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Abstract: The shale nano-pore size (diameter <100nm) distribution heterogeneity 14 

(SNDH) is one of the important factors affecting gas production. However, quantitative 15 

analysis of the SNDH and the applicability of single and multi-fractal model needs to 16 

be further studied. Here, based on low temperature liquid nitrogen and carbon dioxide 17 

tests of organic rich shale in Qinshui Basin, multifractal dimension variation of micro-18 

pores (< 2 nm) and meso-pores (2–100 nm) are studied, and the multifractal factors that 19 

affect the distribution of nano-pores are determined. Additionally, the differences 20 

between single fractal and multifractal results are compared. Based on this, dynamic 21 

variation of porosity and permeability under the constraints of nano-pore structure is 22 

discussed from the perspective of multifractal variation. The results of this study are as 23 

follows: 1) pore size distribution of micro-pores and meso-macro-pores in shale 24 

samples exhibit typical multifractal behavior. The overall distribution heterogeneity of 25 

meso-macro-pores is mainly affected by the distribution of pores in the low value area 26 

of pore volume (LAPV), while the overall distribution heterogeneity of micro-pores is 27 

affected by the distribution of high value area of pore volume. The multifractal 28 

parameters and influencing factors of micro-pores and meso-macro-pores are clearly 29 

different. 2) The single fractal dimension D2 calculated using the Frenkel-Halsey-Hill 30 



model has a negative correlation with the multifractal parameters, implying that the 1 

distribution heterogeneity of the LAPV gradually decreases with the increase of the D2 2 

value, indicating that the physical meaning of the two models is obviously different. 3) 3 

The pore distribution heterogeneity affects permeability variation and diffusion process 4 

of shale reservoir. With the increase of the multifractal dimension of meso-macro-pores, 5 

the damage effect of stress on permeability is stronger. The more heterogeneous the 6 

micro-pore size distribution is, the smaller the "modification effect" of stress on the 7 

diffusion coefficient. 8 

Key words: shale reservoirs; pore structure heterogeneity; permeability variation; 9 

diffusion; fractal dimension 10 

0 Introduction 11 

As an unconventional natural gas reservoir, nano-pores are widely developed in 12 

shale reservoir. The adsorption pore surface adsorbs methane molecules in the form of 13 

physical adsorption, which controls adsorption characteristics and affects the gas 14 

bearing content of the shale reservoir. Accordingly, pore structure has become an 15 

important factor in determining the production potential of shale gas [1-3].  16 

At present, experimental techniques such as photoelectric observation, gas 17 

adsorption and fluid intrusion, as well as three-dimensional structure reconstruction 18 

methods, are widely used in the study of unconventional reservoir pore-fracture 19 

structure [4-9]. Among them, fluid injection has become the most common technique. 20 

Along with high pressure mercury injection (HPMI) tests, low pressure nitrogen 21 

adsorption (LPN2 GA) tests have become an effective technology to characterize shale 22 

nano-pore structure [10-11]. However, given the large molecular diameter (0.36 nm) and 23 

the accuracy of the instrument, it is difficult to accurately characterize the microporous 24 

structure [10, 12-17].  25 

In contrast to nitrogen, carbon dioxide has a low molecular diameter and strong 26 

adsorption capacity and it can enter into pores of diameter 0.3–1.5 nm at 273.15 K. 27 

Therefore, comprehensive utilization of both liquid nitrogen and carbon dioxide 28 

adsorption tests can help realize the full-scale pore structure of shale reservoirs [12-13]. 29 

In addition, since the storage and migration of shale methane is closely related to the 30 



pores and surfaces of unconventional reservoirs with self-similarity, the fractal 1 

dimension value obtained from LPN2 GA test has become an effective physical 2 

parameter to quantitatively describe the nano-pore structure heterogeneity of shale 3 

reservoirs [14-17]. This combination of tests and analysis therefore provides a basis for 4 

quantitative description of shale pore structure heterogeneity. 5 

However, the above model can only describe shale nanopore size distribution 6 

heterogeneity (SNDH) simply by a single fractal dimension. For shale reservoirs with 7 

strong heterogeneity, the pore size distribution (PSD) curve usually fluctuates or jumps 8 

randomly, and different pore size intervals may have different types of self-similarity, 9 

and so it is difficult to fully characterize pore homogeneity with a single fractal 10 

dimension [18-19]. To overcome this, a multifractal approach can be adopted, in which a 11 

fractal body is divided into small regions with different singularities. The advantage of 12 

studying the fractal characteristics of these different regions is that it enables the 13 

detailed structure to be understood hierarchically and allows the multiple characteristics 14 

of pore size distribution of reservoirs to be analyzed based on HPMI, LPN2 GA and low 15 

field nuclear magnetic resonance (LF-NMR) test data. In this context, Vidal-Vazquez 16 

et al. [20] studied the multifractal characteristics of soil by using LPN2 GA data, and 17 

concluded that this parameter has a clear relationship with the basic properties. Liu et 18 

al. [21-22] analyzed the multifractal parameters of shale samples and indicated that shale 19 

nano-pores have a better multi-fractal variation. Li et al. [23] and Song et al. [24] analyzed 20 

the multifractal variation of tectonic coal using HPMI tests, and showed that the 21 

multifractal parameters have a clear relationship with the degree of structural 22 

development. Zhang et al. [25-26] compared the variation of single and multifractal 23 

parameters through LPN2 GA and NMR T2 spectra respectively, and concluded that the 24 

multifractal model has good applicability for describing the heterogeneity of tight 25 

sandstone pore size distribution.  26 

While studies on multifractal features have expanded from the macroscopic to the 27 

microscopic pore scale, there are still some problems that need to be addressed. 28 

Compared with other types of reservoirs, there are very few studies on multifractal 29 

analysis of nanopores in shale reservoirs, and the influencing factors on multifractal 30 



parameters need to be clarified. Moreover, micropores are the main pores for methane 1 

adsorption. There are relatively few studies on the NPSH in this pore component and 2 

in particular, the variation of multifractal characteristics needs to be further studied. In 3 

general, it is the above two factors that restrict the accurate quantitative characterization 4 

of shale nanopore structure. 5 

With this in mind, this study aim to analyze the multifractal characteristics of 6 

micropores and meso-macropores of shale samples by using LPN2/CO2 GA of organic 7 

shale in Qinshui Basin, and the factors influencing the nano-pore size distribution. The 8 

differences between single fractal and multifractal results are also compared. Based on 9 

this, dynamic variation of porosity and permeability under the constraints of nanopore 10 

structure will be discussed from the perspective of multifractal variation. Overall, the 11 

results of the study are anticipated to provide a theoretical basis for the quantitative 12 

evaluation of shale reservoirs pore heterogeneity.  13 

1 Experimental sample and methods 14 

1.1 Sample collection and basic analysis 15 

The shale samples were obtained from Well 1 in Qinshui Basin, which is located 16 

at the eastern edge of the central part of the basin, with a total thickness of 162.67m. A 17 

total of 12 samples were collected from black shale from top to bottom [16]. Basic tests 18 

such as TOC, whole-rock mineral composition and Ro, max are performed on fresh shale 19 

samples. For a detailed description of these experimental test procedures, please refer 20 

to Yan et al. [16]. 21 

1.2 Experimental methods 22 

After measuring TOC, field emission scanning electron microscopy (FE-SEM) 23 

and LPN2/CO2 GA tests were performed on the samples in sequence (the reader is 24 

referred to Yan et al. [16] for detailed information), and the overburden porosity and 25 

diffusion coefficient tests were performed on a selection of four representative samples. 26 

Information on the sample tests is shown in Table 1. 27 

Different permeability was measured by pressure-sensitive testing using an AP-28 

608 Automated Permeameter-Porosimeter [25]. The experimental method is based on 29 

the non-steady state pressure drop method and the experimental gas comprised high-30 



purity nitrogen. During the measurement process, the gas pressure difference between 1 

the two ends of the core holder is set to 0.7 MPa to form an initial attenuation pressure 2 

pulse between V1 volume and V2 volume. The instrument automatically tests the 3 

pressure attenuation and calculates the pulse attenuation permeability values of 4 

different confine pressure and pore pressure points. The effective stress was 5 

continuously increased to 5, 10, 15 and 20 MPa by changing the confine pressure (the 6 

gas pressure was always maintained at 1 MPa). Each pressure point was tested for 30 7 

min to remove the effects of pressurization time and total volume change, and the two 8 

pressure points were maintained at intervals of 30 seconds.  9 

1.3 Multi-fractal theories 10 

The multifractal characteristics of adsorption data (reflecting pore size distribution 11 

heterogeneity) under different test methods can be studied using the box counting 12 

method. When analyzing the volume probability of T2 spectrum in the interval [a, b], 13 

the scale and measurement need to be determined. 14 

The scale and measure expressions are, respectively 15 
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where the relative pressure is divided into several boxes of equal length for gas 18 

adsorption, and the box size is represented by ɛ. The analysis interval of liquid nitrogen 19 

adsorption data ranges from 0 to 0.99 MPa, while the analysis interval of carbon dioxide 20 

adsorption data is 0.01–0.03 MPa. Therefore, the corresponding value of ɛ differs [26]. 21 

In the case of scale variation, the water distribution probability in the interval [A, 22 

B] satisfies 23 
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                   (3) 24 

where Pi(ɛ) is the mass probability function of the ith box, which is used to quantitatively 25 

analyze the distribution of gas adsorption capacity in each box; ai reflects the local 26 

singular intensity, and a high value represents the smoothness or regularity of the data. 27 

Conversely, the smaller the value, the greater degree of data variation or the stronger 28 



the irregularity will be. ai is related to the area and reflects the probability of the area. 1 

After the singularity index is obtained, the object under investigation is divided 2 

into a series of subsets, so that the small units in each subset have the same singularity 3 

index. Then, the number of units in this subset is calculated and the relationship between 4 

the number of units and the scale is defined as  5 

 6 

(4) 7 

where f(a) is the multifractal spectrum, which is the fractal dimension of the subset with 8 

the same singularity index. The curve formed by a and f(a) is called the multifractal 9 

singular spectrum, which is used to investigate the uneven distribution of the gas 10 

adsorption amount, thereby giving more structural information than the single fractal. 11 

If the investigated object is multifractal, f (a) generally represents a unimodal image. 12 

The expressions of singularity index a and f (a) are respectively [23] 13 
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where q is the order of the statistical matrix. When q>>1, large concentration 17 

information or high degree of aggregation is amplified; when q<<1, small concentration 18 

information or low degree of aggregation is amplified. In this study, q is an integer 19 

between -10 and 10, and the step size is 1. a and f(a) can be obtained by linear regression 20 

of the above two formulas. 21 

The f(a) parameters include amin，amax，a0，a0- amax，amin- a0 and A. The symmetry 22 

of the singularity spectrum can be expressed as A= (amin- a0) / (a0-amax). The left oblique 23 

shape indicates that the measured values are affected by large fluctuations, while the 24 

( )( ) ~ , 0f a

aN    



right oblique shape indicates that the measured values are affected by small fluctuations 1 

[24, 27, 28]. 2 

Here a∼f (a) is a set of basic language describing local features of multifractals, 3 

called the multifractal spectrum. The other set is q ∼ D(q), which is introduced from 4 

the perspective of information theory and is termed the generalized fractal dimension. 5 

The parameter Dq includes D-10, D10, D0, D1, D2, D-10-D10, D0-D10, and D-10-D0. D-10 is 6 

influenced by the lowest probability measure areas, whereas D10 is influenced by the 7 

highest probability measure areas. D1 is the information dimension and characterizes 8 

the degree of disorder in the PSD. A value of D1 of 1 represents a uniform pore size 9 

distribution. D2 is the correlation dimension and characterizes the association between 10 

the measures contained in the multifractal set. D0-D10 and D-10-D0 are the amplitudes of 11 

the right and left branches of Dq, which represent the heterogeneity of the high and low 12 

probability measure areas, respectively. For the detailed derivation process, please refer 13 

to Zhang et al. [26]. 14 

2 Results and discussion 15 

2.1 Multifractal parameter variation of meso-macropore using LPN2 GA 16 

2.1.1 Multifractal parameter variation 17 

According to the LPN2 GA data for the representative sample W1, the double 18 

logarithm diagram of the partition function x(q,ɛ) and the size length ɛ is calculated 19 

using Eqs. 2–7 (Fig. 1a). The results show that lg[ui (q, ɛ)] value has an obvious linear 20 

relationship with lg(ɛ), and Fig. 1b shows that i(q) increases strictly monotonically with 21 

the increase of the value of q, which shows that the pore size distribution obtained from 22 

the LPN2 GA data has multifractal characteristics. When the q value is less than 0, there 23 

is a negative correlation between lg[ui(q, ɛ)] and lg(ɛ). When the q value is larger than 24 

0, there is a positive correlation between lg[ui(q, ɛ)] and lg(ɛ). This shows that the 25 

nano-pore size distribution in those shale samples is concentrated and the pore 26 

distribution interval is smaller [26].  27 

By combining with Eqs. 5–7, generalized and singular fractal dimension spectra of 28 

meso-macropores of all the samples are obtained (Fig. 1c and d). The results show that 29 

the q~D(q) spectra of all the shale samples are “anti-s-type”, which is another typical 30 



feature of shale pore size distribution in line with multifractals. The spectral lines can 1 

effectively characterize the pore size distribution complexity at different pore size, 2 

which can then reveal the local differences in the whole pore diameter. 3 

To investigate the multifractal variation of all samples, generalized fractal 4 

parameters of all the samples were calculated (Table 1). As outlined in Section 1.3, the 5 

spectrum width D-10- D10 represents the variation degree of overall SNDH. D-10- D10 of 6 

all the samples is 0.69–1.26, which shows that the pore size distribution difference 7 

among those samples is relatively large. The D-10-D0 value is greater than that of D0-8 

D10, indicating that SNDH in the LAPV was more complex than that in the HAPV. In 9 

addition, it should be noted that the D0-D10 values of some samples are 0.57, which 10 

indicates that SNDH in the HAPV is consistent, and the overall SNDH is controlled by 11 

the pore distribution in the LAPV. 12 

It can be seen from Fig. 2a that there is no obvious correlation between D-10 and 13 

D10, which is related to the consistent values of the two parameters amongst the samples. 14 

In contrast to the results shown in Fig. 2a, D-10-D0 and D0-D10 are positively correlated 15 

(Fig. 2b), although there is no clear linear relationship between them. Fig. 2c shows that 16 

D-10-D10 increases linearly with the increase of D-10-D0. Compared with D-10-D0, the 17 

linear relationship between D0-D10 and D-10-D10 is not remarkable. Considering the two 18 

factors, the overall SNDH is affected by the LAPV. 19 

2.1.2 Influencing factors of multifractal parameters 20 

Based on the data in Table 1, the influencing factors of nanopore multifractal 21 

parameters are examined by integrating the shale maturity, mineral composition, 22 

organic matter content and pore structure parameters (Fig. 3). Figs.3a–c show that two 23 

fractal parameters D-10-D0 and D0-D10 are weakly correlated with variation in Ro ,max 24 

and brittle mineral content. Compared with Fig. 3d and 3e, it can be concluded that the 25 

fractal parameter has a strong correlation with the pore structure, which is manifested 26 

through the D-10-D0 value decreasing as the pore volume increases, implying that the 27 

SNDH of LAPV is weakened. The reason for this is that the increase of total pore 28 

volume, accompanied by the decrease of mesopore volume and increase of micro-pore 29 

volume, which causes the pore interval in this range change from HAPV to LAPV, 30 



results in the distribution of low-value area of pore volume tending to be uniform, 1 

subsequently leading to the decrease of D-10-D0 value [26].  2 

2.1.3 Pore size distribution heterogeneity obtained from different fractal models 3 

By using Table 4 in Yan et al. [16], the correlation of fractal dimension calculated 4 

by different fractal models is compared. The above study shows that D1 calculated using 5 

the Frenkel-Halsey-Hill (FHH) model reflects the SNDH of pores >10 nm, and D2 6 

reflects the SNDH of pores between 2 and 10 nm [26]. Fig. 4 shows that there is no clear 7 

correlation between the single fractal parameter D1 and the two multifractal parameters, 8 

while the single fractal parameter D2 and the multifractal parameters show a clear 9 

negative correlation that implies that the SNDH of LAPV is weakened. Zhu et al. 10 

showed that D2 (relative pressure corresponding to 0–0.5) characterize adsorption pore 11 

surface heterogeneity, and D1 (relative pressure corresponding to 0.5–1) can reveal the 12 

adsorption pore volume heterogeneity [27]. The increase of the D2 value shows that pore 13 

surface heterogeneity increases, and the D-10-D0 value decreases shows that the SNDH 14 

of LAPV is weakened. In conclusion, the fractal dimension values calculated using the 15 

two fractal models are different. The result shows that the multifractal model represents 16 

SNDH in different pore size intervals, and the calculated values are relative values. The 17 

single fractal model represents the overall heterogeneity of the pore distribution, which 18 

its absolute value is calculated. 19 

2.2 Multifractal parameter variation of micro-pore by using LPCO2 GA 20 

2.2.1 Multifractal parameter variation 21 

According to the LPCO2 GA data of the representative sample W1, the double 22 

logarithm diagram of the partition function x(q,ɛ) and the size length ɛ is calculated (Fig. 23 

5a). The results show that lg[ui(q, ɛ)] value has an obvious linear relationship between 24 

lg(ɛ), and Fig. 5b shows that i(q) increases strictly monotonically with the increase of 25 

q value, which indicates that the pore size distribution obtained from LPCO2 GA data 26 

has multifractal characteristics. When the q value is less than 0, there is a negative 27 

correlation between lg[ui(q, ɛ)] and lg(ɛ). When q value is greater than 0, a positive 28 

correlation is observed between lg[ui(q, ɛ)] and lg(ɛ). This shows that the micro-pore 29 

size distribution in those shale samples is concentrated and the pore distribution interval 30 



is smaller.  1 

Fig. 5c shows that the q~D(q) spectrum of all shale samples is “Anti-S” type, which 2 

is also typical feature of multifractal distribution of shale pore-fracture system. The 3 

spectrum can effectively represent the complexity of PSDH in different pore stage. 4 

Compared with Fig. 1c it can be seen that the singular spectral width of highly mature 5 

shale samples is different, and the width of the left branch is larger, which indicates that 6 

PSDH is stronger and is related to the HAPV. 7 

Table 3 shows that D-10-D0 value is less than D0-D10, meaning that the SNDH of 8 

HAPV is stronger than that of LAPV in micro-pores, which implies that the HAPV 9 

controls the micro-pore size distribution heterogeneity. Compared with Fig. 3, the 10 

LAPV in the range of 2–100nm controls SNDH within that pore range, indicating that 11 

there are obvious differences in the overall distribution of pores <2 nm and 2–100 nm. 12 

The D-0-D1 value of all the samples is 0.50–0.72, which is less than that of the value of 13 

2–1200 nm pores, indicating that the overall distribution of pores of 2–100 nm is more 14 

complex. 15 

An analysis of micro-pore multifractal parameters shows that D-10 and D10 have an 16 

obvious linear positive correlation, showing that the minimum and maximum pore 17 

volume distribution characteristics are synchronized (Fig. 6a). As shown in Fig. 6b, D-18 

10-D0 decrease linearly with the increase of D0-D10, indicating the distribution 19 

heterogeneity of LAPV decreases with the increased HAPV heterogeneity. Fig. 6c 20 

shows that D-10-D10 and D-10-D0 as well as D0-D10 are linearly negatively and positively 21 

correlated, respectively, and the linear fit of the latter is significantly higher than that of 22 

the former. In summary, the heterogeneity of full-scale pore distribution is controlled 23 

by HAPV. 24 

2.2.2 Influencing factors of multifractal parameters 25 

The influencing factors of the micro-pore multifractal parameters are examined by 26 

integrating the shale maturity, mineral composition, organic matter content and pore 27 

structure parameters (Fig. 7). The results show that the micro-pore single fractal 28 

parameters D-10-D0 and D0-D10 have weak correlations with various influencing factors. 29 

Compared to Fig. 3b, Fig. 7b shows that there is no obvious relationship between the 30 



two fractal parameters and the micro-pore volume. The reason being that the pore size 1 

range corresponding to the low/high pore volume area is not constant. Yan et al. [16] 2 

found that there are three peak intervals in the micro-pore distribution of all of the 3 

analysed shale samples, which are 0.38 nm, 0.5 nm and 0.85 nm. With the variation in 4 

micro-pore volume, the three-peaks of pores corresponding to the high pore volume 5 

area are relatively complicated, so the correlation among the two multifractal 6 

parameters and pore volume is weak. Zhang et al. [26] analyzed the micro-pore 7 

multifractal characteristics of middle and high rank coal samples from western Guizhou 8 

and eastern Yunnan, which showed that the micropore [0.72, 0.94] distribution variation 9 

was an important interval leading to variation in the micro-pore multifractal. Therefore, 10 

the focus of further research should be on exploring the micro-pore interval that affects 11 

the distribution of high value area of micropores. 12 

Fig.8 shows that there is no correlation between the multifractal parameters of 13 

micro-pores and meso-pores, which also explains the strong heterogeneity of shale pore 14 

size distribution. 15 

2.3 Dynamic variation of porosity and permeability under the influence of pore 16 

size distribution heterogeneity  17 

Four representative samples, capturing the variation in the physical characteristics 18 

within the reservoir, were selected for further analysis based on their initial porosity, 19 

permeability and pore distribution. Fig. 9 shows that the initial permeability of all the 20 

samples is different, with the initial permeability of samples W7 and W9 both exceeding 21 

0.1 mD while sample W1 reaches 0.29 mD. The overburden porosity results are also 22 

shown in Fig. 9. The results shows that the permeability of all samples decreased 23 

exponentially when the effective stress increased from 0 to 25 MPa, and the maximum 24 

R2 reached 0.99. 25 

In addition, permeability varies in stages with the increase in effective stress. 26 

When the effective stress is less than 15 MPa, permeability (including pore volume) 27 

decreases rapidly with the increase in stress, and the permeability is in the stage of rapid 28 

decline with the average decline of all the samples in the region of 86%. However, 29 

when the effective stress is greater than 15 MPa, the permeability is in a slow decline 30 



stage and is fairly stable. Initially, the pore volume has not been compressed and so the 1 

compressible space is large. The pore space therefore has high compressibility, which 2 

leads to the rapid decline of coal permeability during this early phase of applying stress. 3 

With the continuous increase in stress, the compressible space of meso-macro-pores is 4 

reduced the compressibility coefficient decreases, which results in the coal permeability 5 

being stable during this stage.  6 

Fig. 9 shows that the permeability loss rate of all samples is between 0.76 and 0.98. 7 

Among them, the permeability of sample W1 is the most sensitive to pressure, and the 8 

permeability loss rate can reach 98%. In the other three samples, the macro-pores are 9 

not developed. As a result, the compressible space in the high stress stage is provided 10 

by micro-pores. However, the meso-pores influence the permeability variation, so the 11 

permeability loss rate is relatively higher. 12 

According to the multifractal parameters and permeability damage rate of samples, 13 

D-10-D0 and D-10-D10 has obvious linear positive correlation with permeability damage 14 

rate (Fig. 10). According to above two parameters, the relationship between D0-D10 and 15 

permeability damage rate is not obvious, which implies that the stronger pore 16 

heterogeneity, the more obvious the damage effect of stress on permeability is. This 17 

conclusion is also consistent with the previous results. 18 

Table 4 shows that with the exception of sample W10, the initial diffusion 19 

coefficients of samples are 2.14–2.41×10-6 cm2/s and are fairly uniform. The diffusion 20 

coefficient increases with the increase of confining stress, which indicates that the 21 

pressure has a positive effect on the diffusion coefficient. In order to systematically 22 

explain the influence of pressure on the diffusion coefficient, the diffusion coefficient 23 

variation coefficient D20/ D10 is introduced to quantitatively characterize the diffusion 24 

coefficient variation under pressure. The calculation results indicates that the value is 25 

between 2.34 and 8.21. Relevant literature shows that micro-pores play an important 26 

role in controlling methane diffusion coefficient. In Section 2.2, the relationship 27 

between the multifractal parameters and diffusion coefficient variation is discussed (Fig. 28 

11). It indicates that the variation rate of diffusion coefficient decreases with the 29 

increase in the multifractal parameters, indicating that the stronger the heterogeneity of 30 



pore distribution, the weaker the "transformation effect" of stress on the diffusion 1 

coefficient (Table 4) [28-30]. 2 

3 Conclusions 3 

According to low temperature liquid nitrogen and carbon dioxide tests (LPN2/CO2 4 

GA) of organic rich shale in Qinshui Basin, the multifractal dimension variation of 5 

micro-pores (<2 nm) and mesopores (2–100 nm) was studied, and the multifractal 6 

factors that affect the distribution of nanopores determined. In addition, the differences 7 

between single fractal and multifractal results were compared. Based on this, the 8 

dynamic variation of porosity and permeability under the constraints of nanopore 9 

structure were discussed from the perspective of multifractal variation. The conclusions 10 

are as follows: 11 

1) The distribution of nanopores in organic rich shale is a typical multifractal 12 

feature. However, there are obvious differences in the multifractal parameters and 13 

influencing factors between micropores and mesopores. 14 

2) The SNDH in the HAPV of 2–100nm in shale samples tends to be consistent, 15 

and the overall SNDH is controlled by the SNDH in the LAPV. The SNDH in the LAPV 16 

is affected by the distribution of pores with diameter within 2 and 10 nm. 17 

3) The single fractal dimension D2 calculated using the FHH model has a negative 18 

correlation with the multifractal parameters, which implies that the distribution 19 

heterogeneity of the LAPV gradually decreases with the increase of D2, indicating that 20 

the physical meaning of the two models is clearly different.  21 

4) In contrast to meso-macropores, the heterogeneity of the micro-pore size 22 

distribution is controlled by HAPV, and the correlation between the multifractal 23 

variation and pore volume is weak. Moreover, there is no correlation between micro-24 

pore and mesoporous multifractal parameters, which shows the strong heterogeneity of 25 

shale pore distribution. 26 

5) Multifractal variation of pores controls the porosity and permeability variation 27 

and diffusion process of shale reservoirs. D-10-D0 and D-10-D10 has an obvious linear 28 

positive correlation with permeability variation rate, indicating that the stronger the 29 

pore heterogeneity, the greater the damage effect of confining stress on permeability. 30 



Also, the stronger the heterogeneity of the micro-pore size distribution, the weaker the 1 

"reconstruction effect" of stress on the diffusion coefficient. 2 
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Table 1 Sample tests and information. 1 

Sample No. 

DP-P tests DP-F tests 

Information 

(cm) 
Confine pressure (MPa) 

Information 

(cm) 

Confine pressure 

(MPa) 

W1 2.62*2.54 5/10/15/20 1.52*2.54 10/15/20 

W7 2.58*2.54 5/10/15/20 1.52*2.54 10/15/20 

W9 2.60*2.54 5/10/15/20 1.52*2.54 10/15/20 

W10 2.58*2.54 5/10/15/20 1.52*2.54 10/15/20 

Table 2 Generalized multifractal parameters from LPN2 GA tests. 2 

Sample D-10 D10 D0- D2 D-10-D0 D0-D10 D-10-D10 

W1 0.43 1.58 0.36 0.58 0.57 1.15 

W2 0.68 1.47 0.17 0.47 0.32 0.79 

W3 0.68 1.51 0.17 0.51 0.32 0.83 

W4 0.67 1.44 0.18 0.44 0.33 0.77 

W5 0.43 1.65 0.36 0.65 0.57 1.22 

W6 0.43 1.69 0.36 0.69 0.57 1.26 

W7 0.43 1.63 0.36 0.63 0.57 1.20 

W8 0.43 1.67 0.36 0.67 0.57 1.24 

W9 0.43 1.63 0.36 0.63 0.57 1.20 

W10 0.67 1.37 0.18 0.37 0.33 0.69 

W11 0.67 1.46 0.18 0.46 0.33 0.78 

W12 0.68 1.47 0.18 0.47 0.32 0.80 

Table 3 Generalized multifractal parameters from LPCO2 GA tests. 3 

Sample No. D-10 D10 D0- D2 D-10-D0 D0-D10 D-10-D10 

W1 0.48 1.18 0.24 0.18 0.52 0.71 

W2 0.59 1.23 0.16 0.23 0.41 0.64 

W3 0.68 1.23 0.11 0.23 0.32 0.55 

W4 0.67 1.21 0.13 0.21 0.33 0.54 

W5 0.51 1.18 0.23 0.18 0.49 0.67 



W6 0.61 1.21 0.16 0.21 0.39 0.60 

W7 0.74 1.26 0.09 0.26 0.26 0.53 

W8 0.48 1.20 0.25 0.20 0.52 0.72 

W9 0.67 1.22 0.12 0.22 0.33 0.55 

W10 0.75 1.25 0.09 0.25 0.25 0.50 

W11 0.56 1.19 0.19 0.19 0.44 0.63 

W12 0.61 1.21 0.16 0.21 0.39 0.61 

Table 4 Diffusion coefficient variation of typical samples under different confining pressures. 1 

Pressure (MPa) Sample W1 Sample W7 Sample W9 Sample W10 

10 2.15E-06 2.14E-06 2.41E-06 6.80E-08 

15 3.45E-06 3.39E-06 2.25E-05 1.35E-07 

20 4.85E-06 6.58E-06 8.89E-05 5.62E-07 
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Fig.1 Characteristics of generalized multifractal curves by using LPN2 GA tests. a, relationship 4 

between lg(ɛ) and lg[ui(q, ɛ)]; b, relationship between q and i(q); c, relationship between q and 5 

D(q); d, relationship between a and f(a). 6 
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Fig. 2 Correlation analysis of generalized fractal parameters by using LPN2 GA tests. a, 3 

relationship between D10 and D-10; b, relationship between D-10-D0 and D0-D10; c, relationship 4 

between D-10-D10 and D-10-D0. 5 
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Fig. 3 Correlation analysis of generalized fractal parameters with maturity and pore structure 3 

parameters by using LPN2 GA tests. a, relationship between Ro, max and D-10-D0; b, relationship 4 

between quartz content and D-10-D0, D0-D10; c, relationship between illite content and D-10-D0, D0-5 

D10; d, relationship between pore volume content and D-10-D0, D0-D10; e, relationship between 6 

pore volume content and micro-pore/meso-pore volume. 7 
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Fig. 4 Correlation analysis of fractal parameters by combining single with multifractal 9 

calculations. a, relationship between D1 by using single fractal dimension and D-10-D0; b, 10 

relationship between D2 by using single fractal dimension and D0-D10. 11 
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Fig. 5 Characteristics of generalized multifractal curves by using LPCO2 GA tests. a, relationship 3 

between lg(ɛ) and lg[ui(q, ɛ)] in sample W12; b, relationship between q and i(q) of sample W12; c, 4 

relationship between q and D(q) of all the samples; d, relationship between a and f(a) of all the 5 

samples. 6 
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Fig. 6 Correlation analysis of generalized fractal parameters by using LPCO2 GA. a, relationship 2 

between D10 and D-10; b, relationship between D-10-D0 and D0-D10; c, relationship between D-10-3 

D10 and D-10-D0. 4 

1.8 1.9 2.0 2.1 2.2 2.3 2.4

0.2

0.3

D
0
-D

1
0

D
-1

0
-D

0

a

 

 

0.2

0.3

0.4

0.5

0.6

R
o,max

(%)

 

30 35 40 45 50 55 60

0.1

0.2

0.3

0.4

D
0
-D

1
0

D
-1

0
-D

0

b

 

 

0.2

0.3

0.4

0.5

0.6

Content of Quantz (%)

 

 5 

5 10 15 20 25 30 35

0.1

0.2

0.3

0.4

D
0
-D

1
0

D
-1

0
-D

0

c

 

 

0.2

0.3

0.4

0.5

0.6

Content of Illite  (%)

 

0 2 4 6

0.1

0.2

0.3

0.4

D
0
-D

1
0

D
-1

0
-D

0

d

 

 

0.2

0.3

0.4

0.5

0.6

Pore volume  (*10
-3

cm
3
.g

-1
)

 

 6 

Fig. 7 Correlation analysis of generalized fractal parameters, maturity and pore structure 7 

parameters by using LPCO2 GA tests. a, relationship between Ro, max and D-10-D0; b, relationship 8 

between quartz content and D-10-D0, D0-D10; c, relationship between illite content and D-10-D0, D0-9 

D10; d, relationship between pore volume content and D-10-D0, D0-D10; e, relationship between 10 

pore volume content and micro-pore/meso-pore volume. 11 
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Fig.8 Correlation analysis of generalized fractal parameters by using LPCO2 and N2 GA tests. a, 3 

relationship between D-10-D0 by using LPCO2 GA and D-10-D0 by using LPN2 GA; b, relationship 4 

between D0-D10 by using LPCO2 GA and D0-D10 by using LPN2 GA; c, relationship between D-10-5 

D10 by using LPCO2 GA and D-10-D10 by using LPN2 GA. 6 
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Fig. 9 Dynamic parameter variation of porosity and permeability under different confining 2 

pressures for a, sample W1; b, sample W7; c, sample W9; d, sample W10. 3 
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Fig. 10 The relationship between multifractal parameters and permeability damage rate based on 5 

LPN2 GA tests. 6 
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Figure 11 The relationship between multifractal parameters and damage rate of diffusion 8 

coefficient based on LPCO2 GA tests. 9 
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