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Abstract
Identifying the most deprived regions of any country
or city is key if policy makers are to design successful
interventions. However, locating areas with the great-
est need is often surprisingly challenging in developing
countries. Due to the logistical challenges of traditional
household surveying, official statistics can be slow to
be updated; estimates that exist can be coarse, a con-
sequence of prohibitive costs and poor infrastructures;
and mass urbanization can render manually surveyed
figures rapidly out-of-date. Comparative judgement
models, such as the Bradley–Terry model, offer a promis-
ing solution. Leveraging local knowledge, elicited via
comparisons of different areas’ affluence, such mod-
els can both simplify logistics and circumvent biases
inherent to household surveys. Yet widespread adop-
tion remains limited, due to the large amount of data
existing approaches still require. We address this via
development of a novel Bayesian Spatial Bradley–Terry
model, which substantially decreases the number of
comparisons required for effective inference. This model
integrates a network representation of the city or
country, along with assumptions of spatial smooth-
ness that allow deprivation in one area to be informed
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by neighbouring areas. We demonstrate the practical
effectiveness of this method, through a novel compar-
ative judgement data set collected in Dar es Salaam,
Tanzania.
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1 INTRODUCTION

Deprivation statistics are used by governmental and non-governmental organizations to describe
the standard of living in a small administrative areas (McLennan et al., 2019). Yet assessment of
deprivation depends not only on the financial situation of those living in an area, but also fac-
tors such as health, housing, commercial activity and access to education. If correctly estimated,
such statistics can be central to the design of successful policy interventions (see, e.g. USAID,
2019; Williams et al., 2021), supporting citizens and guiding decision makers in local government,
non-governmental organizations and the business sector alike. However, obtaining deprivation
estimates is often a surprisingly challenging task, particularly in developing countries. In such
contexts traditional household surveys are often prohibitively expensive or logistically intractable.
Data collection efforts are impaired by poor physical infrastructures restricting sample sizes. Mass
urbanization can render estimates rapidly out-of-date; and a lack of financial transparency in
the face of vast informal economies exacerbates the well-established response biases inherent to
household surveying (Lynn & Clarke, 2002; Randall & Coast, 2015).

In Africa, according to the World Bank’s chief economist, such issues have generated a ‘sta-
tistical tragedy’ (Devarajan, 2013). Dar es Salaam, the largest city in Tanzania, is a case in point.
With a population of over 6 million the city has doubled in size in just a decade, leaving official
statistics generated but 5 years ago broadly inapplicable. The United Nations has estimated that
the annual growth rate of the city will continue to be 4.8%, and by 2030 Dar es Salaam will be home
to at least 10 million people (United Nations Department of Economic and Social Affairs, 2019).
Such rapid growth means citizens lack resources, with poor physical infrastructures and absent
public services resulting in a low quality of living. Over 70% of citizens in Dar es Salaam live in
unplanned settlements and (Limbumba & Ngware, 2016), water sources in the city are polluted
(Napacho & Manyele, 2010) and outbreaks of diseases are common (McCrickard et al., 2017).
Determining the level of deprivation in each part of this rapidly changing city is key to design-
ing policies and strategies to alleviate these issues, especially in the face of limited resources, yet
traditional household surveys are simply not viable (Randall & Coast, 2015).

Citizen science and comparative judgement offer a way to address the lack of official data and
the rapid changes in the city, providing access to informed and up-to-date opinions from local cit-
izens. Comparative judgement methods contrast sharply with traditional surveying approaches,
in which a respondent might be asked to indicate the affluence level of an area, or their own
household income, based upon some arbitrary scale. Instead, individuals are shown pairs of areas
and asked which is the more affluent of the two. Making pairwise comparisons is preferable to
making absolute judgements, which are well-evidenced as subject to strong biases and inconsis-
tencies (Kalton & Schuman, 1982). With household income levels often being highly volatile in
developing world contexts, and respondents often reticent to provide accurate responses due to
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the scale of the informal economy (Randall & Coast, 2015), this also provides scope to reduce
response bias and logistical costs.

To achieve this one might fit a Bradley–Terry (BT) model (Bradley & Terry, 1952) to pair-
wise comparative judgement data. This allows not only areas to be ranked, but deprivation levels
in each neighbourhood or region to be estimated. However, existing models still require an
obstructively large number of individual comparisons to be provided in order to produce accu-
rate estimates. With data collection infrastructures remaining poor in developing countries (see,
e.g. Engelmann et al., 2018; van Etten et al., 2019), comparative judgement solutions can only
become viable in practice if the amount of data required can be reduced. We address this key
issue via development of a novel Bayesian Spatial Bradley–Terry (BSBT) model, which substan-
tially decreases the amount of data required for reliable estimates of the parameters of interest.
This model integrates a network representation of the city or country, along with assumptions of
spatial smoothness that allow deprivation in one area to be informed by neighbouring areas.

Adding structure by including covariates in the standard BT model has only generally been
achieved in a parametric framework with linear predictors (see, e.g. Springall, 1973; Stern, 2011).
Nonparametric methods have received comparatively little attention. For example, a more flexible
spline-based approach for explanatory variables has been proposed by de Soete and Winsberg
(1993). A semi-parametric approach, which allows for subgroups within the set of objects being
compared, has also been developed (Strobl et al., 2011). However, these methods are unsuitable
for spatial explanatory variables, as it is difficult to propose covariates which can describe complex
spatial structures. We instead avoid specifying any parametric functions and use a multivariate
normal prior distribution to model the spatial structure. This novel treatment allows for far more
flexibility as we do not need to propose strict parametric models, which often do not describe
well the latent structure. We also extend the BSBT model to include ways to examine if different
groups of judges (participants in the study who make the comparative judgements) hold different
opinions. In developing countries, we are particularly interested in the differing opinions of men
and women, as women can face starkly different health, social and economic difficulties to men.
The BSBT model with judge information allows us to locate areas where men and women hold
notably different opinions about the deprivation level.

1.1 Empirical background

To demonstrate the practical effectiveness of this new method, we have additionally collected
a large, novel comparative judgement data set to infer deprivation in Dar es Salaam. Ethical
approval for this part of the study was obtained from the Nottingham University Business School
ethical review committee, application reference No. 201819072. We include the resulting data set
in the BSBTR package that accompanies the paper, as well as in the supplementary material. The
Dar es Salaam comparative judgement data set contains 75,078 comparisons made by 224 local
participants, whom we refer to henceforth as judges, as well as the gender of each judge. Dar es
Salaam is divided into 452 administrative areas called subwards, which are the lowest level of
administrative division in the city.

To carry out the judgements, we designed a web interface (see Figure 1) so that judges
could be shown images of pairs of subwards and asked to compare the affluence. The inter-
face relied on a Python back end alongside a relational database (PostgreSQL was used for the
study) to collect and store comparative judgements. At the start of the study, judges were asked
to identify areas of the city they were familiar with. Then, during the judging process, judges



4 SEYMOUR et al.

F I G U R E 1 A screenshot of the software designed to carry out the comparative judgement study. In this
example a user is asked to choose the most affluent between two subwards, Kwajongo and Sinza C. Images were
zoomable, with both the subward and ward named directly in order to contextualize the user

had the option to indicate either (i) which of the two subwards they felt was more affluent,
(ii) that the subwards were roughly equal in affluence or (iii) that they were unfamiliar with
at least one of the two subwards. Comparisons corresponding to (ii) were recorded as a tie,
and outcomes corresponding to (iii) were discarded and the judges were not asked about the
subwards they were unfamiliar with again. Pairs of subwards for each judge were chosen uni-
formly at random from the list of all possible pairs of subwards which the judge was familiar
with.

Judges were recruited through word of mouth by students at local universities, NGOs and also
via a local taxi driver association. The rationale for recruiting these judges was that they were all
citizens of Dar es Salaam with a wide working knowledge of different subwards in the city. Of the
judges, by occupation 37% were students, 19% were unemployed, 13% had white-collar jobs (e.g.
teacher, accountant), and the remaining 31% either had a job not in those preceding categories,
or chose not to disclose this information. By gender, 40% of the judges were female, and 60%
were male although male judges made 72% of the comparisons in the data set. This is because, on
average, the women took longer to complete each comparison. Data were collected in situ over
2 weeks in August 2018 via 17 data collection sessions each lasting 2 h. Sessions were run in the
morning, early and late afternoon and evening to ensure as many judges as possible could attend.
Judges were only allowed to attend one session. At the start of each session, the judges received a
15 min training session in English and Swahili explaining how to make judgements and guidance
on how to judge areas based on affluence and deprivation. Accompanying written instructions for
the judges were provided in English and Swahili. One judge, who made over 2,000 comparisons,
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F I G U R E 2 A map showing the number of times each subward featured in a comparison. The figure on the
right shows a magnified section of the centre of the city, together with this central area highlighted on a map of the
whole city

was excluded from the study as the comparisons seem spurious—they are not included in any of
the data we report.

Figure 2 shows how many comparisons each subward was featured in, which ranged between
65 and 588 comparisons, with mean 150. The affluent areas in the city and central business district
were the most well-known areas. A total of 14.6% of the comparisons made in the study were
tied comparisons. There are several ways of dealing with tied comparisons (see, e.g. Davidson,
1970; Rao & Kupper, 1967; Turner & Firth, 2012) and we discuss these in Section 4.1. We chose
to randomly assign one of the pair to be the more deprived subward.

An important aim of this work is to develop methodology that enables more efficient data
collection, able to overcome the organizational challenges faced in the field. Two weeks were
invested in collecting this large data set, and organization and recruitment of participants prior
to the study took several months. A key aim of the scale of the data collection process undertaken
was to conclusively evidence, with similar future efforts in mind, that the first 2 days could have
been sufficient if improved modelling procedures are employed. This would save considerable
time and resources in both collecting the data and reducing the number of participants needed to
recruit, train and organize.

2 A SPATIAL FRAMEWORK FOR THE BRADLEY–TERRY
MODEL

2.1 The standard Bradley–Terry model

Consider a comparative judgement data set consisting of K pairwise comparisons of N areas. We
assign to each area what we call a relative deprivation parameter 𝜆i ∈ R (i = 1, … , N) and infer
the value of each parameter using a comparative judgement model. We use the term ‘deprivation
parameter’ because identifying deprivation is the primary focus of the paper, but note that, in
keeping with most measures of this kind, larger (respectively, smaller) values are associated with
more affluent (respectively, deprived) areas.
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We begin by outlining the standard BT model, a commonly used comparative judgement
model. If areas i and j are compared nij times, the number of times area i is judged to be more
affluent than area j is modelled as

Yij ∼ Bin(nij, 𝜋ij),

and we assume Yij are independent. Here the probability 𝜋ij that area i is judged to be
more affluent than area j depends on the difference in relative deprivation of i and j
and is

logit(𝜋ij) = 𝜆i − 𝜆j ⟺ 𝜋ij =
exp(𝜆i)

exp(𝜆i) + exp(𝜆j)
(i ≠ j, 1 ≤ i, j ≤ N). (1)

Model (1) is invariant to translations 𝜆i −→ 𝜆i + c (for any c ∈ R), so an identifiability constraint is
needed. A common choice is

∑N
i=1𝜆i = 0, which means that relatively deprived areas will have neg-

ative parameters, relatively affluent areas will have positive parameters and areas with middling
levels of relative deprivation will have parameters near zero.

We write yij for the number of times area i was judged to be more affluent than area j, and
denote by y the set containing these outcomes for all pairs of areas. The likelihood function for
the model is given by

𝜋(y |𝜆1, … , 𝜆N) =
N∏

i=1

∏
j<i

(
nij

yij

)
𝜋yij

ij (1 − 𝜋ij)nij−yij . (2)

We will compare our model to the standard BT model and the implementation provided
in the BradleyTerry2 R package (Turner & Firth, 2012), as this is a popular imple-
mentation of the method (see, e.g. Cattelan, 2012; Grinfeld et al., 2018; Varin et al., 2016).
This package computes MLEs for the model parameters. We follow Turner and Firth
(2012) and Firth and De Menezes (2004) and construct 95% confidence intervals using
the quasi-variance for the estimates in the standard BT model. This is done using the
qvcalc package (Firth, 2020), as this allows us to readily compare the relative deprivation
levels.

2.2 The Bayesian Spatial Bradley–Terry model

In the BSBT model, we assume the relative deprivation parameters 𝜆i to be random and dependent
on one another, with a higher level of dependence between nearby areas than areas which are
further apart. To avoid making specific parametric assumptions about the level of deprivation
in each area, we model the relative deprivation parameters using a multivariate normal prior
distribution. We use a zero-mean multivariate normal prior distribution for the deprivation level
parameters 𝝀 = {𝜆1, … , 𝜆N} subject to the constraint 1T𝝀 = 0, where 1 = (1, … , 1)T is a vector
of ones. This matches the condition in the standard BT model, that the sum of the deprivation
levels is 0. Conditional on this constraint

(𝝀 | 1T𝝀 = 0) ∼ MVN
(
0,Σ − Σ1(1TΣ1)−11TΣ

)
. (3)
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2.2.1 Modelling spatial covariance

The structure of the covariance matrix Σ is a modelling choice and there are number of options to
choose from. In the simplest terms, we want to assign high covariance between deprivation levels
in nearby subwards and low covariance between levels in distant subwards. A widely used option
in Euclidean spatial domains is to use the squared-exponential covariance function (Rasmussen
& Williams, 2006). Using this function, the covariance between the deprivation levels in subwards
i and j is

cov(𝜆i, 𝜆j) = Σi,j = k(i, j; 𝛼, l) = 𝛼2 exp

(
−

d2
ij

l2

)
, (4)

where dij is the Euclidean distance between areas i and j, 𝛼2 is the prior variance hyperparameter
and l is the characteristic length scale, which describes what is meant by nearby and distant.
However, using a function which is stationary in Euclidean space may not capture the change in
deprivation in all parts of the city. City centres are typically densely packed with small areas, with
peri-urban and rural areas being larger. Modelling the spatial structure using a Euclidean metric
is therefore unsuitable since, for example, two points 1km apart in a rural area are likely similar,
but two points 1km apart near a city centre may be very different.

Urban regions are typically divided into sub-areas for administrative purposes, and these
neighbourhoods often provide natural units over which to quantify deprivation. While spatially
connected, such areas often vary greatly in size. In this paper, we model an urban region as a
network, whereby these low-level areas are represented as nodes with edges joining neighbour-
ing areas, such that we can use a network-based (i.e. non-Euclidean) distance to define spatial
‘closeness’ between pairs of areas when defining prior assumptions of spatial smoothness. Using
a network metric allows us to model nonstationary structures. We therefore begin by transform-
ing the set of areas into a network by treating each area as a node and placing edges between
adjacent areas; some modelling choices are required when dealing with noncontiguous areas or
islands. In the Dar es Salaam network, we add two additional edges over the Kurasini creek to
reflect the high-volume road and ferry connections. Figure 3 shows a map of Dar es Salaam and
the corresponding network.

We can adapt the squared-exponential covariance function in Equation (4) for use with a net-
work by letting dij be the distance of the shortest path between subwards i and j. The shortest
distance can be computed using Dijkstra’s algorithm (see, e.g. Cormen et al., 2001). Although
using a network reduces the issue of stationarity, specifying the value of the length scale still
may be challenging or restrictive; instead, when using the rational quadratic covariance func-
tion, which is a mixture of squared-exponential covariance functions with different length scale
values, we can specify the relative importance of long and short scale variation in deprivation.
Another option is to use the Matérn covariance function, which would remove the assumption
that the spatial structure is smooth. However, when using shortest-path distances in Equation (4),
the resulting matrix is not guaranteed to be positive semi-definite and we may need to project the
matrix into the space of covariance matrices. This can be done in a number of ways, including
setting the negative eigenvalues to 0 or modifying the polar decomposition (Higham, 1988).

Instead of using a distance-based approach, we can construct the covariance matrix directly
from the structure of the network. Estrada and Higham (2010) describe several options for quanti-
fying the ‘communicability’ between two nodes of a network in terms of functions of the adjacency
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F I G U R E 3 A map and the network representation of subwards in Dar es Salaam

matrix of the network. The option we choose is based on the matrix exponential of the adjacency
matrix as this measure emphasizes connectedness over short distances rather than long distances
to a greater extent than the alternatives described in Estrada and Higham (2010). Let Λ = eA,
where A is the network’s adjacency matrix, and let D be a diagonal matrix containing the elements
on the diagonal of Λ. The covariance matrix is given by

Σ = 𝛼2D− 1
2 ΛD− 1

2 , (5)

where𝛼2 is a hyperparameter describing the variance in the deprivation levels. The matrixΣ there-
fore has diagonal entries 𝛼2 and off-diagonal entries proportional to the communicability of each
pair of subwards in the network. We thus achieve our aim of assigning higher covariance between
better-connected pairs of subwards, using a natural characterization of the network. Although we
use the matrix exponential covariance matrix in the paper, we find no discernible difference in
the results of Sections 3 and 4 when using the (network-adapted) squared-exponential covariance
function.

2.3 Incorporating judge information

We now incorporate judge covariates into the model as this avoids the assumption that the judges
act homogeneously. Suppose there are G groups of judges and let xg be the vector of length P
containing the covariates for group g. We assume judges in the same group act homogeneously.
The vector xg may contain categorical, discrete or continuous covariates or a mixture of all three;
for a categorical covariate we represent the q levels of the covariate by q indicator functions. If xg
contains categorical covariates the number of groups may be small, but if xg contains a continuous
covariate each judge may be its own group.

We model the deprivation in area i, as perceived by judges in group g, to be

𝜆
g
i = 𝜆i +

P∑
p=1

x g
p𝛽pi,
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where x g
p is the pth element of xg and 𝛽pi is the parameter corresponding to x g

p and area i, where
i= 1, … , N. Modifying the likelihood function in Equation (2) to take account of the contributions
from each group of judges, we now have the likelihood function

𝜋(y |𝝀, 𝜷1, … , 𝜷P) =
G∏

g=1

N∏
i=1

∏
j<i

(
nijg

yijg

)
𝜋

yijg

ijg (1 − 𝜋ijg)nijg−yijg , (6)

where nijg is the number of times judges in group g compared areas i and j, yijg is the number
of times judges in group g judged area i to be more affluent than area j, 𝜋ijg is the probability
judges in group g judge area i to be more affluent than area j and is given by logit(𝜋ijg) = 𝜆

g
i − 𝜆

g
j ,

and 𝜷p = {𝛽p1, … , 𝛽pN} is the set of parameters corresponding to pth element of the set of judge
covariates. We recover the model and likelihood of Section 2.2 by taking G = 1 and P = 0 in this
formulation.

As in the BSBT model with no judge covariates, we place a constrained multivariate normal
prior distribution on the spatial parameters 𝝀, shown in Equation (3). We also place an indepen-
dent, constrained, multivariate normal prior distribution on each 𝜷p which allows us to model
the effect of each covariate spatially. So that the deprivation parameters, 𝝀, represent the grand
mean of the deprivation for all judges, we enforce a second constraint among the set of parame-
ters 𝜷p, which correspond to a given categorical covariate, as this allows us to treat each category
symmetrically, that is, we avoid fixing one category as a reference category and then not having
any uncertainty associated with it. For a group of q covariates representing the q categories of
covariate p, the corresponding parameters 𝛽p1i, … , 𝛽pqi need a constraint to ensure identifiability.
We use 𝛽p1i + · · · + 𝛽pqi = 0 for each area i = 1, … , N.

An example of including judge information is investigating how judges of different genders
view different subwards. In less developed countries, women may be more vulnerable to different
forms of exploitation than men (e.g. female genital mutilation, modern slavery and forced mar-
riage) and finding areas women view as more deprived than men may indirectly give information
about where these practices are happening. We sort the judges into two groups (i.e. G = 2), men
and women. We let xT

1 = (1 0) for male judges and xT
2 = (0 1) for female judges (i.e. P = 2). The

appropriate constraint to ensure identifiability is then 𝛽1i + 𝛽2i = 0 for each area i.

2.4 Fitting the model

Now we have described the BSBT model, we develop a Markov chain Monte Carlo (MCMC)
algorithm to infer the model parameters given the observed comparative judgements y, and
the judge covariates x. The model parameters are: the deprivation parameters 𝝀, any covari-
ate parameters 𝜷p, and the covariance function variance hyperparameters 𝛼2

𝜆
and 𝛼2

1 , … , 𝛼2
P. By

Bayes’ theorem, the posterior distribution is

𝜋(𝝀, 𝜷1, … , 𝜷P, 𝛼
2
𝜆
, 𝛼2

1 , … , 𝛼2
P|x, y) ∝ 𝜋(y|𝝀, 𝜷1, … , 𝜷P)𝜋(𝝀|𝛼2

𝜆
, 1T𝝀 = 0)𝜋(𝛼2

𝜆
)

×
P∏

p=1
𝜋(𝜷p|𝛼2

p, 1T𝜷p = 0)𝜋(𝛼2
p). (7)

The first term on the right-hand side is the likelihood function (6) and the second term is the prior
density for the spatial component 𝝀, for which we use the constrained prior distribution (3). We
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place an independent prior distribution on the variance hyperparameter 𝛼2
𝜆
, which is the third

term on the right-hand side. The product term contains the prior distributions for the covariate
parameters 𝜷1, … , 𝜷P and the variance hyperparameters 𝛼2

1 , … , 𝛼2
P for these distributions.

The posterior density cannot be computed explicitly, but it can be sampled from using
Algorithm 1. This MCMC algorithm involves iterating Gibbs updates for the variance hyperpa-
rameters, 𝛼2

𝜆
, 𝛼2

1 , … , 𝛼2
P, and Metropolis–Hastings updates for the spatial components, 𝝀 and

𝜷1, … , 𝜷P. For analytical convenience, we place a conjugate inverse-Gamma prior distribution
on the variance hyperparameters, the density function of which is

𝜋(x;𝜒, 𝜔) = 𝜔𝜒

Γ(𝜒)
1

x𝜒+1 exp
(
−𝜔

x

)
(x > 0;𝜒 > 0, 𝜔 > 0).

The Gibbs updates are possible because the full conditional distribution for 𝛼2
𝜆

has a closed form.
It is given by

𝛼2
𝜆
|𝝀 ∼ inv − Γ

(
𝜒 + N

2
, 𝜔 + 1

2
𝝀Σ

−1
𝝀T

)
,

where Σ is the covariance matrix of the constrained prior with 𝛼2 = 1 in Equation (5). Analo-
gously, the full conditional distribution for 𝛼2

p is

𝛼2
p |𝜷p ∼ inv − Γ

(
𝜒 + N

2
, 𝜔 + 1

2
𝜷pΣ

−1
𝜷T

p

)
,

To update the deprivation parameters, 𝝀, we use a Metropolis–Hastings sampler with an under-
relaxed proposal mechanism (Neal, 1998). This allows us to update the parameters as a block
and reduces the computational complexity compared to updating each deprivation parameter
individually. Given the current deprivation parameters 𝝀, we propose new values by

𝝀′ =
√

1 − 𝛿2𝝀 + 𝛿𝝂,

where 𝛿 ∈ (0, 1] is a tuning parameter and 𝝂 is a draw from the constrained prior distribution in
Equation (3). We accept this proposal with probability

pacc = min
(
𝜋(y|𝝀′, 𝜷1, … , 𝜷P)
𝜋(y|𝝀, 𝜷1, … , 𝜷P)

, 1
)
.
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The proposal ratio using the underrelaxed proposal mechanism is the inverse of the prior ratio,
meaning the acceptance probability is the ratio of the likelihood function with the proposed and
current deprivation parameters. We follow an analogous process for the covariate parameters
𝜷1, … , 𝜷P.

2.5 Implementing the model

We have developed an R package to allow any user to implement this method on a compara-
tive judgement data set. The package BSBT is available on CRAN (Seymour & Briant, 2021). It
includes the novel comparative judgement data set on deprivation in Dar es Salaam, Tanzania,
shapefiles for the 452 subwards in the city and a vignette containing instructions on how to
reproduce the analysis in Section 4. The package allows users to place a constrained multivariate
normal prior distribution for deprivation parameters over a predetermined network (it also facil-
itates constructing the network) and fit the model using the MCMC algorithm in Algorithm 1.
We provide a number of covariance functions, including the squared-exponential, Matérn
and matrix exponential functions. The MCMC functions included in the package can be used
to fit either a spatial model, or a spatial model with a single covariate for judge information.
Due to our formulation of the likelihood function, the computational time for the
BSBT implementation scales according to the number of areas, whereas the implemen-
tation provided in the BradleyTerry2 package scales according to the number of
comparisons.

3 SIMULATION STUDY

To assess the model’s ability to infer deprivation levels in a realistic scenario, we simulate depri-
vation levels for the subwards in Dar es Salaam by drawing a sample from the prior distribution,
then seek to infer these from simulated comparative judgements. A map of the city and the cor-
responding network are shown in Figure 3. We simulate the comparisons according to the model
in Equation (2) and choose pairs of areas uniformly at random to compare. We simulate data
sets of various sizes to mimic real data collection. The sizes of simulated data sets used in this
paper are shown in Table 1. We use ‘judge hours’ to quantify the number of comparisons by
the total judging time required, assuming 20 s per comparison or 180 comparisons per judge
hour.

We fit the model to each data set, running the MCMC algorithm for 1,500,000 iterations and
removing the first 500,000 iterations as a burn-in period. We fix the tuning parameter 𝛿 = 0.01,
based on initial runs of the algorithm. For the prior distribution on 𝛼2

𝜆
, we fix 𝜒 = 𝜔 = 0.1 which

results in a somewhat noninformative distribution (Gelman, 2006). To assess the model fit, we
compute the mean absolute error (MAE) for the result of each set of comparisons, which is given
by

T A B L E 1 Data set sizes used in the simulation studies, using 180 comparisons per judge hour

Judge hours 1 2 5 10 25 50 100 250 500 1,000

Comparisons 180 360 900 1,800 4,500 9,000 18,000 45,000 90,000 180,000
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MAE = 1
N

N∑
i=1

|𝜆i − 𝜆̂i|,
where 𝜆̂i is the estimate corresponding to the MLE or posterior mean for area i.

Figure 4 shows the log MAE for each data set. The BSBT model outperforms the standard
model for all sizes of data set used. For a fixed number of comparisons, the BSBT model has
smaller error than the standard model. For example, when using 1,800 comparisons (10 judge
hours), the MAE using the BSBT model (0.260) is less than a third of the error in the standard
model (0.907). Figure 4 also shows that we can substantially reduce the number of comparisons
required to achieve a given level of error by using the BSBT instead of the standard BT model. For
example, MAE in the BSBT with 5 judge hours is similar to that in the standard model with 50
judge hours, a decrease in judge hours of 90%; and 250 judge hours with the standard model yields
similar MAE to 100 judge hours with BSBT, a still substantial reduction of 60% in terms of the data
required to give a similar level of performance. For small data sets we are unable to compute the
MLE for all areas and so the corresponding MAE is undefined for the standard BT model. Here
we see one of the main advantages of the BSBT model: including weak prior assumptions about
spatial correlations allows it to learn about areas featured in very few, or even no, comparisons
from information about nearby areas.

We observe that the performance of the BT and BSBT models is very similar when the number
of judgements is large. This is to be expected from the Bernstein–von Mises theorem (Kleijn &
van der Vaart, 2012) whereby the posterior distribution of finite dimensional parameters and the
MLEs tend to the same asymptotic multivariate normal distribution for large samples, subject to
smoothness and identifiability conditions on the prior distribution and a positivity condition on
the prior at the true value.

We also present a simulation study on a synthetic 1-d ‘city’ in Section 1 of the supplemen-
tary material. Although less realistic than the 2-d study above, it has the significant advantage
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F I G U R E 4 Log MAE for the simulation study comparing performance of the standard BT and the BSBT
models in terms of error as a function of the number of comparisons
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of allowing much easier visualization of the synthetic ground truth, the simulated data and the
results of fitting our model; aiding interpretation of what our methods achieve.

4 DEPRIVATION IN DAR ES SALAAM, TANZANIA

4.1 Bayesian Spatial Bradley–Terry model

We fit the BSBT model to the data and run the MCMC algorithm shown in Algorithm 1
for 1,500,000 iterations, removing the first 500,000 iteration as a burn-in period. This took
around 3 h on a 2019 iMac with a 3 GHz CPU. We examined trace plots to ensure ade-
quate mixing of the Markov chain and to choose the length of the burn-in period. These
are given in Section 2 of the supplementary material. We fix the tuning parameter 𝛿 = 0.01,
based on initial runs of the algorithm, and the inverse gamma prior distribution parameters
𝜒 = 𝜔 = 0.1.

The resulting estimates for the level of deprivation in each subward in the city are
shown in Figure 5. We see a north–south trend, whereby the level of deprivation increases
further south in the city. We find several sharp changes in deprivation in the city cen-
tre, where slums neighbour affluent subwards. The most affluent subward is Masaki, and
the 10 most affluent areas are all concentrated around the Masaki peninsula directly north
of the city centre and home to most of the affluent expatriate communities. The 10 most
deprived subwards are geographically spread out, with one, Mpakani, being located in the
centre of Dar es Salaam and the others spread across the outer regions of the city. Four of
the 10 most deprived subwards are in the Somangila ward, a coastal ward in the east of
the city.

The uncertainty in the estimates for the level of deprivation in each subward differs consider-
ably, as shown in Figure 6. We see a correlation between the level of uncertainty in our estimate
and the estimated level of deprivation. As the most affluent areas tend to also be well known
areas, such as tourist resorts or areas with government buildings, we were able to collect more

−1.5 −1.1 −0.7 −0.3 0.1 0.5 0.9 1.3 1.7 2.1 2.5

F I G U R E 5 The posterior mean values for the BSBT model applied to the Dar es Salaam data set. The
figure on the right shows a magnified section of the centre of the city, together with this central area highlighted
on a map of the whole city
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comparisons involving these subwards and therefore there is less uncertainty in our estimates
for the deprivation in these areas. We also estimate the variance parameter 𝛼2

𝜆
; its posterior mean

is 3.378 with 95% CI (credible interval) (2.868, 3.993) and the posterior distribution is shown in
Figure 6. Section 2 of the supplementary material gives more diagnostic information and a short
investigation of judge reliability which concludes that no judges provide judgements which are
notably out of line with the fitted model.

Because approximately one in seven of the comparisons in the data set are tied, which is a
substantial proportion, we must take care that our approach to treating ties does not substan-
tially affect the inferred deprivation levels. For the results in this paper, wherever a comparison
was tied we randomly allocated a winner. In Section 3.1 of the supplementary material, we
carry out a sensitivity analysis of these random allocations, examining 20 data sets generated via
different random seeds, and confirm the robustness of our results. In Section 3.2 of the supple-
mentary material, we consider two alternative treatments for the tied comparisons (treating a
tie as ‘half a win’ for both subwards involved, and discarding the ties altogether). We found the
posterior means were largely unaffected by the treatment of ties. Discarding the ties increases
the uncertainty as we are discarding a considerable amount of data, and treating the ties as half
a win yields estimates that have the lowest variance of any treatment we considered. We have
favoured the treatment of allocating winners of the tied comparisons at random. This is on the
basis that the results appear insensitive to the specific random allocation used, it makes use of
all the available data, and it is conservative in terms of the resulting uncertainty in parameter
estimates.

Results for the standard BT and BSBT models are very similar; we see very similar
inferred deprivation levels and uncertainties. (See Section 4 of the supplementary mate-
rial.) However, the data set that we have is quite large, so this is likely a data saturation
effect (cf. Figure 4). An important aim of our work is to investigate if many fewer com-
parative judgements could have been collected, at a much reduced cost, with little loss of
information.
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4.2 Efficiency of the BSBT model

To investigate the effectiveness of the model when we have a smaller number of comparisons, we
also fit both the standard BT and BSBT models to the comparisons collected on the first 2 days
of the field work. This subset includes 13,361 comparisons (around 18% of the original data set).
All subwards feature in this partial data set and the number of comparisons each subward was
featured in ranged from 2 to 233, with mean 60. Five subwards ‘lost’ every comparison they were
featured in, making it difficult to estimate their deprivation level using the standard BT model.
We compute the MAE taking the true values to be the inferred deprivation levels using the full
data set. Using the BSBT model on this partial data set roughly halves the MAE compared to the
standard BT model, reducing it from 0.523 to 0.267. We are still able to identify sharp changes in
deprivation levels, for example where slums neighbour affluent areas in the city centre.

In Figure 7, we report the posterior mean and variance for the deprivation in each subward.
There is some shrinkage in the estimates for the most deprived subwards, but no consistent
change elsewhere. There is strong linear correlation between the estimated deprivation levels
using the full and partial data set (𝜌= 0.832), showing that in terms of identifying subwards as, for
example, somewhat affluent or very deprived, very little is lost by using the partial data set. As is
expected, using less data results in higher uncertainty, however, the uncertainty is generally small
with respect to the deprivation parameter values and the additional uncertainty does not appear
to apply to subwards in any systematic way. Alongside the analysis shown in Figure 4, this shows
that by using the BSBT model, in future we can collect far fewer comparisons yet attain similar
levels of error in the results. This will reduce the time and cost associated with data collection in
similar future fieldwork.

4.3 Judge information in Dar es Salaam

First, we investigate if the men and women in the study perceived subwards differently. For
the Dar es Salaam data, there were 91 female judges and 133 male judges. For reasons outlined

−1 0 1 2

−
1

0
1

2

Deprivation using the full data set

D
ep

riv
at

io
n 

us
in

g 
th

e 
pa

rt
ia

l d
at

a 
se

t

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Variance using the full data set

V
ar

ia
nc

e 
us

in
g 

th
e 

pa
rt

ia
l d

at
a 

se
t

F I G U R E 7 Left: The posterior mean estimates for deprivation using the full and partial data sets. Right:
The posterior variance using the full and partial data sets



16 SEYMOUR et al.

in the introduction we are interested in determining whether different genders have different
perceptions of some parts of the city. Our first observation is that each male judge did on aver-
age 328 comparisons, whereas the average among female judges was 200. This is because the
women took longer to carry out individual comparisons than the men. Another difference is that
the women tended to be familiar with fewer subwards than the men, perhaps suggesting they are
less mobile in the city. We fit the BSBT model with gender effect to the data, here G = 2 as we
sort comparisons into two groups (men and women) and P = 2 as we model the effect of being
male or female. We run the MCMC algorithm for 5,000,000 iterations, which took 1 day on a 2019
iMac with 3 GHz CPU. Diagnostic plots can be found in Section 5 of the supplementary material.
We fix 𝛿 = 0.01 based on initial runs of the algorithm. We estimate the variance 𝛼2

𝜆
(for 𝝀) to be

3.846 (95% CI: (3.073, 3.694)) and 𝛼2
1 (for 𝜷1) 0.026 (95% CI: (0.002, 0.034)). Such a small value of

𝛼2
1 suggests the men’s and women’s perceptions are highly correlated.

Figure 8 shows the distribution of the posterior mean deprivation levels perceived by men and
women. We see that the distribution of the levels of deprivation perceived by men and women is
largely the same. We also show posterior density estimates for men’s and women’s perceptions
of two subwards. In Kibonde Maji A, a somewhat deprived subward in the south of the city on
a trunk road, there is no perceptible difference in how men and women perceive the subward.
In Hananasif, an inner city subward near the business district, women perceive the subward to
be considerably more deprived than men do. In Figure 9 we show the spatial structure in the
difference between how men and women view the subwards, based on whether or not CIs for the
discrepancies 𝛽0,i (for each subward i) contain zero. The subwards women view as more deprived
than men are mostly concentrated in the centre of the city, and the majority of the subwards which
women view as less deprived are in the outer regions of the city. We suggest two reasons for the
difference in perceptions: the first is personal safety, as women may perhaps feel less safe in the
city centre; the second is because the centre is the location of both the central business district
and many nightlife venues, which may offer better opportunities to men.

Second, we investigate if students perceived deprivation differently to the other judges. Stu-
dents made up 37% of the judges and made 41% of the comparisons. We fit the BSBT model with
P = 2, as there are two groups of judges (students and non-students). As in the gender differences
model, we run the MCMC algorithm for 5,000,000 iterations. We run the MCMC algorithm for
5,000,000 iterations, which took 1 day on a 2019 iMac with 3 GHz CPU. Diagnostic plots can be
found in Section 5 of the supplementary material. We find there is no difference between how
the students and non-students perceive deprivation in the city; all 95% CIs for the discrepancy
between students and non-students contain 0. The mean absolute discrepancy is 0.016 and the
maximum absolute discrepancy is 0.035; indicating very little difference between the two groups.
We estimate the variance 𝛼2

𝜆
(for 𝝀) to be 4.953 (95% CI: (3.982, 6.052)) and 𝛼2

1 (for 𝜷1) 0.005 (95%
CI: (0.004, 0.007)). We note that the posterior mean estimate for the variance for the discrep-
ancy parameter is an order of magnitude smaller than in the gender discrepancy results, further
suggesting the students and non-students have very highly correlated responses.

5 DISCUSSION

In this paper we have developed a nonparametric spatial version of the Bradley–Terry model
and fitted it to a novel data set to infer deprivation levels in Dar es Salaam, Tanzania. Our
methods also allow us to incorporate judge information into the model, for example, judge gender
or occupation, to understand the perceptions of different groups of judges.
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F I G U R E 8 Top: Kernel density estimation of posterior means for the levels of deprivation given by men
and women. Bottom: The posterior distributions for the men’s and women’s perceptions of Kibonde Maji A (left)
and Hananasif (right). We do not infer a difference between how men and women perceive Kibonde Maji A, but
we do for Hananasif

We analysed a novel data set on deprivation in Dar es Salaam, not only estimating the level
of deprivation in the city’s 452 subwards, but also demonstrating the effectiveness of the BSBT
model in significantly reducing data requirements by incorporating spatial correlations in the
prior distribution for deprivation levels. As far as we are aware, no estimates for deprivation on
such a fine scale are currently available. We were able to identify slums in the centre of the city
and estimate the level of deprivation in the peri-urban outer regions of the city. Our findings
show that there are several sharp changes in the level of deprivation in the centre of the city
where very affluent areas neighbour slums. There is also a difference in how men and women
view some areas; specifically we find that women view some parts of the centre of Dar es Salaam
as more deprived than men do, but tend to view some parts of the outer regions of the city
as less deprived than men do. Our data collection, modelling and analysis provides up-to-date
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F I G U R E 9 The difference between men and women’s perceived deprivation levels, coloured by the 95%
credible interval. Blank subwards have a credible interval which contains 0. Red and blue subwards have a
credible interval which does not contain 0, with blue showing positive and red showing negative

estimates of deprivation levels in Dar es Salaam via the involvement of over 200 of the citizens of
the city.

There is scope for agencies in developing countries to use the BSBT model to design interven-
tions based on a quantitative analysis of social issues. This is advantageous to agencies working
in environments where official statistics are low quality or not available. This is not limited to
deprivation but any social issue that citizens can compare areas on, for example estimating preva-
lence of Female Genital Mutilation, or prevalence of black market trading. Similarly, such studies
need not be limited to cities, but any context which has a spatial or network component; for
example a group of villages spread out across a large area or a network of individuals linked by
telecommunications data.

There are a number of possible directions in which the BSBT model may be fruitfully extended
and further explored. The BSBT model has a large computational cost and there is scope to
reduce the computational time required by developing a more efficient MCMC algorithm, for
example by adaptive updating of the under-relaxed tuning parameter 𝛿. We could further reduce
the amount of data required by optimizing the experimental design and identifying pairs of areas
which should be asked about or adaptively identifying areas which need to be compared (see, e.g.
Pfeiffer et al., 2012; Pollit, 2012).

There is further information to be extracted from the data collected in Dar es Salaam. For
example, in addition to our analysis of the effect of gender and occupation, it may be of interest to
local agencies to understand whether other covariates (or combinations of covariates) are associ-
ated with different perceptions of deprivation. We can also investigate the tied comparisons using
a multinomial model, (see, e.g. Davidson, 1970; Rao & Kupper, 1967), to investigate the effect of
comparing subwards which had similar deprivation levels.
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We have developed new models for efficiently estimating the level of deprivation in urban
areas based on comparative judgement data. Existing comparative judgement models require a
large amount of data to produce high-quality results and collecting such quantities of data is often
difficult or infeasible when working in developing countries, where data collection can be pro-
hibitively expensive and time-consuming. Using the Bayesian Spatial Bradley–Terry model, we
could have collected considerably fewer comparisons without affecting the quality of our results.
When using the data collected only on the first 2 days on the fieldwork, the error in the BSBT
model is small, and substantially smaller than when using the standard model. We achieved
this by including a spatial element in the model, where the level of deprivation in one sub-
ward is correlated with the level in nearby subwards. We modelled the spatial structure using a
multivariate normal prior distribution with a covariance matrix based on the network structure
of the city, which avoids making rigid parametric assumptions. We also showed how our method
can be used to analyse how different genders perceive the level of deprivation in different areas,
and how different their perceptions are. This can help researchers identify areas where one gender
may be facing specific problems.
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