
SPMS-ALS: A Single-Point Memetic Structure with

Accelerated Local Search for Instance Reduction

Hoang Lam Lea,∗, Ferrante Neria, Isaac Trigueroa

aThe Optimisation and Learning (COL) Lab at the School of Computer Science,
University of Nottingham, Nottingham NG8 1BB, United Kingdom

Abstract

Real-world optimisation problems pose domain specific challenges that often
require an ad-hoc algorithmic design to be efficiently addressed. The present
paper investigates the optimisation of a key stage in data mining, known as
instance reduction, which aims to shrink the input data prior to applying a
learning algorithm. Performing a smart selection or creation of a reduced
number of samples that represent the original data may become a com-
plex large-scale optimisation problem, characterised by a computationally
expensive objective function, which has been often tackled by sophisticated
population-based metaheuristics that suffer from a high runtime.

Instead, by following the Ockham’s Razor in Memetic Computing, we
propose a Memetic Computing approach that we refer to as fast Single-Point
Memetic Structure with Accelerated Local Search (SPMS-ALS). Using the
k-nearest neighbours algorithm as base classifier, we first employ a simple
local search for large-scale problems that exploits the search logic of Pattern
Search, perturbing an n-dimensional vector along the directions identified by
its design variables one by one. This point-by-point perturbation mechanism
allows us to design a strategy to re-use most of the calculations previously
made to compute the objective function of a candidate solution. The pro-
posed Accelerated Local Search is integrated within a single-point memetic
framework and coupled with a resampling mechanism and a crossover. A
thorough experimental analysis shows that SPMS-ALS, despite its simplicity,
displays an excellent performance which is as good as that of the state-of-
the-art while reducing up to approximately 85% of the runtime with respect

∗Corresponding author
Email address: hoang.le@nottingham.ac.uk (Hoang Lam Le)

Preprint submitted to Swarm and Evolutionary Computation September 29, 2021

to any other algorithm that performs the same number of function calls.

Keywords: Memetic Algorithm, Pattern Search, Instance Reduction,
Classification, Data Science, Ockham’s Razor in Memetic Computing

1. Introduction1

Since their earliest definition [35, 34] Memetic Algorithms (MAs) were in-2

troduced to enhance upon the performance of algorithms, such as Genetic Al-3

gorithms and Simulated Annealing. Unlike the majority of other algorithms,4

MAs are not fixed to a specific structure but are flexible and thus versatile5

optimisation frameworks, see [38]. This flexibility is one of the main features6

of MAs which likely inspired numerous subsequent studies that shaped, over7

the past three decades, the field of Memetic Computing (MC).8

By following the visionary ideas reported in [21] and the classification in9

[12], three groups/generations of MC approaches have been identified:10

• Simple Hybrids: this group includes hybrid algorithms generated11

by two or more algorithms joined together in a synergistic manner.12

Usually, the algorithms of this type combine a global search and at13

least one local search. Some examples of successful hybridisations are14

reported in e.g. [30, 50, 31]15

• Adaptive Hybrids: this includes hybrid algorithms where multiple16

local search algorithms are coordinated by an adaptive mechanism17

that selects the algorithmic elements at runtime. Popular selection18

criteria are performance-based like in hyperheuristics [44] and meta-19

Lamarckian learning [26, 43], diversity-based [6] or self-adaptive [42].20

• (Future) Memetic Automation: this kind reinterprets MAs as a21

combination of “agents” without a predefined structure [1, 63] and22

investigates mechanisms to attain fully self-generated MAs. Although23

this design approach is still under investigation, some interesting domain-24

specific frameworks [15, 29] and prototypes [7] have been proposed.25

The flexibility of the subject facilitating domain-specific algorithmic de-26

sign is one of the reasons of the success of MAs in real-world applications,27

see [3, 14, 61]. In other words, while robust algorithmic design and testing28

on multiple abstract mathematical functions is fundamental for the develop-29

ment of novel memetic structures (as well as for any optimisation algorithm)30

2

[17, 33] real-world problems often pose specific challenges which may be ad-31

dressed by ad-hoc representations and specific operators [21]. Among the32

plethora of MC structures the need to design simple algorithm on a limited33

hardware inspired Single-Point Memetic Structures which are the focus34

of the present study. For example, in [39] memetic structures using virtual35

populations (statistical models of populations) have been implemented di-36

rectly in the control cards of robots. In [9], a simplistic single-solution MC37

approach composed of a global evolutionary operator and a local search has38

been proven to be competitive with complex metaheuristics and has been39

successfully implemented in the control card of an helicopter robot.40

The latter approach is part a family of MAs designed according to the so-41

called Ockham’s Razor in Memetic Computing principle formulated in [22]:42

simple algorithmic structures designed by combining memes in a bottom-up43

approach while addressing the knowledge of the problem (prior or available44

at run-time) often have a high performance despite their simplicity. This idea45

links to other areas of optimisation research such as the pioneering studies46

in [60, 11] and the work on Fitness Landscape Analysis [32, 23].47

The present article addresses a real-world problem in the field of data48

science, known as instance reduction [58]. Datasets can be extremely large49

and usually require the use of pre-processing techniques to enable data mining50

and machine learning techniques to learn from a cleaner and smaller dataset51

that is free of noise, redundant or irrelevant samples (the so-called, Smart52

Data [53]). Instance reduction is an important pre-processing procedure that53

pursues to shrink the original dataset and keep it as informative as by either54

selecting (instance selection) [19] or generating (instance generation)55

[51] representative instances from a very large raw dataset. This is not a56

trivial task, and it is essential to properly select or artificially generate those57

representative instances.58

Instance reduction can be conceived as an optimisation problem and be59

tackled by search algorithms as either a binary search problem in the case60

of instance selection [5], or as a continuous search problem to artificially61

generate representative instances. In both cases, MAs have been preeminent62

in comparison with other approaches in terms of performance [18, 52]. The63

vast majority of the existing instance reduction approaches were proposed to64

improve the performance of the well-known Nearest Neighbour (NN) classifier65

[13]. However, the resulting reduced dataset may be used by any classifier66

[5]. In this work, we will also focus on the NN classifier.67

The main issue for current instance reduction solutions is related to the68

3

high cost of evaluating candidate solutions. When tackling bigger datasets,69

their runtime may become excessive and we can find in the specialised lit-70

erature parallelisation approaches for instance reduction [55], which allow71

them to be executed, whilst increasing the need for additional computa-72

tional resources. Reducing the computational cost of the fitness evaluation73

is an under-explored area in instance reduction, and just a few approximation74

approaches exist (e.g. windowing [4] or surrogate models [41]).75

Bearing in mind the elevated computational cost of the fitness function,76

we propose a simple and yet effective domain-specific MC approach for in-77

stance reduction. The proposed MC approach is composed of a novel domain-78

specific implementation of local search hybridised with a global evolutionary79

operator. The local search exploits the logic of the Generalised Pattern80

Search that performs an implicit variable decomposition technique and per-81

turbs the elements of a candidate solution one by one [40]. In contradistinc-82

tion with existing population-based approaches that create new solutions83

perturbing multiple variables at once, we exploit the fact that the proposed84

local search produces candidate solutions that are only “slightly” different85

w.r.t the previous fitness evaluation. Based on this fact, we devise a mech-86

anism to drastically reduce the cost of the objective function when using87

the NN algorithm as base classifier. The global search operator is a simple88

resampling mechanism followed by crossover while an elite memory slot re-89

tains the solution with the best performance. The key idea lies in keeping a90

single-point approach to highly accelerate the objective function evaluation91

while using a global operator to avoid getting stuck in local optima.92

The remainder of this article is organised in the following way. Section 293

provides the background about instance reduction, formalises it as an optimi-94

sation problem and provides an explanation why the problem is unavoidably95

large scale and why calculation of the objective function is computationally96

expensive. Section 3 describes and justifies the proposed method. Section97

4 presents the experimental setup while Section 5 shows and discusses the98

results. Finally, Section 6 provides the conclusion of this study.99

2. Problem Formulation and Challenges Associated with it100

In a supervised classification problem, the data is usually split into train-101

ing (TR) and test (TS) sets. Each instance belongs to a class w, which102

is known for TR and unknown for TS. Both datasets can be viewed as a103

4

matrix in which instances Ii are displayed on the rows whilst features fi are104

shown on the columns:105

TR =

f1 f2 ... fm

I1 a11 a12 ... a1m
I2 a21 a22 ... a2m
...
Il al1 al2 ... alm

 (1)

The main purpose of an instance reduction technique is to clean and106

compress TR into a reduced set RS, by either selecting or generating new107

representative instances, so that, it preserves and provides valuable infor-108

mation for a machine learning algorithm to learn useful insights about a109

classification problem. Thus, the resulting RS should satisfy several condi-110

tions such as well-representing the distributions of the classes, significantly111

reducing in size to minimise the required storage, which would be beneficial112

to the posterior classification phase.113

RS =

f1 f2 ... fm

I1 b11 b12 ... b1m
I2 b12 b22 ... b2m
...
Ip bp1 bp2 ... bpm

 (2)

with p � l. In this study we choose to treat p as a parameter that114

signifies the compression of the data with respect to the size of the entire115

set of training set (number of rows of TR). More specifically, we use the116

reduction rate l
p

as a parameter of our problem. In both matrices TR and117

RS each row is associated with its class label, that is each instance Ii is118

assigned to its class on the basis of its features.119

2.1. Evaluation of an RS120

The development of many data pre-processing techniques such as instance121

reduction was initially motivated by the imprecision and inefficiencies of the122

well-known nearest neighbour(s) (NN) algorithm [13]. These weaknesses have123

turned into strengths and made the NN rule a core algorithm to preprocess124

raw data [53]. Thus, most instance reduction techniques verify how well a125

candidate matrix RS represents the entire training dataset, TR, by using the126

NN algorithm as base classifier. To do so, this approach essentially checks127

5

Figure 1: Distance matrix of l instances in TR and p instances in RS. The instance
at the first row is verified by instance at column 2, while the instance at the last row is
checked by the one at column 1. Blue entries represent the shortest distance among the
neighbours.

how well we can classify, the large dataset TR using the small dataset RS128

as training data, and consists of the following steps. The Euclidean distance129

between each instance Ii (row vector) of RS and each instance Ij (row vec-130

tor) of TR is calculated. This process yields l × p distance computations.131

Typically, the nearest neighbours (smallest distances) are computed “on the132

fly”, just by keeping the shortest distance and instance ID/number, and any133

intermediate distance computations are disregarded. As part of the strategy134

we will devise in Section 3.2, we could store all computed distances on a135

distance matrix ; Figure 1 shows an example of a distance matrix. An entry136

Di,j of the distance matrix in position i, j indicates the distance of the ith137

instance in TR to the jth instance in the RS:138

Di,j =

√
(bi,1 − aj,1)2 + (bi,2 − aj,2)2 + . . .+ (bi,m − aj,m)2.

When the distance matrix D is calculated, for each row (i.e. each instance139

of TR), the smallest entry is detected, e.g. 0.22 in the first row of Figure140

1, and that instance is given the class label w of the closest instance in RS.141

When all instances in TR have been classified, there are different ways to142

assign a score (objective function) to the performance of RS [2, 59].143

As we are dealing with mostly balanced datasets, in this study we use the
Accuracy Rate Acc [2, 59], that is

Acc =
number of correct classifications by means of RS

total number of examined samples

Thus, for an input RS the objective function value is Acc, that is

f (RS) = Acc.

6

Algorithm 1 describes step-by-step the calculation of the objective func-144

tion based on the distance matrix.145

Algorithm 1 Objective Function

1: INPUT matrices TR = [ai,j] and RS = [bi,j]
2: Build the matrix of Euclidean distances D = [Di,j]
3: for each row of the matrix D do
4: Find the smallest number and save its row and column indices
5: Select, from TR and RS, the instances corresponding to the calcu-

lated indices
6: Check the corresponding labels
7: if the labels coincide then
8: Update the number of correct classifications
9: end if

10: end for
11: Calculate Acc
12: OUTPUT the objective function value Acc

Of course, since higher values of Acc correspond to a better classification,146

the objective function needs to be maximised. The maximisation occurs147

within a (p×m)−dimensional space where each variables can continuously148

vary in a normalised interval. Hence, the search for the optimal solution149

occurs in the set [0, 1]p×m.150

2.2. Computational Cost of the Objective Function151

Regardless of the score used to measure the quality of RS, the procedure152

described above requires the calculation of l × p Euclidean distances. This153

operation can be computationally expensive especially when large datasets154

are under examination. The two main problems that arise when tackling155

larger datasets are runtime (due to the large number of distance computations156

required) and memory consumption (e.g. when the size of TR does not allow157

us to store it in main memory). However, the required runtime to evaluate158

candidate solutions tends to be the most important factor to enable instance159

reduction of large datasets.160

In the literature, two popular types of approach to accelerate the process-161

ing of instance reduction techniques are:162

7

• divide-and-conquer: the execution of instance reduction approaches163

is parallelised, splitting the training data into a number of chunks, typ-164

ically through big data technologies, see [55]. Whilst they are necessary165

when the TR set does not fit in main memory, the main limitation of166

this approach is that it does not address the computational complexity167

of the problem, but its processing time, by using additional computa-168

tional resources. In addition, a trade-off between the number of splits169

and the accuracy that can be obtained exist, and must be experimen-170

tally found for the dataset at hand.171

• approximation: to reduce the complexity of the objective function,172

the quality of RS may also be estimated by an approximation function.173

For example, a windowing approach that uses a different partition of174

TR to evaluate an RS at each iteration of a search algorithm [4]. Other175

more sophisticated approximation (also known as surrogate) models to176

reduce the number of evaluations for instance reduction algorithms have177

been recently investigated [25, 41]. While this approach reduces the178

runtime, its main limitation is that an approximated objective function179

may mislead the search of the optimisation algorithm.180

In the present paper, we propose a new mechanism that while exploiting181

the structure of the optimisation algorithm allows a substantial reduction of182

the computational complexity (i.e. number of distance computations) of the183

objective function without approximations, see Section 3. Thus, the goal of184

this work is not to tackle big datasets and the memory limitations associated185

to it, but to devise a very fast and reliable instance reduction process that186

could be couple together with the approaches provided in [55] when very big187

datasets need to be addressed.188

3. Single-Point Memetic Structure with Accelerated Local Search189

for Instance Reduction190

From the description in Section 2, we may characterise Instance Reduc-191

tion as an optimisation problem with the following considerations:192

• the problem is large-scale and its number of variables (p×m) can be193

extremely high depending on the size of the dataset194

• due to the large number of variables, the problem is likely to be hard195

to solve and the fitness landscape could be highly multimodal196

8

• even if it were multimodal, an excessive exploitation of the basin of197

attraction may yield an overfitted solution, that is a solution that per-198

forms well on the training set but not on the test set199

• each objective function call (or fitness evaluation) is computationally200

expensive due to calculation of multiple Euclidean distances201

In order to address the Instance Reduction problem, a domain-specific202

MC approach that takes into account the considerations above is here pro-203

posed. The proposed MC approach, namely Single-Point Memetic Structure204

with Accelerated Local Search (SPMS-ALS) is population-less and designed205

according to the bottom-up logic reported in [22]. SPMS-ALS perturbs a206

single solution and makes use of one more memory slot to store the elite207

solution, that is the best solution ever found. A novel domain-specific accel-208

erated local search implementation is here proposed. Section 3.1 describes209

the local search operator employed in SPMS-ALS while Section 3.2 illustrates210

how the local search logic is exploited to accelerate the calculation of the ob-211

jective function. The proposed SPMS-ALS makes also use of a simple global212

search operator illustrated in Section 3.3. Finally, Section 3.4 discusses and213

justifies the design of SPMS-ALS.214

3.1. Local Search Operator215

With the purpose of effectively describing SPMS-ALS, let us slightly re-216

define the notation. As introduced in Equation 2, RS = [bi,j] is a matrix217

of size p × m which can be rewritten as a vector x of length n = p × m218

containing all the rows of RS arranged sequentially:219

x = (b11, b12, . . . , b1m, b21, b22, . . . , b2m, . . . , bp1, bp2, . . . , bpm) = (x1, x2, . . . , xn)

where xi represents the design variables of the optimisation problem.220

Let ei be the ith versor (that is a vector of modulus equal to 1) of a
basis in an n-dimensional space, that is a vector whose elements are all zeros
except from the ith element which is one [37]:

ei = (0, 0, . . . , 1, . . . , 0, 0)

The local search works on the candidate solution x to locally improve it.221

The following greedy implementation of a Generalised Pattern Search has222

9

been used, see [40]. The algorithm perturbs each feature value of an instance223

at a time in its feasible range and then check if any improvement is found.224

Specifically, let x be the base vector (the best solution found at the time),225

for each design variable i from 1 to n the algorithm explores at first226

xt = x− ρ · ei

where xt is a trial vector and the scalar ρ is the step-size (exploratory radius).
For each index i, the algorithm attempts to explore the opposite orientation
of the direction identified by ei if the first attempt fails, that is

xt = x +
ρ

2
· ei

As a remark, the asymmetric step-size is designed to avoid to revisit227

the same solution (vector), see [40]. As soon as xt outperforms x, that is228

f (xt) ≥ f (x), the trial vector xt replaces the base vector x.229

Note that when applying the above perturbations, the resulting values
in the vector xt could be outside of the bounds [xlow, xhigh]. On the basis
of preliminary tests we employed a toroidal handling of the bounds, i.e. for
xi ∈ [xlow, xhigh], if xi > xhigh it is reinserted by reassignment:

xi = xlow +

(
(xi − xhigh) b

(xi − xhigh)
(xhigh − xlow)

c (xhigh − xlow)

)
while if xi < xlow it is reinserted by reassignment230

xi = xhigh −
(

(xlow − xi)− b
(xlow − xi)

(xhigh − xlow)
c (xhigh − xlow)

)
where the parentheses b·c indicate the truncation to the lower integer.231

As an example, if we are in the range [0,1], and the resulting value xi of232

the perturbation is 1.1, the toroidal handling will begin from the beginning of233

the range, producing a 0.1. Conversely, if xi were to be below 0, e.g. -0.1, this234

circular handling would provide 0.9. This ensures that the investigated values235

are within the range. Also, by forcing the perturbation to go to the other236

side of the bound, we increase the exploratory abilities of the method before237

reducing the radius ρ. This strategy provided good results in preliminary238

tests in comparison with other alternatives. If after the entire exploration239

along the n directions no improved solution xt is found, then the radius ρ is240

reduced by a reduction rate. The local search is interrupted when either a241

10

budget condition is met or when the radius ρ is smaller than a pre-arranged242

precision. For sake of clarity Algorithm 2 shows the local search operator243

used in SPMS-ALS.244

Algorithm 2 Local Search of the family of Pattern Search used by SPMS-
ALS

1: INPUT x
2: while local budget and precision conditions are not met do
3: xt = x
4: for i = 1 : n do
5: xt = x− ρ · ei
6: Apply toroidal handling of the bounds
7: if f (xt) ≥ f (x) then
8: x = xt

9: else
10: xt = x + ρ

2
· ei

11: Apply toroidal handling of the bounds
12: if f (xt) ≥ f (x) then
13: x = xt

14: end if
15: end if
16: end for
17: if x has not been updated then
18: reduce ρ
19: end if
20: end while
21: RETURN x

3.2. Accelerated Local Search245

The proposed local search makes use of the search logic outlined in Al-
gorithm 2 and integrates within it a domain-specific procedure to reduce the
computational time of the algorithm. As highlighted in Section 2, when the
NN algorithm is used as based classifier, most of the high computational cost
of the Instance Reduction problem is due to the calculation of l×p Euclidean
distances. However, the local search moves

xt = x− ρ · ei

11

and
xt = x +

ρ

2
· ei

affect only one design variable that is only one entry of the RS matrix.246

As a consequence, if we build a distance matrix D associated with xt,247

this differs by only one column from the matrix D associated with x. When248

the objective function f (xt) is calculated according to Algorithm 1, there is249

no need to recompute l × p Euclidean distances since l × (p− 1) elements250

have already been computed and appropriately stored.251

Thus, when Algorithm 2 is applied, each objective function call requires252

the calculation of only l Euclidean distances. This fact can be effectively rep-253

resented as the modified objective function used by the local search outlined254

in Algorithm 3.255

Algorithm 3 Objective Function f (xt) of the Accelerated Local Search

1: INPUT matrix TR = [ai,j], matrix D associated with the base vector
x, and trial vector xt

2: Build the matrix RS = [bi,j] from xt

3: Update the matrix of Euclidean distances D = [Di,j] by recalculating the
l elements of the pertinent column

4: for each row of the matrix D do
5: Find the smallest number and save its row and column indices
6: Select, from TR and RS, the instances corresponding to the calcu-

lated indices
7: Check the corresponding labels
8: if the labels coincide then
9: Update the number of correct classifications

10: end if
11: end for
12: Calculate Acc
13: OUTPUT the objective function value Acc

Our proposed local search performs once at the beginning the objective256

function call as in Algorithm 1 and then integrates Algorithm 3 into each257

f (xt) function call for the rest of its execution.258

12

3.3. Evolutionary Global Search Operator259

At the beginning of the optimisation, a matrix RS (i.e. Equation 2) is260

randomly sampled from the matrix TR (i.e. Equation 1) and from RS the261

corresponding base vector x constructed and inputted into the local search262

operator. The local search is continued until the stopping criteria conditions263

on budget and precision are met. The local search returns a (possibly im-264

proved) solution x. The best solution ever found is saved and stored in an265

elite slot and called xe. Then, a new solution xr is generated by randomly266

sampling a new RS matrix from TR and constructing the corresponding267

vector. A uniform crossover is applied to xr and x to generate a new trial268

vector xt.269

In order to explain the functioning of this crossover, let us consider a
candidate solution x and let us remind it that it corresponds to a matrix RS
whose rows are instances and columns are features. By applying a matrix
partitioning we may represent RS as a vector of row vectors

RS =

I1
I2
. . .
Ip

Similarly, we may consider the random solution xr and represent the

corresponding RSr matrix

RSr =

Ir1
Ir2
. . .
Irp

whose instances are randomly selected from TR.270

The proposed crossover generates a trial vector xt by randomly selecting271

some rows from RS and some rows from RSr. Each row of the resulting272

matrix RSt has a gene-resampling probability Gr to be selected from RS273

and 1 − Gr probability to be selected from RSr. It must be remarked that274

a crossover that perturbs single elements of RS instead of entire rows would275

yield a candidate solution which could be noisy (i.e. not have the right class276

label), and therefore, not meaningful from a classification point of view.277

The gene-resampling probability Gr expresses the rate of the instances278

in RS which are replaced by other instances sampled from TR. Algorithm279

4 describes the crossover mechanism.280

13

Algorithm 4 Crossover between x and xr

1: INPUT base vector x and random vector xr

2: Build the matrices RS = [Ii] and RSr = [Iri]
3: RSt = [Iti] = RS
4: for i = 1 : p do
5: Generate a random number rand
6: if rand < Gr then
7: Iti = Iri
8: end if
9: end for

10: From RSt calculate xt

11: OUTPUT the trial vector xt

The local and global search operators are repeated until the global budget281

conditions are met. The framework of the proposed SPMS-ALS is illustrated282

in Algorithm 5.283

3.4. Algorithmic Design284

The proposed SPMS-ALS follows a bottom-up strategy as suggested in285

[22]: we implemented within the algorithmic operators the necessary coun-286

termeasures to address each challenge associated with the problem.287

The structure of the local search has been selected to address the large288

scale nature of the instance reduction problem, that is for a large dataset, the289

matrix RS can easily have hundreds if not thousands of rows. The proposed290

local search perturbs the variables separately and thus implicitly performs a291

variable decomposition. Approaches of this type have been proved effective292

for large scale problems, see [47, 56, 28].293

This observation was reported in the experimental study in [8]. Large294

scale problems are by no means easier than low-dimensional problems. How-295

ever, since in practice the computational budget cannot grow exponentially296

with the problem dimensionality only a very limited portion of the decision297

space is explored. Under these experimental conditions, the algorithm “sees”298

the problem as separable: average Pearson and Spearman coefficients of the299

variables approach zero independently on the problem when the number of300

dimensions grows, see [8].301

The high computational cost of each function call is addressed by the302

acceleration mechanism outlined above: only the elements of one column of303

14

Algorithm 5 Framework of the SPMS-ALS for Instance Reduction

1: Randomly generate a base vector x in [0, 1]n and calculate f (x) according
to Algorithm 1

2: Assign the elite xe = x
3: while global budget conditions are met do
4: Apply the Accelerated Local Search to the base vector x according

to Algorithm 2 with the objective function f (xt) calculated according to
Algorithm 3

5: if f (x) ≥ f (xe) then
6: Update the elite xe = x
7: end if
8: Randomly generate a vector xr in [0, 1]n

9: Apply Crossover between x and xr according to Algorithm 4 and
generate a new trial vector xt

10: Calculate f (xt) according to Algorithm 1
11: if f (xt) ≥ f (xe) then
12: Update the elite xe = xt

13: end if
14: Assign x = xt

15: end while

the Euclidean matrix D and not those of the entire matrix are calculated304

at each function call. The population-less structure of SPMS-ALS has also305

been chosen taking into consideration the computational cost. The proposed306

SPMS-ALS naturally devotes most of the computational budget (in terms307

of function calls) to the local search. On the contrary, the global search308

operator performs only sporadic function calls. This logic perfectly suits the309

needs of reducing the computational cost since the global operator requires310

the expensive objective function as in Algorithm 1 the local search operator311

uses its computationally cheaper version as in Algorithm 3.312

In order to address the multimodality of the fitness landscape and pre-313

vent that the algorithm converges to a suboptimal solution, we combined the314

Accelerated Local Search with the simplistic global search described above.315

It must be noted that the global search makes use of part of decision vari-316

ables (genotype) of previously improved solutions. The elitism guarantees317

that previously detected promising solutions are available at the end of the318

run. Furthermore, the gene-resampling mechanism, happening at the in-319

15

stance level (considering the rows as building blocks) complements the local320

search that happens at the level of the elements of RS.321

At last, the restarting local search logic combined with a limited local322

search budget is an important countermeasure to prevent from overfitting: an323

excessive local search budget is likely to yield an overly specialised solution324

that performs poorly when the solution is tested on a new dataset. This325

characteristic is experimentally analysed in Section 5.3.326

4. Experimental Framework327

This section presents the used datasets (Section 4.1) and is followed by328

introducing several instance reduction techniques that will be used for com-329

parison with our proposal (Section 4.2). Finally, the parameter configuration330

is explained (Section 4.3).331

4.1. Datasets332

In the experimental study, we have examined 40 small and 17 medium333

multi-class datasets from the KEEL dataset repository [54]. The properties334

of these datasets including name (Dataset), the number of samples (Samp),335

the number of attributes (Att), the number of classes (%Class) are sum-336

marised in Table 1.337

As defined in [51], small datasets have less than 2000 instances while338

medium datasets have at least 2000 instances. Each dataset is partitioned339

using a 10-fold stratified cross-validation (10-fcv) procedure, see [45]. Thus,340

the performance of each dataset is reported by an average of the 10 folds. All341

of the experiments with these datasets have been conducted on computers342

at which each has 2 x 20 core processors (Intel Xeon Gold 6138 20C 2.0GHz343

CPU) and 192 GB RAM.344

4.2. Comparison Algorithms345

In order to understand the benefits of the proposed MC approach, we346

first define two baselines:347

• Nearest Neighbour (1NN): we use the NN algorithm (k=1) employing348

the entire TR for training, without any pre-processing. The perfor-349

mance of the NN in TR is calculated following a leave-one-out vali-350

dation scheme. This serves of a baseline to understand the benefits of351

instance reduction.352

16

• Local Search Instance Reduction (LSIR): the local search presented353

and used in [41]. LSIR is essentially the basic pattern search shown in354

Algorithm 2 without any acceleration, that is the local search by using355

the basic fitness function as in Algorithm 1.356

Table 1: Summary description for small (Sample < 2000) and medium (Sample >= 2000)
datasets.

Dataset Samp Att Class
Abalone 4174 8 28
Appendicitis 106 7 2
Australian 690 14 2
Autos 205 25 6
Balance 625 4 3
Banana 5300 2 2
Bands 539 19 2
Breast 286 9 2
Bupa 345 6 2
Car 1728 6 4
Chess 3196 36 2
Cleveland 297 13 5
Contraceptive 1473 9 3
Crx 125 15 2
Dermatology 366 33 6
Ecoli 336 7 8
Flare-solar 1066 9 2
German 1000 20 2
Glass 214 9 7
Haberman 306 3 2
Hayes-roth 133 4 3
Heart 270 13 2
Hepatitis 155 19 2
Housevotes 435 16 2
Iris 150 4 3
Led7digit 500 7 10
Lymphography 148 18 4
Magic 19020 10 2
Mammographic 961 5 2

Dataset Samp Att Class
Monks 432 6 2
Movement libras 360 90 15
Newthyroid 215 5 3
Nursery 12960 8 5
Page-blocks 5472 10 5
Penbased 10992 16 10
Phoneme 5404 5 2
Pima 768 8 2
Ring 7400 20 2
Saheart 462 9 2
Satimage 6435 36 7
Segment 2310 19 7
Sonar 208 60 2
Spambase 4597 57 2
Spectheart 267 44 2
Splice 3190 60 3
Tae 151 5 3
Texture 5500 40 11
Thyrod 7200 21 3
Tic-tac-toe 958 9 2
Titanic 2201 3 2
Twonorm 7400 20 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Wisconsin 683 9 2
Yeast 1484 8 10
Zoo 101 16 7

In addition, we test the performance of the proposed approach against357

the current state-of-the-art in instance reduction. SPMS-ALS belongs to the358

family of positioning adjustment methods (see [51]), which are, to date, the359

best performing instance reductions methods in the literature and follow a360

similar algorithmic structure to the proposed approach. In [41], we showed361

the classification performance of the local search against the entire family362

17

of positioning adjustment methods. For the sake of simplicity, here we only363

report the comparison against the most competitive methods. SPMS-ALS364

can be categorised as a pure instance generation approach, as we perform365

a continuous search. Thus, we choose the following metaheuristics instance366

generation methods to compete against SPMS-ALS:367

• Scale Factor Local Search Differential Evolution (SFLSDE): this memetic368

approach optimises the positioning of prototypes using an implemen-369

tation of differential evolution [52].370

• Particle Swarm Optimisation (PSO): this algorithm modifies the posi-371

tion of an initial set using PSO rules, aiming to maximise the classifi-372

cation performance [36].373

Additionally, to compare against more recent meta-heuristics, we have374

adapted a recent metaheuristic, proposed for the continuous domain, to375

tackle instance reduction.376

• Linear Population Size Reduction of the Success-History based Adap-377

tive Differential Evolution (LSHADE) [49]: this approach is developed378

from Success-History based Adaptive Differential Evolution (SHADE)379

[48] and Adaptive Differential Evolution with Optional External Archive380

JADE [62]. It makes use of success-history and also applies the popula-381

tion size reduction to progress the search. Note that this metaheuristic382

has not been previously used for instance reduction, but due to its sim-383

ilarity to JADE, we used the design ideas from [52] to adapt it to solve384

the instance reduction problem.385

These approaches evolve a population of solutions, whilst our method only386

evolves a single solution (or more precisely two solutions the trial solution387

xt and the elite xe). However, similar to our method, both approaches388

start off from a random (stratified) subset of the training set TR (one for389

each individual of their population), which keeps the original distribution of390

instances per class. Thus, the reduction rate is also defined by a parameter391

that determines how much we want to reduce TR.392

As a further remark, while PSO, SFLSDE were existing metaheuristics393

that have been adapted to solve the instance generation problem, the pro-394

posed SPMS-ALS has been expressly designed to solve this problem effec-395

tively in terms of accuracy efficiently in terms of runtime. This design ap-396

proach follows the bottom-up design logic of MC [22, 38] and can be ob-397

served in both accelerated local search logic and crossover operator. Another398

18

remark is that LSHADE was used in the continuous domain to solve bench-399

mark functions, this metaheuristic design is first time adapted to solve the400

instance generation problem in this study.401

In [52], the authors showed that using a random selection as initialisation402

mechanism is not usually appropriate, and the hybridisation of an instance403

selection step followed by instance generation was suggested to replace this404

random initialisation. More specifically, the use of a Steady-State Memetic405

Algorithm (SSMA) [18] demonstrated empirically to provide an excellent406

starting point, which means a good selection of instances per class and a good407

reduction rate (automatically determined by the instance selection step). To408

the best of our knowledge, the hybrid instance reduction algorithm, SSMA-409

SFLSDE [52], remains the best performing method for Instance Reduction in410

both accuracy and reduction rate. To establish a fair comparison against it,411

we will also hybridise the proposed MC approach and the local search with412

SSMA (see Section 5.5).413

Whilst the hybrid instance selection/generation method, SSMA-SFLSDE414

has not been outperformed to date, in order to assess the potential of the415

proposed approach, we add a comparison with recently published algorithms416

belonging to the family of instance selection. We included an approach based417

on local sets [27] and a method based on instance ranking [10]. Note that418

these methods follow a completely different approach to produce a reduced419

set from the training set. Thus, we cannot set up the same computational420

budget that we do for the rest of the comparison algorithms, as they do not421

follow an optimisation-based approach (Section 4.3.1).422

The study in [27] contains three instance selection methods, namely Lo-423

cal Set Smoother (LSSm), Local Set Core (LSCo) and Local Set Border424

(LSBo). LSSm aims at achieving the highest accuracy regardless of the re-425

duction, while LSCo seeks at obtaining the highest reduction with acceptable426

accuracy. LSBo addresses both accuracy and reduction rate with the same427

priority. For this reason, LSBo has been selected for comparison against the428

proposed memetic approach.429

The main idea of [10] is to exploit the relationship among members in the430

training set by computing a rank for each element. A rank of an instance431

introduces the correlation between itself and others in the training set. In-432

stances with higher ranks are likely to be selected compared to those holding433

a low rank. In Section 5.4.2, we report the performance of Ranking-based In-434

stance Selection (RIS1) as it showed in [10] to display the best performance,435

among multiple variants, w.r.t both measures of accuracy and reduction rate.436

19

4.3. Parameter Settings437

This section presents the parameter configuration for all the methods438

employed in this study, including the accelerated local search outlined in439

Algorithms 2 and 3 and the entire memetic framework SPMS-ALS shown in440

Algorithm 5. Subsection 4.3.1 focuses on the computational budget while441

Subsection 4.3.2 discusses the other parameters.442

4.3.1. Computational Budget443

In the previous studies on instance reduction, the computational budget444

has usually been set empirically to a number of iterations (in search-like algo-445

rithms), which remained fixed for all datasets [52, 41]. Just like in scalability446

studies for ordinary optimisation problems, in the instance reduction prob-447

lem, the complexity of the search space grows exponentially with the problem448

size, [8]. On the other hand, instance reduction poses a further challenge that449

is the risk of overfitting and underfitting. An incorrect local search budget450

allocation is likely to lead to overfitting in small datasets and underfitting451

appears in larger datasets. In order to overcome this challenge and propose452

a standard for setting the computational budget, we have here conducted an453

extensive experimental study. Note that keeping the same number of eval-454

uations through the different comparison methods will also help establish a455

fairer comparison (which has not been the case in previous studies).456

Among the various properties of a dataset, the number of instances in457

training data, i.e. the number of rows l of the matrix TR and the number458

of features (Features) in an instance at each dataset are the two important459

factors that define the size of the problem and need to be considered when the460

budget is allocated. We acknowledge that other factors may be also required461

into consideration such as the number of classes or the ratio of samples among462

classes. However, this simple yet effective approach of parameter setting has463

proven to highly reduce the unnecessary allocated number of evaluations and464

thus can help mitigate overfitting in small datasets and underfitting in larger465

ones. Since RIS1 and LSBo do not perform any evaluation of their reduced466

set against the training set, we cannot apply a computational budget.467

In the original setting based on forty small datasets, SFLSDE [52] and468

LSIR [41] use approximately 20,000 and 30,000 evaluations, respectively. We469

took these values as a reference and set three levels in our experimental study:470

lower, comparable, and greater than the reference ones. Table 2 displays, for471

all the algorithms considered in this study that employ local search, the472

three local search budgets scenarios. From the total number of evaluations473

20

presented in Table 2, we split the evaluations into two parts when SSMA is474

included. SSMA takes 3× l evaluations in Setting 1 and 5× l in Setting 2 and475

3. The budget allocated to SSMA is indicated as SSMA Eval. The rest of476

the evaluations is used for instance generation methods (LSIR, SPMS-ALS,477

PSO, SFLSDE, LSHADE).478

Table 2: Changing the number of evaluation considering training size and features for
fairer comparison.

Computational Budget
Algorithm Setting 1 Setting 2 Setting 3
SSMA SSMA Eval = 3× l SSMA Eval = 5× l SSMA Eval = 5× l
SFLSDE

2.5× Features× l
− SSMA Eval

5× Features× l
− SSMA Eval

10× Features× l
− SSMA Eval

LSIR
SPMS-ALS
PSO
LSHADE

4.3.2. Parameters479

The proposed SPMS-ALS contains some parameters to set to coordinate480

global and local search. In particular, the following parameters are funda-481

mental to coordinate the interruption of accelerated local search and restart482

of global search.483

• Nmax: the maximum number of times the local search accepts a new484

trial solution xt with the same objective function (Acc) as that of the485

previous trial solution i.e. maximum number of search moves allowed486

on a plateau487

• ρRed: the reduction rate of the exploratory step ρ after the same fitness488

has been calculated Nmax times489

• ρThr: the threshold after which the local search is interrupted490

• Gr: the gene-resampling probability as in Algorithm 4491

Since small datasets have only few samples per class, a large Gr value492

is required to make a significant refresh of the candidate solution. On the493

contrary, medium datasets inherently pose a highly multivariate problems.494

Hence smaller Gr values result into a major alternation of the candidate495

solution. We may consider this effect analogous to the setting of the crossover496

21

rate in Differential Evolution with respect to the number of dimensions of497

the problem, see [39]. On the other hand, numerous configurations have been498

examined to find a set of parameters that can guarantee a robust performance499

of SPMS-ALS on both small and medium datasets. In this study, we report500

the performance of SPMS-ALS using the following parameters: initial radius501

ρ = 0.4, Nmax = 3, ρRed = 0.25, ρThr = 0.005 and Gr = 0.5 for small and 0.05502

for medium datasets, respectively. Apart from the budget condition, which503

is investigated for all the comparison algorithms as described above, the rest504

of the parameters for all the algorithms are established as recommended505

by the authors. All the details are presented in Table 3. Following the506

experimental setup in [51], the reduction rate parameter is set to 95% for507

small size datasets, and 98% for medium datasets.508

Table 3: Parameters used for comparison algorithms

Algorithms Parameter setting
SFLSDE PopulationSize = 40, iterSFGSS =8, iterSFHC = 20, Fl = 0.1, Fu = 0.9
LSIR initial ρ = 0.4
SSMA Population = 40, Cross = 0.5, Mutation=0.001
PSO SwarmSize = 40, C1 = 1, C2 = 3, Vmax = 0.25, Wstart = 1.5, Wend = 0.5
NN k = 1, Euclidean distance
RIS Thresholds = [0.0, 0.1, 0.2, ..., 0.9, 1.0]
LSBo –
LSHADE ArchiveSize = 1.4, PopulationSize = 40, MemorySize = 5

5. Analysis of results509

In this section, we analyse the results obtained from different sets of510

experiment, divided into multiple subsections, to empirically examine the511

individual effect of each component we propose in our algorithm. In the512

analysis, our aims are:513

• To understand how well LSIR works in different settings of evaluations514

(Subsection 5.1). We discuss multiple aspects of LSIR such as the515

change in performance measured by accurate rate to see the overfitting516

or underfitting effects on the learning process. In addition, the number517

of evaluations that has been used and saved for each dataset is reported.518

• To measure the actual savings in terms of runtime when the proposed519

acceleration is integrated within LSIR (Subsection 5.2). We report in520

detail the absolute and percentage figures of the runtime savings.521

22

• To examine the performance enhancement due to the proposed memetic522

components (Subsection 5.3), in comparison with the local search. We523

report the accuracy rate depending on the number of evaluations and524

we analyse the statistical significance of the improvements.525

• To compare the performance of SPMS-ALS with the state-of-the-art526

techniques in the family of instance reduction, with a focus on instance527

generation (Subsection 5.4.1) considering the 1NN rule as a baseline and528

recent instance selection methods (Subsection 5.4.2). In addition, the529

average runtime required by each algorithm is contrasted to highlight530

the substantial computational saving in the proposed method.531

• To establish a fair comparison between the proposed approach and532

the state-of-the-art algorithm in the family of instance reduction with533

hybrid instance selection and generation algorithm, SSMA-SFLSDE,534

using the same memetic instance selection algorithm as initialisation535

mechanism (Subsection 5.5).536

• To contextualise the results presented in this paper by comparing the537

performance of SPMS-ALS with a recently proposed classifier (obRaF(H))538

which represents a robust algorithm in the field of classification [24]539

(Subsection 5.6).540

For the sake of space, this section will only present summary results, and541

all the detailed results can be found in the Supplementary Material and the542

associated GitHub repository1.543

5.1. LSIR Running with Different Computational Budgets544

The Local Search LSIR as Shown in Algorithm 2 has been run with545

the three budget settings outlined in Table 2 to understand the influence546

of the budget allowance in the performance of this algorithm. Its average547

classification performance in the training and test phase is displayed in Table548

4 on small and medium datasets. Note that the reported performance is549

obtained from using Algorithm 1 changing TR by TS to evaluate LSIR in550

the test phase. Analysing these average results and the detailed results in551

the supplementary material, we can make the following comments:552

1https://github.com/lehoanglam20000/SPMS-ALS

23

https://github.com/lehoanglam20000/SPMS-ALS

• In the training phase the computational budget has a major impact on553

the performance. However, while the performance grows consistently554

from Setting 1 to Setting 3, this improvement is not major when the555

performance of Setting 2 and Setting 3 are compared. This may infer556

that changing each feature value cannot help the search seek a better557

solution after a certain number of function calls.558

• Regarding the test performance, we observe that the results are dra-559

matically different to those achieved during the training phase: Setting560

1 achieves most of the wins in test data overall. In small datasets,561

Setting 1 has 22 wins out of 40, while Setting 2 and 3 win 14 and 11562

times, respectively. In medium datasets, Setting 1 has 9 wins out of 17,563

while Setting 2 and 3 win 6 and 8 times, respectively. We conclude that564

overfitting is likely to happen for LSIR (possibly due to its exploitative565

structure) in Setting 2 and 3. This tendency appears evident in small566

size datasets.567

Table 4: Average training and test performance in different settings of LSIR over small
and medium datasets.

Training Test
Small Medium Small Medium

Setting 1 0.8521 ± 0.0128 0.9005 ± 0.0039 0.7411 ± 0.0605 0.8612 ± 0.0139
Setting 2 0.8657 ± 0.0128 0.9049 ± 0.0039 0.7419 ± 0.0614 0.8610 ± 0.0133
Setting 3 0.8693 ± 0.014 0.9052 ± 0.0041 0.7415 ± 0.0607 0.8609 ± 0.0136

In summary, we can conclude that this local search does not seem to568

benefit from using a larger budget and, as possibly expected, may be falling569

into local optima, which do not generalise well in terms of classification per-570

formance. This is especially noticeable in medium size datasets in which the571

average training performance does not seem to increase much in respect to572

the number of evaluations.573

To further illustrate the behaviour of the LSIR approach with respect to574

the number of evaluations, Table 5 shows the effect of its stopping criteria.575

More specifically, when LSIR does not succeed at enhancing upon the trial576

solution xt (see Algorithm 2), the exploratory step decreases by the factor577

ρRed until a threshold value ρThr is met. When these conditions are met the578

run of LSIR is interrupted. Table 5 displays the computational budget saving579

caused by the interruption of the run. The savings are shown for small and580

medium datasets and for each of the setting under consideration. For each581

24

configuration of dataset and setting the number of function calls used by the582

algorithm is also shown.583

Table 5: Number of evaluations used and saved by LSIR in different settings and datasets.

Small datasets Medium datasets
Used Saved (%) Saved Used Saved (%) Saved

Setting 1 15398 117 0.76 290777 0 0.00
Setting 2 30795 562 1.83 581554 54094 9.30
Setting 3 61591 2966 4.82 1163108 588637 50.61

Table 5 shows that Setting 1 mostly uses up the allocated number of eval-584

uations, whilst Setting 2 saves 1.83% and 9.3% in small and medium datasets,585

respectively. Setting 3 spends most of the evaluations in small datasets but586

only consumes nearly half of the allocated number of evaluations. These fig-587

ures may help optimise the number of evaluations used for each dataset based588

on their size and features. On the other hand, the allocation of a very large589

budget to the local search (like Setting 3) may not be always beneficial, and590

as mentioned above, the algorithm seems to get trapped into local optima.591

5.2. Runtime Reduced in the Accelerated Version of LSIR592

This subsection reports the runtime used by LSIR and how much it is593

reduced from its accelerated version using Algorithm 2 and the fitness in594

Algorithm 3, here referred to as Accelerated Local Search for Instance Re-595

duction (ALSIR).596

Of course, the time required by the local search depends directly on the597

allocated budget and when the stopping criteria is reached. It is also impor-598

tant to remember that ALSIR always provides exactly the same classification599

performance as LSIR, this is because ALSIR focuses on accelerating the ex-600

ecution of the proposed method but it does not change the behaviour of the601

algorithm at all. The objective of the section is therefore to show how much602

we can accelerate LSIR with the proposed acceleration strategy.603

Details of the runtime of both LSIR vs ALSIR in small and medium604

datasets, respectively, with respect to each setting of the number of evalua-605

tions can be found in the Supplementary material. Table 6 summarises the606

average runtime for each setting and the average percentage of time saved607

by the proposed acceleration. On average in small datasets, the objective608

function of the accelerated local search as in Algorithm 3 enables a time re-609

duction from at least 66% to 84.29%. However, the average runtime saved in610

25

medium datasets settles around 90% in the three settings. Thus, the larger611

the dataset the more we can benefit from the proposed acceleration strategy,612

as distance computations become the most dominant part of the execution613

of the local search.614

Table 6: Average runtime (in seconds) saved in different settings of LSIR and ALSIR,
smaller values are in bold.

Small datasets Medium datasets
LSIR ALSIR (%) Time saved LSIR ALSIR (%) Time saved

Setting 1 6.98 2.35 66.25 8676.67 856.05 90.13
Setting 2 19.47 3.60 81.54 15957.94 1508.85 90.54
Setting 3 37.68 5.92 84.29 18061.49 1784.64 90.12

Ap
pe

nd
ici

tis
Au

to
s

Br
ea

st
Bu

pa
Cl

ev
el

an
d

Gl
as

s
Ha

be
rm

an
Ha

ye
s-

ro
th

He
ar

t
He

pa
tit

is Iri
s

Ly
m

ph
og

ra
ph

y
Ne

wt
hy

ro
id Ta
e

Zo
o

W
in

e
Ba

la
nc

e
M

on
ks

Ec
ol

i
Le

d7
di

gi
t

Sa
he

ar
t

Ho
us

ev
ot

es
So

na
r

M
am

m
og

ra
ph

ic
W

isc
on

sin
Pi

m
a

Sp
ec

th
ea

rt

10−4

10−3

10−2

10−1

100

101

Sa
ve

d
T

m
e

((
)

Se)) ng 1
Se)) ng 2
Se)) ng 3

De
rm

at
ol
og
y

Ba
nd
s

Cr
x

Au
st
ra
lia
n

Ti
c-
ta
c-
to
e

Ti
ta
ni
c

Fl
ar
e-
so
la
r

Vo
we

l
Ve
hi
cle

Ye
as
t

Ca
r

Co
nt
ra
ce
pt
iv
e

Ge
rm

an
M
ov
em

en
t_
lib
ra
s

Ba
na
na

Se
gm

en
t

101

102

103

Sa
ve
d
Ti
m
e
(s
)

Ph
on

em
e

Ab
al
on

e
Pa

ge
-b
lo
ck

s
Ch

es
s

Sp
lic

e
Ri
ng

Tw
on

or
m

Th
yr
oi
d

Nu
rs
er
y

Te
xt
ur
e

Pe
nb

as
ed

Sa
tim

ag
e

Sp
am

ba
se

M
ag

ic

103

104

105

Sa
ve

d
Ti
m
e
(s
)

Figure 2: Runtime saved across 57 datasets, sorted by the ascending order of time gaps
in Setting 1.

To illustrate the runtime reduction depending on the dataset size, Figure615

2 depicts the difference in runtime between LSIR and ALSIR for all the616

datasets, providing a graphical representation of the average time saving617

for each dataset. In order to enhance the readability of the diagram, the618

26

logarithmic scale has been used. Those datasets which appear to have no619

value represent those scenarios where the search can be completed is less620

than a second. Hence, the acceleration may not be essential in these cases.621

5.3. Validation of the Memetic Framework of SPMS-ALS622

In this section, we compare the performance of LSIR and SPMS-ALS to623

demonstrate the effectiveness of the proposed memetic framework. Table 7624

provides a full summary of this comparison, presenting the average accuracy625

values (over all the datasets) and the corresponding standard deviations in626

the three settings of computational budget in both training and test phases.627

The best average results in training and test are highlighted in bold face.628

Furthermore, the Wilcoxon test [57] is also applied to detect the statis-629

tical differences between the two methods. The corresponding p-values are630

also shown in the last column of Table 7. When one algorithm significantly631

outperforms the other, the p-value is less than the confidence level 0.05. We632

highlight in italic these p-values.633

Table 7: Comparison in average training and test performance between LSIR and SPMS-
ALS over small and medium datasets. Wilcoxon p-value is obtained from the comparison
between SPMS-ALS and LSIR.

SPMS-ALS LSIR Wilcoxon

SMALL

TRAINING TEST TRAINING TEST p-value
Evaluations Acc Std Acc Std Acc Std Acc Std
Setting 1 0.8598 0.0130 0.7477 0.0633 0.8521 0.0128 0.7411 0.0605 0.1015
Setting 2 0.8665 0.0122 0.7512 0.0625 0.8657 0.0128 0.7419 0.0614 0.0867
Setting 3 0.8733 0.0110 0.7549 0.0615 0.8693 0.0140 0.7415 0.0607 0.0132

MEDIUM
Setting 1 0.9126 0.0034 0.8625 0.0127 0.9005 0.0039 0.8612 0.0139 >0.2
Setting 2 0.9129 0.0033 0.8626 0.0126 0.9049 0.0039 0.8610 0.0133 >0.2
Setting 3 0.9199 0.0028 0.8668 0.0110 0.9052 0.0041 0.8609 0.0136 0.0577

Numerical results in Table 7 show that for both training and test phases,634

the memetic framework outperforms on a regular basis LSIR. We may observe635

that in training phase and small datasets, SPMS-ALS slightly outperforms636

LSIR while the difference in performance is larger for medium datasets. Ac-637

cording to our interpretation, this shows the effectiveness of the global search638

component in complex spaces: while the local search exploits the space and is639

likely to achieve a suboptimal point (we may see that different computational640

budgets do not yield major changes in LSIR performance), the crossover al-641

lows the search a further chance to detect a solution closer to the global642

optimum. The results in the test phase display a consistent better perfor-643

mance of the memetic framework across the datasets. This finding can be644

27

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy of SPMS-ALS

0.4

0.6

0.8

1.0

Ac
cu
ra
cy
 o
f L

SI
R Small datasets

Medium datasets

(a) Setting 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy of SPMS-ALS

0.4

0.6

0.8

1.0

Ac
cu
ra
cy
 o
f L

SI
R Small datasets

Medium datasets

(b) Setting 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy of SPMS-ALS

0.4

0.6

0.8

1.0

Ac
cu
ra
cy
 o
f L

SI
R Small datasets

Medium datasets

(c) Setting 3

Figure 3: Accuracy scatter plots over 40 small and 17 medium datasets in the test phase.

interpreted as a better performance of SPMS-ALS in terms of overfitting: the645

deterministic and exploitative nature of LSIR may lead to overfitting while646

the degree of randomisation introduced by the crossover-based global search647

element reduces the risk of overfitting hence improving upon the performance648

of the algorithm in test phase. Finally we may observe that SPMS-ALS sta-649

tistically outperforms LSIR in Setting 3 in small datasets and shows improved650

progress in medium datasets. This fact is expected since longer runs tend651

to be more stable and thus be associated with lower standard deviation val-652

ues. On the contrary, with Setting 1 and 2 we are more likely to observe653

“lucky” or “unlucky” runs that may jeopardise the statistical significance of654

the results.655

The test results are also graphically presented in Figure 3 which contains656

scatter plots of the accuracy of the methods. Each point compares the test657

performance of SPMS-ALS and LSIR algorithm on a single dataset. The658

accuracy of SPMS-ALS is shown on the x-axis position of the point, while659

that of LSIR is on the y-axis position. Thus, points below the y = x line660

correspond to datasets for which SPMS-ALS achieves better performance661

28

0 50000 100000 150000 200000 250000
Function Calls

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 o
f x

t

SPMS-ALS
LSIR

Figure 4: Functioning (Accuracy) of SPMS-ALS and LSIR on the Chess dataset.

than the compared algorithm. In most of the cases, the points are plotted662

on or below the separating line, inferring greater performance of SPMS-ALS.663

In this plot, we can also see that the biggest improvements have been made664

in small datasets, but in turn, there are a few datasets in which SPMS-ALS665

performs slightly worse. However, in medium size datasets the improvements666

are less significant, especially in settings 1 and 2, but consistently better.667

In order to emphasise the different behaviour of LSIR vs SPMS-ALS we668

plot in Figure 4 the accuracy of the trial solution xt against function calls669

(evaluations) of the two algorithms on the Chess dataset, using Setting 1. To670

show the functioning of the crossover the plot of SPMS-ALS refers to the local671

solution (and not the elite). We may observe that the crossover functions as672

a restart which then quickly reaches a solution with a good performance.673

In conclusion, whilst the local search seemed to get stuck after a number674

of evaluations, the proposed MC approach, despite its simplicity, benefits675

from larger computation budgets, outperforming the local search.676

5.4. Comparison with the State-of-the-art Methods in Instance Reduction677

This section consists of two sub-sections: Section 5.4.1 covers the compar-678

ison of our proposal with related instance generation methods; Section 5.4.2679

presents the comparison with recently published instance selection methods.680

5.4.1. Comparison against similar instance generation techniques681

In order to compare the performance of SPMS-ALS against that of the682

other global optimisers for instance generation (PSO [36], SFLSDE [52], and683

the adapted LSHADE [49]), we will focus on the maximum number of eval-684

uations (Setting 3) for all the algorithms. As a baseline, we also include the685

1NN algorithm as a comparison algorithm.686

29

Table 8 summarises the performance of the comparison algorithm in all687

(57) datasets (small and medium). We have employed the Friedman proce-688

dure [20] plus a Holm post-hoc test to perform a ranking-based statistical689

analysis on the performance of the algorithms for small and medium datasets,690

respectively. The last two columns of Table 8 provide the results of these691

tests, including the rankings and the resulting p-values. Note that the con-692

trol method will obtain the lowest ranking, and therefore, the p-value shows693

if the differences are significant comparing the control algorithm against the694

rest of the methods.695

As shown in Table 8, LSHADE and SFLSDE are reported as the con-696

trol method in small and medium datasets, respectively, since they hold the697

smallest ranking values. In small datasets, our proposal SPMS-ALS ranks698

third after SFLSDE, while it ranks second in the medium datasets and its699

ranking value is not far away from that of the control algorithm.700

The Holm post-hoc test is used to detect if there is any significant sta-701

tistical differences between the control algorithm (LSHADE and SFLSDE)702

with respect to the remaining methods. Considering a level of significance703

of α = 0.05, LSHADE statistically outperforms only 1NN in small datasets,704

and PSO in medium datasets. The statistical tests have not reported sig-705

nificant differences between our proposal and the control algorithm in either706

small or medium datasets.707

Table 8: Summary of the performance of SPMS-ALS against SFLSDE, PSO, LSHADE
and 1NN for instace reduction over 57 datasets. The best performance in the column is
shown in bold.

TRAINING TEST Friedman+Holm

SMALL

Algorithm Acc Std Acc Std Ranking pHolm

LSHADE 0.8401 0.0165 0.7541 0.0612 2.425 –
SFLSDE 0.8480 0.0092 0.7615 0.0634 2.525 0.7773
SPMS-ALS 0.8733 0.0110 0.7549 0.0615 3.125 0.1017
PSO 0.8147 0.0156 0.7414 0.0606 3.175 0.1017
1NN 0.7369 0.0088 0.7369 0.0088 3.750 0.0007

MEDIUM

SFLSDE 0.8887 0.0048 0.8608 0.0122 2.177 –
SPMS-ALS 0.9199 0.0028 0.8668 0.0110 2.353 0.7448
LSHADE 0.8859 0.0138 0.8503 0.0147 3.294 0.1180
1NN 0.8316 0.0045 0.8316 0.0045 3.294 0.1180
PSO 0.8537 0.0066 0.8319 0.0137 3.882 0.0066

According to our interpretation, in training phase an exploitative action708

guarantees a better performance of the algorithm especially in high dimen-709

sions [8]. However, the exploitative pressure should be counterbalanced by710

a certain degree of randomisation to prevent the algorithm from overfitting711

30

and pay off with a deteriorated performance in test phase. This feature of712

the instance generation problem makes it especially suitable to be tackled by713

memetic frameworks. Albeit reasonable, the excessively exploratory nature714

of PSO does not appear to effectively address the large dimensional space.715

In comparison with the baseline, 1NN, which uses all the data to clas-716

sify the test set, we have conducted the Wilcoxon test to conduct a pairwise717

comparison to our method. Although SPMS-ALS shows better average per-718

formance , the Wilcoxon test compute p-value 0.0415 for small datasets and719

>0.2 for medium datasets. These numeric p-values indicates that our algo-720

rithm statistically outperform 1NN in small dataset, but has no significant721

different in medium datasets, considering a level of significance of α = 0.05.722

Finally, Table 9 displays the average runtime of the four global optimisers723

for the small and medium datasets, respectively. On average, the runtime724

spent for small datasets is 6.25s, saving 92.52%, 83.93% and 28.17% with725

respect to LSHADE, SFLSDE and PSO, respectively. For medium datasets,726

the percentage of saving time is slightly higher than what it did in small727

datasets, but the absolute value is more meaningful. Specifically, SPMS-ALS728

only consumes roughly 5000s on average, while SFLSDE and PSO experience729

about 35000s, and LSHADE used up to approximate 160.000s. In other730

words, for medium datasets, SPMS-ALS achieves similar if not better results731

of SFLSDE and LSHADE in one seventh and less than one thirtieth of the732

runtime, respectively.733

Table 9: Comparison of the runtime (in seconds) consumed in SPMS-ALS and other
approaches. Min values are in bold.

Small datasets Medium datasets
SFLSDE 38.89 ± 1.31 34738.82 ± 188.55
PSO 19.63 ± 0.80 34941.65 ± 188.86
LSHADE 83.63 ± 4.12 159009.10 ± 1154.75
SPMS-ALS 6.25 ± 0.39 5006.93 ± 405.33

5.4.2. Comparison against recent Instance Selection734

As mentioned in Section 4.2, two recent instance selection algorithms735

LSBo [27] and RIS1 [10] have been selected for comparison with our proposal.736

This section reports the experimental results of the these two algorithms737

against SPMS-ALS over 57 datasets with reference to test performance and738

reduction rate.739

Details of the classification performance of RIS1, LSBo and SPMS-ALS740

in the test phase on small and medium datasets can be found in the Supple-741

31

mentary Material, while the summary information is displayed at Table 10.742

Overall, RIS1 obtains a majority of wins in both small and medium datasets,743

SPMS-ALS ranks second and LSBo lies at the lowest position. Particularly,744

RIS1 has 25 wins (18 small and 7 medium), SPMS-ALS achieves the best745

results 18 times (15 small and 3 medium), while LSBo obtains 15 wins (8746

small and 7 medium). However, the average test performance of LSBo and747

SPMS-ALS are the highest for small and medium datasets, respectively.748

The overall goal of instance reduction is to reduce the original dataset749

as much as possible whilst keeping (or improving) the accuracy. Therefore,750

to establish a fairer comparison between the two instance selection methods751

and our method, we will also provide an additional metric to consider both752

test accuracy and reduction as equally important. Following [52], we simply753

multiply the accuracy in test Acc and the reduction rate Red to form a754

new metric Acc*Rec. Table 10 presents the overall average performance755

in accuracy Acc, reduction rate Red and both metrics Acc*Rec. Fur-756

thermore, Table 11 provides the set of rankings and p-values obtained from757

Friedman+Holm tests for the three contrasted algorithms.758

In the previous section, all algorithms (PSO, SFLSDE, LSHADE, and759

SPMS-ALS) yield the same reduction rate. In particular, in this experiment,760

SPMS-ALS fixes the rate up to 95% and 98% for small and mediums datasets,761

respectively. However, LSBo and RIS1 do not specify the reduction rate as762

a parameter, but their reduction depends on a particular dataset. RIS1763

yields an average reduction rate of 59.06% and 70.52% in small and medium764

datasets, respectively; whilst LSBo reduces 78.59% and 87.39% in small and765

medium datasets. Thus, both algorithms achieve a smaller reduction rate766

than the instance generation approach investigated in this paper.767

Table 10: Summary of the performance of SPMS-ALS against RIS1 and LSBo consider-
ing Acc in the test phase, Red and Acc*Red measures for instance reduction over 57
datasets. The best performance in the column is shown in bold.

Algorithm Acc (Test) Std Red Acc*Red

SMALL
RIS1 0.7319 0.0583 0.5906 0.4499
LSBo 0.7605 0.0576 0.7859 0.6064

SPMS-ALS 0.7549 0.0615 0.9500 0.7172

MEDIUM
RIS1 0.7972 0.0141 0.7052 0.6071
LSBo 0.8540 0.0099 0.8739 0.7639

SPMS-ALS 0.8668 0.0110 0.9800 0.8495

On average, the test performance of LSBo is the highest on small datasets,768

32

while SPMS-ALS reports the highest average on medium datasets. However,769

apart from having the best reduction rate, SPMS-ALS obtains the best bal-770

ance between accuracy and reduction. The results from the non-parametric771

tests (Friedman+Holm) in Table 11 reveal the advantage of SPMS-ALS look-772

ing at the Ranking and p-value columns. The p-values reported for the com-773

parison in terms of accuracy column do not reflect any significant differences774

between the three methods in either small or medium datasets. However,775

when the reduction rate is taken into consideration the proposed technique776

stands out significantly.777

Table 11: Friedman+Holm statistical test results in both Acc and Acc*Rec metrics for
small and medium datasets. The best performance in the column is shown in bold.

Acc Acc * Red
Algorithm Ranking p-value Algorithm Ranking p-value

SMALL
SPMS-ALS 1.912 – SPMS-ALS 1.175 –
RIS1 1.938 0.9110 LSBo 2.000 0
LSBo 2.150 0.2882 RIS1 2.825 2.25E-04

MEDIUM
LSBo 1.882 – SPMS-ALS 1.176 –
RIS1 2.000 0.7316 LSBo 2.059 1.01E-02
SPMS-ALS 2.117 0.4927 RIS1 2.765 4.00E-06

5.5. Hybridisation with Instance Selection778

As stated in Section 4.2, to perform a fair comparison against hybrid779

instance reduction method SSMA-SFLSDE [52], the initialisation process780

of the proposed algorithm must be replaced with a smarter approach. In781

particular, we use the same instance selection algorithm, SSMA [18], as tested782

in [52]. This section compares LSIR, SFLSDE, LSHADE and SPMS-ALS783

after using SSMA as initialisation. The resulting algorithms are indicated as784

SSMA-LSIR, SSMA-SPMS-ALS, SSMA-LSHADE and the state-of-the-art785

algorithm SSMA-SFLSDE [52]. The detailed accuracy results for small and786

medium datasets in both training and test can be found in the Supplementary787

Material. Table 12 shows the average results obtained from the compared788

algorithms in conjunction with SSMA and the ranking plus p-values from the789

Friedman + Holm test.790

The detailed results show that for small datasets and in training phase791

SSMA-SPMS-ALS outperforms SSMA-SFLSDE and SSMA-LSHADE, and is792

outperformed by SSMA-LSIR. However these results are not confirmed in test793

phase where SSMA-LSHADE achieves the best performance, SSMA-SPMS-794

ALS the third best performance after SSMA-SFLSDE, and SSMA-LSIR the795

worst performance over the four algorithms considered in this section. This796

33

ranking is statistically significant and confirmed by the Friedman + Holm797

test. According to our interpretation, the deterministic and exploitative local798

search logic in LSIR causes overfitting. The restriction of the search space799

caused by SSMA increases the risk of overfitting. In the proposed memetic800

framework, the resampling and crossover mechanism seems to mitigate the801

overfitting.802

Our interpretation is confirmed by the results for medium datasets. Since803

the search space is naturally large, the exploitative local search is beneficial804

[8] and is improved by the memetic framework. Hence, SSMA-SPMS-ALS805

achieves the best performance in training phase. This ranking is confirmed806

in test phase where SSMA-SPMS-ALS slightly outperforms SSMA-SFLSDE807

and is established as the control algorithm in the Friedman test.808

In summary, and similar to what we saw when comparing against purely809

instance generation methods, the proposed memetic framework can obtain810

a very competitive classification performance, especially in larger datasets,811

whilst reducing drastically the required runtime.812

Table 12: Summary performance between four hybrid models over 57 datasets.

TRAINING TEST Friedman + Holm
Algorithm Acc Std Acc Std Ranking pHolm

SMALL
SSMA-LSHADE 0.8687 0.0101 0.7792 0.0570 2.000 –
SSMA-SFLSDE 0.8684 0.0108 0.7767 0.0594 2.200 0.4884
SSMA-SPMS-ALS 0.8727 0.0134 0.7670 0.0574 2.700 0.0306
SSMA-LSIR 0.8911 0.0148 0.7642 0.0604 3.100 0.0004

MEDIUM
SSMA-SPMS-ALS 0.9264 0.0033 0.8700 0.0107 2.265 –
SSMA-SFLSDE 0.9059 0.0040 0.8675 0.0125 2.441 1.0000
SSMA-LSHADE 0.9069 0.0035 0.8706 0.0118 2.647 1.0000
SSMA-LSIR 0.9245 0.0039 0.8682 0.0127 2.647 1.0000

At last we report some considerations about future improvements that813

can be applied. We will investigate the extension of our approach to big814

data frameworks [55]. In addition, we plan to expand our approach to new815

promising classifiers, such as Heterogeneous oblique random forest [24]. An816

initial comparison with this kind of classifier can be found in the Supple-817

mentary Material. Further investigation is however required to perform an818

appropriate instance reduction for those classifiers.819

5.6. Contextualising the results and limitations of the proposal820

Experimental results in Sections 5.1 to 5.5, show that the proposed SPMS-821

ALS and its hybrid form, SSMA-SPMS-ALS, are effective at reducing the size822

34

of the training data whilst maintaining, or even improving, the performance823

of the base classifier; in our case, the 1NN rule. The goal of this section824

is to contextualise the classification results presented in this paper with the825

1NN as base classifier, and let the reader know where we are going in our826

future research. To do so, we compare the results of the proposed SPMS-827

ALS and 1NN against the popular Random Forest (RaF) algorithm and a828

state-of-the-art classifier also based on Trees, obRaF(H) [24].829

It is important to note that the classification performance of a classifier830

is not only influenced by the pre-processing techniques but also its inherent831

robustness. For example, an ensemble classifier is likely to outperform a single832

model [46], or tree-based approaches handle categorical attributes better than833

the NN classifier. Thus, whilst the reader may expect the results of RaF and834

obRaF(H) to be superior to the ones presented with the 1NN rule, we believe835

it is beneficial to still observe the performance gap and understand potential836

future research lines for preprocessing technique for more robust classifiers.837

To establish a fair comparison against methods, we have re-run SPMS-838

ALS over the 121 UCI datasets used in [16, 24], following the exact same839

experimental framework, including depth of a tree (i.e. 57), number of trees840

(i.e. 500), and a 4-fold cross validation scheme. Details of the comparison on841

each single dataset can be found in the Supplementary Material, while the842

summary information and results of the statistical test are displayed in Table843

13. As expected, both RaF and obRaF(H) display a higher performance than844

NN-based results. On the other hand, the proposed data reduction does not845

only reduce the storage need but also becomes much more efficient in terms846

of runtime as we only preserve 2 to 5% of the training data. For this reason,847

it is essential to highlight that the contribution of our proposal lies in the848

reduction of the training set, as a preprocessing technique, whilst maintaining849

(or improving) the classification performance of 1NN.850

Table 13: Summary the average performance of 4-fold cross validation between the basic
models (1NN and RaF) and their improved versions (SPMS-ALS and obRaF(H)) over 121
datasets.

Friedman + Holm
TRAINING TEST Ranking pHolm

obRaF(H) – 0.8336 146.24 –
RaF(Scikit-learn) 0.9892 0.8286 173.13 0.05
SPMS-ALS 0.8926 0.7597 324.99 0.03
1NN 0.7487 0.7534 325.64 0.02

35

The reader might wonder if the result of the preprocessing performed by851

the technique proposed in this paper could be used directly by any other852

classifier like RaF or obRaF(B). Although this pre-processing approach is853

intended for 1NN, as highlighted in [5] the resulting set could potentially be854

used by any other classifiers. However, it is not straightforward to directly855

use the reduced set obtained from SPMS-ALS in another classifier. We have856

performed some preliminary experiments using the resulting reduced set as857

training data for RaF in 89 small datasets (from the set of 121). The average858

results in the test phase sets at 0.5656, whilst it is 1.000 on training. This859

suggests that RaF is overfitting the training data with the parameters used860

(e.g. depth of the trees, or number of trees). This could be expected as the861

reduction on small datasets may end up having as few as 2-15 samples in some862

extremely small datasets. Whilst NN technique would work well with such863

amount of data, Tree-like technique will not. Thus, as future work we plan864

to explore the interaction between the proposed SPMS-ALS and more robust865

classifiers like obRaF(B), for example, by adding it as base classifier or fine866

tuning the parameters to use smaller training datasets without overfitting.867

6. Conclusion868

This paper proposes a single-point MC approach for instance reduction.869

The proposed algorithm is composed of a novel accelerated local search and a870

crossover based global search. The local search is deterministic and exploita-871

tive belonging to the family of Pattern Search methods whilst the global872

search is stochastic, based on resampling and crossover. By making some873

considerations about the functioning of the NN classifier in instance gener-874

ation and exploiting the search logic of Pattern Search, the local search has875

been redesigned and implemented in an accelerated version. The accelerated876

local search uses most of the calculations performed at the previous step and877

thus lead to a major saving in terms of runtime with respect to the existing878

algorithms in the literature.879

Numerical results performed with and without instance selection as ini-880

tialisation mechanism show that the proposed MC approach tends to be881

slightly worse than only one instance reduction algorithm in small datasets.882

On the other hand, on medium datasets, the proposed MC approach achieves883

the best accuracy performance in both training and test phases. These re-884

sults are extremely valuable when we consider that the proposed approach885

is up to seven times faster than the other algorithms.886

36

Besides the proposed domain-specific MC approach this article offers an887

extra contribution about experimentalism in data reduction. More specifi-888

cally, in this paper we perform a thorough parameter setting of the compu-889

tational budget and display the results in multiple scenarios. These results890

aim to offer some guidelines to data scientists to set their experimental con-891

ditions in a fair and effective manner to detect the desired trade-off between892

accuracy and runtime.893

7. Acknowledgement894

The work of H. Lam Le was funded by a Ph.D. scholarship from the School895

of Computer Science of the University of Nottingham. All experiments in896

this study were conducted with the High Performance Computing system897

at the University of Nottingham. We thank George Darmiton da Cunha898

Cavalcanti and Rodolfo Jose de Oliveira Soares, the authors of paper [10] for899

the provided code and their support to run the experiment.900

References901

[1] G. Acampora, V. Loia, M. Gaeta, Exploring e-Learning Knowledge902

Through Ontological Memetic Agents, IEEE Computational Intelligence903

Magazine 5 (2) (2010) 66–77.904

[2] E. Alpaydin, Introduction to Machine Learning, MIT press, 2014.905

[3] J. E. Amaya, C. Cotta, A. J. Fernández, P. Garćıa-Sánchez, Deep906

memetic Models for Combinatorial Optimization Problems: Applica-907

tion to the Tool Switching Problem, Memetic Computing 12 (1) (2020)908

3–22.909

[4] J. Bacardit, D. E. Goldberg, M. V. Butz, X. Llorà, J. M. Garrell,910

Speeding-up Pittsburgh Learning Classifier Systems: Modeling Time911

and Accuracy, in: International Conference on Parallel Problem Solving912

from Nature, Springer, 1021–1031, 2004.913

[5] J. R. Cano, F. Herrera, M. Lozano, Using Evolutionary Algorithms as914

Instance Selection for Data reduction in KDD: an experimental study,915

IEEE Transactions on Evolutionary Computation 7 (6) (2003) 561–575.916

37

[6] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, M. Sumner, A Fast917

Adaptive Memetic Algorithm for On-line and Off-line Control Design of918

PMSM Drives, IEEE Transactions on System Man and Cybernetics-part919

B, Special Issue on Memetic Algorithms 37 (1) (2007) 28–41.920

[7] F. Caraffini, F. Neri, M. G. Epitropakis, HyperSPAM: A Study on921

Hyper-heuristic Coordination Strategies in the Continuous Domain, In-922

formation Sciences 477 (2019) 186–202.923

[8] F. Caraffini, F. Neri, G. Iacca, Large Scale Problems in Practice:924

The Effect of Dimensionality on the Interaction Among Variables, in:925

G. Squillero, K. Sim (Eds.), Applications of Evolutionary Computation,926

Springer, 636–652, 2017.927

[9] F. Caraffini, F. Neri, B. Passow, G. Iacca, Re-sampled Inheritance928

Search: High Performance Despite the Simplicity, Soft Computing929

17 (12) (2014) 2235–2256.930

[10] G. D. Cavalcanti, R. J. Soares, Ranking-based Instance Selection for931

Pattern Classification, Expert Systems with Applications 150 (2020)932

113269.933

[11] Chang-Yong Lee, Xin Yao, Evolutionary Programming Using Mutations934

Based on the Levy Probability Distribution, IEEE Transactions on Evo-935

lutionary Computation 8 (1) (2004) 1–13.936

[12] X. Chen, Y. Ong, M. Lim, K. C. Tan, A Multi-Facet Survey on Memetic937

Computation, IEEE Transactions on Evolutionary Computation 15 (5)938

(2011) 591–607.939

[13] T. M. Cover, P. E. Hart, Nearest Neighbor Pattern Classification, IEEE940

Transactions on Information Theory 13 (1) (1967) 21–27.941

[14] A. Elola, J. Del Ser, M. N. Bilbao, C. Perfecto, E. Alexandre, S. Salcedo-942

Sanz, Hybridizing Cartesian Genetic Programming and Harmony Search943

for Adaptive Feature Construction in Supervised Learning Problems,944

Applied Soft Computing 52 (2017) 760–770.945

[15] L. Feng, Y. Ong, M. Lim, I. W. Tsang, Memetic Search With Interdo-946

main Learning: A Realization Between CVRP and CARP, IEEE Trans-947

actions on Evolutionary Computation 19 (5) (2015) 644–658, ISSN 1941-948

0026.949

38

[16] M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, Do We Need950

Hundreds of Classifiers to Solve Real World Classification Problems?,951

The Journal of Machine Learning Research 15 (1) (2014) 3133–3181.952

[17] I. Fister, A. Iglesias, A. Gálvez, J. Del Ser, E. Osaba, I. F. Jr., M. Perc,953

M. Slavinec, Novelty Search for global Optimization, Applied Mathe-954

matics and Computation 347 (2019) 865–881.955

[18] S. Garćıa, J. R. Cano, F. Herrera, A Memetic Algorithm for Evolution-956

ary Prototype Selection: A Scaling up Approach, Pattern Recognition957

41 (8) (2008) 2693–2709.958

[19] S. Garćıa, J. Derrac, J. Cano, F. Herrera, Prototype Selection for Near-959

est Neighbor Classification: Taxonomy and Empirical Study, IEEE960

Transactions on Pattern Analysis and Machine Intelligence 34 (3) (2012)961

417–435.962

[20] S. Garćıa, A. Fernández, J. Luengo, F. Herrera, Advanced Nonpara-963

metric Tests for Multiple Comparisons in the Design of Experiments in964

Computational Intelligence and Data Mining: Experimental Analysis of965

Power, Information Sciences 180 (10) (2010) 2044–2064.966

[21] A. Gupta, Y.-S. Ong, Memetic Computation, Adaptation, Learning, and967

Optimization, Springer, 2019.968

[22] G. Iacca, F. Neri, E. Mininno, Y. S. Ong, M. H. Lim, Ockham’s Razor969

in Memetic Computing: Three Stage Optimal Memetic Exploration,970

Information Sciences 188 (2012) 17–43.971

[23] N. D. Jana, J. Sil, S. Das, Continuous Fitness Landscape Analysis Using972

a Chaos-Based Random Walk Algorithm, Soft Computing 22 (2018)973

921–948.974

[24] R. Katuwal, P. N. Suganthan, L. Zhang, Heterogeneous Oblique Ran-975

dom Forest, Pattern Recognition 99 (2020) 107078.976

[25] H. L. Le, D. Landa-Silva, M. Galar, S. Garcia, I. Triguero, EUSC:977

A Clustering-based Surrogate Model to Accelerate Evolutionary Un-978

dersampling in Imbalanced Classification, Applied Soft Computing 101979

(2021) 107033.980

39

[26] M. N. Le, Y. S. Ong, Y. Jin, B. Sendhoff, Lamarckian Memetic Algo-981

rithms: Local Optimum and Connectivity Structure Analysis, Memetic982

Computing Journal 1 (3) (2009) 175–190.983

[27] E. Leyva, A. González, R. Pérez, Three New Instance Selection Methods984

Based on Local Sets: A Comparative Study with Several Approaches985

from a Bi-objective Perspective, Pattern Recognition 48 (4) (2015) 1523–986

1537.987

[28] X. Li, X. Yao, Cooperatively Coevolving Particle Swarms for Large Scale988

Optimization, Evolutionary Computation, IEEE Transactions on 16 (2)989

(2012) 210–224.990

[29] P. López-Garćıa, E. Onieva, E. Osaba, A. D. Masegosa, A. Perallos,991

GACE: A Meta-heuristic Based in the Hybridization of Genetic Algo-992

rithms and Cross Entropy Methods for Continuous Optimization, Ex-993

pert Systems with Applications 55 (2016) 508–519.994

[30] L. Ma, J. Li, Q. Lin, M. Gong, C. A. Coello Coello, Z. Ming, Cost-Aware995

Robust Control of Signed Networks by Using a Memetic Algorithm,996

IEEE Transactions on Cybernetics (2020) 1–14To appear.997

[31] X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, Z. Zhu, A Sur-998

vey on Cooperative Co-Evolutionary Algorithms, IEEE Transactions on999

Evolutionary Computation 23 (3) (2019) 421–441.1000

[32] K. M. Malan, A. P. Engelbrecht, A Survey of Techniques for Character-1001

ising Fitness Landscapes and Some Possible Ways Forward, Information1002

Sciences 241 (2013) 148 – 163.1003

[33] A. D. Martinez, E. Osaba, I. Oregi, I. F. Jr., I. Fister, J. Del Ser, Hy-1004

bridizing differential evolution and novelty Search for multimodal Op-1005

timization Problems, in: Proceedings of the Genetic and Evolutionary1006

Computation Conference Companion, GECCO 2019, Prague, Czech Re-1007

public, July 13-17, 2019, 1980–1989, 2019.1008

[34] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms1009

and Martial Arts: Towards Memetic Algorithms, Tech. Rep. 826, Cal-1010

tech, 1989.1011

40

[35] P. Moscato, M. Norman, A Competitive and Cooperative Approach to1012

Complex Combinatorial Search, Tech. Rep. 790, Caltech, 1989.1013

[36] L. Nanni, A. Lumini, Particle Swarm Optimization for Prototype Re-1014

duction, NeuroComputing 72 (4-6) (2009) 1092–1097.1015

[37] F. Neri, Linear Algebra for Computational Sciences and Engineering,1016

Springer, second edn., 2019.1017

[38] F. Neri, C. Cotta, Memetic Algorithms and Memetic Computing Opti-1018

mization: A Literature Review, Swarm and Evolutionary Computation1019

2 (2012) 1–14.1020

[39] F. Neri, G. Iacca, E. Mininno, Disturbed Exploitation Compact Differen-1021

tial Evolution for Limited Memory Optimization Problems, Information1022

Sciences 181 (12) (2011) 2469 – 2487.1023

[40] F. Neri, S. Rostami, Generalised Pattern Search Based on Covariance1024

Matrix Diagonalisation, SN Comput. Sci. 2 (3) (2021) 171.1025

[41] F. Neri, I. Triguero, A Local Search with a Surrogate Assisted Option1026

for Instance Reduction, in: P. A. Castillo, J. L. J. Laredo, F. F. de Vega1027

(Eds.), Applications of Evolutionary Computation, vol. 12104 of Lecture1028

Notes in Computer Science, Springer, 578–594, 2020.1029

[42] Q. H. Nguyen, Y. S. Ong, L. M. Hiot, N. Krasnogor, Adaptive Cellular1030

Memetic Algorithms, Evolutionary Computation 17 (2) (2009) 231–256.1031

[43] R. Nogueras, C. Cotta, Studying Self-balancing Strategies in Island-1032

based Multimemetic Algorithms, Journal of Computational and Applied1033

Mathematics 293 (2016) 180–191.1034

[44] E. Özcan, B. Bilgin, E. E. Korkmaz, A Comprehensive Analysis of1035

Hyper-heuristics, Intelligent Data Analysis 12 (1) (2008) 3–23.1036

[45] P. Refaeilzadeh, L. Tang, H. Liu, Cross-Validation, in: L. LIU, M. T.1037

ÖZSU (Eds.), Encyclopedia of Database Systems, Springer US, Boston,1038

MA, 532–538, 2009.1039

[46] L. Rokach, Ensemble-based Classifiers, Artificial Intelligence Review1040

33 (1) (2010) 1–39.1041

41

[47] R. Ros, N. Hansen, A Simple Modification in CMA-ES Achieving Linear1042

Time and Space Complexity, in: G. Rudolph, T. Jansen, N. Beume,1043

S. Lucas, C. Poloni (Eds.), Parallel Problem Solving from Nature –1044

PPSN X, Springer Berlin Heidelberg, Berlin, Heidelberg, 296–305, 2008.1045

[48] R. Tanabe, A. Fukunaga, Success-history Based Parameter Adaptation1046

for Differential Evolution, in: 2013 IEEE Congress on Evolutionary1047

Computation (CEC), IEEE, 71–78, 2013.1048

[49] R. Tanabe, A. S. Fukunaga, Improving the Search Performance of1049

SHADE Using Linear Population Size Reduction, in: 2014 IEEE1050

Congress on Evolutionary Computation (CEC), IEEE, 1658–1665, 2014.1051

[50] C. Ting, R. Liaw, T. Wang, T. Hong, Mining Fuzzy Association1052

Rules Using a Memetic Algorithm Based on Structure Representation,1053

Memetic Computing 10 (1) (2018) 15–28.1054

[51] I. Triguero, J. Derrac, S. Garćıa, F. Herrera, A Taxonomy and Exper-1055

imental Study on Prototype Generation for Nearest Neighbor Classifi-1056

cation, IEEE Transactions on Systems, Man, and Cybernetics–Part C1057

42 (1) (2012) 86–100.1058

[52] I. Triguero, S. Garćıa, F. Herrera, Differential Evolution for Optimiz-1059

ing the Positioning of Prototypes in Nearest Neighbor Classification,1060

Pattern Recognition 44 (4) (2011) 901–916.1061

[53] I. Triguero, D. Garćıa-Gil, J. Maillo, J. Luengo, S. Garćıa, F. Herrera,1062

Transforming Big Data into Smart Data: An Insight on the Use of the1063

k-nearest Neighbors Algorithm to Obtain Quality Data, WIREs Data1064

Mining and Knowledge Discovery 9 (2) (2019) 1289.1065

[54] I. Triguero, S. González, J. M. Moyano, S. Garćıa, J. Alcalá-Fdez, J. Lu-1066

engo, A. Fernández, M. J. del Jesús, L. Sánchez, F. Herrera, KEEL 3.0:1067

An Open Source Software for Multi-Stage Analysis in Data Mining,1068

International Journal of Computational Intelligence Systems 10 (2017)1069

1238–1249, ISSN 1875-6883.1070

[55] I. Triguero, D. Peralta, J. Bacardit, S. Garćıa, F. Herrera, MRPR: A1071

MapReduce Solution for Prototype Reduction in Big Data Classification,1072

NeuroComputing 150 (2015) 331–345, ISSN 0925-2312.1073

42

[56] L.-Y. Tseng, C. Chen, Multiple trajectory Search for Large Scale Global1074

Optimization, in: Proceedings of the IEEE Congress on Evolutionary1075

Computation, 3052–3059, 2008.1076

[57] F. Wilcoxon, Individual Comparisons by Ranking Methods, Biometrics1077

Bulletin 1 (6) (1945) 80–83.1078

[58] D. R. Wilson, T. R. Martinez, Reduction Techniques for Instance-Based1079

Learning Algorithms, Machine Learning 38 (3) (2000) 257–286.1080

[59] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools1081

and Techniques, Elsevier, 2017.1082

[60] X. Yao, Y. Liu, G. Lin, Evolutionary Programming Made Faster, IEEE1083

Transactions on Evolutionary Computation 3 (2) (1999) 82–102.1084

[61] A. A. Zaher, R. Berretta, N. Noman, P. Moscato, An Adaptive Memetic1085

Algorithm for Feature Selection Using Proximity Graphs, Computa-1086

tional Intelligence 35 (1) (2019) 156–183.1087

[62] J. Zhang, A. C. Sanderson, JADE: Adaptive Differential Evolution with1088

Optional External Archive, IEEE Transactions on Evolutionary Com-1089

putation 13 (5) (2009) 945–958.1090

[63] Z. Zhu, S. Jia, Z. Ji, Towards a Memetic Feature Selection Paradigm1091

[Application Notes], IEEE Computational Intelligence Magazine 5 (2)1092

(2010) 41–53.1093

43

	Introduction
	Problem Formulation and Challenges Associated with it
	Evaluation of an RS
	Computational Cost of the Objective Function

	 Single-Point Memetic Structure with Accelerated Local Search for Instance Reduction
	Local Search Operator
	Accelerated Local Search
	Evolutionary Global Search Operator
	Algorithmic Design

	Experimental Framework
	Datasets
	Comparison Algorithms
	Parameter Settings
	Computational Budget
	Parameters

	Analysis of results
	LSIR Running with Different Computational Budgets
	Runtime Reduced in the Accelerated Version of LSIR
	Validation of the Memetic Framework of SPMS-ALS
	Comparison with the State-of-the-art Methods in Instance Reduction
	Comparison against similar instance generation techniques
	Comparison against recent Instance Selection

	Hybridisation with Instance Selection
	Contextualising the results and limitations of the proposal

	Conclusion
	Acknowledgement

