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Abstract 

The use of data-driven modelling techniques to deliver improved suspended sediment rating 

curves has received considerable interest in recent years. Studies indicate an increased level 

of performance over traditional approaches when such techniques are adopted. However, 

closer scrutiny reveals that, unlike their traditional counterparts, data-driven solutions 

commonly include lagged sediment data as model inputs and this seriously limits their 

operational application. In this paper we argue the need for a greater degree of operational 

reasoning underpinning data-driven rating curve solutions and demonstrate how incorrect 

conclusions about the performance of a data-driven modelling technique can be reached when 

the model solution is based upon operationally-invalid input combinations. We exemplify the 

problem through the re-analysis and augmentation of a recent and typical published study 

which uses gene expression programming to model the rating curve. We compare and 

contrast the previously-published, solutions, whose inputs negate their operational application, 

with a range of newly developed and directly comparable traditional and data-driven 

solutions which do have operational value. Results clearly demonstrate that the performance 

benefits of the published gene expression programming solutions are dependent on the 

inclusion of operationally-limiting, lagged data inputs. Indeed, when operationally-

inapplicable input combinations are discounted from the models, and the analysis is repeated, 

gene expression programming fails to perform as well as many simpler, more standard 

multiple linear regression, piecewise linear regression and neural network counterparts. The 

potential for overstatement of the benefits of the data-driven paradigm in rating curve studies 

is thus highlighted. 

Keywords 

Suspended sediment; data-driven; rating curve; modeling; operational validity
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1. INTRODUCTION 

In this paper, we highlight arguments surrounding the operational applicability of data-driven 

discharge / suspended sediment rating curve solutions that use lagged data as inputs.  This is 

an issue that has received no comprehensive attention despite more than 10-years of data-

driven, suspended sediment modelling research activities.  Moreover, it is a highly significant 

issue as the development of any model that cannot actually be used inevitably raises 

questions about the value of the modelling that is being done and the approaches that are 

being used to do it. We define the operational applicability of a data-driven solution simply as 

the extent to which its input and parameter requirements limit its application with regard to 

common operational tasks; a definition which is distinct from a solution’s functional 

performance (i.e. a poorly performing solution may be operationally-applicable, whereas a 

better performing solution is not). Indeed, this definition conforms to others which emphasise 

the need for solutions rather than the search for hydrological knowledge per se (Wilby and 

Davies, 1997; p. 195). In this study we repeat and augment the analysis of a typical, recently-

published data-driven rating curve problem and, in so doing, exemplify how solutions that 

have no operationally application, may nonetheless be evaluated as offering better functional 

performance than their operationally-applicable counterparts. This can result in an over-

statement of the data-driven paradigm’s ability to provide better solutions to end-users. To 

this end we replicate the basic modelling methodology of Aytek and Kisi (2008), who 

develop a set of data-driven rating curve solutions for  the Tongue River, USA and augment 

this with a range of new, operationally-applicable solutions for comparison. By repeating 

previously published methods we include certain methodological weaknesses that we identify 

in the original work, and which are highlighted at appropriate points in the text. However, 

these inclusions are justified by the comparative nature of the study which requires the exact 

re-application of the original methodological approach if the new, additional solutions are to 

be adequately compared to the originals. The aim of this study is, therefore, not to develop a 

comprehensive critique or reanalysis of the original modelling methodology, but to re-apply 

it so that an illustrative case study emerges, which demonstrates the importance of including 

both functional performance assessment and a higher-level rationale of the operational 

application of data-driven rating curves solutions. This paper is the third in a series by the 

authors that critically evaluates different aspects of data-driven methodologies used in 

suspended sediment modelling. In Mount and Abrahart (2011a), we examine how data-series 

should be delivered to the modelling process (i.e. as concentration or load / logged or 
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unlogged) and the impact that decision has on the form and consistency of outputs. In 

Abrahart et al. (2011) we examine how contextual hydrological and dataset knowledge can be 

incorporated into the process of developing and selecting data-driven suspended sediment 

models and call for an end to blind model justification on the sole basis of goodness-of-fit 

metrics. 

In recent years, practical opportunities for the implementation of data-driven modelling 

mechanisms has caught the attention of the hydrological modelling community and this has 

included efforts to develop superior discharge / sediment rating curve solutions. The use of a 

data-driven model (DDM) in this way has been described as advanced curve fitting, in which 

the form of the response function is unrestricted by the a priori constraints imposed in 

conventional, empirical models (Mount and Abrahart, 2011a). Satisfactory combinations of 

simplicity and predictive power in both single-input single-output (SISO) and multi input-

single output (MISO) versions have been reported (c.f. Kisi, 2005; Zhu et al. 2007). The 

value of such models in suspended sediment forecasting and hindcasting has long been 

recognised as most catchments lack the comprehensive suspended sediment monitoring 

equipment from which to quantify suspended sediment directly. Consequently discharge-

driven rating curves are often used as operational tools for estimating short and long-term 

suspended sediment yield in catchments and for interpolating missing values in suspended 

sediment records (e.g. Stott and Mount, 2007). However, the risks associated with their use, 

especially for estimating high-magnitude / low frequency data, should not be underestimated 

(Walling, 1977; Walling and Webb, 1988). 

In the data-driven paradigm, one or more input data sets that are presumed useful predictors 

of suspended sediment, are interrogated using machine learning and artificial intelligence 

algorithms with the optimal form of the response function being learned directly from 

patterns and structures that are present the data sets. A comprehensive review of data driven 

approaches in hydrology can be found in Solomatine et al., (2008). The standard conceptual 

and practical modelling processes used by data-driven modellers is shown in Figure 1, with 

an ordered set of more abstract, reasoning elements informing the practical workflow of the 

modeller. Conceptual reasoning is undertaken to formulate the overall concept and goal of the 

modelling activity (e.g. process knowledge discovery versus curve fitting) and to determine 

the appropriateness of a data-driven versus knowledge-driven approach (Dubois et al., 2000). 

It also determines the extent to which evidence of causal hydrological relationships should be 
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captured in the suspended sediment model’s response function and predictor set selections  

and, therefore, the conceptual set of predictive drivers for which data will be required.  

Procedural reasoning informs the decisions governing data set acquisition and any processing 

procedures applied to optimise the model’s predictive power and robustness. In a practical 

sense it guides how each predictor is objectified as a concrete data set that can be delivered to 

the model as an input. This includes any raw data manipulations and transformations applied 

to improve the model’s predictive power or robustness, such as temporal lagging (Ciğizoğlu 

(2002); Ciğizoğlu and Kisi (2006); Aytek and Kisi (2008); Partal and Ciğizoğlu (2008); 

Cobaner et al. (2009); and Kisi (2009)), log-transformation (Mount and Abrahart, 2011a; Alp 

and Ciğizoğlu, 2007) and unit conversion to remove spurious correlation (McBean and Al 

Nasri, 1988; Annadale, 1990; Nordin, 1990; Wahl, 1990; Milhous, 1990; McBean and Al 

Nasri, 1990 a,b;). Functional reasoning directs the modeller’s identification of an optimal 

data-driven modelling algorithm or technique, and/or the identification and selection of the 

optimum combination of input data sets delivered to it. In practice the approaches tend to be 

rather ad hoc and partial in scope. The array of possible input combinations are seldom 

modelled exhaustively, and preferred algorithms and/or input combinations are usually 

identified through reference to one or more goodness-of-fit metrics. 

Parallels can be drawn between the reasoning elements of data-driven suspended sediment 

models detailed in Figure 1, and many of those underpinning physically-based hydrological 

models. However, at present the reasoning used to inform the development of DDMs is too 

heavily biased towards functional elements. Indeed, papers assessing the relative performance 

of different data-driven algorithms, techniques and model configurations under different 

modelling scenarios are far more numerous than those which examine the influence that the 

modeller’s reasoning processes may be having on the usefulness or correctness of their 

assessments, or the physical interpretation of their results – issues that have received far more 

attention from physically-based modellers (c.f. Beven, 1989). As a consequence, a number of 

key criticisms of the data-driven paradigm applied to suspended sediment modelling remain 

largely unaddressed including a general: 

1. lack of justification for the model configuration and response function structures used 

(Minns and Hall, 1996; Babovic, 2005; Solomatine et al., 2008); 
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2. lack of established procedures to ensure robust model configurations and outputs 

(Mount and Abrahart, 2011a; Abrahart et al., 2008a); 

3. lack of justification for using more complex, data-driven response functions over 

simpler empirical counterparts (Mount and Abrahart, 2011b) 

4. over-reliance on simplistic, goodness-of-fit metrics in the identification of preferred 

models (Legates and McCabe, 1999).  

5. lack of operational applications for the model i.e. can the resultant model actually be 

applied for an operational purpose? (Abrahart et al., 2008b; Abrahart and Mount, 

2011).  

The last of these is particularly important as, without a justification of its operational 

applicability, the practical value of a model becomes unclear and the conceptual reasoning 

underpinning the modelling goal becomes open to question. The problem is well exemplified 

by the publication of numerous suspended sediment studies in which the ‘best’ model input 

configuration incorporates current discharge together with some mix of lagged discharge and 

lagged sediment records e.g. Ciğizoğlu (2002); Ciğizoğlu and Kisi (2006); Aytek and Kisi 

(2008); Partal and Ciğizoğlu (2008); Cobaner et al. (2009); and Kisi (2009a).  

The widespread use of lagged sediment as a predictor has, to date, been supported by 

functional reasoning, which asserts that DDMs produce better goodness-of-fit metrics if such 

inputs are used (e.g. Kisi, 2005; Aytek and Kisi, 2008). However, it is important to recognise 

that the use of past sediment records as an input to the modelling process not only reduces the 

problem to something approaching a near-linear modelling operation (in which case the need 

for using a DDM becomes questionable anyway), but it also makes little operational sense. 

This is because a full set of observed measurements of suspended sediment is needed as an 

input to the model for the period being modelled minus the lag. Consequently, there would be 

no need to model the suspended sediment record as it would already, by definition, be known 

at least up until the period of the lag. Similarly, extrapolation of suspended sediment outputs 

beyond the period for which suspended sediment values are known is not supported. Indeed, 

problems even remain if the prediction of sediment response is made only within the period 

of the lag. This is because the standard inclusion of current discharge input means that the 

related sediment response would have happened before it could be modelled – negating the 

value of the prediction. Finally, model solutions cannot be transferred to similar rivers, or to 
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different periods, if no observed suspended sediment records are available for use as inputs to 

the sediment prediction model. The supposed advantages of both implicit and explicit DDMs 

are thus negated on several counts since the resultant models and/or equations are restricted 

to the original stations for which sediment data must be collected and transferring unique 

solutions to different reaches or catchments makes neither conceptual nor operational sense.  

Given the importance of such issues, the explicit inclusion of an operational reasoning 

element to inform the modeller about how a particular data-driven model configuration may 

restrict its operational value would appear essential. To this end, Figure 1 can be amended so 

that operational reasoning is explicitly included (Figure 2), and model input configurations 

which result in models of little operational value can be identified and rejected prior to any 

functional efforts to identify ‘best’ or ‘preferred’ models. 

In this paper, we demonstrate how incorrect conclusions about the performance of a data-

driven modelling technique can be reached when the model solution is based upon 

operationally-invalid input combinations. This is achieved through a re-appraisal of two gene 

expression programming (GEP) models developed for the Tongue River, USA, originally 

published by Aytek and Kisi (2008). Each model, developed on operationally-invalid input 

combinations, is compared to a range of new GEP solutions, developed in an identical 

manner to the original, but with only operationally-valid inputs included. In addition we 

develop a range of new, operationally-valid linear and non-linear model counterparts against 

which the performance of both GEP solutions can be assessed. Consequently, using the 

context of the Tongue River, this paper examines: 

1. the impact of removing operationally-invalid input combinations on the explicit outputs 

and goodness-of-fit metrics obtained by the GEP technique and;  

2. the extent to which the GEP maintains its functional advantages over other, increasingly 

sophisticated modelling approaches when operationally-invalid model configurations are 

excluded from the analysis. 

The paper progresses with a review of the Tongue River data sets, a re-examination of the 

input combinations used by Aytek and Kisi (2008) and identification of those combinations 

that lack operational application. We then repeat Aytek and Kisi’s original analysis using 

only the input combinations deemed to be of operational value. The results from the original 

work and those obtained from the re-analysis are then compared and the impact of rejecting 
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the operationally-invalid input combinations is highlighted. Finally, we compare the results 

obtained from the re-analysed GEP approach and those obtained from sediment rating curve, 

linear regression and non-linear neural network counterparts. 

2. THE TONGUE RIVER: STUDY AREA AND DATA  

 

2.1. Overview 

 

The Tongue River data set has been a focus of several recent papers examining data-driven 

modelling approaches in hydrology (Kisi, 2004; Aytek and Kisi, 2008; Guven and Kisi, 

2010). Of particular importance to this study is the paper by Aytek and Kisi (2008) in which 

an explicit formulation of the sediment-discharge relationship in the Tongue River is 

developed using GEP. The Tongue River watershed encompasses some 13,983 km2 of 

Wyoming and Montana (Figure 3). This river is a tributary of the Yellowstone River, it rises 

in the Big Horn Mountains of Wyoming, flows through northern Wyoming and southeastern 

Montana, and then empties into the Yellowstone River at Miles City, Montana. The river is 

396 km long and the watershed is for the most part rural. From elevations of 2,400–3,000 m, 

it drops to low, rugged mountains and badlands. Below the mountains the stream runs 

through a long, narrow valley confined by high bluffs and terraces. HydroSolutions Inc. 

(2008) report that streamflow is driven by precipitation, although the relationship is complex. 

Variations in the pattern and timing of precipitation over the basin, and lag time between 

snowfall and snowmelt, are some of the complicating factors. The river is fed by winter snow 

pack from the higher elevations of the Big Horn Mountains, by early snow runoff in the 

lower elevations of the drainage basin, and by ground water springs. The river rises in March 

and April due to snowmelt in the lower elevations, and again in June as summer weather 

melts the higher elevation snow pack. In the plains region, with elevations from 900 m to 

1800 m above mean sea level, annual average precipitation ranges from 250 to 350 mm, and 

rainfall is the more dominant form. Average monthly precipitation is greatest from April 

through September, and maximum temperatures occur in July, while minimum values occur 

in January. About 75 percent of the annual precipitation falls as rain during the April-

September growing season. May and June are usually the wettest months of the year.  

 

In accordance with standard rating curve approaches, two datasets were used in Aytek and 

Kisi (2008). They comprise daily time series of streamflow (Q in m3s-1) and suspended 
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sediment (S in ton day-1) records for an upstream station (UPST: Station No: 6307830, 

situated below Brandenberg Bridge near Ashland) and a downstream station (DNST: Station 

No: 6308500 at Miles City) on the Tongue River, in Montana, USA. The reported upstream 

drainage area for UPST is 10,521 km2; for DNST it is 13,932 km2. 

 

2.2. Data subsets for model training and testing 

 

In the subsequent analyses we replicate the data acquisition, processing and sub-setting 

procedures outlined in Aytek and Kisi (2008). Every available record for the two test stations 

was downloaded from the US Geological Survey (USGS) web server 

(http://webserver.cr.usgs.gov/sediment) on 01 April 2011. The full set of downloaded 

material comprised daily records for 1 October 1975 - 30 September 1981 at UPST and for 

31 August 1977 - 4 December 1985 at DNST. Modelling was performed on a common 

overlapping subset of the full available record: a 3-water-year period that spanned 1st 

October 1977 – 30th September 1980 (SET A) that was used for model development / 

training purposes; and a 1-water-year model testing period that spanned 1st October 1980 – 

30th September 1981 (SET B) that was used from model testing. The record for 31 August 

1977 was also used in the modelling processes to fill a missing record at t-1 for 1 September 

1977.  

 

Time series plots and scatterplots for the UPST and DNST split sample datasets are provided 

in Figure 4.  

 

The statistical parameters of daily stream flow and daily sediment for both stations are given 

in Table 1. The discharge and suspended sediment load dataset for both stations, particularly 

for the training datasets (SET B), is observed to be highly variable, highly peaked and highly 

skewed. Large magnitudinal differences in sediment, but not in discharge, are observed to 

exist between the two gauging stations. Such differences reflect their relative positions in the 

catchment with regard to contributing sources. Large magnitudinal differences also exist 

between SET A (training data) and SET B (testing data) at each station such that final model 

assessment is performed on what equates to a minor, limited and somewhat unrepresentative 

fraction of a larger set of processes appertaining to that region. The largest events are part of 

the development period, thus sidestepping the need to perform difficult extrapolation tasks 
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for peak sediment loads during testing, but also increasing the probability of overestimating 

low(er) sediment values. Similarly, the smallest magnitude events are unevenly distributed 

amongst the development and testing datasets. The minimum values for SET A at DNST are 

higher than those of its corresponding testing dataset, which could cause downward 

extrapolation difficulties in estimating lower sediment values.  

 

Figure 4 identifies a number of important outliers in the dataset, arising from some common 

set of non-linear processes that a DDM might be expected to encapsulate, and that should not 

simply be interpreted as measurement or sampling oddities.. These extreme values have their 

origins in snowmelt processes that are unlikely to be captured by a data-driven model trained 

on relatively short data records and which do not include local climatic and/or meteorological 

predictors. Indeed, Figure 4 shows low flow conditions, interrupted in March and April by 

lower elevation snowmelt, and again in June by higher elevation snowmelt. This produces 

high discharges, sediment flushing and probable large clockwise hysteresis loops. The result 

is that at DNST, two observed suspended sediment load values exceed 80,000 ton day-1, 

whilst the remaining sediment values are below 50,000 ton day-1. Similarly, at UPST, one 

observed suspended sediment load value exceeds 27,000 ton day-1, whilst the other values are 

below 20,000 ton day-1.  

 

Table 2, which provides a cross correlation matrix for SET A and SET B, also reveals 

potential problems. Higher correlation coefficients for all variable pairs are reported in SET B, 

in comparison to SET A, and this is likely to lead to artificially high testing scores. Moreover, 

the highest correlation against S is St-1; and the correlation between S and St-1 is much 

higher for SET B, compared to SET A. Consequently there is a danger that autocorrelation in 

the predicted dataset, is confused with causation, resulting in poorly constructed arguments 

for the inclusion of past sediment inputs as drivers.  

 

3. MODEL INPUT CONFIGURATION SELECTIONS 

In Aytek and Kisi’s original paper, models are developed on seven input combinations  

comprising Qt, Qt-1, St-1 and St-2 (Table 3), although the remaining 8 input combinations 

that are theoretically possible are not included in the analysis and a justification for their lack 

of inclusion is not provided. Thus conclusions drawn in the study should not be generalised 

but considered as observations, specific only to, and valid in, the particular cases which are 
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listed (Aksoy et al., 2007). When operational reasoning is applied, and the use of lagged 

suspended sediment inputs is thus discounted, the candidate input set is reduced to Qt and Qt-

1, resulting in only three possible input combinations: [Qt]; [Qt-1]; [Qt, Qt-1]. The first 

combination equates to concurrent input-output modelling in a similar manner to that of a 

traditional sediment rating curve approach. The second is, in effect, a lagged version of the 

traditional rating curve and, therefore, one would not expect its performance to exceed that of 

Qt. Consequently, we have discounted its use in this study; again on grounds of operational 

reasoning (the operational value of an inferior model configuration is difficult to justify). The 

third combination was not considered in the original paper despite its clear potential for 

improved modelling where complex hysteresis may exist in the record. Consequently, we do 

include it in our subsequent analyses. 

 

4. TONGUE RIVER RE-ANALYSIS:  MODELLING APPROACHES 

 

In their original paper, Aytek and Kisi (2008) conclude that “the results obtained with GEP 

models are better than those obtained using the conventional rating curve and multiple linear 

regression techniques”. They also assert that “the results suggest that GEP may provide a 

superior alternative to the sediment rating curve and multiple linear regression techniques” 

(p. 297). Similar conclusions remain in more recent studies (c.f. Guven and Kisi, 2010). 

However, these conclusions are based on comparisons between rating curve and regression 

solutions and the best performing GEP solution, which is developed on operationally-

inapplicable input combinations (i.e. [Qt, Qt-1, St-1]).  Consequently, there is a need to assess 

the relative performance of GEP solutions developed on operationally-applicable input 

combinations with i) Aytek and Kisi’s best performing GEP solution and ii) other 

operationally-applicable linear and non-linear solutions.  

 

To that end, Aytek and Kisi’s preferred GEP solutions (Figures 3 and 5 and Equations 7 and 

14 from the original paper), which were developed using inputs [Qt, Qt-1, St-1] were; 

1.  re-modelled with two new GEP solutions developed on inputs [Qt] and [Qt, Qt-1], 

using the same basic methodology and settings used by Aytek and Kisi (2008); 

3. re-modelled with three additional statistical and data-driven approaches that 

provide a range of linear and non-linear counterparts against which the relative 

performance of the GEP solutions can be assessed.  

Page 11 of 45

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12 

 

 

The modelling approaches are detailed below. Models developed on one input are labelled 1 

[Qt]; models developed on two inputs are labelled 2 [Qt, Qt-1].  

 

3.1. Symbolic regression gene expression programming approach 

 

GEP solutions for UPST and DNST were developed in GeneXproTools 4.0 (Ferreira, 2001; 

2006; http://www.gepsoft.com/). For each station two different models were produced, 

providing St output on inputs [Qt] and [Qt, Qt-1]. Wherever possible parameter settings used 

by Aytek and Kisi (2008) were replicated and, unless their methods indicated otherwise, 

default settings were adopted. However, some apparent inconsistencies in the methodological 

descriptions in their paper meant that some minor assumptions had to be made. Specifically, 

the original paper (p.290) reported that the function set used contained four basic arithmetic 

operators (+, -, *, /) and six basic mathematical functions (√, ln(x), log(x), ex, 10x, power) — 

yet their final models, inter alia, contained abs(), x2 and 3√ functions. Similarly, the original 

paper (p.290) reported that the fitness function used was 'Absolute Error With Selection 

Range' (AESR) — yet mean absolute error is subsequently reported as the fitness function on 

p. 291. Since neither issue could be resolved from the original paper, our method follows 

what is documented in the methodology on p.290 of Aytek and Kisi’s paper. It should be 

noted that Aytek and Kisi’s choice of the fitness function settings (SR =100, p =0.1) is of 

importance because major events that deliver large errors on specific models could fall 

outside the selection range (SR) and would therefore be treated as outliers and excluded from 

the fitness landscape that is used to evolve the solutions. Consequently, snow melt instances 

are not likely to be properly accommodated during the modelling process. Finally, no 

'stopping condition' was reported in the original paper, so we opted to stop at 10,000 

generations. Our settings are listed in Table 4. 

3.2. Sediment rating curve counterpart 

 

Aytek and Kisi (2008) provide a bias-corrected (Ferguson, 1986) single-input single-output 

sediment rating curve solution (e.g. Asselman, 2000) as a benchmark comparison for their 

transparent GEP solutions. We include this counterpart in our analysis, accepting that it 

represents an important baseline comparator against which the potential benefits of more 

complex, data-driven models should be assessed. The rating curve comprises a bias corrected, 
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linear least squares regression model of log St on log Qt, depicted in the manner of a power 

function. The equation is provided in (1) below: 

 

SRC = a . CF . Qb  

(1) 

 

For UPST a = 0.4296, b = 2.1022, CF = 1.389 

For DNST a = 0.7066, b = 2.0589, CF = 1.496  

 

3.3. Linear regression counterparts 

 

Linear models (Raghuwanshi et al., 2006) should be used as benchmarks against which non-

linear data-driven modelling methodologies are tested in order to establish the extent to 

which the numerical relationship that is presented for modelling is linear or near-linear. 

Without such comparators it is impossible to properly justify the need for the application of 

more complex modeling methodologies, irrespective of theoretical arguments about the 

established nature of the underlying scientific process that is of interest (Abrahart and See, 

2007a; 2007b). Therefore, linear modelling solutions should always be used to (i) test the 

numerical strength of empirical relationships in each dataset and (ii) identify the nature and 

extent of residual non-linearities that necessitate the adoption of a different sort of additional 

model to represent such factors (Curry and Morgan, 2003).  

 

For each station, as a baseline linear comparator, ordinary least squares linear regression 

(OLS) models were developed. Two different models were produced, providing St output on 

inputs [Qt] and [Qt, Qt-1], named OLS1 and OLS2 respectively. Equation parameters for the 

OLS regression counterparts are provided in Table 5.  

 

In the present study the 'Waikato Environment for Knowledge Analysis' Data Mining Toolkit 

v3.6 (WEKA: Witten and Frank, 2005) was used to derive M5 Model Tree (M5MT) 

piecewise linear regression predictions of St on inputs [Qt] and [Qt, Qt-1], termed M5MT1 

and M5MT2. The M5MT algorithm Quinlan (1992) splits the input data into non-intersecting 

regions and thereafter fits a linear regression model to each of the data subsets. The size of 

the regions progressively narrows, producing increasingly complex piecewise models. 
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Exhaustive search is used to examine all possible splits, to select the one that delivers 

maximum reduction in the standard deviation of the resulting models, and the splitting 

process terminates when no significant variation in the result is achieved via further splitting. 

M5MT has been used to predict harbour basin sedimentation in the Port of Rotterdam 

(Bhattacharya and Solomatine, 2006); to model bed-load and total-load sediment transport in 

alluvial channels (Bhattacharya et al., 2007); and for modelling suspended sediment load in 

rivers (Janga Reddy and Ghimire, 2009). Upstream M5MT solution parameters are presented 

in Table 6, with downstream solution parameters given in Table 7. 

 

3.4. Non-linear neural network counterparts 

 

Numerous different types of neural network (NN) exist with feedforward solutions, that are 

trained using the back propagation of error algorithm, providing one of the most widely used 

data-driven approaches in hydrological modelling. These include applications for sediment 

yield estimation (Abrahart and White, 2001). They therefore represent an established non-

linear modelling benchmark against which more novel approaches can be compared.  

NN models producing St output on inputs [Qt] and [Qt, Qt-1], named NN1 and NN2, were 

developed for each station using an in-house program, written in Pascal, that has delivered 

sound performance on a number of previous occasions using similar settings e.g. Dawson et 

al. (2002, 2006). Ten different architectures were used to model each station: each setup 

comprising 1:{1,5}:1 and 2:{1,5}:1 configurations, in which the number of hidden units {1,5} 

used in a particular model is indicated by means of brackets e.g. NN1(1). In all cases, prior to 

modelling, each dataset was standardised in a linear manner to a common range {0.1-0.9}. 

Each network configuration was thereafter trained using the traditional 'back-propagation of 

error with momentum' algorithm. The algorithm parameters (objective function = sum 

squared error; learning rate = 0.1; momentum factor = 0.9; number of epochs = 20,000) are 

commensurate with the relatively simple NN architecture being used in this paper. Each 

model was assessed on root mean squared error for the training and testing datasets at 1000 

epoch intervals such that a preferred solution could be selected. These configurations mirror 

those adopted in other hydrological modelling tasks of similar scope and scale. 

 

5. EVALUATION METRICS 

 

Page 14 of 45

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15 

 

 

It is standard practice to assess the relative performance of a given model via reference to one 

or more quantitative evaluation metrics. However, the selection and use of these statistics is 

often problematic and it is sometimes difficult for readers or users to interpret how well a 

particular model reproduces the observed dataset or how well a model compares with other 

models (American Society of Civil Engineers, 1993; Legates and McCabe, 1999). To provide 

a transparent comparison with past modelling efforts, this paper includes identical metrics to 

Aytek and Kisi (2008) – namely root mean square error (RMSE) and R-squared (RSqr). 

These two metrics are strongly influenced by a model’s replication of lower frequency, 

medium and high magnitude events in the data. Although these comprise a relatively small 

proportion of the observations in the data set, they are arguably some of the most important 

events in an operational context as they may be responsible for delivering much of the 

sediment yield of a catchment. All evaluation statistics were generated using HydroTest 

(http://www.hydrotest.org.uk): a standardised, open access web site that performs the 

required numerical calculations (Dawson et al., 2007; 2010). This service supports a broad 

spectrum of quantitative tests and provides descriptive statistics for the comparison of 

observed and predicted datasets. It also documents the underlying equations upon which the 

calculations are based.  

 

6. COMPARISON OF GEP SOLUTIONS 

 

One of the key benefits of GEP is the production of an explicit set of tree diagrams which 

provide an explicit documentation of the model solution. These can then be used to re-apply 

the solution to other data, or can be used as the basis for comparison to other GEP solutions. 

Gene expression tree diagrams for Aytek and Kisi’s (2008) UPST solution, together with 

those for UPST-GEP1 and UPST-GEP2 are presented in Figure 5. Observed versus predicted 

plots for training and testing periods for each sub expression, together with the combined 

response function, are presented in Figures 6 and 7. By plotting individual sub expressions, it 

becomes possible to identify the importance of the contribution that each makes to the 

combined response function. Moreover, as not all inputs are necessarily utilised in each sub 

expression (for example see Aytek and Kisi Sub-ET 1 where lagged sediment is not included) 

it becomes possible to determine whether all inputs are implicated as main drivers of the 

combined response function.  
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The patterns presented in Figures 6 and 7 demonstrate that for all GEP solutions one 

dominant sub expression comprises the majority of the combined response function, with the 

other two sub functions providing small, local adjustments. In the case of Aytek and Kisi’s 

solution, Sub-ET 3 is the dominant sub function and models the global trend in the data, 

particularly at the lower data ranges. The non-dominant expression tree Sub-ET 2 can be seen 

to have little influence on lower-range data, but particular influence on the upper-range data 

where it acts to increase their values. Sub-ET 1 displays a similar pattern to Sub-ET 2, but in 

a much subdued manner. Importantly, both Sub-ET 3 and Sub ET 2 include St-1 as an input 

and, in so doing, lagged sediment is implicated as an important driver of their solution; 

particularly for modelling upper-range data. In the case of GEP1 and GEP2 Sub-ET 1 acts as 

the dominant sub function with the other two providing negligible input – suggesting that 

three sub expression trees in solutions based solely on Qt and Qt-1 is unnecessarily complex.  

The inclusion of Qt-1 in Sub-ET 1 of GEP2 indicates that, when made available, lagged 

discharge is selected as an important driver of the model.  

 

The solutions for the DNST gauge (Figures 8-10) follow a similar basic pattern to those for 

UPST, with a single sub expression capturing much of the global trend in the data and, in so 

doing, comprising the majority of the combined response function in all solutions. Again, 

lagged sediment is included as an input to the dominant sub expression of Aytek and Kisi’s 

solution and to Sub-ET 2, both of which act to increase the two highest data points. Sub-ET 1 

contributes little to Aytek and Kisi’s combined response function; again indicating that the 

use of three sub expressions is more complex than the modelling problem demands. GEP1 

and GEP2 are seen to perform comparatively poorly, especially in their ability to model the 

two high magnitude data points. As in the UPST models, a single sub-expression tree is 

responsible for almost all of the response function.  

 

Evaluation metrics for the models are presented in Table 8. The explicit solutions published 

by Aytek and Kisi (2008) make it possible to compute the full range of evaluation metrics, 

for both SET A and SET B data, despite the fact that only SET B results are reported in the 

original paper. In all cases, Aytek and Kisi’s solution outperforms GEP1 and GEP2. The 

inclusion of Qt-1 in GEP2 is seen to enhance its performance compared to GEP1, but without 
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the inclusion of a lagged sediment input, the evaluation metrics for GEP1 or GEP2 fail to 

equate to those of Aytek and Kisi’s solution by a substantial margin.  

 

The expression tree plots highlight the critical importance of lagged sediment in adequately 

modelling high magnitude instantaneous suspended sediment values. This is reflected 

strongly in the evaluation metrics which are particularly influenced by the effectiveness with 

which upper-range data are modeled. Both RMSE and RSqr values indicate Aytek and Kisi’s 

lagged suspended sediment model as performing consistently, and considerably better, 

especially in upper-range data. However, when operational reasoning is incorporated, and 

lagged suspended sediment is rejected as an  input, the ability of GEP to model suspended 

sediment is seen to be significantly limited, with RMSE and RSqr statistics reduced. This 

therefore raises the important question of whether GEP maintains its performance advantage 

under such a scenario; a question which is addressed through the subsequent comparison of 

GEP1 and GEP2 solutions against a range of linear and non-linear counterparts. 

 

7. COMPARISON OF GEP AND COUNTERPART SOLUTIONS 

 

Comparison of GEP1 and GEP2 solutions to: i) SRC, ii) linear counterparts, and iii) non-

linear counterparts are presented in Tables 9, 10 and 11-12 respectively. Comparisons 

between GEP1, GEP2 and SRC indicate mixed results (Table 9). Metrics for the UPST gauge 

indicate GEP2 offers a generally better solution than either GEP1 or SRC, with it resulting in 

the best metric scores for all but SET B RMSE. Scores from the more complex SET A data 

highlight significant improvement in RMSE when GEP solutions are applied, irrespective of 

whether Qt-1 is included as an input; whilst RSqr scores are roughly comparable across the 

models. This improvement in RMSE is, however, not observed in the SET B data and there is 

relatively little difference between GEP1, GEP2 and SRC scores. This is probably a result of 

SET B lacking the outliers evident in SET A, which are likely to be influencing the RMSE 

values.  At the DNST gauge GEP performs slightly less well than SRC for both SET A and 

SET B data, with the inclusion of lagged discharge in GEP2 worsening the metric scores. 

Given the simplicity of an SRC model over GEP, these results indicate that for operationally-

applicable models, the functional performance benefits of GEP over SRC solutions are 

difficult to argue. 
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When operationally-applicable GEP solutions are compared to their linear counterparts 

(Table 10), the evaluation metrics provide a clear picture. GEP performs similarly to its OLS 

counterparts with metrics for GEP2 and OLS2 (both including Qt-1 as an input) indicating 

that simple multiple linear regression provides a better model than the more complex GEP 

solution. This finding is in clear contradiction to Aytek and Kisi’s (2008) paper, which 

identified the multiple linear regression solution as having inferior metric scores compared to 

its GEP counterpart.  Whilst the advantages of a piecewise linear solution based solely on [Qt] 

(M5MT1) is minimal, the piecewise solution based on [Qt, Qt-1] (M5MT2) has the best 

metric scores for both UPST and DNST gauges and for both SET A and SET B data. These 

results therefore indicate that either a multiple linear regression or a piecewise linear solution 

incorporating lagged discharge is preferable to its counterpart GEP solution.  

 

The message emerging from our NN non-linear findings (Tables 11 and 12) is not as well 

defined as that delivered by the linear modelling solutions (Tables 9 and 10). For models 

based solely on [Qt] (Table 11) a general pattern of marginal improvement in metric scores is 

evident in the NN solutions with those of NN1(3) suggesting it to be the best overall model 

for SET A data at the UPST and DNST gauge. For set B data the picture is less clear with 

GEP1 providing the best RSqr scores and NN1(2) providing the best RMSE scores at both 

UPST and DNST gauges. For solutions based on Qt and Qt-1 (Table 12), NN solutions result 

in better metric scores than their GEP counterparts, although it is clear that different NN 

configurations perform differently at UPST and DNST gauges, and for SET A and SET B 

data. Those NN solutions with high numbers of hidden units (NN2(4) and NN2(5)) have the 

best metric scores on SET A data, and this reflects the relative complexity of that data set, 

which is best modeled by a more complex NN configuration. The more simple SET B data 

are well modeled by NNs with lower numbers of hidden units, particularly at the DNST 

gauge where the relationship between discharge and suspended sediment is least complex. It 

is important to note that the higher the number of hidden units in an NN, the greater the 

chance of over-fitting. Normally this is  detected by ensuring a comparable degree of fit for 

the solution to training and testing data. However, this relies on the training and testing data 

sets containing mutually representative statistical and temporal patterns. The data split used 

by Aytek and Kisi (2008), and replicated here, has resulted in data sets that are not 

particularly representative of one another (Table 1 and Figure 4) and it is, therefore, difficult 

to discount over-fitting in those NN solutions with higher numbers of hidden units. However, 
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the fact that even the NN solutions with low numbers of hidden units (i.e. those less likely to 

be overfitted) result in better metric scores than their GEP counterparts is strong evidence of 

the preferential solutions delivered by NN approaches. In the context of the operationally-

applicable models for the Tongue River, NN solutions are therefore preferred over their GEP 

counterparts. It is possible that different objective functions could deliver contradictory 

results, but a comprehensive exploration of such matters is beyond the scope of our current 

paper. 

 

8. SUMMARY 

This re-analysis of suspended sediment modelling for the Tongue River dataset provides an 

important example that demonstrates how the inclusion of lagged suspended sediment as an 

input can be an essential factor in data-driven modelling techniques offering better functional 

performance than their linear and non-linear counterparts. If lagged sediment is rejected as a 

GEP model input, the performance of Aytek and Kisi’s original solution can not be matched; 

either by other GEP solutions or by the range of counterpart models. Indeed, the 

operationally-applicable GEP solutions are seen to be some of the worst performers. 

However, several operationally-applicable counterparts are able to achieve evaluation metric 

scores that are close the Aytek and Kisi’s original GEP solution (Table 13), and in so doing, 

offer an operationally useful alternative with only minimal reduction in evaluation statistics. 

Of particular note in this regard are NN and piecewise linear regression solutions based on 

[Qt, Qt-1]. Whilst NN solutions lack the explicit outputs of their GEP counterparts and may 

be prone to overfitting, M5MTs have the advantage of being both explicit and robust.  

 

9. CONCLUSIONS 

 

This study highlights the fact that input configurations which include lagged sediment, and 

which are commonly used in data-driven suspended sediment rating curve models, lack 

operational justification and have little operational value. Their inclusion in future studies 

should, therefore, either be explicitly justified with respect to the conceptual purpose of the 

modeling exercise, or rejected.  It also highlights how sensitive the performance of GEP 

modeling approaches are to their input configurations in the case of this example data set. 

These two factors support the authors’ call for the inclusion of a proper appraisal of the 

operational-applicablity of different input configurations to a data-driven modeller’s 
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workflow before any functional evaluations based on evaluation metrics are made – an 

element that is currently missing.  

 

The original input configurations used by Aytek and Kisi (2008) in their analysis of the 

Tongue River lacked operational application due to their inclusion of lagged sediment as an 

input. Their GEP models did indeed produce improved evaluation metric scores. Therefore, 

on the basis of the purely functional reasoning employed in their study, their claims that GEP 

“may provide a superior alternative to the sediment rating curve and multiple linear 

regression techniques” are supported. However, the re-analysis presented here clearly 

demonstrates that, once operational reasoning is applied and operationally-inapplicable input 

combinations are discounted, GEP fails to perform as well as many simpler, more standard 

multiple linear regression, piecewise linear regression and NN counterparts. Indeed, the 

reported superiority of GEP in the Tongue River is shown to be dependent on the inclusion of 

an operationally-invalid lagged sediment input.  

 

The conclusion of the study is, therefore clear. Operational reasoning should be an essential 

element in all data-driven suspended sediment modeling workflows to ensure that: 

 

1. the resultant models can actually be used for operational purposes and; 

2. the performance of complex data-driven solutions are not overstated in comparison to 

their simpler model counterparts. 
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Table 1.  Statistical descriptors for UPST and DNST training (SET A) and testing (SET B) 

datasets. 

 UPST DNST 

Set A Q (m
3
s

-1
) S (ton day

-1
) Q (m

3
s

-1
) S (ton day

-1
) 

Mean 15.07 443.90 15.65 996.35 

Median 10.00 52.00 7.67 47.00 

Std. Dev. 20.58 1725.76 24.87 4859.58 

Variance 423.61 2978241.03 618.48 23615510.07 

Kurtosis 23.22 95.10 19.38 166.58 

Skewness 4.40 8.48 4.16 11.50 

Range 213.16 27198.50 216.10 84396.60 

Minimum 1.84 1.50 1.90 3.40 

Maximum 215.00 27200.00 218.00 84400.00 

Count 1096 1096 1096 1096 

     

 UPST DNST 

Set B Q (m
3
s

-1
) S (ton day

-1
) Q (m

3
s

-1
) S (ton day

-1
) 

Mean 10.28 234.88 9.00 369.01 

Median 6.65 26.00 5.47 23.00 

Std. Dev. 12.54 834.75 12.88 1235.10 

Variance 157.19 696803.56 166.00 1525483.09 

Kurtosis 9.12 34.61 9.19 15.53 

Skewness 3.09 5.43 3.12 4.04 

Range 60.92 7997.00 62.24 7399.87 

Minimum 1.98 3.00 0.06 0.13 

Maximum 62.90 8000.00 62.30 7400.00 

Count 365 365 365 365 
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Table 2.  Product moment correlation matrix for UPST and DNST datasets. 
 

UPST Q Qt-1 Qt-2 S St-1 St-2 

Q 1.00      

Qt-1 0.98 1.00     

Qt-2 0.95 0.98 1.00    

S 0.80 0.74 0.68 1.00   

St-1 0.82 0.80 0.74 0.87 1.00  

Set A 

St-2 0.82 0.82 0.80 0.74 0.87 1.00 

Q 1.00      

Qt-1 0.99 1.00     

Qt-2 0.97 0.99 1.00    

S 0.85 0.80 0.74 1.00   

St-1 0.86 0.85 0.80 0.91 1.00  

Set B 

St-2 0.87 0.86 0.85 0.84 0.91 1.00 

DNST Q Qt-1 Qt-2 S St-1 St-2 

Q 1.00      

Qt-1 0.97 1.00     

Qt-2 0.92 0.97 1.00    

S 0.74 0.63 0.52 1.00   

St-1 0.74 0.74 0.63 0.80 1.00  

Set A 

St-2 0.66 0.74 0.74 0.53 0.80 1.00 

Q 1.00      

Qt-1 0.99 1.00     

Qt-2 0.97 0.99 1.00    

S 0.91 0.87 0.82 1.00   

St-1 0.93 0.91 0.87 0.97 1.00  

Set B 

St-2 0.93 0.93 0.91 0.92 0.97 1.00 

*Strongest relationship between predictor and predictand in bold 
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Table 3.  Reasons for the inclusion / rejection of input combinations in Tongue River re-

analysis. 

 

Input 

combinations 

Included 

in original 

analysis? 

Included 

in re-

analyses? 

Reason for inclusion / rejection in re-

analyses 

Qt Yes Yes Equates to standard, concurrent input-

output modelling used in standard rating 

curves.  Operationally applicable and 

provides useful benchmark. 

St-1 Yes No Operationally-inapplicable: utilises lagged 

suspended sediment 

Qt and St-1 Yes No Operationally-inapplicable: utilises lagged 

suspended sediment 

St-1 and St-2 Yes No Operationally-inapplicable: utilises lagged 

suspended sediment 

Qt, St-1 and St-2 Yes No Operationally-inapplicable: utilises lagged 

suspended sediment 

Qt, Qt-1, and St-

1 

Yes No Operationally-inapplicable: utilises lagged 

suspended sediment 

Qt, Qt-1, St-1 

and St-2 

Yes No Operationally-inapplicable: utilises lagged 

suspended sediment 

Qt and Qt-1 No Yes Operationally applicable and offers 

potential for modelling hysteresis which is 

not captured in Qt alone. 
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Table 4.  GeneXproTools 4.0 used in the Tongue River re-analysis  

 

Function Set Symbol Weight Arity 

Addition + 4 2 

Subtraction - 4 2 

Multiplication * 4 2 

Division / 1 2 

Power  Pow 1 2 

Square Root Sqrt 1 1 

Exponential Exp 1 1 

10^x Pow10 1 1 

Natural Logarithm Ln 1 1 

Logarithm of base 10 Log 1 1 

General 

Chromosomes 30 

Genes 3 

Head Size 7 

Tail Size 8 

Dc Size 8 

Gene Size 23 

Linking function Addition 

Fitness function 

Error Type Absolute with SR 

Precision 0.01 

Selection Range 100 

Genetic Operators  

Mutation Rate 0.044 

Inversion Rate 0.1 

IS Transposition Rate 0.1 

RIS Transposition Rate 0.1 

One-point Recombination Rate 0.3 

Two-point Recombination Rate 0.3 

Gene Recombination Rate 0.1 

Gene Transposition Rate 0.1 

Numerical Constants 

Constants per Gene 2 

Data Type Floating-Point 

Lower Bound -10 

Upper Bound 10 

RNC Mutation 0.01 

Dc Mutation 0.044 

Dc Inversion 0.1 

Dc IS Transposition 0.1 
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Table 5: Ordinary least squares regression solution parameters for UPST and DNST. 
 

UPST DNST 

Coefficient  OLS1 OLS2 OLS1 OLS2 

Intercept -572.575 -542.403 -1275.807 -1130.763 

Qt 67.444 179.244 145.171 440.156 

Qt-1 - -113.814 - -304.242 

 

Table 6.  M5MT linear piecewise solution parameters for UPST. 

 

M5 pruned model tree for M5MT1 

 

M5 pruned model tree for M5MT2 

 
 

 

Qt0 <= 15.25 :  

|   Qt0 <= 9.7 : LM1 (529) 

|   Qt0 >  9.7 : LM2 (339) 

Qt0 >  15.25 : LM3 (228) 

 

LM num: 1 

Lt0 =  

 1.5168 * Qt0  

 + 11.2219 

 

LM num: 2 

Lt0 =  

 19.5906 * Qt0  

 - 123.7161 

 

LM num: 3 

Lt0 =  

 74.2324 * Qt0  

 - 1037.8266 

 

 

 

Qt0 <= 15.25 :  

|   Qt0 <= 9.7 : LM1 (529) 

|   Qt0 >  9.7 : LM2 (339) 

Qt0 >  15.25 :  

|   Qt0 <= 50.55 : LM3 (182) 

|   Qt0 >  50.55 :  

|   |   Qt0 <= 110.5 : LM4 (36) 

|   |   Qt0 >  110.5 : LM5 (10) 

 

LM num: 1 

Lt0 =  

 0.3711 * Qt0  

 + 1.0575 * Qt-1  

 + 12.5534 

 

LM num: 2 

Lt0 =  

 18.4449 * Qt0  

 + 1.0575 * Qt-1  

 - 122.3847 

 

LM num: 3 

Lt0 =  

 79.2117 * Qt0  

 - 34.6599 * Qt-1  

 - 280.8026 

 

LM num: 4 

Lt0 =  

 211.9839 * Qt0  

 - 179.3727 * Qt-1  

 + 2398.7186 

 

LM num: 5 

Lt0 =  

 119.1819 * Qt0  

 - 30.6555 * Qt-1  

 - 2612.4667 
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Table 7.  M5MT linear piecewise solution parameters for UPST. 

 

M5 pruned model tree for M5MT1 

 

M5 pruned model tree for M5MT2 

 
Qt0 <= 10.95 : LM1 (723) 

Qt0 >  10.95 :  

|   Qt0 <= 38.4 : LM2 (298) 

|   Qt0 >  38.4 : LM3 (75) 

 

LM num: 1 

Lt0 =  

 2.9506 * Qt0  

 + 25.1496 

 

LM num: 2 

Lt0 =  

 81.8322 * Qt0  

 - 767.3094 

 

LM num: 3 

Lt0 =  

 221.7397 * Qt0  

 - 9500.7118 

Qt0 <= 10.95 : LM1 (723) 

Qt0 >  10.95 :  

|   Qt0 <= 38.4 : LM2 (298) 

|   Qt0 >  38.4 : LM3 (75) 

 

LM num: 1 

Lt0 =  

 2.4904 * Qt-1  

 + 32.3512 

 

LM num: 2 

Lt0 =  

 219.5664 * Qt0  

 - 136.6173 * Qt-1  

 - 763.5686 

 

LM num: 3 

Lt0 =  

 390.512 * Qt0  

 - 204.2036 * Qt-1  

 - 6669.4627 

 

Table 8.  Evaluation metrics for GEP solutions.  * indicates a value that has been taken from 

Aytek and Kisi’s original paper and † indicates a value computed using the explicit equations 

defined by their and our gene expression trees.  The value of the best performing solution for 

each metric in each training and testing set is highlighted in bold. 

 

UPST A + K (Qt, Qt-
1, St-1) 

 
GEP1 

 
GEP2 

RMSE: 662.05† 1018.40† 1010.05† 
A 

RSqr: 0.85† 0.67† 0.68† 

RMSE: 231.00* 496.56† 440.73†  
 
B RSqr: 

0.94* 0.78† 0.82† 

DNST A + K (Qt, Qt-
1, St-1) 

 
GEP1 

 
GEP2 

RMSE: 3250.15† 3415.13† 3930.32† 
A 

RSqr: 0.93† 0.68† 0.54† 

RMSE: 331.00* 918.70† 1013.07†  
 
B RSqr: 

0.93* 0.88† 0.84† 
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Table 9.  Comparison of GEP1, GEP2 (shaded columns) and SRC metrics for training and 

testing data sets in both upstream and downstream gauges.  The value of the best performing 

solution for each metric in each training and testing set is highlighted in bold. 

 

UPST  
GEP1 

 
GEP2 SRC 

RMSE: 1018.40 1010.05 1620.44 
A 

RSqr: 0.67 0.68 0.66 

RMSE: 496.56 440.73 395.90  
 
B RSqr: 

0.78 0.82 
0.78 

DNST  
GEP1 

 
GEP2 

 
SRC 

RMSE: 3415.13 3930.32 2597.97 
A 

RSqr: 0.68 0.54 0.68 

RMSE: 918.70 1013.07 448.74  
 
B RSqr: 

0.88 0.84 
0.88 

 

Table 10.  Comparison of GEP1, GEP2 (shaded columns), OLS1, OLS2, M5MT1 and 

M5MT2 metrics for training and testing data sets in both upstream and downstream gauges.  

The value of the best performing solution for each metric in each training and testing set is 

highlighted in bold. 

 

UPST  

GEP1 

 

GEP2 OLS1 

 

OLS2 

 

M5MT1 

 

M5MT2 

RMSE: 1018.40 1010.05 1024.91 926.22 1000.26 815.04 

A 
RSqr: 0.67 0.68 0.65 0.71 0.66 0.78 

RMSE: 496.56 440.73 478.69 391.70 402.88 359.22  

 
B RSqr: 

0.78 0.82 
0.72 

0.81 0.77 0.89 

DNST  
GEP1 

 
GEP1 

 
OLS1 

 
OLS2 

 
M5MT1 

 
M5MT2 

RMSE: 3415.13 3930.32 3251.39 2672.99 3025.40 2571.12 

A 
RSqr: 0.68 0.54 0.55 0.70 0.61 0.72 

RMSE: 918.70 1013.07 971.85 876.71 591.41 410.70  
 
B RSqr: 

0.88 0.84 
0.82 

0.87 0.83 0.90 
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Table11.  Comparison of GEP1 (shaded column) and NN1(n) metrics for training and testing 

data sets in both upstream and downstream gauges.  The value of the best performing solution 

for each metric in each training and testing set is highlighted in bold. 

 

UPST  
GEP1 NN1(1) NN1(2) NN1(3) NN1(4) NN1(5) 

RMSE: 1018.40 982.39 997.62 971.81 978.98 973.24 
A 

RSqr: 0.67 0.68 0.67 0.68 0.68 0.68 

RMSE: 496.56 480.21 440.96 449.49 481.92 451.59  
 
B RSqr: 

0.78 
0.76 0.74 0.75 0.74 0.74 

DNST  
GEP1 NN1(1) NN1(2) NN1(3) NN1(4) NN1(5) 

RMSE: 3415.13 2612.97 2832.49 2212.43 2219.07 2217.85 
A 

RSqr: 0.68 0.71 0.67 0.80 0.79 0.79 

RMSE: 918.70 719.12 486.07 520.98 493.46 595.51  
 
B RSqr: 

0.88 
0.87 0.86 0.83 0.84 0.80 

 

Table 12.  Comparison of GEP2 (shaded column) and NN2(n) metrics for training and 

testing data sets in both upstream and downstream gauges.  The value of the best performing 

solution for each metric in each training and testing set is highlighted in bold. 

 

UPST  
GEP2 NN2(1) NN2(2) NN2(3) NN2(4) NN2(5) 

RMSE: 1010.05 855.41 867.17 634.82 608.29 605.94  
A 

RSqr: 0.68 0.76 0.75 0.87 0.88 0.88 

RMSE: 440.73 345.19 336.24 343.92 295.38 304.33  
B 

RSqr: 0.82 0.88 0.87 0.84 0.88 0.87 

DNST  
GEP2 NN2(1) NN2(2) NN2(3) NN2(4) NN2(5) 

RMSE: 3930.32 1920.13 2008.12 1879.27 1515.80 2033.11  
A 

RSqr: 0.54 0.85 0.83 0.86 0.90 0.84 

RMSE: 1013.07 528.95 427.99 468.61 583.44 453.56  
B 

RSqr: 0.84  0.90 0.89 0.89 0.84 0.87 
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Table 13.  Comparison of the best performing, operationally-valid models with Aytek and 

Kisi’s (2008) original GEP solution. 

 

UPST BEST PERFORMING 
M5MT SOLUTION 

BEST PERFORMING NN 
SOLUTION 

AYTEK AND KISI (2008) 
GEP SOLUTION 

RMSE: M5MT2              815.04 NN2(5)                       605.94 662.05 
A 

RSqr: M5MT2                  0.78 NN2(5)                           0.88 0.85 

RMSE: M5MT2               359.22 NN2(4)                       295.38     231.00  
 
B RSqr: 

M5MT2                   0.89 M5MT2                           0.89 0.94 

DNST   
 

 

RMSE: M5MT2              2571.12 NN2(4)                       1515.8 3250.15 
A 

RSqr: M5MT2                   0.72 NN2(4)                           0.90 0.93 

RMSE: M5MT2                410.70 NN2(2)                       427.99 331.00  
 
B RSqr: 

M5MT2                   0.90 NN2(1)                           0.90 0.93 
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Figure 1.  The reasoning and practical modelling processes most commonly utilised in data-

driven suspended sediment studies. 
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Figure 2.  The reasoning and practical modelling processes most commonly utilised utilised 

in data-driven suspended sediment studies, augmented to incorporate operational reasoning 

and input combination scrutinisation. 
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Figure 3.  Tongue River Basin (courtesy of HydroSolutions Inc., 2008). 
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Figure 4.  UPST and DNST data sets for training (SET A) and testing (SET B) periods. 
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Figure 5.  Upstream gene expression trees and associated constant values for Aytek and Kisi’s (2008) solution, GEP1 and GEP2. 
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Figure 6.  Observed versus predicted plots of GEP sub expressions and the combined 

function for UPST training data set (SET A): Aytek and Kisi’s (2008) solution, GEP1 and 

GEP2.   
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Figure 7.  Observed versus predicted plots of GEP sub expressions and the combined 

function for UPST testing data set (SET B): Aytek and Kisi’s (2008) solution, GEP1 and 

GEP2.   
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Figure 8.  Downstream gene expression trees and associated constant values for Aytek and Kisi’s (2008) solution, GEP1 and GEP2.  
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Figure 9.  Observed versus predicted plots of GEP sub expressions and the combined 

function for DNST training data set (SET A): Aytek and Kisi’s (2008) solution, GEP1 and 

GEP2.   
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Figure 10.  Observed versus predicted plots of GEP sub expressions and the combined 

function for DNST testing data set (SET B): Aytek and Kisi’s (2008) solution, GEP1 and 

GEP2.   
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