulae.

In this case the charge is the sum of an exponential and an alpha-function 〈Q(T )〉 =
1
k (2 + kT )e−kT , while 〈Q2(T )〉 = 6+2kT

2k+k2T
i0〈Q(T )〉. Importantly, the relation between 〈Q2(T )〉

and 〈Q(T )〉 now depends on time (Eq. 10 in the Appendix is violated). As a result the mean-
variance plot in noise analysis will not yield a parabola. This due to the fact that there are
two open states.

Interestingly, the CV 2 = 2π2(0)+6π3(0)
[π2(0)+2π3(0)]2

−1, which reaches a minimum of 1/2 for π2(0) = 0,
π3(0) = 1. Hence the multi-step shut-o� reduces the variability in the charge. For n open
states with identical rates, the charge will have a gamma-distribution with CV 2 = 1/n. A very
similar mechanism has been hypothesized to reduce response variations in the photo-receptor
(Field and Rieke, 2002).
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Figure 2: Current and charge �uctuations in a simulated dendrite with a single synapse at a varying location.
A) The average synaptic currents (top) and charge,

R∞
T

I(t)dt (bottom) for a synapse located 0, 250 and 500µm
from the voltage clamped soma. B) The variance versus mean relation of current (top) and charge (bottom)
for a synapse located 250µm from the soma. The cable �ltering distorts the parabolas (compare to Fig. 1).
The arrow denotes increasing time. The solid line in the bottom panel is the quadratic �t to the restricted
data. C) Normalized estimates of the unitary current and charge noise constant as a function of distance from
the soma. The charge-based analysis is less biased by cable �ltering.

Noise analysis of cable �ltered events

We now return to channels with one open state and the application to noise analysis. The
formulation of the noise in the charge rather than the noise in the currents has advantages
when performing noise analysis for synapses on the dendrite far away from the clamping site.
The rapidly changing synaptic currents are strongly �ltered by the cable, but the charge is
�ltered much less. This is shown in Fig. 2A where current and charge are plotted for synapses
located at di�erent positions along a dendrite. The peak current is much more attenuated by
the cable �ltering than the charge. The underlying reason is that the electrotonic length is
frequency dependent; high frequency signals, including transients are �ltered more strongly
than DC components (e.g. Koch, 1999).

We simulated a simpli�ed setup with one dendritic passive cable connected to a soma,
using the NeuronC simulator (Smith, 1992). Although this is a simpli�ed model, it is not
unrealistic as under certain conditions dendritic trees can be collapsed into a single equivalent
cable (e.g. Koch, 1999). The soma had a diameter of 10µm, the dendrite had a diameter
of 1µm and a length of 1000µm. The membrane resistance was 20kΩ/cm2 and the internal
resistance was 200Ωcm (electrotonic length at zero frequency was 707µm). An AMPA type
synapse was positioned at varying locations along the dendrite. The AMPA synapse was
modeled according to the 7-state diagram with a single open state provided in (Jonas et al.,
1993), but de-sensitization was turned o� to ensure stationarity (for details see AMPA type
5 in the NeuronC documentation). The synapse contained 50 channels with a conductance of
20pS each. The peak open probability was about 50%. At every synapse location 200 synaptic
events were simulated, while the soma was clamped at -70mV. As the synaptic currents were
rather small, the local voltage excursion was maximally 10mV above the clamping voltage.

As can be seen in Fig 2B, both the current (top) and charge (bottom) variance vs mean
curves are distorted due to the cable �ltering. For the charge, a supra-linear relation between
variance and mean appears near the origin (corresponding to long times T ). This will lead to
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Figure 3: Break down of noise analysis when multiple synapses are distributed along dendrite. The synapses
are asynchronously activated. A) Variance versus mean plots in one synapse is at the soma and the other
synapse is located 500µm away on the dendrite. Top graph: current, bottom graph: charge B) Normalized
estimates of the unitary current and charge noise constant versus the location of the second synapse, the �rst
synapse being at the soma. Only when the two synapses are close the estimate is reasonable, otherwise even
negative estimates can result.

a poor �t to the parabola. However, the concave parabola is still apparent for larger mean
currents. An ad hoc cut-o� restricting the �t above 30% of the maximal charge leads to a
good �t (solid line in bottom panel).

The results of the both noise analysis techniques are shown in Fig. 2C. For ease of com-
parison both are plotted relative to the estimate obtained when the synapse is located at
the soma. The unitary current is strongly underestimated away from the soma, because the
current noise is strongly �ltered and the reduced noise is interpreted as stemming from many,
small conductance channels. In contrast the estimated charge noise constant is much less
a�ected by the �ltering. Note, that both estimates �atten out at the end of the cable. This is
due to the sealed end at the end of the dendrite.

Pooling from synapses with di�erent locations
Finally we consider a situation with two synapses located at di�erent positions on the cell.

The synapses are assumed to be independently active so that compound events are negligible.
The charge based as well as the traditional current based analyses break down in this case.
This is illustrated in Fig.3, where one synapse was located at the soma and the location of
the other synapse was on the dendrite. Both variance versus mean plots in Fig.3A deviate
considerably from the ideal downwards curved parabola (cf. Fig.1). In Fig.3B, the location
of the second synapse was varied systematically, and the channel properties were estimated.
Only when the second synapse is close to the �rst one, the estimates are reasonable (Benke
et al., 2001). If the synapses are located further apart, negative estimates result, which are
clearly non-sense.

The reason for the failure is that both methods confuse the variations among the events
caused by di�erential �ltering, for �uctuations caused by stochastic channels. In this highly
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idealized case it might still be possible to separate the events based on their shape and carry
out the analysis on for each synapse individually. When recording from multiple synapses
distributed over the tree, that would be likely impossible.

Discussion

We have considered the open state of synaptic channels and derived expressions for its
mean open time and its �uctuations. For channels with a single open state, the variance of the
charge �uctuation is a quadratic function of the mean charge, characterized by the charge noise
constant γ. The result has a number of applications: First, it poses fundamental constraints
on the noise in neurons, as it calculates the charge noise given the channel's state diagram.
One can wonder if neural �ring is more a�ected by current noise or by charge noise. There is no
easy answer to this question, and the two noise sources are related. For instance, if the input
is much faster than the membrane time-constant, the membrane voltage is determined by the
charge in�ux, and the neuron has a charge threshold. But for a very slowly varying input,
the integrate-and-�re neuron has a current threshold. For the Hodgkin-Huxley model the
situation is even more complicated and follows an intermediate behavior, for a discussion see
(Koch, 1999). However, it should also be noted that simulations suggest that noise stemming
from the stochastic nature of synaptic channels is negligibly small, compared to for instance
probabilistic vesicle release which a�ects all channels in the synapse collectively (van Rossum
et al., 2003).

Secondly, the results can be used to extract fundamental synaptic parameters in a way
that is relatively insensitive to cable �ltering. It thereby overcomes some of the problems with
current based noise analysis, which is applied mostly to inhibitory synapses believed to be
close to the soma (e.g. Kilman et al., 2002). We note that current based noise analysis has
been further developed: Peak-scaled noise analysis of synaptic currents can be used to estimate
unitary currents when pooling from a population of synapses with di�erent N (Traynelis et al.,
1993; De Koninck and Mody, 1994). It is not obvious how the charge based noise analysis is
to be extended for this purpose.

Importantly, when synaptic events stemming from di�erent parts of the dendrite are
pooled, any noise analysis is likely to fail, because it will confuse deviations from the mean
due to noise with deviations due to the di�erential �ltering. We �nd that both the current
and the charge method break down. This means that the method is best applied to situations
in which always the same synapse is stimulated, e.g. using glutamate uncaging.

We note that in principle in our formalism it should be possible to calculate the exact
e�ect of cable �ltering on both current and charge �uctuations. This is outside of the scope
of this paper, but might eventually provide even better results and remove the reliance on the
somewhat arbitrary restriction in the charge �t.

Finally we note that our results have a much wider application beyond synaptic channels.
Any Markov process that is triggered by an external event and then decays back to the resting
state falls under this formalism. For instance, the transduction cascade in the photo-receptors
after absorption of a photon can be described this way, and analysis of the �uctuations have
been used to infer properties of the underlying transduction cascade (Field and Rieke, 2002).
Similarly, one can consider the activation of stochastic plasticity networks that are triggered
by brief Ca in�uxes (Hayer and Bhalla, 2005).
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Appendix: Charge �uctuations for arbitrary channels

Here we derive a general expression for the charge �uctuations, assuming that the channel
dynamics are described by a Markov process. The evolution of the states of the channel obeys
dπ(t)

dt = Mπ(t), where M is the Markov matrix (zero column sum), which is constructed from
the transition rates between states cij as Mij = cij − δij

∑
k ckj . For reviews with example

state diagrams, see e.g. Destexhe et al. (1998); Roth and van Rossum (2009). The probability
π(t) is the occupancy probability for each state, written as vector (we use boldface to denote
vectors and capital letters from matrices). Of particular relevance are the distribution right
after transmitter application, π(t = 0) and the equilibrium distribution π(t = ∞).

Each state has a certain current associated with it. This is denoted by the vector s, so
that the mean current through a single channel at any instant is given by i(t) = s.π(t), where
the dot stands for the dot product. Typically only one of the states will be an open state. So
for a 3-state channel with only the 3rd state conducting, s takes the form s = (0, 0, i0) and
i(t) = i0π3(t). However, the formalism presented here allows for state-diagrams in which there
are multiple open states, potentially with di�erent conductances.

Mean current and charge
We �rst calculate the mean current and charge through a single channel. The time evolu-

tion of the states is best described in the eigenspace of the transition matrix M . The matrix M
is diagonalized as V −1MV = diag(λ1,λ2, . . . λN ). The matrix V transforms from eigenvector
space to regular space; each column is an eigenvector of the M matrix 3. The Perron-Frobenius
theorems warrant that there is one zero eigenvalue, and the others are negative, although they
can be complex (e.g. van Kampen, 1992). Each eigenvector decays exponentially according to
its eigenvalue λi. The trick is to transform to the eigenspace, evolve the dynamics, and trans-
form back. That means that the occupancy at time t obeys π(t) = V D(eλt)V −1π(0), where
D(eλt) = diag(eλ1t, eλ2t, . . .) denotes a diagonal matrix with the exponentiated eigenvalues
eλit on the diagonal. From this the mean current at time t follows

〈I(t)〉 = s.π(t)
= s.V D(eλt)V −1π(0).

As one eigenvalue is zero, this means that the current is in general the sum of (S − 1) expo-
nentials, where S is the number of states. The mean charge follows as

〈Q(T )〉 =
∫ ∞

T
〈I(t)〉dt

= −s.V D

(
eλT

λ

)
V −1π(0). (7)

3In matlab it is the result of the command [V, λ] = eig(M), while Mathematica's 'EigenSystem[]' command
returns V T .
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where D
(

eλT

λ

)
= diag(eλ1T /λ1, e

λ2T /λ2, . . .).
An acute reader might have noticed that because the matrix M always has a zero eigen-

value, this expression might diverge. However, as long as the equilibrium state π(∞) does
not conduct, this divergence does not show up in the outcome of Eq. 7. For the numerical
calculation one can replace the zero eigenvalue by an arbitrary number; its value should not
matter.

Variance in current and charge
The variance of the charge can be written as 〈Q2(T )〉 = 〈∫∞T dt

∫∞
T dt′ I(t)I(t′)〉. Thus

we need to know 〈I(t)I(t′)〉, which is again calculated by using the evolution in eigenspace.
Assuming t′ > t,

〈I(t)I(t′)〉 =
∑

ij

sjP (j, t′|i, t)siπi(t)

= s.V D(eλ(t′−t))V −1D(s) π(t)
= s.V D(eλ(t′−t))V −1D(s) V D(eλt)V −1π(0),

where D(s) = diag(s0, s1, . . .). Note that the time-dependent variance of the current follows
from this expression as

〈δI(t)2〉 = sD(s).π(t)− [s.π(t)]2. (8)
If there is just one open state s = (0, 0, . . . , i0, . . . 0) with an associated probability p(t), we
retrieve the well-known binomial variance 〈δI(t)2〉 = i20 p(t)[1−p(t)] of a single channel derived
above.

Continuing with the calculation of the variance of the charge, the second moment of the
charge is given by

〈Q2(T )〉 = 2
∫ ∞

T
dt

∫ ∞

t
dt′〈I(t)I(t′)〉

= 2s.V D(1/λ)V −1D(s) V D(eλT /λ)V −1π(0), (9)

from which the variance follows as 〈δQ2(T )〉 = 〈Q2(T )〉 − 〈Q(T )〉2, and for N channels
〈δQ2(T )〉 = 〈Q2(T )〉 − 1

N 〈Q(T )〉2. Eq.(9) is the main result of this section. Analytic results
for channels with 4 or more states becomes quickly unwieldy, however despite the complicated
appearance, numerical evaluation is straightforward.

Channels with a single open state
If there is one open state, the calculation simpli�es considerably. Suppose that only state

m conducts, si = i0δi,m. Now from Eq.(9),

〈Q2(T )〉 = γ〈Q(T )〉, (10)

with the constant γ = 2i0[V D(1/λ)V −1]mm, where [A]mm indicates the matrix element Am,m.
The constant γ is completely determined by the kinetics of the channel and is independent

of the initial state of the channel, i.e. the value of π(0). Furthermore, because this constant is
also independent of time, the variance vs. mean relation will have the quadratic form. The γ
has the dimension of charge, and we call it the charge noise constant. For the simple two-state
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channel above one has γ = q0. However, in general, the charge noise constant is not equal to
q0. This is where the charge noise di�ers from current noise; for currents the linear term in
the parabola, Eq.(2), equals the unitary current independent of kinetics.

For N channels we �nd
〈
δQ2(T )

〉
= γ〈Q(T )〉 − 1

N
〈Q(T )〉2.

Independent of the channel's kinetic scheme, the number of channels can be extracted from
the quadratic term.

If more than one state is conducting the simpli�cation does not hold and variance-mean
data will in generally not fall on a parabola. Note that in that case, also the current based
noise analysis Eq. (2) breaks down, and instead Eq.(8) should be used.

Computer code
The computer code for both the simulation and the analysis is available on homepages.

inf.ed.ac.uk/mvanross/code.
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