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Abstract: Beer fermentation processes are traditionally monitored through sampling and off-line wort
density measurements. In-line and on-line sensors would provide real-time data on the fermentation
progress whilst minimising human involvement, enabling identification of lagging fermentations or
prediction of ethanol production end points. Ultrasonic sensors have previously been used for in-line
and on-line fermentation monitoring and are increasingly being combined with machine learning
models to interpret the sensor measurements. However, fermentation processes typically last many
days and so impose a significant time investment to collect data from a sufficient number of batches
for machine learning model training. This expenditure of effort must be multiplied if different
fermentation processes must be monitored, such as varying formulations in craft breweries. In this
work, three methodologies are evaluated to use previously collected ultrasonic sensor data from
laboratory scale fermentations to improve machine learning model accuracy on an industrial scale
fermentation process. These methodologies include training models on both domains simultaneously,
training models in a federated learning strategy to preserve data privacy, and fine-tuning the best
performing models on the industrial scale data. All methodologies provided increased prediction
accuracy compared with training based solely on the industrial fermentation data. The federated
learning methodology performed best, achieving higher accuracy for 14 out of 16 machine learning
tasks compared with the base case model.

Keywords: ultrasonic measurements; fermentation; machine learning; federated learning; domain
adaptation; long short-term memory

1. Introduction

Beer is one of the world’s oldest and most widely consumed alcoholic beverages [1].
Beer fermentation processes are conventionally monitored through sampling and off-line
wort density measurements [2]. This method is typically performed every couple of hours,
requires manual operation, is time-consuming, and does not produce real-time results [3].
Automatic acquisition of real-time data pertaining to the fermenting wort would enable
accurate process end point determination and identification of lagging fermentations. This
would provide benefits of improved product consistency, fewer lost batches, time savings,
and environmental benefits of less waste and less resource and energy use [3]. This can be
achieved through in-line and on-line sensing techniques, where in-line methods directly
measure properties of the fermenting wort and on-line methods use bypasses to automati-
cally collect, analyse, and return samples to the vessel [4]. Furthermore, manufacturing
is undergoing the fourth industrial revolution, where industrial digital technologies such
as the Internet of Things (IoT), cloud computing and Machine Learning (ML) are imple-
mented to integrate not only entire processes but also markets and supply chains [5]. This
has the potential to increase the efficiency, productivity, product quality, and flexibility of
manufacturing processes [5]. In-line and on-line sensors underpin this transformation by
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collecting the real-time data to provide automatic decision- making and minimise human
involvement [6]. Several in-line and on-line methods to monitor alcoholic fermentation
have been investigated, such as near-infrared spectroscopy [3,7], Raman spectroscopy [8,9],
mid-infrared spectroscopy [10], Fourier transform infrared spectroscopy [11], MEMS res-
onators [12], CO2 emission monitoring [13], and ultrasonic (US) sensors [14–18]. Typically,
these techniques use calibration techniques to correlate sensor data to material composition
across the full range of process conditions (e.g., temperature) [3]. Conversely, ML can be
used to map sensor data directly to target variables (such as classifying the stage of the
fermentation process or predicting the time remaining until significant process milestones)
without requiring extensive calibration procedures. Moreover, ML is able to fit complex
non-linear relationships between multiple variables, or features, extracted from sensor
readings. Furthermore, validation procedures encourage the development of models which
accurately predict when process parameters are outside of the range they were trained
on. Ultrasonic sensors have benefits of being low-cost, are non-invasive, small in size,
have low energy consumption, and are able to characterise opaque materials. ML has
previously been combined with US sensors to monitor fermentation processes. Hussein
et al., (2012) used the US velocity, process temperature, and nine signal features extracted
from the time and frequency domains to predict wort density using an artificial neural net-
work [14]. Bowler et al., (2021) inputted time domain signal features into Long Short-Term
Memory (LSTM) neural networks to predict the volume of alcohol percentage throughout
fermentation [18].

ML methods require sufficient volumes of data for model training. However, fermen-
tation processes can last for many days, imposing a significant time investment for data
collection. Therefore, industrial fermentation monitoring using sensors and ML would
benefit from using knowledge gained from previously monitored fermentation processes
whether conducted in a laboratory or from other breweries. This would be of particular
benefit to the growing craft breweries industry, where a wider range of beers are produced
at smaller volumes, necessitating ML models which can be trained on fewer fermentation
batches whilst being robust across different formulations of beer [19,20]. However, US
sensor readings acquired from different fermentation vessels (different domains) present
different data distributions to the ML models [21]. This can be due to differing US sensor
contact between the two vessels, a difference in vessel construction affecting US waveform
propagation, or differing waveform frequency distributions produced by the sensors [21].
Therefore, even for a similar fermentation task, the ML model trained on the source domain
data will perform poorly when asked to make a prediction based on the target domain data.
Domain adaptation is a subcategory of transfer learning which alters how the ML model
is trained to predict accurately across both domains [22]. Unlabeled domain adaptation
techniques can be used for tasks with no reference measurement available in the target
domain to correlate input features to output variables during ML model training [21]. Con-
versely, labelled domain adaptation can be used for tasks where a reference measurement
is obtainable. Common unlabeled domain adaptation techniques include minimising the
distance between features from different domains using metrics such as the Maximum
Mean Discrepancy [21,23–27], adversarial methods to confuse domain membership clas-
sifiers [28–32], generative methods to transform domain features [33–36], or Adaptive
Batch Normalisation, which aligns the feature distributions across the domains for each
batch [37,38]. Labelled domain adaptation can be achieved through either pre-training on
the source domain and fine-tuning on the target domain, retraining the last few layers of a
network using the target domain data, or by training using the data from both domains si-
multaneously [39]. While training ML models across fermentation processes from multiple
breweries, the companies may not wish to share the US sensor data which could reveal
information about their product formulation or process control strategies. In this case,
federated learning may be used to share network weights from local models trained on an
individual brewery’s data to update a common global model as opposed to transferring
the acquired sensor data and thus maintain privacy [40].
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In this work, US sensor data acquired from a laboratory fermentation process is used
to aid ML prediction on an industrial scale fermentation task. The industrial scale fermen-
tations were monitored at a Small and Medium-sized Enterprise (SME) company, and so
the data is of limited volume. Therefore, the laboratory scale dataset is used to improve ML
model accuracy on these limited number of batches. The models are trained as multi-task
networks to predict four outputs: classification of whether ethanol production has started,
classification of whether ethanol production has ended, the time remaining until ethanol
production begins, and the time remaining until ethanol production ends. Rather than
using US sensor data to predict the wort density or alcohol by volume, this methodology
directly predicts the most important information required from the fermentation process:
whether the fermentation is lagging and determination of the fermentation end point.

Three domain adaptation methodologies are investigated. Firstly, labelled domain
adaptation is used to simultaneously train the models on data from both domains. Simul-
taneous training on both domains is used as opposed to pre-training on the laboratory
scale data and fine-tuning on the industrial scale data or retraining the last few layers of
the network which are usually used for training convolutional layers in transfer learning
for image recognition tasks. This is because, unlike convolutional filters which can detect
features compared to a background of neighbouring pixels, the differences in feature mag-
nitudes and trajectories in this work mean that features extracted in the source domain
would not transfer to the target domain and the network would undergo catastrophic
forgetting [41]. Secondly, the networks are also trained in a federated learning strategy to
evaluate the impact of privacy preservation on ML model accuracy. Lastly, fine-tuning of
the best performing models which have been trained on the source and target domains
simultaneously are investigated again.

2. Materials and Methods

Two sets of fermentations were monitored: one in a 30 L laboratory scale vessel at
the University of Nottingham and the second in a 2000 L industrial scale fermenter at the
Totally Brewed brewery in Nottingham, UK. Full experimental details for the laboratory
scale fermentations are included in [18]. The laboratory scale dataset consisted of 13 fer-
mentations and the industrial scale dataset consisted of 5 fermentations. For the laboratory
scale dataset, the same type and quantity of malt (Coopers Real Ale, Adelaide, Australia),
yeast (Coopers Real Ale, Adelaide, Australia), sugar (brewing sugar, the Home Brew Shop,
Farnborough, UK) and water (22 L) were used for all fermentations. For the industrial scale
dataset, three different beers were monitored: three fermentations consisting of Slap in
the Face, one Guardian of the Forest, and one 4 Hopmen of the Apocalypse. The same US
probe was used to monitor both the laboratory and industrial scale fermentation processes
(Figure 1). The US probe contained a US transducer (Sonatest, 2 MHz central frequency,
Milton Keynes, UK) and a temperature sensor (RTD, PT1000, RS Components, Corby, UK).
The US transducer was connected to a Lecouer Electronique US Box (Chuelles, France)
that provided the excitation pulse to the transducer and digitised the received US signal.
The temperature sensor was connected to a Pico electronic box (PT-104 Data Logger, Pico
Technology, St Neots, UK). The two electronic boxes were connected to a laptop that con-
trolled the data acquisition. Coupling gel was applied between the US transducer and
the probe material, and a spring maintained the contact pressure. For the laboratory scale
fermentations, a Tilt hydrometer provided real-time density measurements as a reference
measurement of the fermentation progress and to provide labelled data for ML model
training. For the industrial scale fermentations, samples were removed every two hours
(except during night-time) and the wort density was measured using a hydrometer. For
the industrial scale fermentations only, the temperature was decreased once the desired
wort density was reached. Blocks of US and temperature data were collected periodically.
Each of the blocks consisted of 36 US waveforms and 36 temperature readings. The US
signal consisted of 7000 sampling points at 80 MHz sampling frequency. The time between
each waveform acquisition was 0.55 s. Between each block of data collected, 200 s elapsed.
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Figure 1. The probe consisting of US and temperature sensors and the paths of the received US sound
wave reflections. Adapted from [18].

As depicted in Figure 1, the US transducer emitted sound waves which travelled
along the PMMA probe material. At the interface between the probe material and the wort,
a portion of the sound wave was reflected and the rest continued through the fermenting
wort. Part of the reflected sound wave travelled through the probe-couplant boundary
and was received by the transducer (the first reflection) whilst some reflected from this
interface and repeated the previously described path (the second reflection). Therefore, the
second reflection is a reverberation of the first reflection’s path. The portion that passed
through the fermenting wort was reflected at the opposite probe wall and travelled back
to the transducer (the third reflection). An example of the US waveform recorded by the
transducer is presented in Figure 2a. Each of the reflections in isolation are presented in
Figure 2b–d. The start of the waveform (sample points <1000 in Figure 2a) was reflected
back to the transducer before it contacted the probe-wort interface and therefore contains
no useful information about the fermentation.

Figure 2. An example US waveform acquired: (a) The full waveform received; (b) the 1st reflection isolated; (c) the 2nd
reflection isolated; and (d) the 3rd reflection isolated.
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2.1. Ultrasonic Waveform Features

In total, 14 US waveform features were inputted into the ML models. Explanation of
the calculation method and justification of the feature choices are provided in the following
sections. In addition to the US waveform features, the process temperature was also used
as an input. Although US sensors can accurately monitor fermentations without inclusion
of the temperature as a feature [18], temperature sensors are already installed on most
industrial vessels. As such, this data can be exploited in the ML models with no further
effort in sensor installation or data collection.

2.1.1. Energy

The waveform energy is a measure of the total magnitude of the sound wave received
by the transducer during an enveloped period. For the first reflection, this is a measure of
the proportion of the sound wave reflected from the probe-wort interface and provides
a measure of the changing wort density. Similarly, the energy of the second reflection is
also dependent on the density of the fermenting wort in contact with the probe material.
The energy of the third reflection is dependent on the previously discussed probe-wort
boundary, the far wort-probe boundary, sound wave attenuation in the wort through which
it travels, and the level of sound wave attenuation caused by CO2 bubbles present in the
wort [42].

E = ∑i=end
i=start Ai

2, (1)

where E is the waveform energy, Ai is the waveform amplitude at sample point i, and start
and end denote the range of samples points for the reflection of interest [43].

The waveform energy was the only feature selected from the oscillating part of the US
waveform. Other features are commonly extracted to be used as ML model inputs, e.g., the
peak-to-peak amplitude, maximum amplitude, minimum amplitude, skewness, kurtosis,
and standard deviation [18,21]. However, previous work performing domain adaptation
with US waveforms has shown that these additional features are unlikely to follow the
same trend in both domains and their inclusion will degrade ML accuracy [21]. Therefore,
only the waveform energy is used in this work as it is a measure of physical changes in the
monitored wort.

2.1.2. Energy Standard Deviation

The standard deviation in the waveform energy was calculated across the 36 US
waveforms obtained during each acquisition block. As CO2 bubbles may be present in the
wort through which the 3rd reflection travels, or on the probe surface affecting the 1st and 2nd
reflections, the energy standard deviation monitors CO2 formation throughout fermentation.

STD =

√
1

W ∑i=W
i=1

(
Ei − E

)2 (2)

where STD is the standard deviation, W is the number of waveforms collected in the block,
i is an individual waveform, and E is the mean waveform energy in the block.

2.1.3. Time of Flight

The time of flight was calculated using three different methods to overcome the noise
and low amplitude signals present in the acquired US waveforms. Firstly, a thresholding
method identified the earliest waveform sample point that rises above a predetermined
value, and was calculated for all three reflections. A zero-crossing method identified
the sample point where the waveform crosses zero after the threshold value had been
reached, and this was also calculated for all three reflections. Finally, an auto-correlation
method identified the sample point where the correlation between the first reflection and
the subsequent reflections are determined to be most similar. The time of flight is a measure
of the speed of sound through the materials, i.e., the probe material for the first and second
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reflections (dependent on the temperature of the material) and the wort for the third
reflection (dependent on wort temperature and density) [44].

2.2. Machine Learning

Multi-task deep neural networks consisting of a fully connected layer followed by
an LSTM layer were used for all ML tasks. A summary of the three domain adaptation
methods used is provided in Table 1. The fully connected layer enabled the creation
of new features that are similar across both domains from combinations of the original
inputs. The LSTM layer learns the trajectories of these modified features. The multi-task
models were trained to simultaneously predict whether the production of ethanol had
begun (classification), whether the production of ethanol had ended (classification), the
time remaining until the start of ethanol production (regression), and the time remaining
until ethanol production finishes (regression). In an industrial environment, this would
provide benefits of identifying lagging fermentations by monitoring the start of ethanol
production and estimating process end times by monitoring when ethanol production
was complete. Multi-task learning is advantageous as it can allow for more effective
process learning in the ML model when multiple metrics are desired whilst reducing the
redundant information being stored [45]. Furthermore, multi-task learning is likely to
reduce overfitting by preventing a single task from dominating the learning process.

LSTM layers in neural networks are able to retain information from previous time-
steps in a sequence. LSTMs are a type of recurrent neural network that reduces the
likelihood of vanishing or exploding gradients by using gate units. This enables their use
over much longer sequences [46]. Zero-padding was applied to the US features to make
every fermentation sequence equal to the maximum sequence length of 1556 timesteps.
A masking layer designated that the LSTM units ignore this padding. All timesteps
for each fermentation were used as a single sequence rather than being truncated into
multiple sequences of shorter length. While long sequences (250–500 timesteps) are prone
to producing vanishing gradients in LSTM layers when predicting a single output, this
is not a concern when predicting an output at every timestep, as used in this work [47].
The input features from each dataset were independently normalised so that every feature
ranged between 0 and 1 for both domains. This step aids domain adaptation capability by
aligning the feature distributions from both domains, and is similar to the methodology
used in [21].

A k-fold cross-validation procedure determined the optimal batch size, number of
neurons in the fully connected layer, number of LSTM units, learning rate, L2 regularisation
penalty, and number of epochs. As five industrial fermentation batches were monitored,
the number of these fermentations used in the training set ranged from one to four, cor-
responding with the number of fermentations in the test set ranging from four to one
(Table 2). Therefore, k was determined by the number of industrial fermentations present
in the training set. For example, if only one fermentation was used in the training set,
no cross-validation could be performed. However, when four fermentations were used,
fourfold cross-validation was performed (Table 2).

The Adam optimisation algorithm and a gradient norm clipping value of 1 was used
to reduce the likelihood of exploding gradients. The order of the training sets was shuffled
after every epoch. The regression losses (mean squared error, Equation (3)) were multiplied
by 0.1 to ensure their magnitudes were similar to the classification losses (binary cross-
entropy, Equation (4)). This aided the network in learning both the classification and
regression tasks. After cross-validation, the optimal hyperparameters which resulted in the
lowest average validation error were used to train a final model using the entire training
set. The networks were trained using TensorFlow 2.3.0. The coefficient of determination
(R2), mean squared error (MSE), and mean absolute error (MAE) were used as performance
metrics to evaluate the regression tasks during cross-validation. The accuracy, precision,
and recall were used to evaluate the classification tasks during cross-validation. Evaluating
multiple metrics provides a comprehensive assessment of a model’s ability to fit to the
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validation and test sets and facilitates improved comparison between models. In the results
section, only the MAE and accuracy are discussed to aid clarity.

BCE = − 1
N ∑N

i=1 yi·logŷi + (1− yi)· log(1− ŷi) (3)

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (4)

where BCE is the binary cross-entropy loss, MSE is the mean squared error loss, N is the
number of samples, y is the target variable and ŷ is the predicted value.

Table 1. Summary of the three domain adaptation machine learning methodologies investigated.

Method Simultaneous Cross-Domain
Training Federated Learning Fine-Tuning

Training datasets Both source and target domain Both source and target domain

Both source and
target domain

Followed by fine-tuning on
target domain

Training strategy Trained on both domains
simultaneously Trained on each domain sequentially Either, depending on starting

model used

Application

Transfer learning for
laboratory data

Transfer learning from other
processes within the same

company

Transfer learning between companies Either, depending on starting
model used

Advantages
More training options available

as both datasets can be used
simultaneously

Preserves privacy between domains Either, depending on starting
model used

Problem definition Define N datasets {D1, . . . DN}
used to train a ML model MDA.

Define N data owners wishing to
train a ML model MFED using all
their data {D1, . . . DN} without
sharing the datasets and thus

maintaining privacy.

Define N datasets {D1, . . . DN}
used to train a ML model MS.

Define DT as the target
domain dataset (DT included

in {D1, . . . DN}.

Algorithm

θ = model weights
E = number of epochs

Initialise θ0
For i = 1 to E

Iterate θ for 1 epoch using a
combined dataset consisting of

D1, . . . DN.
End

θ = model weights
C = number of communication

rounds
w = weighting factor

Initialise θ0
For i = 1 to C
Global model:

θG = Σ wjθj
Local models:
For j = 1 to N

Initialise θj = θG
Iterate θj for 1 epoch using Dj

Return θj
End
End

θ = model weights
E = number of epochs

Initialise θ = θS
For i = 1 to E

Iterate θ for 1 epoch using DT
End

In the domain adaptation case studied in this work, the source domain, DS, and
target domain, DT, are different because the marginal probabilities of the features are
different, PS(X) 6= PT(X). Domain adaptation aims to improve model prediction accuracy
on the target domain by altering how the model trains on the source domain. Three
domain adaptation investigations were conducted; network training on both datasets
simultaneously, network training in a federated learning set-up, and fine-tuning of the best
performing previously trained networks on the target domain (industrial scale) dataset.
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For the networks trained on both datasets simultaneously, the impact of dropout on the
domain adaptation performance was evaluated. Dropout layers randomly remove neurons
and their connections during training according to the designated probability [48]. Thus
“thinned” networks are trained during each training batch encouraging more propagation
paths through the network to be learned. Two dropout layers are used, one after the input
layer and before the fully connected layer, and one after the fully connected layer and
before the LSTM layer. The dropout layer probabilities were set to 0 or 0.5, producing
four parameter combinations. Dropout was used to investigate whether it aided domain
mixing in the network rather than certain neurons only learning a single domain and the
remaining neurons co-adapting. There were more fermentation batches in the laboratory
scale dataset compared to the industrial scale dataset. As such, to ensure both domains
were learned, the frequency of the industrial dataset in the training set was increased. For
example, when a single industrial fermentation batch was present in the training set, this
was passed to the network 13 times during one epoch. Similarly, when four industrial
fermentation batches were present, each was used three times during training for each
epoch (Table 2).

Table 2. Selected parameters for the domain adaptation networks depending on number of industrial scale fermentation
batches in the training set.

Parameter Size of Training Set

Number of industrial scale fermentation batches in training set 1 2 3 4

Number of industrial scale fermentation batches in test set 4 3 2 1

Number of validation folds 0 2 3 4

Number of industrial fermentation batch occurrences per epoch
when training on both domains simultaneously 13 6 4 3

Industrial dataset weighting factor for federated learning 0.9 0.85 0.8 0.75

For the federated learning investigations, local models were trained on each dataset
and a weighting factor was applied to the resulting local network weights before being
summed to produce a global model. The global model weights were used as the initial-
isation weights for the next epoch of local network training. After training, the global
model was evaluated on the test set. The weighting factors were changed depending on the
number of industrial fermentation runs present in the training set. I.e., 0.9 for the industrial
scale data local model and 0.1 for the laboratory scale model when a single industrial
fermentation run was present in the training data, and 0.75 and 0.25 when four industrial
fermentation runs were used in the training data (Table 2).

Finally, fine-tuning the best performing models on the target domain data was assessed.
As the models are used to monitor the industrial scale fermentations, the final models do
not need to be accurate on the source domain laboratory scale fermentations. Therefore,
after initial training to transfer knowledge from the source domain, fine-tuning on the
target domain can increase model accuracy of the industrial scale data. All network weights
were tuned. Preliminary investigations froze the model weights for the fully connected and
LSTM layers and only tuned the output layers. However, this resulted in lower accuracy
models on the validation sets than when all weights could be updated.

These domain adaptation methodologies are compared with a model trained only
on the industrial scale fermentation data, i.e., without using the laboratory scale data or
domain adaptation. This is named the No DA model and is used as a base-case comparison.

3. Results
3.1. Ultrasonic Measurements

Figure 3a–f displays the US feature and temperature results for the industrial scale
fermentations. Full discussion of the US feature and temperature results for the laboratory
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dataset are included in [18]. A comparison between the two datasets is provided in
the text. For the industrial scale dataset, the process temperature was decreased after
the desired wort density had been reached, determined through off-line sampling and
hydrometer measurements. As such, Figure 3b-f display the results until one day after
the temperature was decreased so that the US feature changes during ethanol production
are clearly presented. The results show that the time of flight for the third reflection
decreased, corresponding to an increase in the speed of sound, during ethanol production
for all fermentations (Figure 3f). This agrees with [14,15] but contradicts the results found
in [16,17,49] which monitored a decreasing speed of sound throughout fermentation. The
reason for this is likely because [14,15] monitored an industrial fermentation process,
similar to the industrial scale dataset in this work, whereas [16,17,49] monitored a small
laboratory scale process (250 cm3). Therefore, the specific combination of water, ethanol,
sugar, yeast, and CO2 concentrations present in industrial processes may produce an
increasing speed of sound during ethanol production. Overall, the energy of the first
reflection increases during ethanol production (Figure 3c), as found in [18]. This indicates
an increase in acoustic impedance mismatch at the probe-wort interface. As the acoustic
impedance is a product of the material density and speed of sound, this shows that the
decreasing wort density has a larger impact than the increasing speed of sound on the
wort acoustic impedance [42]. The energy of the third reflection shows no general trend
during ethanol production (Figure 3d) indicating that the reduced sound wave proportion
travelling through the first buffer-wort interface is offset by the increased sound wave
reflection at the far wort-buffer interface. The third reflection energy displays increased
variation over the first reflection energy due to sound wave attenuation in the presence
of CO2 bubbles, similar to the results found in [17,18]. In contrast, the laboratory scale
data shows no trend in the speed of sound during fermentation and the third reflection
energy follows a similar profile to the first reflection [18]. This is likely due to these effects
being masked due to the varying temperature during ethanol production for the laboratory
scale dataset, whereas the temperature was controlled during this period for the industrial
fermentations. Figure 4 displays the first reflection energy for the first five fermentations
from the laboratory dataset. The differing feature magnitudes and trajectories compared
with Figure 3c showcases the need for domain adaptation techniques.

3.2. Machine Learning

Figure 5a,c,e and Figure 5b,d,f display the classification accuracies for the beginning
of ethanol production and end of ethanol production for the trained networks, respectively.
Although the multi-task networks were also trained to predict the time remaining until
(and had passed since) the start and end of ethanol production, the regression predictions
are most useful close to the classification boundaries. For example, an accurate prediction
of the time since ethanol production started is not needed near the end of the fermentation
process, or an approximate time for when ethanol production will end would not be useful
when the fermentation is lagging and never begins. Therefore, the classification results are
most valuable when evaluating the utility of the trained model. Furthermore, due to the
multi-task nature of the model, the accuracy of the classification results correlates with the
ability to learn the regression tasks close to the classification boundaries. As such, only
the classification results are included in the presented graphs. However, the regression
accuracies are presented in Table 3 and discussed in the text.
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Figure 3. US feature and temperature results for the five industrial fermentation batches. (a) The process temperature.
(b) The process temperature until one day post the end of ethanol production. (c) The first reflection energy until one day
post the end of ethanol production. (d) The third reflection energy until one day post the end of ethanol production. (e) The
first reflection time of flight measured using a thresholding method until one day post the end of ethanol production. (f) The
third reflection time of flight measured using a thresholding method until one day post the end of ethanol production.
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Figure 4. The first reflection energy for the first five laboratory scale fermentation batches.

Figure 5a,b display the results for the networks which were trained on the source and
target domain data simultaneously. Preliminary investigations determined that the 0.5,
0.5 dropout rate models failed to train accurately for all training set sizes. Models with
0.5, 0 dropout rates produced inconsistent results, with some models accurately predicting
using the test set data and some models performing worse than the model trained on
only the industrial scale fermentations (No DA). However, the 0, 0 and 0, 0.5 models
achieved higher accuracy than the No DA model for six out of eight classification tasks.
Furthermore, the 0, 0 model achieved lower MAE for seven out of eight regression tasks
compared to the No DA model. Therefore, the 0, 0 and 0, 0.5 dropout rates were used for
subsequent investigations and the results of these models are presented in Figure 5a–f and
Table 3. These higher accuracy results for the domain adaptation models prove that using
the laboratory scale data to train the networks benefits the predictions on the industrial
scale dataset.

Figure 5c,d display results for the models trained in a federated learning strategy.
The two federated models are trained using the best performing dropout probabilities
determined from the previous investigation and are compared with the No DA baseline
results. The 0, 0 model achieved higher classification accuracies and lower MAE for
six out of eight classification and regression tasks than the No DA model. When using
four industrial scale fermentation batches in the training set, the 0, 0 model reached
accuracies of 99.8% and 99.9% for predicting the start and end of ethanol production,
respectively. Furthermore, the 0, 0.5 models achieved better results for seven out of eight of
the classification and regression tasks. Overall, the federated learning models were more
accurate than their corresponding non-federated training models using the same dropout
probabilities, achieving higher classification accuracies on eight tasks compared to seven
for the non-federated learning models. Similarly, the federated learning models achieved
lower MAEs on 10 regression tasks compared with five for the non-federated learning
models. This is an encouraging result as it indicates that not only can federated training
provide benefits over models that train without the laboratory scale data, but that they can
also perform better than conventionally trained domain adaptation networks in addition to
maintaining data privacy. The reason for this may be the increased model learning afforded
in the industrial scale dataset local model. During training, this model learns from an
epoch full of the industrial scale training dataset compared with the non-federated model
which only learns from the industrial scale target domain intermittently between source
domain fermentation runs. This increased learning without switching between domains
may allow the network weights to travel further towards local optima for the industrial
scale dataset in each epoch. This contrasts with results presented in the wider literature,
where federated learning degraded model accuracy compared with non-federated learning
by 3.3% [50], 1.66% [51], and <10% [52].
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Figure 5. The classification results on the industrial scale fermentations test set. The numbers in the legend indicate
the dropout layer probability for the two dropout layers. E.g., 0, 0 indicates a dropout probability of zero in both
layers. (a) Classification results for the start of ethanol production for the networks trained on both domain datasets
simultaneously. (b) Classification results for the end of ethanol production for the networks trained on both domain
datasets simultaneously. (c) Classification results for the start of ethanol production for the networks trained using federated
learning. (d) Classification results for the end of ethanol production for the networks trained using federated learning.
(e) Classification results for the start of ethanol production for the federated training networks fine-tuned on the industrial
scale dataset. (f) Classification results for the end of ethanol production for the federated training networks fine-tuned on
the industrial scale dataset.
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Figure 5e,f display the classification results for the previously discussed federated
models fine-tuned on the industrial dataset. While still providing improvements over the
No DA base case, achieving higher classification accuracies for 12 out of 16 tasks, their
accuracy is reduced over the starting federated learning models. This is most likely due to
the fine-tuning method overfitting during training. The reason for this is the large network
size required to learn both domains in the starting models. For example, the No DA models
had a maximum optimum number of eight neurons in the fully connected layer and four
LSTM units to learn only the target domain. However, the federated learning models
required a maximum of 128 neurons in the fully connected layer and eight LSTM units
to fit to both dataset domains. Therefore, when fine-tuning on the industrial dataset after
fitting to both domains, the model begins to overfit, especially when four industrial batches
are used in the training set.

Table 3. The regression accuracies of each of the models for predicting the time remaining until the start and end of ethanol
production, where MAE is the Mean Absolute Error of the prediction. The base-line model was trained using only data
from the industrial fermentations. The numbers in the Model column indicate the dropout probability used in each dropout
layer. E.g., 0,0 represents 0 dropout probability in both layers.

Method Model
Start of Ethanol Production Accuracy (MAE) End of Ethanol Production Accuracy (MAE)

1 2 3 4 1 2 3 4

Base-line model No DA 2.769 1.099 0.646 0.710 2.035 1.278 1.047 0.534

Conventional
domain adaptation 0, 0 1.942 0.93 0.423 0.541 1.767 0.980 0.950 0.681

0, 0.5 3.326 1.528 0.836 0.171 7.29 2.027 1.528 0.920

Federated Learning 0, 0 2.496 0.540 0.431 0.726 3.884 1.133 0.599 0.351

0, 0.5 2.482 0.423 0.520 0.296 3.073 1.089 0.937 0.663

Fine-tuning 0, 0 2.536 0.485 0.334 0.402 4.998 0.833 0.517 1.061

0, 0.5 3.376 0.514 0.338 0.416 5.110 0.837 0.64 1.451

3.3. Future Research Directions

Overall, transferring knowledge from the source domain increased model accuracy
when applied to the target domain data. Using more than two datasets could increase
this benefit further, especially using more similar datasets, e.g., from multiple industrial
fermentation processes. The two datasets used in this work had distinct differences. For
example, no temperature control on the laboratory scale dataset and an increasing time
of flight during fermentation for the industrial scale dataset. It is anticipated that more
similar datasets would provide even greater benefits. Furthermore, other than increasing
model accuracy, the domain adaptation methodology can also reduce the time for ML
model development. After training across two domains, the final models could be used
to predict using data from a new fermentation process without having been trained on
this new domain. However, incorporation of a small number of batches from this new
fermentation process would be expected to aid model accuracy.

In this work, the waveform energy was the single feature used to describe the oscillat-
ing part of the US waveform. The reason for this was that previous work demonstrated that
multiple oscillating waveform features are unlikely to follow similar trends across domains
and their inclusion would degrade model accuracy [21]. However, for many applications of
ML and US sensors, multiple features may need to be used to accurately monitor changes
in this portion of the US waveform. In this case, the methodologies presented in this work
may be used to obtain predictions on the target domain data from models trained on both
the source and target domains. These predictions can then be used as an additional feature
in a model only trained on the target domain data. In this way, other features describing
the oscillating part of the waveform can be used as no domain adaptation is required while
also incorporating knowledge from the source domain.
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The combination of ML and US measurements should be used in further research over
calibration procedures. In this work, the speed of sound increased during fermentation,
agreeing with [14,15], which were conducted at large scale, but contradicting [16,17,49],
which were conducted at small scale. This indicates that there is a discrepancy in the speed
of sound trend at the ethanol, sugar, yeast, and CO2 concentrations and temperature used
at small and large scales. Therefore, extensive and complicated calibration procedures
would need to be used to account for these effects. In addition, ML offers several distinct
advantages: it negates the need for these complex calibration procedures accounting for
all the parameters previously listed; more information from the waveforms is typically
used through feature extraction; more complex fitting procedures are used, allowing for
increased prediction accuracy; and validation procedures encourage model accuracy even
on process parameters outside the range the model was trained on.

Acceptable ML model accuracy is dependent on its desired application. In this work,
the highest accuracy model (federated learning, zero dropout, four industrial training
batches) achieved 99.8% and 99.9% for predicting the start and end of ethanol production,
respectively. This is equivalent to the current method of determination, off-line wort density
measurements using hydrometers, which are only conducted once every several hours (or
even less frequently overnight) and have reduced accuracy when foam is present. However,
these model accuracies were obtained using only a single test set batch and therefore a
large dataset size would be needed to determine whether these accuracies were consistent.

US measurements and ML could also be used in combination with sampling methods
to reduce the amount of sampling required (and therefore also reducing operator burden),
provide timely results between samples (for example, overnight), and predict when fer-
mentation stages will be reached to improve plant scheduling. In this case, ML models
can be continuously updated using the labelled data from the sample measurements. If
US sensors are desired to eliminate the use of sampling, higher accuracy models would be
required and longer model development times would be needed. In addition, a model that
stated a confidence level of its prediction would increase trust in the model by identifying
when sample measurements should be used as a safeguard.

4. Conclusions

This work has used previously collected US sensor data from laboratory scale fer-
mentations to improve ML model accuracy on an industrial scale process. Overall, all
methodologies led to improvements in model accuracy over training on the target domain
alone. The federated learning methodology performed best, achieving higher accuracy for
14 out of 16 machine learning tasks compared with the base case model, and achieving
around 100% test set accuracy when trained on four industrial datasets and no dropout
was used. Federated learning improved model accuracy over the traditional simultaneous
domain training by allowing increased tuning of the network weights to converge on local
target domain optima. However, fine-tuning led to a decrease in model accuracy due to
overfitting of networks caused by the larger number of neurons and LSTM units needed
to accurately train on both domains. The methodologies investigated not only provide
increased accuracy, but also speed up model development time by reducing the number of
fermentation runs required to be monitored in the target domain.
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