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1 Introduction

Since the Hot Big Bang, the universe may have passed through a number of different

phases. In the Standard Model (SM) of particle physics, electroweak symmetry breaking

and colour confinement took place at temperatures of approximately ∼160 GeV [1] and

∼155 MeV [2–4] respectively, though both these transitions are crossovers. Extensions of
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the Standard Model may lead to a wide variety of phases and phase transitions in the

early universe. Such phase transitions may have an importance for baryogenesis [5–8], and

may lead to a detectable signal of gravitational waves [9], allowing the possibility to probe

particle physics in a completely new way. The gravitational waves produced by first-order

phase transitions even offer the possibility of studying dark sectors that are uncoupled to

the Standard Model [10–12].

Scalar fields, whether fundamental or effective, often lie at the heart of phase transi-

tions, acting as order parameters which take different expectation values in different phases.

In this article, we study the simplest scalar theory which gives rise to a first-order phase

transition. Its Lagrangian is given by,

Lsinglet =
1

2
(∂µφ)2 − V (φ) , (1.1)

V (φ) = σφ +
1

2
m2φ2 +

1

3!
gφ3 +

1

4!
λφ4 , (1.2)

where φ is the scalar field, µ runs over 0,1,2,3 and we have used the mostly minus metric

signature. It has been referred to variously as an inert, sterile or singlet scalar, and in the

most part we will refer to it as a singlet scalar.

The singlet scalar may couple to the SM, or other fields, in which case the full La-

grangian takes the form

L = LSM + Lsinglet + Lportal , (1.3)

where the portal sector contains SM-singlet interactions. The singlet extended SM is

referred to as the xSM [13]. Indeed couplings to gravity are always present, couplings

to the Higgs field are generically expected on effective field theory grounds, and likewise

for couplings to sterile neutrinos [14] in minimal extensions of the Standard Model such

as the νMSM [15–17]. On the other hand, being a single real scalar, there can be no

(renormalisable) couplings to gauge fields, or to the charged chiral fermions of the Standard

Model. In this article, we will consider phase transitions in the singlet direction, focusing

on the case where the effects of all other fields can be accounted for by modifying the

effective couplings of the infrared modes of the singlet.

We are motivated to study this model, in part, because it arises in a wide range of

cosmological and particle-physics model building: providing a possible dark matter candi-

date [18–23], acting as the inflaton [17, 24–27] and providing for electroweak baryogene-

sis [28, 29]. As a consequence, it has been the focus of many collider searches [13, 30–35].

An additional recent attraction to this work has been the possibility of observing a grav-

itational wave background from such a first-order phase transition [29, 36–46] at future

gravitational wave detectors, such as LISA [47], DECIGO [48], BBO [49] and Taiji [50].

Finally the simplicity of the real scalar theory is itself a motivation for its study, as it offers

the possibility of carrying out relatively high order calculations explicitly, in turn allowing

us to test the convergence and reliability of perturbation theory.

This last point, to test the convergence and reliability of perturbation theory, is another

important motivation for this work. The gravitational wave spectrum produced by a first-

order phase transition depends sensitively on the thermodynamics of the transition, which
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in turn is difficult to calculate reliably. A recent work [51] investigating this in a minimal

extension of the Standard Model found that typical (one-loop) calculations suffer from huge

multiplicative uncertainties in the gravitational wave peak amplitude, of order O(102 −103)

depending on the strength of the transition. In addition, ref. [51] identified uncertainties of

unknown, but potentially large, numerical importance. In light of all this, progress in the

theoretical methodology is necessary to make robust predictions for future gravitational

wave experiments.

Fundamentally, studies of high temperature physics are hampered by the strong cou-

pling of light bosonic modes, which arises as a collective effect of their high occupancies.

If at zero temperature λ is the perturbative expansion parameter,1 at high temperatures,

T , the effective expansion parameter for light modes, with mass m ≪ T , is modified as,

λ → λ
T

m
. (1.4)

For such light modes, the effective coupling constant is much larger than the correspond-

ing zero temperature coupling constant, and for sufficiently light modes the perturbative

expansion breaks down altogether [52], as it does for non-Abelian gauge bosons in the

symmetric phase.

For scalar fields at sufficiently high temperatures, thermal corrections to the effective

mass grow quadratically and always dominate over the zero temperature mass. At such

temperatures the lightest scalar modes have an effective mass m2 ∼ λT 2, implying that the

effective coupling constant of such modes is reduced from λ →
√

λ. By utilising effective

theory techniques, such expansions in
√

λ have been carried out to relatively high orders

in several theories (see for example refs. [53–56]).

However, in the vicinity of a phase transition, the situation is somewhat more difficult.

Near the critical temperature, there is an approximate cancellation between the tree-level

and thermal contributions to the mass of the field undergoing the transition, so that m2 .

λT 2 and perhaps even m2 ≪ λT 2. This means that the effective coupling constant can

be larger even that
√

λ, and the perturbative expansion for these light modes can break

down altogether. In this case, the only reliable method of calculation is lattice Monte-Carlo

simulation.

Importantly, the potentially nonperturbative physics of the light bosonic modes is

universal. Due to the hierarchy of scales, one can construct an effective field theory (EFT)

for just the light modes [57–59]. This EFT is defined in 3d, and hence the construction is

called (high temperature) dimensional reduction. The EFT depends on physics at shorter

scales only through its effective parameters. Thus by studying the EFT with generic

parameters, one arrives at results applicable to a wide range of 4d particle physics models.

In this way, one needs only perform lattice Monte-Carlo simulations once, and the results

can be recycled again and again; see for example refs. [45, 60–62] where simulations of the

SU(2)-Higgs 3d EFT were recycled.

1Here λ stands for a generic loop expansion parameter, such as e2 for a gauge coupling e, and not merely
the coupling in this specific scalar theory.
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In this article, we make use of dimensional reduction to perform a comprehensive study

of phase transitions in which the infrared dynamics is governed by the singlet scalar. We

perform dimensional reduction explicitly to next-to-leading order (NLO), or O(λ2), starting

from the 4d singlet scalar theory, and additionally we demonstrate the leading contribu-

tions due to couplings to other fields. In utilising dimensional reduction for carrying out the

high temperature resummations, we differ from the widely adopted approach of (one-loop)

daisy resummation [63, 64] (see ref. [65] for a recent review). We do so because dimen-

sional reduction offers several advantages over daisy resummation (see ref. [51] for a recent

discussion), in addition to isolating the universal dynamics of the light bosonic modes.

Within the 3d EFT, on the one hand we perform a state-of-the-art perturbative calcu-

lation, computing the equilibrium properties of the low-energy effective theory to three-loop

order, and utilising renormalisation group improvement. Together with the dimensional

reduction, our perturbative calculation for the minimal model is accurate to O(λ5/2). On

the other hand, we put the 3d EFT on the lattice and calculate its properties at the critical

temperature with relatively high statistics and utilising exact lattice-continuum relations.

Our lattice Monte-Carlo simulations are carried out for parameter choices ranging over

two orders of magnitude, allowing us to determine precisely where perturbation theory is

reliable, and where it breaks down.

In outline, for a complete, nonperturbative calculation2 of the thermodynamics of a

given particle-physics model, the following steps are performed:

(I) Vacuum renormalisation: matching relations between physical observables and La-

grangian (MS) parameters [69].

(II) Dimensional reduction: matching relations between 4d theory parameters and effec-

tive 3d theory parameters [58, 59, 70]

(III) Perturbative study in 3d effective theory: computation of thermodynamic quantities

such as the jump of the order parameter and the latent heat [57, 58, 71]

(IV) Framework for lattice Monte-Carlo simulations in 3d: lattice-continuum relations [71–

73] and possible O(a) improvement [74–77]

(V) Lattice Monte-Carlo simulations of thermodynamic quantities in 3d: computations

on fixed lattices, statistical analysis and taking the continuum limit [78]

We perform all five steps in this article, as was also done in ref. [79] for an MSSM-like

model. One of our aims in this is simultaneously to give a bird’s eye view of the technical

steps required, and to flesh out all the relevant details, so as to offer a concrete guide to

performing such calculations in other models. For relevant reviews, see refs. [55, 80–82].

Step (I) does not involve any thermal physics, and hence is rather separate to the

others. As the calculation is standard, we present it in appendix C. The following section,

2In fact only the high temperature EFT is treated nonperturbatively. We will assume that the full 4d
theory is weakly coupled and well defined at zero temperature, in that there is a UV fixed point [66, 67]. Note
that an interacting real scalar field, uncoupled to any other fields, suffers from the triviality problem [68].
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section 2, consequently begins with Step (II), dimensional reduction. In section 3 we

analyse the phase diagram of the real singlet model at the broadest level: using only

symmetries and results from the literature regarding the second-order phase transition in

the Z2-symmetric model. In section 4 we carry out Step (III), a perturbative analysis

of the thermodynamics of the phase transition. In section 5 we perform Steps (IV) and

(V), carrying out Monte-Carlo simulations for six different parameter points. Finally in

section 6 we discuss the implications of our results, in particular, we compare lattice and

perturbation theory to better understand the limits of the validity of perturbation theory.

For completeness, we should note that in this article we do not study bubble nucle-

ation or bubble growth, but content ourselves with studying purely equilibrium properties

of the phase transition. Within dimensional reduction, a framework for studying bubble

nucleation on the lattice has been developed in refs. [76, 83]. As argued in ref. [51], follow-

ing refs. [84, 85], dimensional reduction also offers a natural framework for semiclassical

calculations of bubble nucleation. We plan a follow-up paper to this in which we study the

bubble nucleation rate in this model.

2 Dimensional reduction

The equilibrium thermodynamics of quantum field theories can be studied in the imaginary

time formalism (for a review, see refs. [81, 86]). In this case the fields live in R
3 × S1, i.e.

three infinite spatial directions and one compact ‘Euclidean time’ direction, with length

1/T . In the compact direction bosons, such as the scalar φ, satisfy periodic boundary

conditions and hence may be expanded in Fourier modes as,3

φ(τ, x) =
∞∑

n=−∞

ϕn(x)ei2πT nτ . (2.1)

In this context the Fourier modes are referred to as Matsubara modes [87]. Here τ ∈
(−1/2T, 1/2T ] parameterises the compact direction, x ∈ R

3 parameterises the spatial di-

rections and i runs over the spatial indices, 1, 2, 3. In terms of these modes, the quadratic

part of the action for this scalar field takes the form,

S0 =
1

T

∫

d3x

∞∑

n=−∞

[
1

2
(∂iϕn)2 +

1

2
(2πTn)2ϕ2

n +
1

2
m2ϕ2

n

]

. (2.2)

The rest of the scalar potential also provides interactions between Matsubara modes. In

sum, one can view the equilibrium thermodynamics of a theory in 3+1 dimensions as the

vacuum dynamics of a theory in 3 Euclidean dimensions containing infinitely many fields,

ϕn, with squared masses m2 + (2πTn)2.

At high temperatures, when 2πT ≫ m, there is a hierarchy between the masses of the

n = 0 and the n 6= 0 modes. This hierarchy causes some Feynman diagrams to become

3Fermions satisfy anti-periodic boundary conditions so their corresponding Fourier modes are 2πT (n+ 1

2
).

As such, the masses of all fermionic modes scale with T at high temperatures and hence are always integrated
out in dimensional reduction.
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parametrically larger than their loop counting would suggest, hence requiring resummation.

Dimensional reduction is a means to carry out such resummations in a systematically

improvable way. It consists of integrating out the heavy (or ultraviolet (UV)) n 6= 0

modes, to derive an effective theory for the light (or infrared (IR)) n = 0 mode.

The practical steps of dimensional reduction were worked out independently in refs. [57,

59] and ref. [58]. Here we follow the approach of refs. [58, 70] more closely, performing the

matching in strict perturbation theory4 for the generic real scalar theory. In outline the

steps are:

1. Write down the most general 3d theory obeying the same internal and spatial sym-

metries and containing the same number of light bosonic field degrees-of-freedom as

the original 4d theory.

2. Calculate the static correlation functions for the operators in the Lagrangian

in both the original theory and the effective theory. In both cases use strict

perturbation theory.

3. Determine the coefficients of the 3d effective theory by matching the results of the

two theories for momenta p ∼
√

λT .

In the following we will outline these steps, first for the pure, real singlet scalar model.

Afterwards we will consider the effect of interactions with Standard Model, and other, fields.

Note that the approach we have adopted makes use of the high-temperature approx-

imation in computing thermal loop integrals. While the validity of this follows naturally

from the hierarchy of scales assumed in dimensional reduction, it is possible to avoid this

approximation if necessary [88, 89].

2.1 Minimal model

We start by considering the scenario where the real singlet scalar field is uncoupled to any

other field, i.e. the Lagrangian is purely Lsinglet given in eq. (1.1). This will allow us to set

out the method, as well as to show many explicit details, given the simplicity of the model.

The accuracy of the matching procedure can be assessed by counting powers of cou-

pling constants. The couplings of the 3d effective theory will consist of a sum of vacuum

contributions and thermal contributions from the n 6= 0 modes which have been integrated

out. We will restrict ourselves to sufficiently high temperatures such that the vacuum con-

tributions are not parametrically larger than the thermal contributions. This amounts to

the following power counting prescription,

σ ∼ gT 2 , m2 ∼ λT 2 .

These conditions will generally be satisfied in the vicinity of the critical temperature, at

which point thermal and vacuum contributions are balanced. There remains a final scaling

4By this we mean that the tadpole and mass terms are treated as interactions in perturbation theory, in
addition to the usual cubic and quartic terms. The free Lagrangian in strict perturbation theory consists
of only the kinetic terms.
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relation between g, λ and T . For the theory to be perturbative at zero temperature it

must be that g ≪ m, and hence we have that g ≪
√

λT . As a default assumption for the

dimensional reduction, we will take g ∼ λT . In this case, at high temperature our power

counting prescription agrees with the counting of factors of 1/(4π). However we will leave

this final scaling relation more freedom than the others, because the order of the phase

transition will depend on it.

We perform the matching at NLO, in which all effective couplings are calculated up

to O(λ2) multiplied by appropriate powers of T to make up the dimensions. This amounts

to one-loop matching for the cubic and quartic couplings, and two-loop matching for the

tadpole coupling and mass [59, 90], though depending on the scaling relation between g

and λ some Z2-breaking terms may be dropped as subdominant. Reaching this order is

crucial for cancelling the leading renormalisation scale dependence.

For the pure real scalar theory, Step 1 is rather straightforward. The 3d effective

theory is simply,

L3 =
1

2
(∂iφ3)2 + V3(φ3) , (2.3)

V3(φ3) = σ3φ3 +
1

2
m2

3φ2
3 +

1

3!
g3φ3

3 +
1

4!
λ3φ4

3 . (2.4)

We have used the subscript 3 to denote quantities pertaining to the 3d effective theory.

Note this theory is a Euclidean field theory, hence the positive sign between derivative and

potential terms.

For Step 2, the philosophy is the following. The coupling constants of the low energy

effective theory account for the effect of the UV modes of the full theory, which have been

integrated out. Thus, in matching the two theories, we are free to treat the IR contributions

in any way we choose, as long as we do so in the same way in both theories. That is because

such IR contributions do not contribute to the coupling constants of the effective theory,

and by treating the IR contributions in the same way in both theories, their contributions

will cancel exactly. Given this freedom, the simplest way to treat the IR contributions

is simply to cut them off in dimensional regularisation. Further, we are free to expand

around any constant background field, including φ = 0, as the choice of background will

only affect the IR. These choices significantly simplify practical calculations.

Strict perturbation theory in the full 4d theory is defined by the following split,

Lfree =
1

2
(∂τ φ)2 +

1

2
(∂iφ)2 , (2.5)

Lint = (σ + δσ)φ +
1

2
(m2 + δm2)φ2 +

1

3!
(g + δg)φ3 +

1

4!
(λ + δλ)φ4 , (2.6)

where we have explicitly shown the counterterms, but not the powers of the scale Λ, which

make up the dimensions in dimensional regularisation. Note that we adopt the MS renor-

malisation scheme, in which case there is no need for a field renormalisation counterterm,

as it receives no divergent contributions. The omission of the terms proportional to σ and

m2 from the free Lagrangian is justified, within strict perturbation theory, by the small-

ness of these coefficients in comparison with the scale 2πT , which characterises the free

Lagrangian.
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(a) (b) (c) (d) (e) (f) (g)

Figure 1. Feynman diagrams contributing to the one-point function up to two-loop order. They
are shown here in the same order that they appear in eqs. (2.9) and (2.12).

Strict perturbation theory in the low energy effective theory is defined by the follow-

ing split,

L3,free =
1

2
(∂iφ3)2 , (2.7)

L3,int = (σ3 + δσ3)φ3 +
1

2
(m2

3 + δm2
3)φ2

3 +
1

3!
g3φ3

3 +
1

4!
λ3φ4

3 . (2.8)

Due to the superrenormalisable nature of this theory in 3d, there are only a finite number

of divergent diagrams; see for example ref. [58]. The counterterms needed are those shown

here, which appear only at two-loop order. There are further divergent diagrams at four-

loop order, but these are independent of the field configuration, contributing only to the

cosmological constant, which we omit.

To derive the matching relations, we must choose a suitable set of observables to match

between the full theory and the effective theory. Following ref. [59], we choose these to

be the connected, one-particle irreducible (1PI) correlation functions, denoted by Γ(k) in

the full theory and Γ(k)
3 in the effective theory.5 These are equal to minus the sum of all

connected, 1PI Feynman diagrams with k legs. We expand around zero background field,

not the minimum of the potential, as the difference is anyway projected out by the IR cut

off. The correlation functions are evaluated with soft external momenta: zero Matsubara

modes and small spatial momenta, p ∼
√

λT .

The one-point correlation function is given, up to two-loop order, by the sum of dia-

grams shown in figure 1, generated using FeynArts [92]. The results of the relevant loop

integrals can be found in the literature and are listed in appendix A. Evaluating the dia-

grams in the strict perturbative expansion, we find,

Γ(1)(0) ≈ σ + δσ +
1

2
g

∑
∫

P

1

P 2
− 1

4
gλ

∑
∫

P Q

1

P 2Q4
− 1

6
gλ

∑
∫

P Q

1

P 2Q2(P + Q)2

+
1

4
g3 ∑

∫

P Q

1

P 4Q2(P + Q)2
+

1

2
δg

∑
∫

P

1

P 2
− 1

2
g(m2 + δm2)

∑
∫

P

1

P 4
, (2.9)

≈ σ +
gT 2

24
+

1

(4π)2

[
1

6
gλT 2

(
1

4ǫ
+

1

8
Lb(Λ) + 6 log(A) − 1

2
γE

)

− 1

2
gm2Lb(Λ) +

g3

(4π)2

(
1

8
L2

b(Λ) +
1

4
Lb(Λ) +

3

8

) ]

, (2.10)

5In principle the philosophy is to match observables computed in the full theory and in the EFT. However,
it is computationally simpler to match just the 1PI correlation functions, and in doing this no information
is lost as long as all tadpoles can be generated by taking derivatives of the 1PI correlation functions within
the 3d EFT. This is possible except if there are heavy scalars present in the full theory which are not present
in the 3d EFT. If such heavy scalars are present, 1PR diagrams of the heavy scalars must be included in
the matching [90, 91].
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where our notation for momenta and loop integration follows refs. [58, 70], and is given

in appendix A. We use the symbol ≈ to denote an equality which holds only in strict

perturbation theory up to some loop order. In eq. (2.10) γE is the Euler-Mascheroni

constant and A is the Glaisher-Kinkelin constant. In order to simplify the formulae, and

following ref. [59], we have introduced the notation,

Lb(Λ) ≡ 2 log
(

eγEΛ

4πT

)

. (2.11)

In going from eq. (2.9) to eq. (2.10) we have used the counterterms given in appendix C,

which cancel the temperature-independent divergences. Being temperature independent,

these are the same divergences that one would find in a calculation at T = 0.

Performing the same calculation in the effective theory, we find,

Γ(1)
3 (0) ≈ σ3 + δσ3 +

1

2
g3

∫

p

1

p2
− 1

4
g3λ3

∫

pq

1

p2q4
− 1

6
g3λ3

∫

pq

1

p2q2(p + q)2

+
1

4
g3

3

∫

pq

1

p4q2(p + q)2
+

1

2
δg3

∫

p

1

p2
− 1

2
g3(m2

3 + δm2
3)

∫

p

1

p4
, (2.12)

≈ σ3 + δσ3 . (2.13)

Again, the notation follows refs. [58, 70] and is defined in appendix A. In going from

eq. (2.12) to (2.13) we have used that scaleless integrals vanish identically in dimensional

regularisation. Note that the pure zero Matsubara parts of eq. (2.9) give exactly the same

scaleless integrals as in eq. (2.13). Thus, one can see that the cancellation of the purely

IR physics would also occur for other regularisation schemes. Possible contributions from

IR-UV cross terms are essentially projected out by the strict perturbative expansion, which

alternatively can be shown to cancel upon performing resummation [59].

Calculations of the remaining correlation functions, those with two, three and four

external legs, are very similar and are given in appendix B. The only real change is that for

the two-point function, the leading O(p2) momentum dependence must also be calculated.

With the results for the correlation functions in hand, we can turn to Step 3 of dimensional

reduction, matching.

For Step 3, we must match to find the field, φ3, as well as the four parameters of

the effective theory, σ3, m2
3, g3 and λ3. Naively, one might think that equating the four

correlation functions would not give enough conditions, but in fact an extra condition

arises from the leading momentum dependence of the two-point function. This extra con-

dition essentially matches the kinetic operators, while the other four conditions match the

potential terms.

To match the momentum dependence of the correlation functions, we must allow for a

field normalisation factor between the zero Matsubara mode, ϕ0, and the low energy field

operator, φ3 [59]. Demanding that the p2 part of the two-point functions agree, once this

normalisation is taken into account, implies

φ2
3 =

1

T

∂Γ(2)(p, −p)

∂p2

∣
∣
∣
∣
p2=0

ϕ2
0 , (2.14)

=
1

T

(

1 + Π′(p, −p)|p2=0

)

ϕ2
0 , (2.15)
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where Π is the self-energy of the zero Matsubara modes in the full theory, as computed in

strict perturbation theory, and on the second line we have introduced the dash to denote

the derivative with respect to p2. The power of T arises so that φ3 is canonically normalised

in three dimensions.

Once the normalisation of the effective field operator is taken care of, matching the

Lagrangian parameters simply amounts to equating the correlation functions at zero mo-

mentum and taking into account overall powers of T to make up the dimensions. Doing

this leads to the following matching equations,

Γ(1)
3 (0) = T −1/2

(

1 − 1
2Π′(p, −p)|p2=0

)

Γ(1)(0) , (2.16)

Γ(2)
3 (0) = T 0

(

1 − Π′(p, −p)|p2=0

)

Γ(2)(0, 0) , (2.17)

Γ(3)
3 (0, 0, 0) = T 1/2

(

1 − 3
2Π′(p, −p)|p2=0

)

Γ(3)(0, 0, 0) , (2.18)

Γ(4)
3 (0, 0, 0, 0) = T

(

1 − 2Π′(p, −p)|p2=0

)

Γ(4)(0, 0, 0, 0) . (2.19)

From eqs. (2.14)–(2.19), we can read off the effective couplings. Using the explicit expres-

sions for the correlation functions in appendix B, and expanding up to O(λ2) and we find

the effective parameters.

Before writing the matching relations, we first make a couple of judicious modifications

following refs. [58, 59]. We run the MS parameters of the 4d theory from the matching scale

Λ, introduced by dimensional regularisation, to some new renormalisation scale µ. The

beta functions are collected in appendix C. This running may be essential to minimise large

logarithms in perturbation theory, but can also be used to investigate any scale dependence

of our result. After this, the tadpole and mass parameters retain some Λ-dependence,

which will eventually be cancelled by two-loop diagrams in the 3d EFT. To extend this

cancellation, which occurs at O(λ2), to all-loop orders, we rewrite the coefficients of the

Λ-dependent terms and the 3d counterterms in terms of the 3d effective parameters. This

possibility is a consequence of the superrenormalisability of the 3d theory.

After these modifications, and assuming g ∼ λT , we arrive at our final result for the

matching relations to the 3d EFT up to O(λ2):

φ2
3 =

ϕ2
0

T
, (2.20)

σ3 =
1√
T

σ̄ +
ḡT 3/2

24
+

g3λ3

6(4π)2

[

log
(

Λ

3T

)

− c

]

, (2.21)

m2
3 = m̄2 +

λ̄T 2

24
+

λ2
3

6(4π)2

[

log
(

Λ

3T

)

− c

]

, (2.22)

g3 =
√

T ḡ , (2.23)

λ3 = T λ̄ , (2.24)

where, in order to simplify the formulae, and following ref. [59], we have introduced the

constant

c ≡ − log

(

3eγE/2A6

4π

)

= −0.348723 . . . . (2.25)
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To make clear the renormalisation scale dependence of the result, we have defined barred

couplings κ̄, with κ ∈ {σ, m2, g, λ}, which are renormalisation scale invariant at O(λ2),

κ̄ ≡ κ − 1

2
βκLb(µ) , (2.26)

where βκ ≡ dκ/d log µ denotes the one-loop beta functions, given in appendix C. The pa-

rameters on the right hand side of eqs. (2.20) to (2.26) have been run to the renormalisation

scale µ, e.g. λ = λ(µ), whereas the 3d effective parameters are defined at Λ. The leading

corrections to eqs. (2.20) to (2.24) arise at O(λ3); the contributions of hard modes yield

an expansion in integer powers of λ.

There also remain temperature dependent 1/ǫ poles from the computation in the full

theory, which must cancel against identical poles in the EFT. Matching these, we obtain

δσ3 =
g3λ3

24(4π)2ǫ
, (2.27)

δm2
3 =

λ2
3

24(4π)2ǫ
. (2.28)

The matching relations, eqs. (2.21) to (2.28), pass several nontrivial checks. First,

the counterterms, which have been derived from loop computations in the full 4d theory

at finite temperature, are just the right counterterms required to cancel UV divergences

within the 3d EFT; see section 4.2. Second, all dependence on the renormalisation scale

Λ cancels up to the order that we have calculated. In particular, the matching relations

for the field, the 3-point and the 4-point couplings are independent of the renormalisation

scale Λ,

dg3(Λ)

d log Λ
= 0 , (2.29)

dλ3(Λ)

d log Λ
= 0 . (2.30)

For the tadpole and mass, σ3 and m2
3, instead we find,

dσ3(Λ)

d log Λ
=

g3λ3

6(4π)2
, (2.31)

dm2
3(Λ)

d log Λ
=

λ2
3

6(4π)2
. (2.32)

Eqs. (2.29) to (2.32) are in fact the exact beta functions of the 3d EFT; see section 4. As

a consequence, the Λ-dependence arising from loop calculations within the 3d EFT cancels

the Λ-dependence of the matching relations. This allows us to exchange Λ for some new

scale µ3, chosen for example to minimise large logarithms within perturbative calculations

in the 3d theory. Thus the original scale Λ (described as the matching scale in ref. [58])

all but disappears, to be replaced by two renormalisation scales, µ and µ3 which may be

chosen independently.

We have also performed some checks against the literature. We find agreement with

refs. [57, 58, 64, 93] (excluding what is presumably a sign error in eq. (60) of ref. [57]), which
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provide checks in the Z2-symmetric limit. Further, we find agreement with ref. [90], which

provides a check of all our correlation functions at one-loop order. Finally, we are grateful

to the authors of refs. [94, 95], with whom we have cross-checked the full matching relations.

2.2 Higgs interactions

A singlet scalar may couple to the Standard Model Higgs, H, via the following portal

couplings,

Lportal = −1

2
a1φH†H − 1

2
a2φ2H†H , (2.33)

where we have followed the notation of ref. [96] for the interaction terms. In fact, generically

such terms should be included as they are renormalisable and do not explicitly break any

symmetries of the theory. Additionally, if the field φ is interpreted as the inflaton, there

must be nonzero couplings to Standard Model particles in order to reheat the universe

after inflation; see for example ref. [97].

If the temperature T is above, or around, the electroweak symmetry breaking scale,

then the zero Matsubara modes of the Higgs will also enter the 3d EFT. So too will the

gauge bosons of the SM, though these do not couple directly to the singlet scalar. Further,

such Higgs-portal couplings will give corrections to eqs. (2.21) to (2.28) arising from the

nonzero Matsubara modes of the Higgs, which at leading order amount to

∆σ3 =
a1T 3/2

12
, ∆m2

3 =
a2T 2

6
. (2.34)

In calculating this correction, we have used the one-loop thermal correlation functions

from ref. [90]. However, a complete calculation of the dimensional reduction of the SM

plus singlet is beyond the scope of this article; for which see the refs. [94, 95].

If the singlet scalar appears around the electroweak scale, the dynamics of the coupled

system will be a complicated interplay of the fields, perhaps involving a two-step transi-

tion [29, 98–101]. This possibility has been studied in refs. [29, 36, 38–40, 42–45, 102].

While the full two-step transition goes beyond the scope of this article, our analysis is in

principle applicable to a first step in the singlet scalar direction.

In eq. (2.34) we have assumed the temperature is above, or around, the electroweak

symmetry breaking scale. Below this temperature, the Higgs takes a nonzero vev, modifying

the effective couplings of the singlet at tree-level. As the temperature lowers further, per-

turbative excitations of the Higgs become exponentially suppressed, so that temperature-

dependent Higgs corrections to the singlet EFT can be neglected, leaving only the tree-level

effects of the Higgs vev.

2.3 Other possible interactions

Due to the lack of gauge charges, a real scalar field cannot couple to gauge fields or to the

charged chiral fermions of the Standard Model. However, a variety of other interactions

are possible.

Yukawa interactions with Dirac or Majorana fermions are possible, of the form,

LYukawa = −
∑

A

yAφψ̄AψA , (2.35)
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where A is a flavour index, yA are the Yukawa couplings and ψA are the fermion fields.

Such a Yukawa term may arise in models with sterile neutrinos [14], constructed to explain

the observed small neutrino masses and to provide a dark matter candidate [17, 23, 103–

113]. In the νMSM, for example, the scalar field φ plays the role of the inflaton [17]. Such

terms may also arise in simplified dark matter models involving a fermionic dark matter

candidate and real scalar portal [114]. In the following, for simplicity, we consider the ψA

to be Dirac fermions.

Fermions do not have zero Matsubara modes, due to the different boundary conditions

implied by Fermi-Dirac statistics. As a consequence, they cannot enter the 3d effective

theory. However, the Yukawa couplings will give corrections to the matching relations of

the low-energy effective theory, which at LO amount simply to

∆σ3 =
∑

A

yAmAT 3/2

6
, ∆m2

3 =
∑

A

y2
AT 2

6
, (2.36)

where mA are the tree-level fermion masses. Here we have assumed that the tree-level

masses of the fermions are small compared with the thermal mass scale πT . If, on the

other hand, the fermions are much heavier than the thermal mass scale, their contributions

to m2
3 will be Boltzmann suppressed and can be neglected. In the intermediate case where

the fermion masses are of the same order as the thermal mass scale, the full temperature

dependence of the fermionic thermal functions must be retained.

Finally, we should mention that φ must inevitably couple to gravity, modifying the

singlet Lagrangian as,

Lsinglet → √−g

(

Lsinglet − ξ1φR − 1

2
ξ2φ2R

)

, (2.37)

where g is the metric determinant (not to be confused with the scalar cubic coupling), R

is the Ricci scalar and ξ1 and ξ2 are coupling constants. Treating the metric as a classical,

slowly-varying background field, we can see that the Ricci scalar corrects the tadpole and

mass terms of the scalar φ already at tree-level,6 ∆σ3 = ξ1R/
√

T and ∆m2
3 = ξ2R, and

hence can potentially drive the scalar field through a phase transition. This has been

studied in the context of a rapid quench, causing a spinodal, or tachyonic, instability for

the scalar field in the Z2-symmetric version of this model [117, 118]. On the other hand,

a sufficiently slow time variation of the Ricci scalar can be incorporated in the effective

parameters of the 3d EFT.

We note that the full non-Z2-symmetric scalar field theory, with both Yukawa interac-

tions and nonminimal couplings to gravity has recently been studied in ref. [27], in which

the scalar φ acts as the inflaton field. Under the assumption that the Z2-symmetry break-

ing terms are small, this model was shown to approximately reproduce the spectral index

and tensor-to-scalar ratio of the Z2-symmetric Starobinsky inflation model.

In the following, we will focus on the thermodynamics of the 3d EFT containing

only the real singlet scalar. We will remain agnostic about the full UV theory, and as a

consequence will treat the 3d effective parameters, {σ3, m2
3, g3, λ3}, as unknown functions

of temperature T .
6Additionally, there are loop-level gravitational corrections to the running of matter Lagrangian param-

eters; see for example refs. [115, 116].
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3 Phase diagram

As the temperature changes, the couplings of the low-energy effective theory change ac-

cordingly. Cosmological history therefore traces out a path through the space of effective

couplings, a path parameterised by the temperature. Observables, such as the free-energy

density, or the expectation value of the field operator, will also change with temperature,

following the variation of the effective couplings. In this way, the hard, nonzero Matsubara

modes, which dictate the temperature dependence of the effective couplings, can drive the

soft, zero Matsubara mode through a phase transition.

In this section we learn what we can about the phase diagram of the 3d EFT using only

very general arguments. In section 3.1 we determine the structure of the phase diagram

from symmetry and the known properties of the Z2-symmetric theory. In section 3.2 we

derive a simple expression for the latent heat, eq. (3.13), which factorises into a product of

infrared and ultraviolet parts.

3.1 Order of the transition

In this article, we are particularly interested in the case where the thermal evolution leads

to a first-order phase transition. For there to be a first-order phase transition, there must

be a coexistence of phases in some temperature range. Homogeneous phases of the real

scalar theory may be distinguished by the value of the field condensate,

〈φ̄3〉 =
1

Z3V3

∫

Dφ3

∫

d3x φ3(x) e−
∫

d3xL3(φ3) , (3.1)

where V3 denotes the volume of space, and Z3 denotes the partition function of the 3d

EFT. The field condensate acts just as the density does in a liquid ↔ gas transition, or

the gauge-invariant Higgs condensate 〈H†H〉 in the electroweak phase transition.

At the critical temperature two different phases are equally likely to occur, their free

energies being equal. In the case where the 3d effective field theory consists only of the real

scalar field, there is a freedom to shift the field by a (temperature dependent) constant.

Because of this freedom, one can find a basis in which g3(T ) = 0 for all T , which can be

achieved by shifting

φ3 → − g3

λ3
+ φ3 , (3.2)

after which the bare potential takes the form,

V =
(

σ3 +
g3

3

3λ2
3

− g3m2
3

λ3

)

︸ ︷︷ ︸

σ̃3

φ3 +
1

2

(

m2
3 − g2

3

2λ3
︸ ︷︷ ︸

r

+δm2
3

)

φ2
3 +

1

4!
λ3φ4

3 , (3.3)

where we have used that λ3δσ3 = g3δm2
3, and have dropped the constant additive term.

This shift reduces the general theory to the Ising-like Z2-symmetric theory (i.e. φ4 theory)

in the presence of a finite external field σ̃3(T ). Thus, if there is a phase transition, the

critical temperature, Tc, occurs at

σ̃3(T ) = 0 , (3.4)
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T>Tc

T=Tc

T<Tc

Figure 2. From left to right, the evolution of the tree-level potential in the 3d effective theory for
first-order (r < r∗), second-order (r = r∗) and crossover (r > r∗) transitions. Here we adopt the
basis in which the cubic term is zero, i.e. φ3 → −g3/λ3 + φ3, and choose µ3 = 0.07860(18)λ3, such
that r∗(µ3) = 0. In all cases the system starts at 〈φ̄3〉 < 0 at high temperatures and transitions to
〈φ̄3〉 > 0 as the system cools.

at which point the whole partition function possesses a Z2 symmetry. Thus, at this point,

either there are two identical phases related by the Z2 symmetry, in which case there is a

first-order phase transition, or there is only a single phase, in which case there is either a

higher-order phase transition, or a crossover. Due to the symmetry, this is an exact equation

determining the critical temperature: it is not corrected at any order in the loop expansion

of the 3d EFT. By using the beta functions of the 3d effective parameters, eqs. (2.29)

to (2.32), one can see that this equality holds independently of the renormalisation scale.

The nature of the transition, at this critical point, can be found from the value of the

coefficient of φ2
3 in eq. (3.3) (minus the MS counterterm) which we have denoted by r,

following the literature in statistical mechanics [119]. At tree-level the transition goes from

first-order, through second order, and then crossover as the value of r goes respectively

from negative, through zero, to positive. This is illustrated in figure 2. Beyond tree-

level, the value of r for which the transition is second order, r∗, shifts away from zero

and is renormalisation scale dependent. In ref. [120], a lattice Monte-Carlo study of the

Z2-symmetric theory, it was found that,

r∗(µ3) =
[

0.0015249(48) +
1

6(4π)2
log

(
3µ3

λ3

)]

λ2
3 , (3.5)

where the number in parenthesis is the statistical uncertainty in the last two digits. Com-

bining this result with our previous arguments for the generic non-Z2-symmetric theory, in

summary we find that

phase transition order =







first order, if r < r∗

second order, if r = r∗

crossover, r > r∗

(3.6)

where r and r∗ are to be evaluated at the critical temperature, i.e. where eq. (3.4) holds.

The phase diagram of the theory is shown in figure 3. By using the beta functions of the 3d

EFT, eqs. (2.29) to (2.32), in the definition of r, one can see that these conditions giving

the order of the phase transition hold independently of the renormalisation scale. Eq. (3.6)

is exact, up to the statistical uncertainty in the determination of r∗.

As one considers weaker and weaker first-order phase transitions, i.e. as r tends towards

r∗ from below, both the jump in the field expectation value and the screening mass tend

– 15 –



J
H
E
P
0
4
(
2
0
2
1
)
0
5
7

Figure 3. The phase diagram of the 3d effective theory, on the plane of (σ̃3, r), which are the
linear and quadratic coefficients of the tree-level potential, in the basis shifted by eq. (3.2). The
green thick line shows the line of first-order phase transitions which ends at the second-order critical
point at (0, r∗). For a given 4d theory, the matching relations of dimensional reduction describe
a (curved) line on this plot parameterised by temperature, an example of which is shown here as
the dotted line with the arrows denoting the direction of decreasing temperature. The order of the
phase transition depends on the value of r as this line crosses the critical surface σ̃3 = 0. In the
example trajectory shown, the transition is first order.

towards zero. For asymptotically weak first-order transitions, the approach to the second

order point is determined by universality, with the universality class being that of the 3d

Ising model.7 For example, the difference in the field condensate between the two phases,

∆〈φ̄3〉, and the screening mass, ms, are given by

∆〈φ̄3〉 ∝ (−r + r∗)β , (3.7)

ms ∝ (−r + r∗)ν , (3.8)

with critical exponents β = 0.3258(14) and ν = 0.6304(13) [122].

3.2 Latent heat

The latent heat, L, of a first-order phase transition can be determined by the following

thermodynamic relation, evaluated at the critical temperature,

L = − ∂∆f

∂ log T
, (3.9)

where f is the free energy density of the full 4d theory, and ∆ denotes the difference

between the two phases. This in turn can be expressed in terms of εvac, the vacuum energy

density of the 3d EFT, using ∆f = T∆εvac. By definition εvac = − log Z3/V3, where Z3

denotes the partition function of the 3d EFT and V3 denotes the volume of space.

The vacuum energy density of the 3d EFT depends on temperature only through its

four effective parameters. Thus eq. (3.9) can be expanded out using the chain rule, in terms

7Interestingly, this is the same universality class as the 3d EFT of the electroweak theory for its second-
order phase transition [121], which for the Standard Model field content occurs for a Higgs mass of some-
where in the vicinity of 70-80 GeV.
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of derivatives with respect to these parameters. From the definition of the vacuum energy,

one can see that such derivatives give the condensates of the corresponding operators which

appear in the action. For example, the linear field condensate is given by

〈φ̄3〉 = −∂εvac

∂σ3
. (3.10)

Taking derivatives of εvac with respect to the bare couplings yields UV divergent bare con-

densates. On the other hand, taking derivatives with respect to the renormalised couplings

introduces counterterm corrections producing finite renormalised condensates [71].

In terms of these field condensates, the latent heat is then

L

T
=

∂σ3

∂ log T
∆〈φ̄3〉 +

1

2

∂m2
3

∂ log T
∆〈φ̄2

3〉 +
1

3!

∂g3

∂ log T
∆〈φ̄3

3〉 +
1

4!

∂λ3

∂ log T
∆〈φ̄4

3〉 , (3.11)

all evaluated at the critical temperature. This expression for the latent heat can be sim-

plified significantly by shifting the origin of the field following eq. (3.2). In this basis, the

coefficient of the cubic term vanishes by construction. Further, due to the Z2 symmetry at

the critical temperature, condensates of even powers of the field are equal in both phases

and hence

∆

〈(

φ̄ +
g3

λ3

)2
〉

= ∆

〈(

φ̄ +
g3

λ3

)4
〉

= . . . = 0 , (3.12)

where, for clarity, we have shown the shift of eq. (3.2) explicitly.

Thus, in this basis, the latent heat simplifies to,

L

T
=

∂σ̃3

∂ log T
∆〈φ̄3〉 , (3.13)

where σ̃3 is the coefficient of φ about −g3/λ3 in the potential, given explicitly in eq. (3.3).

Eq. (3.13) shows the factorisation of IR (∆〈φ̄3〉) and UV (∂σ̃3/∂ log T ) contributions. While

the IR part is universal, the UV part receives contributions from all the modes which were

integrated out in the construction of the 3d EFT.

4 Phase transition in perturbation theory

Perturbation theory is applicable rather generically to the nonzero Matsubara modes, as

long as the theory is perturbative at T = 0. However the infrared physics of the zero

Matsubara mode can become nonperturbative at high temperatures. In this section, we

will investigate the applicability of perturbation theory to the infrared EFT, and apply

it to the computation of various equilibrium thermodynamic properties. In particular, in

section 4.1 we will consider the general form of the loop expansion within the 3d EFT.

Then in section 4.2 we will compute the effective potential to three-loop order. Using

this result, and performing an explicit ~-expansion, we will compute the discontinuity of

the order parameter in section 4.3, and discuss its renormalisation group improvement in

section 4.4.
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4.1 The loop expansion near Tc

For a consistent perturbative expansion, one should expand around a background field

which is a minimum of the tree-level action. For homogeneous phases, this can be achieved

by shifting the origin of the field to set σ3 to zero.

The couplings in the 3d effective theory both have positive mass dimension. As such,

each successive loop order comes with either a factor of λ3 or g2
3, as well as compensating

powers of the tree-level mass parameter, making the dimensionless combinations

λ3

m3
,

g2
3

m3
3

. (4.1)

We are interested in the case m3 ∼ m3,c. Using eq. (3.4) we find that both loop-expansion

parameters are of the same order, and the combination of parameters which dictates the

convergence of the 3d loop expansion near the critical temperature is

α3 ≡ ~

4π

λ
3/2
3

|g3| , for σ3 = 0 . (4.2)

Shifting the field back to a generic point with nonzero σ3, the loop-expansion parameter be-

comes complicated by the introduction of cubic roots, but as this is simply a change of basis,

it does not change the underlying physics. For a generic basis, but at the critical tempera-

ture, i.e. at σ̃3 = 0, we are also able to find a simple form for the loop-expansion parameter,

α3 ≡ ~

4π

λ
1/2
3

|v0| , for σ̃3 = 0 , (4.3)

v2
0 =

g2
3

λ2
3

− 6σ3

g3
. (4.4)

where v0 is the field-value of the tree-level minima about the Z2-symmetric origin.

From the above, it would appear that the loop expansion breaks down in the Z2-

symmetric limit, g3, σ3 → 0. This is related to the fact that the phase transition is of

second order in the Z2-symmetric limit, and hence the scalar mass and the jump in the

order parameter both go to zero. As these quantities enter the loop-expansion parameter

inversely, the loop expansion breaks down in this limit. Thus, one must either find some

other expansion parameter or resort to nonperturbative methods.

At the critical temperature in this model, the two phases are identical and hence the

expansion parameter is the same in both phases. This is unlike the case of the Standard

Model Higgs field, for which the presence of perturbatively massless gauge bosons causes

the loop expansion to fail around the symmetric minimum, though it may converge well

around the broken minimum [57, 71, 123].

Assuming the scaling relations of section 2.1, it follows that α3 ∼
√

λ. This should

be contrasted with the matching relations of dimensional reduction, in which only integer

powers of λ arise. To see the consequences of this, consider eq. (3.13) for the latent heat.

The UV factor in eq. (3.13) yields an expansion in powers of λ, starting at O(λ), with the

dimensions made up by powers of T . The IR factor instead yields an expansion in powers

of
√

λ starting at O(λ0). As a consequence, to achieve a given accuracy for the latent heat,

one must work to higher loop orders for the infrared physics.
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(a) (b) (c)

Figure 4. Feynman loop diagrams contributing to the effective potential up to two-loop order.
They are shown here in the same order that they appear in eqs. (4.5) and (4.8).

4.2 The effective potential

In calculating the effective potential of the 3d EFT, we start with the bare Lagrangian,

given in eqs. (2.3) and (2.4). Unlike in section 2, where we were only interested in UV

physics at the scale ∼ 2πT , in studying the IR physics of the phase transition we must

make a different split between free and interacting terms. In particular, the tadpole and

mass terms now enter the free Lagrangian.

In the study of first-order phase transitions, the convex effective potential defined by a

Legendre transform [124] is not particularly relevant. Instead it is appropriate to define the

effective potential as the result of integrating over all non-zero momentum modes, following

ref. [125] (see also ref. [81]). Only the 1-particle-irreducible diagrams contribute [125], of

which there is one at one-loop, two at two-loop and six at three-loop order. The one- and

two-loop diagrams are shown in figure 4, and the three-loop diagrams can be found in

ref. [126].

For the effective potential up to two-loop order, we find

V3,eff = σ3φ3 +
1

2
m2

3φ2
3 +

1

3!
g3φ3

3 +
1

4!
λ3φ4

3

− ~

2

∫

p
log

(

p2 + M2
3

)

+
~

2

8
λ3

∫

pq

1

(p2 + M2
3 )(q2 + M2

3 )

+
~

2

12
G2

3

∫

pq

1

(p2 + M2
3 )(q2 + M2

3 )((p + q)2 + M2
3 )

+ δV3 + δσ3φ3 +
1

2
δm2

3φ2
3 + O(~3) , (4.5)

where, for the second and third derivatives of the tree-level potential, we have defined

M2
3 = m2

3 + g3φ3 +
1

2
λ3φ2

3 , G3 = g3 + λ3φ3 . (4.6)

The required loop integrals are collected in appendix A. At two-loop order, there is one

logarithmically divergent diagram: the sunset. The corresponding counterterms are,

δV3 =
~

2g2
3

48(4π)2ǫ
, δσ3 =

~
2g3λ3

24(4π)2ǫ
, δm2

3 =
~

2λ2
3

24(4π)2ǫ
. (4.7)

Due to the superrenormalisability of the theory, the δσ3 and δm2
3 counterterms are in

fact exact, to all orders in ~. However, the constant δV3 counterterm will receive further

contributions at four-loop order.
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Note that these counterterms match the temperature-dependent divergences that we

found in dimensional reduction, eqs. (2.27) and (2.28). Further, by demanding that the

bare parameters are independent of the renormalisation scale, we recover the beta functions

of the 3d parameters that we found in dimensional reduction, eqs. (2.29) to (2.32).

After inserting the results for the loop integrals from appendix A, eq. (4.5) becomes

V3,eff = σ3φ3 +
1

2
m2

3φ2
3 +

1

3!
g3φ3

3 +
1

4!
λ3φ4

3 − ~

3(4π)
M3

3

+
~

2

(4π)2

(
1

8
λ3M2

3 +
1

12
G2

3

(

log
(

3M3

µ3

)

− 1

2

))

+ O(~3) , (4.8)

where µ3 is the MS renormalisation scale of the 3d EFT. The Z2-symmetric limit of eq. (4.8)

agrees with that in refs. [57, 58].

The three-loop contribution can be constructed using the results of ref. [126], and

reads,

V 3-loop
3,eff =

~
3

(4π)3

(

λ2
3M3

36

(

3 log
(

µ3

4M3

)

+
27

8

)

+
G2

3λ3

216M3

(

−27Li2

(
1

4

)

− 9

2
+

9π2

4
− 27

2
log2

(
4

3

))

+
G4

3

1296M3
3

(

81

2
Li2

(
1

4

)

− 27π2

8
+

81

4
log2

(
4

3

)

+ 54 log
(

4

3

)

− 27
√

2ξ

))

,

(4.9)

where ξ = 0.03074157526289594 . . . is the result of performing a 1d integral numerically.

For the special case G3 = 0, this result reproduces eq. (34) of ref. [58]. Note that for the

power counting relations we assumed in section 2, this three-loop contribution is of order

O(λ5/2). Hence it is of lower order than the terms neglected in the dimensional reduction

of section 2.1, which are of O(λ3).

4.3 Condensates in the ~-expansion

The vacuum energy of the EFT determines the free energy, latent heat and field conden-

sates. The vacuum energy is the sum of all connected diagrams, whereas the effective

potential is the sum of the connected, 1PI diagrams. In the vicinity of a minimum of the

tree-level potential, the 1-particle-reducible (1PR) diagrams, which are missing from the

effective potential, can be generated from the 1PI diagrams by performing a strict ~ ex-

pansion [127] (see also refs. [71, 72, 123, 128]). In this, one expands the effective potential

and the vev in powers of ~,

V3,eff(v3) =
N∑

n=0

~
nV(n)(v3) , v3 =

N∑

n=0

~
nv(n) , (4.10)

and solves for the vev order-by-order in ~. This approach avoids the spurious imaginary

parts which arise when one simply numerically minimises the effective potential [129, 130].
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In gauge theories, it also gives rise to gauge-invariant results order-by-order in ~ [127, 131].

Note, however, that the ~-expansion is not applicable to transitions that are radiatively-

induced within the 3d EFT. For instance, in the SU(2)-Higgs model at two-loop order in

the ~-expansion, the critical temperature is IR divergent and the latent heat receives an

unphysical imaginary part [123].

In calculating the condensates, it is convenient to shift the origin of the field according

to eq. (3.2), so that the third derivative of the tree-level potential vanishes, About this

origin, and at the critical temperature the tree-level minima are located at v(0) = ±v0,

where v0 is given by eq. (4.4). Expanding around this tree-level result to O(~3), one finds

v(1) =
−V ′

(1)

V ′′
(0)

, (4.11)

v(2) = −
V ′

(1)
2V ′′′

(0)

2V ′′
(0)

3
+

V ′′
(1)V

′
(1)

V ′′
(0)

2
−

V ′
(2)

V ′′
(0)

, (4.12)

v(3) = −
V ′

(1)
3V ′′′

(0)
2

2V ′′
(0)

5
+

3V ′
(1)

2V ′′
(1)V

′′′
(0)

2V ′′
(0)

4
+

V ′
(1)

3V ′′′′
(0)

6V ′′
(0)

4
−

V ′
(1)

2V ′′′
(1)

2V ′′
(0)

3

−
V ′

(2)V
′

(1)V
′′′

(0)

V ′′
(0)

3
−

V ′′
(1)

2V ′
(1)

V ′′
(0)

3
+

V ′′
(2)V

′
(1)

V ′′
(0)

2
+

V ′
(2)V

′′
(1)

V ′′
(0)

2
−

V ′
(3)

V ′′
(0)

, (4.13)

where all the functions on the right-hand sides of the equations are evaluated at the tree-

level minimum. Evaluating these, we find

∆〈φ̄3〉 = 2v0 +
~
√

3λ3

4π
+

~
2λ3

2(4π)2v0

[

1 + log

(

µ2
3

3λ3v2
0

)]

(4.14)

+
~

3
√

3 λ
3/2
3

(4π)3v2
0

[

− 3

8
√

2
ξ +

21

32
Li2

(
1

4

)

− 7π2

128
− 1

2
+

21

64
log2

(
4

3

)

+
5

8
log

(
4

3

)]

.

The explicit log µ3 term at two-loop order cancels the running of v0 at order ~2, and further

the absence of a log µ3 term at three-loop order is a result of the absence of running of the

one-loop correction to ∆〈φ̄3〉, which only depends on λ3. Numerically eq. (4.14) reads

1

v0
∆〈φ̄3〉 = 2 + 1.73205 α3 +

1

2

[

1 + log
(

µ̃2
3

)]

α2
3 − 1.15232 α3

3 + O
(

α4
3

)

, (4.15)

where we have introduced µ̃2
3 = µ2

3/(3λ3v2
0), and have indicated the size of the four-loop

corrections. The loop-expansion parameter, α3, is given in eq. (4.3). As can be seen,

the expansion coefficients are all O(1), suggesting that the magnitude of α3 should give a

reliable estimate of how well the series converges. As α3 is inversely proportional to the

jump in the order parameter, the series converges more quickly for stronger transitions.

4.4 Renormalisation group improvement

The effective potential, or rather its φ3-derivative to avoid the cosmological constant, sat-

isfies the renormalisation group (or Callan-Symanzik) equation,
(

∂

∂ log µ3
+

~
2g3λ3

6(4π)2

∂

∂σ3
+

~
2λ2

3

6(4π)2

∂

∂m2
3

)

dV3,eff

dφ3
= 0 , (4.16)
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where the nonzero beta functions are taken from eqs. (2.31) and (2.32). Due to the su-

perrenormalisability of the theory, this equation is exact. Expanding it in ~, leads to an

infinite set of relations linking the running of couplings at O(~n) to explicit logarithms

at O(~n+2). Using this, one can deduce the explicit µ3 dependence present at four- and

five-loop order from the running of the couplings at two- and three-loop order,

∂V 4-loop
3,eff

∂ log µ3
= − ~

2λ2
3

6(4π)2

∂V 2-loop
3,eff

∂m2
3

,
∂V 5-loop

3,eff

∂ log µ3
= − ~

2λ2
3

6(4π)2

∂V 3-loop
3,eff

∂m2
3

. (4.17)

However, eq. (4.16) is an exact equation, and hence it seems reasonable to solve it exactly,

rather than order-by-order in ~. Doing so resums the most ultraviolet sensitive higher order

contributions, giving the renormalisation group improved (RGI) effective potential. By

incorporating this nonperturbative information, one would hope to improve the accuracy

or convergence of perturbative results. The construction of the RGI effective potential was

presented in this context in ref. [57], though we will adopt an alternative approach, as

follows.

Correlation functions, such as the linear condensate ∆〈φ̄3〉, satisfy an identical renor-

malisation group equation. This can be solved order-by-order in ~, to find the scale depen-

dent parts of the 4- and 5-loop contributions,

1

v0

∂

∂ log µ3
∆〈φ̄3〉4-loop =

(
3

4
+

1

2
log µ̃3

)

α4
3 , (4.18)

1

v0

∂

∂ log µ3
∆〈φ̄3〉5-loop = −1.15232 α5

3 , (4.19)

where the numerical constant in eq. (4.19) is the same as the 3-loop coefficient in eqs. (4.14)

and (4.15). Alternatively, one can solve the renormalisation group equation using the

method of characteristics, which amounts to replacing the coupling constants by the cor-

responding running solutions. For eq. (4.15), this amounts simply to

v0 → v0

√
√
√
√1 − α2

3 log

(

µ3

µ3,0

)

, α3 → α3
√

1 − α2
3 log

(
µ3

µ3,0

) , (4.20)

where µ3,0 is some initial scale, at which v0 and α3 are given. This defines our RGI pertur-

bative calculation. Note that this improvement is naturally incorporated upon performing

dimensional reduction, if the exact running of the parameters is used to cancel the depen-

dence on the matching scale Λ, replacing it with a new renormalisation scale µ3; see the

end of section 2.1.

Interestingly, while both g3 and λ3 are independent of µ3, the expansion parameter

α3 is not. While this is clear in the form given in eq. (4.3), to see it in the form given in

eq. (4.2) one should note that changing µ3 shifts the minimum of the potential, and the

basis transformation required to shift back to remove the tadpole induces a µ3-dependence

in the cubic coupling.

This RGI perturbative calculation still retains some µ3-dependence. For the jump in

the linear condensate, eq. (4.15) shows that one must choose µ3 ∼
√

3λ3v0 in order to avoid
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large logarithms. An optimal choice of renormalisation scale, µopt
3 , can be found according

to the principle of minimal sensitivity [132], whereby, for some approximation to a physical

quantity, one solves for the point of minimal sensitivity to the renormalisation scale. A

natural choice in this context is the linear condensate,

∂

∂ log µ3
∆〈φ̄3〉RGI = 0 . (4.21)

This equation can be used to determine µopt
3 , the optimal choice for the renormalisation

scale for a given perturbative approximation. Numerically, we find solutions to eq. (4.21)

with µopt
3 ∼

√
3λ3v0 for the two- and three-loop order approximations to the linear con-

densate. However, at lower loop order we find no such solutions and hence simply take

µopt
3 =

√
3λ3v0, a conclusion which might have been expected because two-loop order is

the lowest order at which the couplings run in this EFT. An estimate of the magnitude of

missing higher order terms can be found by varying µ3 about µopt
3 by some multiplicative

O(1) factor, which we take to be 10 to be conservative.

5 Phase transition on the lattice

Perturbation theory can only take us so far. As discussed in section 4.1, at the critical

temperature the loop-expansion parameter for the 3d EFT scales as α3 ∝ λ
3/2
3 /|g3|. So,

as one approaches the Z2-symmetric limit, the loop-expansion parameter grows without

bound, signalling the complete breakdown of perturbation theory.

To reliably study the phase transition for both small and large α3, we resort to lattice

Monte-Carlo simulations; for relevant overviews see refs. [78, 133–135], and for recent

studies in other models see refs. [101, 136] and [137, 138]. The first step, which we carry

out in section 5.1, is to find explicit relations between the bare parameters of the lattice

Lagrangian, and those of the continuum theory in the MS renormalisation scheme. Once

this is done, measurements from Monte-Carlo simulations can be directly interpreted in

terms of MS observables.

In section 5.1 we derive the lattice-continuum relations, applicable in the limit a → 0.

Following this we discuss the Monte-Carlo simulations in section 5.2, with details of the

algorithms given in appendix D. Results for the latent heat, extrapolated to the continuum

limit, are presented in section 5.3, with additional plots of the continuum extrapolations

given in appendix E.

5.1 Lattice-continuum relations

The simplest lattice Lagrangian which converges to eq. (2.3) in the continuum is

L3,L =
1

2a2

∑

i

[φ3(x + i) − φ3(x)]2 + V3,L(φ3) , (5.1)

V3,L(φ3) = (σ3 + δσ3,L) φ3(x) +
1

2

(

m2
3 + δm2

3,L

)

φ3(x)2 +
1

3!
g3φ3(x)3 +

1

4!
λ3φ3(x)4 ,

(5.2)
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where x labels lattice sites, i denotes the link from the site x to its nearest neighbour in one

Cartesian direction, and the sum over i denotes a sum over Cartesian directions.8 We have

added the subscript L to the tadpole and mass counterterms because, due to the different

regularisation of divergent integrals, these quantities differ from their MS counterparts.

Conversely, due to the absence of momentum-dependent divergences, or divergences of

diagrams with three or four external legs, the field renormalisation and three- and four-

point couplings may be chosen to be equal to their MS counterparts.

Due to the superrenormalisability of the theory, all divergences of the theory turn up

at finite loop order and hence can be calculated analytically, in lattice perturbation theory.

Thus, it is possible to derive the exact relationship between the parameters in the lattice

and continuum theories, in the limit a → 0. To do so, we follow refs. [72, 73] in computing

the effective potential in lattice perturbation theory, and equating the result to the effective

potential in the continuum, in the MS scheme.

The computation of the effective potential in lattice perturbation theory, mirrors al-

most exactly that in section (4.2). The diagrams and combinatorics are the same; only

the values of the loop integrals are different. A notable consequence of this difference is

that with lattice regularisation, unlike with dimensional regularisation, there are linear

divergences at one-loop, which demand compensating one-loop counterterms.

The one-loop order contribution to the effective potential is

V 1-loop
3,eff = ~J (M3(φ3)) + δV 1-loop

3,L + δσ1-loop
3,L φ3 +

1

2

(

δm2
3,L

)1-loop
φ2

3 , (5.3)

where the lattice loop-integral J is defined in eq. (171) of ref. [71]. In the infinite volume

limit, this lattice loop integral may be carried out as a Fourier integral over the first

Brillouin zone, the result of which can also be found in ref. [71].

Expanding for small a, we find the following one-loop counterterms,

δV 1-loop
3,L = − ~M2

3 Σ

2(4π)a
, δσ1-loop

3,L = − ~g3Σ

2(4π)a
,

(

δm2
3,L

)1-loop
= − ~λ3Σ

2(4π)a
, (5.4)

were Σ is a numerical constant, the result of a dimensionless integral. It is given analytically

in eq. (170) of ref. [71], and its numerical value is Σ = 3.17591153562522 . . ..

Progressing to two-loop order involves nothing qualitatively new. The lattice-

regularised, two-loop effective potential is equal to its MS counterpart in the a → 0 limit

if we choose the following counterterms (including their finite parts),

δV 2-loop
3,L =

~
2λ3Σ2

8(4π)2a2
+

~
2g2

3

12(4π)2

[

log
(

6

aµ3

)

+ ζ

]

, (5.5)

δσ2-loop
3,L =

~
2g3λ3

6(4π)2

[

log
(

6

aµ3

)

+ ζ

]

, (5.6)

(

δm2
3,L

)2-loop
=

~
2λ2

3

6(4π)2

[

log
(

6

aµ3

)

+ ζ

]

. (5.7)

8Improved convergence can be obtained by using a more complicated finite-difference approximation to
the kinetic term involving both nearest and next-to-nearest neighbouring sites. However, to achieve this
improved convergence also requires computing the lattice-continuum relations to higher order in the lattice
spacing, a; see refs. [74–77].
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Binning measurements of φ̄3 to form a histogram gives an approximation to the prob-

ability distribution for this observable; see figure 5. At the critical temperature this proba-

bility distribution shows a two-peaked structure, characteristic of a first-order phase tran-

sition. To extract physical results relevant for continuum physics requires taking first the

infinite volume limit, and then the zero lattice spacing limit. In figure 5(a) we show the

effect on the probability distribution of increasing the lattice volume, while keeping the

lattice spacing fixed, and in figure 5(b) we show the effect of decreasing the lattice spacing

while keeping the lattice volume fixed.

At the critical temperature there is only one dimensionless parameter which charac-

terises the 3d EFT, and this can be chosen to be g3/λ
3/2
3 (alternative choices are (r−r∗)/λ2

3

and α3). This is because, of the four initial Lagrangian parameters, one parameter can

be fixed by shifting the field origin, σ3 = 0 say, a second parameter can be fixed by the

condition of being at the critical temperature, m2
3 say, and a third parameter can be fixed

by a choice of units, λ3 = 1 say. This is analogous to what happens in the SU(2)-Higgs

theory at the critical temperature, where the dimensionless parameter which controls the

character of the phase transition is x ≡ λHiggs,3/g2
SU(2),3 [78]. In our case the most closely

corresponding dimensionless combination would be xsinglet ≡ λ3/|g3|2/3.

We chose six parameter points to simulate on the lattice, starting at g3/λ
3/2
3 = −1.2

and decreasing by powers of 2 until g3/λ
3/2
3 = −0.0375. In all cases, the MS renormalisation

scale was taken to be µ3,L = 1.066496λ3.9 To extrapolate to the continuum limit for each

such parameter point, we simulated between five and eight different lattice spacings, and

for each lattice spacing we simulated between five and eight different lattice volumes. Thus,

all in all, our data set consists of more than 200 different simulations. The continuum-

extrapolated results are independent of the renormalisation scale.

The different lattice spacings, a, and volumes, L3, should all be chosen to satisfy

a ≪ ξ ≪ L , (5.9)

where ξ is the correlation length of the system, or the inverse screening mass. For parameter

values where the EFT is perturbative, the screening mass will be close to the tree-level mass,

in which case ξ ≈ 1/m3. Including also the one-loop corrections, for σ3 = 0, we find

1

ξ2
= m2

3

(

1 − ~

2(4π)

[

λ3

m3
+

g2
3

2m3
3

(log(3) − 2)

]

+ O(~2)

)

. (5.10)

In principle the two-loop corrections can be constructed from the results of ref. [126],

though we have not done so. In the opposite limit, near the second-order phase transition

where perturbation theory does not work, eq. (3.8) should provide a better estimate. In

choosing appropriate lattice spacings and volumes, we have used a combination of these two

estimates. However, these approximations are not perfect and, especially for small values

of −g3/λ
3/2
3 , additional lattice spacings and volumes were necessary to attain reasonable

continuum limits. A more robust alternative, which we did not attempt, would be to

9This odd value of µ3 arose due to an earlier error in the parameter ζ in the lattice-continuum relations,
which fortunately could be rectified by a shift in µ3.

– 26 –



J
H
E
P
0
4
(
2
0
2
1
)
0
5
7

g3/λ
3/2

3 (r − r∗)/λ2
3 ∆〈φ̄3〉c/λ

1/2

3 ∆〈
(
φ̄3 + g3/λ3

)3〉c/λ
3/2

3

−1.2 −0.242752(5) 2.5332(8)(39) 3.640(15)(10)

−0.6 −0.062752(5) 1.3411(4)(20) 0.4830(16)(13)

−0.3 −0.017752(5) 0.75533(15)(16) 0.06797(18)(2)

−0.15 −0.006502(5) 0.48211(8)(8) 0.010847(25)(0)

−0.075 −0.003690(5) 0.3757(5)(12) 0.002127(23)(35)

−0.0375 −0.002987(5) 0.3431(5)(25) 0.000488(13)(13)

Table 1. Continuum-extrapolated lattice results for the discontinuities in the linear and cubic
condensates. The UV divergences of the cubic condensate has been removed, following ref. [71].
Errors quoted are statistical followed by systematic.

directly measure ξ on the lattice, by the exponential decay of correlation functions with

distance; see for example ref. [78].

Our methods for analysing the simulation data are fairly standard, and generally follow

refs. [78, 135]. Error bars for simulation data points show statistical errors, calculated

using jackknife resampling on blocked measurements, with each block much larger than

one autocorrelation time.

5.3 Latent heat on the lattice

The latent heat is proportional to the change in the linear field condensate, ∆〈φ̄3〉, with

the proportionality constant being dependent on the details of the full 4d theory, but

not on the dynamics of the 3d EFT; see eq. (3.13). Thus, for a theory which is weakly

coupled at T = 0, this proportionality constant can be calculated perturbatively. The

possibly nonperturbative dynamics of the zero Matsubara mode only enters the latent heat

through ∆〈φ̄3〉.
In a finite volume, the linear condensate can be defined as

∆〈φ̄3〉 =
1

2

∫

>φ̄min
3

dφ̄3 φ̄3P (φ̄3) − 1

2

∫

<φ̄min
3

dφ̄3 φ̄3P (φ̄3) , (5.11)

where P (φ̄3) denotes the probability density of being in a state φ̄3 and φ̄min
3 = −g3/λ3

denotes the position of the minimum of the probability density between the two phases.

In a small enough volume, states between the two phases are not uncommon, however as

the lattice volume grows such states become exponentially rarer; see figure 5(a).

In figure 6 we show our results for g3/λ
3/2
3 = −1.2 and −0.6. Plots for the other

four parameter points are collected in appendix E. The continuum-extrapolated results are

collected in table 1.

Figures 6(a) and 6(b) show the infinite volume extrapolations at fixed lattice spac-

ing. As the theory is gapped, at large volumes the infinite volume limit is approached

exponentially fast, with corrections ∼ exp(−L/ξ). The lines shown in these figures show

least-squares fits to the data of the form c1 + c2 exp(c3L), where the ci are fit parameters.
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λ
3

g3/λ
3/2
3

= −1.2

aλ3 = 0.25

aλ3 = 0.375

aλ3 = 0.5

aλ3 = 0.625

aλ3 = 0.75

aλ3 = 1.0

(a)

λ 3

g3/λ3/23 = −0.6

aλ3 = 0.4aλ3 = 0.5aλ3 = 0.75aλ3 = 1.0aλ3 = 1.25aλ3 = 1.5aλ3 = 2.0

(b)

λ 3 g3/λ3/23 = −1.2

(c)

λ 3 g3/λ3/23 = −0.6(d)Figure 6. Taking the infinite volume, followed by the zero lattice spacing limits of lattice data for∆〈φ3〉 at two parameters points. For the fits to the lattice spacing dependence here, we show botha linear fit excluding the data point with largest a, and a quadratic fit to all the data. In figure 6(c)the linear and quadratic fits give reduced χ2 ≈ 1.5 and 0.9 respectively. In figure 6(d) these areinstead 5.6 and 1.5. We take the difference between these fits as a measure of the systematic errorintroduced in the extrapolation.In all cases the reduced χ2 values for the fits are in the range ∼ [0.2, 5]. As a measure ofthe systematic uncertainty associated with the infinite volume extrapolations, we repeatthe succeeding analysis using only the largest volume simulations at each value of a, ratherthan the extrapolation of the fit.The results of the infinite volume extrapolations are the data points in figures 6(c)and 6(d), with the error bars resulting from the least-squares fit. The lines in these figuresin turn show the extrapolations to zero lattice spacing. As a consequence of the lattice-continuum relations of section 5.1, for sufficiently small am3, the lattice results shouldapproach the continuum limit linearly,∆〈φ̄3〉(κ, a) = ∆〈φ̄3〉(κ, 0) + C1(κ)am3 + C2(κ)(am3)2 + . . . , (5.12)where we have denoted the MS parameters of the theory by κ = {σ3, m23, g3, λ3, µ3}. For– 28 –
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each parameter point we attempt to extrapolate to a = 0 linearly in a, but consider also

higher powers in a Taylor expansion in a if the linear fit is poor. In such cases we truncate

at the lowest power which gives a reduced χ2 of order one.

Some, but not all, of the lattice spacing fits reveal the presence of significant non-

linear terms in am3. By comparing the six different parameter points, we suggest an

explanation in terms of the coefficients Ci(κ) in eq. (5.12). For the strongest transition,

g3/λ
3/2
3 = −1.2, the fit in figure 6(c) shows C1 > 0. Progressing to weaker transitions,

shown in figures 6(d), 13(c), 13(d), 14(c) and 14(d), one can see that C1 changes sign

around g3/λ
3/2
3 ≈ −0.6, remaining negative all the way to g3/λ

3/2
3 ≈ −0.0375. Regarding

C2, figure 6(c) suggests the curvature is negative, C2 < 0, for g3/λ
3/2
3 = −1.2. Likewise

progressing to weaker and weaker transitions, one can see that C2 changes sign somewhere

between g3/λ
3/2
3 = −0.6 and g3/λ

3/2
3 = −0.075. These considerations can explain, for

example, the comparatively poor linear fit in figure 6(d) as due to the smallness of C1 at

this parameter point, and the comparatively good linear fits in figures 13(c) and 13(d) as

due to the smallness of C2. For the parameter points where a nonlinear fit is shown, we use

the difference between this and the linear fit as a measure of the systematic uncertainty

in the extrapolation. The relatively large systematic errors introduced by the extrapo-

lation suggest that for future studies, it would be worthwhile to use the O(a) improved

lattice-continuum relations [74–77].

6 Discussion

In this work, we have studied the phase transitions of a generic real scalar field. We have

been agnostic about couplings to other fields, such as to the Higgs, to sterile neutrinos

and to gravity. However, we have focused on the case where the infrared dynamics of

the phase transition is dominated by the real scalar; the contributions of all other parti-

cles to the transition being simply to modify the effective couplings of the infrared EFT.

With this restriction, we have characterised the order and strength of the phase transition

nonperturbatively.

Our results can be applied to a variety of 4d particle physics and cosmological models.

As long as the phase transition is dominated by a real scalar field, no new simulations

need be performed to nonperturbatively determine the phase diagram and latent heat of

the 4d model in question. This is a key advantage of the EFT approach. One needs only

to compute the matching relations to the 3d EFT, discussed with examples in sections 2.2

and 2.3. In a similar way the lattice results of the SU(2)-Higgs 3d EFT [78, 83, 140], have

been repurposed to determine nonperturbatively parts of the phase diagram (and other

quantities) for the xSM [45], the two higgs doublet model (2HDM) [60] and the triplet

scalar extended SM (ΣSM) [62].

We leave for future work the computation of the bubble nucleation rate within the

3d EFT, from which one can determine the nucleation temperature, the duration of the

phase transition and the change in the trace-anomaly through the transition. These in

turn are crucial ingredients in determining the gravitational wave spectrum resulting from

a first-order phase transition.
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λ
3

tree

1-loop

2-loop

3-loop

lattice

(a) Lattice versus unimproved perturbation theory.

λ 3

tree

1-loop

2-loop

3-loop

lattice

(b) Lattice versus renormalisation group improved perturbation the-
ory.

Figure 7. The change in the linear condensate (proportional to the latent heat) versus the loop
expansion parameter within the high temperature EFT. Black circles are lattice results (continuum
extrapolations) with error bars shown within (but barely visible on this scale). The coloured lines
show perturbative results in various approximations. In figure 7(a) the calculations are performed
at a single renormalisation scale µ3,L ≈ λ3. In figure 7(b), the renormalisation scale for each
perturbative approximation is run from µ3,L to some optimal scale µopt3 (discussed in section 4.4),
and for each approximation the bands reflect the renormalisation scale dependence for µ3/µopt3 ∈
{1/√10, 1, √10}. While both unimproved and RGI perturbation theory agree well with the lattice
results at small couplings, the unimproved approach breaks down badly above α3 ≈ 1, whereas the
RGI approach continues to work remarkably well.
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At larger α3, the unimproved perturbative results deviate increasingly from the lat-

tice, and at around α3 ≈ 1 this perturbative calculation breaks down altogether, with

successively higher-loop approximations diverging wildly. By contrast, the RGI pertur-

bative results remain remarkably under control all the way up to the largest expansion

parameter we study, α3 ≈ 2. The scale dependence of the RGI results is quite small,11 the

agreement with the lattice results is much better, and each additional loop order improves

the agreement. Figure 8 shows this more clearly: it shows that the 3-loop RGI calculation

has an accuracy of a few percent even at α3 ≈ 2.

The apparently miraculous convergence of RGI perturbation theory at expansion pa-

rameters as large as α3 ≈ 2 deserves explanation. One perhaps natural explanation is that

this is due to the superrenormalisability of the 3d EFT, and the consequent exactness of the

renormalisation group equations. It should also be noted that α3, being the loop expansion

parameter, depends on the split between the free and interacting Lagrangians, and hence

on the renormalisation scale. Consequently, the limit α3 → ∞ corresponds to the tree-level

mass going to zero, rather than the screening mass going to zero. Pushing the RGI per-

turbative calculation even closer to the second-order phase transition at r = r∗, indeed we

find that it eventually breaks down. Nevertheless, the efficacy of RGI perturbation theory

deserves further study in other superrenormalisable 3d theories.

Overall, the discrepancies found here between perturbation theory and the lattice are

smaller than those that have been found in studies of non-Abelian gauge theories [78, 83,

101, 136, 140]. Two possible explanations for this are: (i) that there are no perturbatively

massless particles in first-order phase transitions in this model, and hence no true infrared

divergences, unlike in non-Abelian gauge theories [52], (ii) that there is a tree-level barrier

between the phases in this model, unlike in gauge-Higgs theories, and hence an ~-expansion

is amenable. Although both explanations surely play a role, an understanding of their

relative importance could inform theoretical studies attempting to reduce uncertainties in

calculations of first-order phase transitions. Such an understanding could be achieved, for

example, by performing a similar lattice study around the electroweak scale in the xSM,

including couplings to the electroweak sector in the 3d EFT.

Acknowledgments

The author would like to thank Joonas Hirvonen, Anna Kormu, Johan Löfgren, Lauri

Niemi, Hiren Patel, Kari Rummukainen, Philipp Schicho, Tuomas Tenkanen, David Weir

and Juuso Österman for enlightening discussions and guidance on various aspects of this

work. The author was supported by the Research Funds of the University of Helsinki, and

U.K. Science and Technology Facilities Council (STFC) Consolidated grant ST/T000732/1.

The author wishes to thank the Finnish Grid and Cloud Infrastructure (FGCI) for sup-

porting this project with computational and data storage resources.

11In fact this is true even if we vary the renormalisation scale over a factor of 10 larger range (i.e. a factor
of 100). As a consequence there is only a minor additional improvement from solving eq. (4.21), compared
to simply choosing µ

opt

3 =
√

3λ3v0.

– 32 –



J
H
E
P
0
4
(
2
0
2
1
)
0
5
7

A Loop integrals

Our notation for momenta and loop integration follows refs. [58, 70]. In particular, thermal

four-momenta are denoted by uppercase letters, P = (p0, p), their components being the

Matsubara frequencies, p0 = 2πTn, and the spatial momenta, p. Their norms squared are

P 2 = p2
0 + p2, where p2 ≡ p.p. The loop integration measure in d = 3 − 2ǫ dimensions is

defined as,
∫

p
≡

(

eγΛ2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ
, (A.1)

which includes powers of the MS renormalisation scale, Λ, to make the measure up to mass

dimension 3. Sum-integrals over loop momenta are then defined as,

∑
∫

P
≡ T

∞∑

n=−∞

∫

p
. (A.2)

The necessary one-loop integrals in the effective theory are,
∫

p
log

(

p2 + m2
)

= −m3

6π
(1 + O (ǫ)) , (A.3)

∫

p

1

(p2 + m2)α
=

(

eγΛ2

4π

)ǫ
1

(4π)d/2

Γ
(

α − d
2

)

Γ(α)
md/2−α . (A.4)

The only two-loop integral in the effective theory that we need is the sunset integral [57],
∫

pq

1

(p2 + m2)(q2 + m2)((p + q)2 + m2)
=

1

(4π)2

(
1

4ǫ
+ log

(
Λ

3m

)

+
1

2
+ O(ǫ)

)

. (A.5)

In the full theory, at one-loop we have the following master sum-integral,

∑
∫

P

(P 2
0 )β(p2)γ

(P 2)α
=

(

eγΛ2

4π

)ǫ
2T (2πT )d−2α+2β+2γ

(4π)d/2

×
Γ

(
d
2 + γ

)

Γ
(

−d
2 + α − γ

)

Γ
(

d
2

)

Γ (α)
ζ (−d + 2α − 2β − 2γ) . (A.6)

We also note the result for the logarithmic integrand,

∑
∫

P
log

(

P 2
)

= −π2

45
T 4 (1 + O(ǫ)) . (A.7)

Massless two-loop sum-integrals in the full theory can be most simply calculated us-

ing integration-by-parts techniques, which reduces them to products of the one-loop sum-

integrals above [141, 142]. The relevant sum-integrals for us are,12

∑
∫

P Q

1

P 2Q2(P + Q)2
= 0 , (A.8)

∑
∫

P Q

1

P 4Q2(P + Q)2
= − 1

(d − 2)(d − 5)

∑
∫

P Q

1

P 4Q4
, (A.9)

12We thank Juuso Österman and Philipp Schicho for bringing this to our attention, and for verifying the
results.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

Figure 9. Feynman diagrams contributing to the two-point function up to two-loop order. They
are shown here in the same order that they appear in eq. (B.1).

∑
∫

P Q

1

P 6Q2(P + Q)2
= − 4

(d − 2)(d − 7)

∑
∫

P Q

1

P 4Q6
, (A.10)

∑
∫

P Q

1

P 4Q4(P + Q)2
= 0 . (A.11)

These sum-integrals have also been calculated directly in refs. [58, 143, 144].

B Correlation functions

In this appendix, we give the results for the connected, 1PI correlation functions in the

minimal real singlet scalar model. The one- and two-point functions are calculated to two-

loop order, and the three-and four-point functions are calculated to one-loop order, which

are input to the dimensional reduction matching relations discussed in section 2. Results

for all the sum-integrals that appear are given in appendix A. As we are interested only

in zero Matsubara mode external legs, we will explicitly show only the dependence on the

spatial momenta.

The two-point function is given, up to two-loop order, by the Feynman diagrams in

figure 9. In the full theory, these are

Γ(2)(p, −p) ≈ p2 + m2 + δm2 +
λ

2

∑
∫

Q

1

Q2
− g2

2

∑
∫

Q

1

Q4

(

1 − p2

Q2
+

4 (p.q)2

Q4

)

− λ2

4

∑
∫

QR

1

Q4R2
− λ2

6

∑
∫

QR

1

Q2R2(Q + R)2
+

g2λ

4

∑
∫

QR

1

Q4R4

+
g2λ

2

∑
∫

QR

1

Q6R2
+ g2λ

∑
∫

QR

1

Q4R2(Q + R)2
+

g2λ

4

∑
∫

QR

1

Q4R2(Q + R)2

− g4

2

∑
∫

QR

1

Q6R2(Q + R)2
− g4

2

∑
∫

QR

1

Q4R4(Q + R)2
+

δλ

2

∑
∫

Q

1

Q2

− gδg
∑
∫

Q

1

Q4
− 1

2
λ

(

m2 + δm2
)

∑
∫

Q

1

Q4
+ g2

(

m2 + δm2
)

∑
∫

Q

1

Q6
, (B.1)

≈ p2 + m2 +
λT 2

24
− g2Lb(Λ)

2(4π)2
+

[

g2ζ(3)

3(4π)4T 2

]

p2

+
1

(4π)2

[
λ2T 2

12

(
1

2ǫ
+

1

4
Lb(Λ) − γE + 12 log(A)

)
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(a) (b) (c)

Figure 10. Feynman diagrams contributing to the three-point function up to one-loop order. They
are shown here in the same order that they appear in eq. (B.6).

− 1

2
λm2Lb(Λ) +

g2λ

(4π)2

(
15

8
+

ζ(3)

12
+

5

4
Lb(Λ) +

7

8
L2

b(Λ)
)

+
2g2m2ζ(3)

(4π)2T 2
+

g4ζ(3)

(4π)4T 2

(

−3

2
− Lb(Λ)

) ]

, (B.2)

where we have expanded assuming p ∼
√

λT . As regards the momentum dependence, this

justifies the following expansion,

Γ(2)(p, −p) ≈ Γ(2)(0, 0) + p2 ∂Γ(2)(q, −q)

∂q2

∣
∣
∣
∣
q2=0

. (B.3)

In accordance with the philosophy of the strict perturbative expansion, this expansion

projects out any non-analytic IR contributions. In our scheme in which the mass term is

treated as a perturbation, the self-energy, Π, is equal to the two-point function up to the

p2 term,

Γ(2)(p, −p) = p2 + Π(p, −p) . (B.4)

In the effective theory the corresponding calculation is trivial, due to the vanishing of

scaleless integrals in dimensional regularisation,

Γ(2)
3 (p, −p) ≈ p2 + m2

3 + δm2
3 . (B.5)

The vanishing of momentum-dependent loop contributions follows an expansion identical

to eq. (B.3) for Γ(2)
3 . Just as for the one-point function, the scaleless integrations in the 3d

effective theory exactly match scaleless integrals for the zero Matsubara modes in eq. (B.1).

The three-point function is given, up to one-loop order, by the Feynman diagrams in

figure 10. In the full theory, these are

Γ(3)(p, q, −p − q) ≈ g + δg − 3

2
gλ

∑
∫

Q

1

Q4
+ g3 ∑

∫

Q

1

Q6
, (B.6)

= g +
1

(4π)2

(

−3

2
gλLb(Λ) +

2g3ζ(3)

(4π)2T 2

)

. (B.7)

Corrections related to the soft external momenta arise at higher order than we consider.

In the effective theory the corresponding calculation is again trivial,

Γ(3)
3 (p, q, −p − q) ≈ g3 + δg3 . (B.8)
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(a) (b) (c) (d)

Figure 11. Feynman diagrams contributing to the four-point function up to one-loop order. They
are shown here in the same order that they appear in eq. (B.9).

The four-point function is given, up to one-loop order, by the Feynman diagrams in

figure 11. In the full theory, these are

Γ(4)(p, q, r, −p − q − r) ≈ λ + δλ − 3

2
λ2 ∑

∫

Q

1

Q4
+ 6g2λ

∑
∫

Q

1

Q6
− 3g4 ∑

∫

Q

1

Q8
, (B.9)

≈ λ +
1

(4π)2

(

−3

2
λ2Lb(Λ) +

12g2λζ(3)

(4π)2T 2
− 12g4ζ(5)

(4π)4T 4

)

. (B.10)

Corrections related to the soft external momenta arise at higher order than we consider.

In the effective theory the corresponding calculation is again trivial,

Γ(4)
3 (p, q, r, −p − q − r) ≈ λ3 + δλ3 . (B.11)

C Some relations at zero temperature

To preserve the accuracy achieved in our dimensional reduction throughout the calculation,

it is necessary to: (i) relate the MS parameters to physical quantities at some input scale

at one-loop order [59, 69] and (ii) run the MS couplings from the input scale up to some

temperature-dependent scale chosen to minimise large logarithms. The details follow, for

the minimal pure real scalar theory.

The matching of physical quantities to MS parameters is carried out at zero tempera-

ture at some input renormalisation scale which we take to be equal to the physical (pole)

mass of the particle µinput = mphys. The tadpole and three- and four-point MS couplings

can be fixed by requiring

V ′(0) = 0 , (C.1)

V ′′′(0) = gphys , (C.2)

V ′′′′(0) = λphys , (C.3)

at one-loop order. At zero temperature, the one-loop contribution to the MS -renormalised

effective potential is given by

V 1-loop =
~M4(φ)

4(4π)2

(

log

(

M2(φ)

µ2

)

− 3

2

)

, (C.4)

where M2(φ) = m2 + gφ + 1
2λφ2. In principle one should in fact match the three- and

four-point couplings on-shell, rather than at zero external momentum, but in lieu of a mea-

surement of these couplings eqs. (C.2) and (C.3) are reasonable renormalisation conditions.
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For the MS mass parameter, one should match the pole mass to the physical mass,

m2 + Π(m2
phys) = m2

phys , (C.5)

where, approximating m2 ≈ m2
phys within the one-loop self-energy, we have

Π(m2) =
~

2(4π)2

(

λm2
(

1 + log
(

µ2

m2

))

+ g2
(

2 − π√
3

+ log
(

µ2

m2

)))

. (C.6)

Here we have included only the 1PI part of the self-energy as the 1PR part cancels by

virtue of eq. (C.1). We have used Package-X [145] to evaluate the one-loop integrals.

The necessary (zero temperature) counterterms in dimensional regularisation are

δσ =
~gm2

2(4π)2ǫ
+

~
2g3

(4π)4

(

− 1

8ǫ
+

1

8ǫ2

)

, δg =
3~gλ

2(4π)2ǫ
, (C.7)

δm2 =
~(g2 + λm2)

2(4π)2ǫ
+

~
2g2λ

(4π)4

(

− 5

8ǫ
+

7

8ǫ2

)

, δλ =
3~λ2

2(4π)2ǫ
. (C.8)

By demanding that the bare coefficients are independent of the cut-off scale, we derive the

beta functions, βX ≡ dX /d log Λ, up to the same order:

βσ =
~gm2

(4π)2
− ~

2g3

2(4π)4
, βm2 =

~(g2 + λm2)

(4π)2
− 5~2g2λ

2(4π)4
, (C.9)

βg =
3~gλ

(4π)2
, βλ =

3~λ2

(4π)2
. (C.10)

If we assume the parametric scaling relation λ ∼ g/m, then the two-loop O(~2) parts of

the tadpole and mass beta functions do not contribute at the order we work.

D Monte-Carlo update algorithm

A vanilla Monte-Carlo update strategy is not well suited to the study of first-order phase

transitions as it is unable to efficiently sample both phases. For strong transitions, the sig-

nificant barrier between the two phases will mean that any practical run will get stuck

in one of the two phases. A standard solution to this problem is the multicanonical

method [133, 139], which takes advantage of the freedom to change the probability mea-

sure thuswise,

〈X 〉 ∝
∫

Dφ3 (X ) e−S[φ3] ,

=
∫

Dφ3

(

X e−W [φ3]
)

e−S[φ3]+W [φ3] . (D.1)

Here W is a weight function, chosen in order to increase the probability of field configura-

tions between the two phases. The weight function is taken to depend on a single variable,

O[φ3], and itself is calculated in a Monte-Carlo simulation. For the choice of O[φ3], the

key requisites are that it should distinguish between the two phases, be relatively quick to

calculate, and its use should enhance as much as possible the rate at which the simulation
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Algorithm (i) is standard and (ii) follows ref. [78] closely. We used the checkerboard

update order for (i) and (iii), with a random choice of whether the first sweep was over the

odd or the even sites. The overrelaxation algorithm, (iii), for the update φi → φ′
i starts by

solving the equation,13

Si(φ
′
i) = Si(φi) , (D.2)

where Si is the part of the action which depends on the field at lattice site i. This quartic

equation for φ′
i can be reduced to a cubic equation by factorising the solution φ′

i = φi. The

first step in the overrelaxation algorithm is to choose for φ′
i one of the real solutions of the

cubic equation. In the case where there are three real solutions to eq. (D.2), we choose

each solution with equal probability (though in practice this case is vanishingly rare). For

this step we thus have that,
p(φi → φ′)dφ′

i

p(φ′
i → φi)dφi

=
∣
∣
∣
∣

dφ′
i

dφi

∣
∣
∣
∣ , (D.3)

where we have used that for this step the probability densities are equal, p(φi → φ′
i) =

p(φ′
i → φi). To ensure detailed balance, we must then take a second step, which we perform

as a Metropolis, accept/reject on the measure,

∣
∣
∣
∣

dφi

dφ′
i

∣
∣
∣
∣ =

∣
∣
∣
∣

dSi(φ′
i)

dφ′
i

/
dSi(φi)

dφi

∣
∣
∣
∣ . (D.4)

The two-step algorithm then has equal probability of going forward or backwards and

hence, due to eq. (D.2), satisfies detailed balance.

For one specific parameter point, we measured the autocorrelation times of Markov

chains using combinations of these three algorithms. The autocorrelation functions are

shown in figure 12. Note that neither the overrelaxation nor the global, radial update

are ergodic, and hence they must be combined with the local Metropolis update. When

combined with the overrelaxation and Metropolis, the global, radial update does not further

diminish the autocorrelation time, and hence in the final runs we did not use it. Taking

into account also the computational cost of the algorithms, our final update algorithm

consisted of 1 local Metropolis update followed by 4 overrelaxation updates.

To validate the simulation code, we performed a range of tests. The implementations of

the action and its various terms were shown to converge towards exact analytic results for

specific smooth field configurations. Our final results at small loop expansion parameters

α3 ≪ 1 agree well with perturbation theory; see figure 7. Our results for the condensates

of even powers of the field are close to zero, as required by eq. (3.12), with all discrepancies

being consistent with the estimated statistical and systematic errors. This is shown in

table 2.

At a small subset of parameter points we performed additional checks. The results

of different combinations of algorithms, both multicanonical and canonical, were shown to

agree within errors. Our chosen random number generator, the Tausworthe generator of

L’Ecuyer [146, 147] (implemented in GSL [148] as gsl_rng_taus2), was shown to produce

13Here we drop the subscript 3 on the field, to avoid notational clutter.
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λ
3

g3/λ
3/2
3

= −0.3

aλ3 = 1.0

aλ3 = 1.5

aλ3 = 2.0

aλ3 = 3.0

aλ3 = 4.0

(a)

λ 3

g3/λ3/23 = −0.15

aλ3 = 1.75aλ3 = 2.0aλ3 = 3.0aλ3 = 4.0aλ3 = 6.0aλ3 = 8.0

(b)

λ 3 g3/λ3/23 = −0.3

(c)

λ 3 g3/λ3/23 = −0.15(d)Figure 13. The infinite volume, followed by the zero lattice spacing limits of lattice data for ∆〈φ3〉at two parameters points. For the fits to the lattice spacing dependence in figures 13(c) and 13(d),we perform linear fits to all the data. This gives reduced χ2 ≈ 3 in both cases.results in agreement with two others: the Mersenne Twister algorithm [149] and the RAN-LUX algorithm of Luscher [150, 151]. Finally, we would like to thank Kari Rummukainen,who shared his Monte-Carlo simulation code for the cubic anisotropy model [76], and withwhich we found agreement using a version of our code which implements that model.E Additional continuum extrapolationsIn this appendix we collect plots of the remaining lattice-continuum extrapolations whichwere not given in the body of the text, figures 13 and 14. In all cases the exponentialansatz for the volume dependence (see section 5.3) appears to fit the data well. Further,for each value of a this extrapolation differs little from that of the largest volume. For thestronger phase transitions of figure 13, a linear fit to the a-dependence of all data pointsgives a reduced χ2 ≈ 3 in both cases, appearing to fit the data reasonably well. However,for the weaker phase transitions of figure 14, there are significant deviations from linearity– 40 –
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λ
3

g3/λ
3/2
3

= −0.075

aλ3 = 2.0

aλ3 = 2.5

aλ3 = 3.0

aλ3 = 4.0

aλ3 = 6.0

aλ3 = 8.0

aλ3 = 12.0

aλ3 = 16.0

(a)

λ 3

g3/λ3/23 = −0.0375

aλ3 = 2.0aλ3 = 2.5aλ3 = 3.0aλ3 = 4.0aλ3 = 6.0aλ3 = 8.0aλ3 = 12.0aλ3 = 16.0

(b)

λ 3 g3/λ3/23 = −0.075

(c)

λ 3 g3/λ3/23 = −0.0375(d)Figure 14. The infinite volume, followed by the zero lattice spacing limits of lattice data for ∆〈φ3〉at two parameters points. For the fits to the lattice spacing dependence here, we show both a linearfit to the three data points with smallest a, and a cubic fit including three additional points. Infigure 14(c) the linear and cubic fits give reduced χ2 ≈ 0.5 and 0.2 respectively. In figure 14(d)these are instead 0.02 and 2.at the larger lattice spacings. This is to be expected because, according to eqs. (5.10)and (3.8), for small |g3|/λ3 the screening mass grows significantly larger than the tree-level mass, meaning a/ξ ≫ am3. To remedy this difficulty, we have simulated additionalsmaller lattice spacings. In each of figures 14(c) and 14(d) we show two fits. The differencebetween the results of these two fits gives a measure of the systematic uncertainty inthe extrapolations.Open Access. This article is distributed under the terms of the Creative CommonsAttribution License (CC-BY 4.0), which permits any use, distribution and reproduction inany medium, provided the original author(s) and source are credited.– 41 –
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