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Abstract. We study the cancellation of zeros between the Riemann zeta function and cer-
tain Artin L-functions. To do so, we develop a converse theorem for Maass forms of Laplace
eigenvalue 1/4 in which the twisted L-functions are not assumed to be entire. We do not
require the conjectural automorphy of Artin L-functions, only their established meromorphic
continuation and functional equation.

1. Introduction

This paper studies cancellation of zeros between the Riemann zeta function and the Artin
L-functions associated with 3-dimensional Artin representations. The motivations are two-
fold. Firstly, our main Theorem offers modest evidence for the Grand Simplicity Hypothesis
(which implies that unrelated pairs of L-functions cannot have common zeros in the critical
strip). Secondly, as we shall explore, the proof of our main Theorem offers an interesting
connection with the question of Langlands functoriality for Artin representations.

A typical L-function is a Dirichlet series L(s) converging in a right half-plane, admitting
continuation to C, and satisfying a standardised functional equation with respect to s 7→ 1−s.
The functional equation for L(s) is best expressed in terms of its completion Λ(s), which has
the form AsL(s)

∏r
i=1 Γ(λis+µi) for a positive real number A, and, for i ∈ {1, . . . , r}, positive

real numbers λi and complex numbers µi. The degree of L(s) is the number d = 2
∑r

i=1 λi,
which is independent of the representation for Λ(s). In the case of automorphic L-functions,
the numbers λi may be taken to be 1

2
, and the number d is a positive integer. An L-function

is described as primitive if it cannot be expressed as a product of lower degree L-functions.
This paper is about the simultaneous zeros of two distinct completed L-functions Λ1(s)

and Λ2(s). For j ∈ {1, 2}, let dj denote the degree of Λj(s). If d2 − d1 ≤ 1, then, unless
Λ1(s) divides Λ2(s) as a completed Euler product, the quotient Λ2(s)/Λ1(s) has infinitely
many poles [MM94], [BP98], [Sri03], [Boo15]. Furthermore, if d2− d1 ≤ 0, then quantitative
bounds were established for the number of poles. If d2 − d1 = 2, then Λ2(s)/Λ1(s) is known
to have infinitely many poles only in special cases [Rag99], [NO20]. In this paper, we restrict
ourselves to Artin L-functions such that d2 − d1 = 2. We will prove:

Theorem 1.1. Let φ be a 3-dimensional Artin representation of Gal
(
Q/Q

)
, let c be complex

conjugation, and let p the dimension of the (+1)-eigenspace for φ(c). Denote by L(s, φ) (resp.
Λ(s, φ)) the Artin L-function (resp. completed Artin L-function) associated to φ, and by ζ(s)
(resp. ξ(s)) the Riemann zeta function (resp. completed Riemann zeta function). If p ≥ 1,
and L(s, φ) is primitive, then Λ(s, φ)/ξ(s) has infinitely many poles.

We contrast Theorem 1.1 to the well-known theorem that, if ζK(s) is the Dedekind zeta
function of Galois extension K/Q, then ζK(s)/ζ(s) is entire. The essential difference is that
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ζK(s) is in fact divisible by ζ(s). The proof of Theorem 1.1 closely follows the strategy used
in [NO20, Corollary 1.2], which states that Λ(Sym2f, s)/ξ(s) has infinitely many poles for
a non-CM Maass form f . In particular, we argue that, were the quotient to have finitely
many poles, it could be identified with an automorphic L-function. This identification yields
a contradiction in the form of an inadmissible linear dependence between Euler products, as
we shall see in Section 4. Arguing this way requires the development of a suitable converse
theorem with rather minimal hypotheses, for example, allowing for meromorphic twists and
non-standard Euler factors. This is achieved in Section 3, following some preliminary cal-
culations in Section 2. In particular, Section 2 develops an explicit analytic continuation of
the Gauss hypergeometric function and establishes a connection to twisted L-functions.

We conclude this introduction with Examples and Remarks exploring the hypotheses and
consequences of Theorem 1.1. The relevant theory of Artin L-functions can be found, for
example, in [Neu99, Chapter 7], or [IK04, Section 5]. We will use the following notation
throughout:

(1.1) ΓR(s) = π−s/2Γ
(s

2

)
.

We note that the completed Riemann zeta function is ξ(s) = ΓR(s)ζ(s). Let φ be as in
Theorem 1.1. The representation φ factors through a number field F and the Artin L-
function L(s, φ) is defined by an Euler product of the form:

(1.2) L(s, φ) =
∏
p

[F :Q]∏
i=1

(1− αiNormF/Q(p)−s)−1,

where the product is over the prime ideals p in the ring of integers of F , and, for i ∈
{1, . . . , [F : Q]}, the complex numbers αi are either roots of unity or zero. With c and p
as in Theorem 1.1, let furthermore m denote the dimension of the (−1)-eigenspace of φ(c).
The completed Artin L-function is then:

(1.3) Λ(s, φ) = ΓR(s)pΓR(s+ 1)mL(s, φ).

Note that a 3-dimensional Artin representation φ satisfies p ≥ 1 if and only if:

(1.4)
Λ(s, φ)

ξ(s)
= L(s) ·


ΓR(s)2, p = 3,

ΓR(s)ΓR(s+ 1), p = 2,

ΓR(s+ 1)2, p = 1.

for some Dirichlet series L(s).

Example 1.2. Let φ be as in [LMFDB, Artin Representation 3.229.4t5.a.a], that is, the
3-dimensional Artin representation having the smallest conductor on the LMFDB. The asso-
ciated Artin L-function L(s, φ) is primitive with gamma factor ΓR(s)ΓR(s+1)2. Theorem 1.1
asserts that infinitely many non-trivial zeros of ζ(s) are not also zeros of L(s, φ).

Remark 1.3. The assumption in Theorem 1.1 that L(s, φ) be primitive is a useful short-
hand, but can be reformulated to taste. It is intended as a proxy for the assumption that φ
is an irreducible representation. Indeed, conjecturally, the Artin L-function attached to an
irreducible Galois representation is the L-function of some cuspidal automorphic representa-
tion (and hence primitive). On the other hand, our assumption can be formulated without
resorting to primitivity or irreducibility. Indeed, L(s, φ) may be written as an Euler product
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as per equation (1.2). We denote the Euler factor at a prime ideal p by Lp(s, φ), which
is a reciprocal polynomial in p−s where p is a rational prime divisible by p. In the proof
of Theorem 1.1 it would suffice that there exists a rational prime p such that, within the
polynomial ring C[p−s], the product

∏
p|p Lp(s, φ)−1 indexed by prime ideals of F over p is

not divisible by 1− p−s, that is, the reciprocal Euler factor of the Riemann zeta function at
p.

Remark 1.4. Whilst Artin L-functions are not generally known to be automorphic, the
Brauer induction theorem implies that they are ratios of Hecke L-functions. That is, a
single Artin L-function may itself be written as a quotient of Artin L-functions. The weak
Artin conjecture claims that the same Artin L-function is holomorphic away from a pole
at s = 1 corresponding to the multiplicity of the trivial representation and so in particular
has finitely many poles. On the other hand, a theorem of Booker asserts that if the Artin
L-function of a 2-dimensional Galois representation is not automorphic, then it has infinitely
many poles [Boo03, Corollary]. These claims are not a contradiction to Theorem 1.1. In
fact, we expect the Artin L-function of a 2-dimensional Galois representation expressed as
a ratio of Hecke L-functions to fail the assumptions of Theorem 1.1. Indeed, subject to
the strong Artin conjecture, all Euler factors would be reciprocal polynomials in p−s, which
cannot happen under our assumptions.

Acknowledgement. Several computations on this subject were done in collaboration be-
tween TO and Michael Neururer, and the present authors are indebted to him for permitting
their reproduction here. Moreover we are grateful for his reading of a preliminary version of
this work, which led to the correction of various errors. We thank Masatoshi Suzuki for his
comments on an early draft of this work, we thank Lejla Smajlovic for her encouragement,
and we acknowledge the careful reading of this paper by an anonymous referee whose efforts
resulted in several improvements in exposition. TO was supported by the EPSRC through
research grant EP/S032460/1.

2. Preliminaries

In this section we introduce hypergeometric functions and twisted L-functions. The rela-
tionship between these functions will become apparent in the sequel.

2.1. Gauss Hypergeometric function. Let a denote a complex number. For Re(a) > 0,
we recall the gamma function:

Γ(a) =

∫ ∞
0

e−tta−1dt.

For Re(a) ≤ 0, Γ(a) is defined by meromorphic continuation. In particular, Γ(a) has no
zeros in C and simple poles at a ∈ Z≤0. For k ∈ Z≥0, the Pochhammer symbols are defined
by:

(a)0 = 1, (a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1).

For a /∈ Z≤0, we have (a)k = Γ(a+ k)/Γ(a). The digamma function is defined to be:

Ψ(a) =
Γ′(a)

Γ(a)
,
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and has simple poles at a ∈ Z≤0. Recall the following identity1:

(2.1)
1

a
= Ψ(a+ 1)−Ψ(a).

Summing equation (2.1) over a ∈ {1, . . . , k}, we get:

(2.2) Hk = Ψ(1 + k)−Ψ(1),

where, for k ∈ Z≥1, we denote by Hk the kth harmonic number, that is, Hk =
∑k

a=1 1/a.
Recall the Euler–Mascheroni constant:

(2.3) γ = lim
k→∞

(Hk − log(k)) = −Ψ(1).

Combining equations (2.2) and (2.3) we deduce:

(2.4) Hk = Ψ(1 + k) + γ.

For k ≥ 0, the Pochhammer symbol (a + δ)k is a polynomial in δ with constant term (a)k
and degree k. We may therefore write:

(2.5) (a+ δ)k = (a)k

k∑
m=0

Hk(a,m)δm, Hk(a, 0) = 1.

Expanding the product (a+ δ)k = (a+ δ) · · · (a+ k − 1 + δ), we see that:

(2.6) Hk(a,m) =
∑

0≤n1<···<nk−m≤k−1

∏k−m
i=1 (a+ ni)

(a)k
=

∑
0≤n1<···<nm≤k−1

1∏m
i=1(a+ ni)

.

For k ≥ 1, equation (2.6) with a = m = 1 implies:

Hk(1, 1) = Hk.

On the other hand, replacing a by a+n in equation (2.1), summing over n ∈ {0, . . . , k− 1},
and applying equation (2.6) with m = 1 we observe:

Hk(a, 1) = Ψ(a+ k)−Ψ(a).

Consider complex numbers a, b, c such that c /∈ Z≤0. For |w| < 1, the function 2F1 ( a, b
c |w)

is defined by:

(2.7) 2F1 ( a, b
c |w) =

∞∑
k=0

wk
(a)k(b)k
k!(c)k

.

The series in equation (2.7) converges absolutely for |w| < 1. For |w| ≥ 1, the function

2F1 ( a, b
c |w) is defined by analytic continuation. For example, if a − b /∈ Z and |w| > 1,

then2:

(2.8) 2F1 ( a, b
c |w) = (−w)−a

Γ (b− a) Γ (c)

Γ (b) Γ (c− a)

∞∑
k=0

w−k
(a)k (a− c+ 1)k
k! (a− b+ 1)k

+ (−w)−b
Γ (a− b) Γ (c)

Γ (a) Γ (c− b)

∞∑
k=0

w−k
(b)k (b− c+ 1)k
k! (b− a+ 1)k

.

1mathworld.wolfram.com/DigammaFunction.html
2wolfram.com/HypergeometricFunctions/Hypergeometric2F1/02/02/0001/
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Each of the sums in equation (2.8) converge absolutely for |w| > 1. Furthermore3:

2F1 ( a, a
c |w) = lim

δ→0
2F1 ( a, a+δ

c |w) .

Lemma 2.1. For complex numbers a, c such that c /∈ Z≤0, and a real number w such that
|w| > 1, we have:

(2.9) 2F1 ( a, a
c |w) = lim

δ→0

∞∑
k=0

[Γ(δ)Ak(δ) + Γ(−δ)Bk(δ)] ,

where

(2.10) Ak(δ) = w−k(−w)−a
(a)k(a− c+ 1)kΓ(c)

k!(1− δ)kΓ(a+ δ)Γ(c− a)
,

and

(2.11) Bk(δ) = w−k(−w)−δ−a
(a+ δ)k(a− c+ 1 + δ)kΓ(c)

k!(1 + δ)kΓ(a)Γ(c− a− δ)
.

Proof. Replacing b by a+ δ in equation (2.8), we get:

2F1 ( a, a+δ
c |w) =

∞∑
k=0

Γ(δ)w−k(−w)−a
(a)k(a− c+ 1)kΓ(c)

k!(1− δ)kΓ(a+ δ)Γ(c− a)

+
∞∑
k=0

Γ(−δ)w−k(−w)−δ−a
(a+ δ)k(a− c+ 1 + δ)kΓ(c)

k!(1 + δ)kΓ(a)Γ(c− a− δ)
.

Taking the limit as δ → 0, we deduce equation (2.9). �

Lemma 2.2. For integers k ≥ 0 and n ≥ 1, we have:

(2.12) (n)k = O (kn(k − 1)!) ,

in which the constant is independent of k.

Proof. Note first that (1)k = k! and so equation (2.12) is trivial in this case. We proceed by
induction on n. To that end, assume that (n)k = O (kn(k − 1)!) and compute:

(n+ 1)k = (n+ 1)(n+ 2) · · · (n+ k) =
n(n+ 1)(n+ 2) · · · (n+ k)

n

=

(
n+ k

n

)
(n)k = O

(
kn+1(k − 1)!

)
.

�

Let D0(1/2) denote the disc in the complex plane with centre 0 and radius 1/2.

Lemma 2.3. For complex numbers a, c such that c 6∈ Z≤0, and w ∈ R<−1, the sums∑∞
k=0Ak(δ) and

∑∞
k=0Bk(δ) converge uniformly to holomorphic functions on D0(1/2).

In light of Lemma 2.3, we will write:

(2.13) A(δ) =
∞∑
k=0

Ak(δ), B(δ) =
∞∑
k=0

Bk(δ).

3wolfram.com/HypergeometricFunctions/Hypergeometric2F1/02/02/0001/
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Proof. Consider first A(δ). Since the gamma function is non-zero on the complex plane,
there exists X1 ∈ R such that, for all δ ∈ D0(1/2), we have:

(2.14)

∣∣∣∣ 1

Γ(a+ δ)

∣∣∣∣ ≤ X1.

For all k ≥ 1 and δ ∈ D0(1/2), we observe:

(2.15)

∣∣∣∣ 1

(1− δ)k

∣∣∣∣ ≤ 1

(1/2)k
≤ 2

(k − 1)!
.

Consider n1 ∈ Z>0 (resp. n2 ∈ Z>0) such that n1 ≥ |a| (res. n2 ≥ |a−c+1|) and subsequently
|(a)k| ≤ (n1)k (resp. |(a+ c− 1)k| ≤ (n2)k). Applying equation (2.12) with n ∈ {n1, n2}, we
deduce that:

(2.16) (a)k = O (kn1(k − 1)!) , (a− c+ 1)k = O (kn2(k − 1)!) .

Substituting equations (2.14), (2.15), and (2.16) into equation (2.13), we deduce, for all
k ≥ 1 and δ ∈ D0(1/2), that:

|Ak(δ)| = O
(
|w|−kkn1+n2−1

)
,

in which the implied constant is independent of k. Noting that, since |w| > 1, the sum∑∞
k=0 |w|−kkn1+n2−1 converges, the Weierstrass M -test thus implies that A(δ) converges ab-

solutely and uniformly on D0(1/2). Since each Ak(δ) is holomorphic on D0(1/2), Morera’s
theorem implies that A(δ) is holomorphic.

We now consider B(δ). Similarly to equation (2.14), we see that there is some X2 such
that, for all δ ∈ D0(1/2), we have:

(2.17)

∣∣∣∣ 1

Γ(c− a− δ)

∣∣∣∣ ≤ X2.

Similarly to equation (2.15), for all k ≥ 1 and δ ∈ D0(1/2), we have:

(2.18)

∣∣∣∣ 1

(1 + δ)k

∣∣∣∣ ≤ 2

(k − 1)!
.

Similarly to equation (2.16), we furthermore note that, for all k ≥ 1 and δ ∈ D0(1/2), there
are n3, n4 ∈ Z>0 so that:

(2.19) (a+ δ)k = O (kn3(k − 1)!) , (a− c+ 1 + δ)k = O (kn4(k − 1)!) ,

Since
∣∣(−w)−δ

∣∣ = O(1), substituting equations (2.17), (2.18), and (2.19) into equation (2.13),
we see that:

|Bk(δ)| = O
(
|w|−kkn3+n4−1

)
,

in which the implied constant is independent of k. Noting that the sum
∑∞

k=0 |w|−kkn3+n4−1

converges, the conclusion follows from the Weierstrass M -test and Morera’s theorem as
before. �

Lemma 2.4. For δ ∈ D0(1/2) and k ≥ 0, we have:

(2.20)
1

(1± δ)k
− 1

k!
(1∓Hkδ) = O

(
δ2
)
,

in which the implied constant depends on k.
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Proof. For h 6= −1, we observe:

(2.21)
1

1 + h
= 1− h+

h2

1 + h
.

Combining equations (2.5) and (2.21) with h =
∑k

m=1(±1)mHk(1,m)δm, we deduce:

(2.22)
1

(1± δ)k
=

1

k!

(
1

1 + h

)
=

1

k!

(
1− h+

h2

1 + h

)
=

1

k!
(1∓Hk(a, 1)δ) +

1

k!

(
−

k∑
m=2

(±1)mHk(a,m)δm +
h2

1 + h

)
.

Since |δ| < 1, we note:

(2.23)

∣∣∣∣∣−
k∑

m=2

(±1)mHk(a,m)δm

∣∣∣∣∣ = O
(
δ2
)
,

in which the implied constant depends on k. On the other hand, for δ ∈ D0(1/2), equations
(2.15) and (2.18) imply that:

(2.24)
1

(1± δ)k
≤ 2

(k − 1)!
= O(1),

in which the implied constant depends on k. Multiplying equation (2.24) by h2 = O (δ2), we
deduce:

(2.25)
h2

1 + h
= O

(
δ2
)
.

Equation (2.20) follows upon substituting equations (2.23) and (2.25) into equation (2.22).
�

Theorem 2.5. For complex numbers a, c such that c /∈ Z≤0, and w ∈ R<−1, we have:

(2.26) 2F1 ( a, a
c |w) = (−w)−a

Γ(c)

Γ(a)Γ(c− a)

∞∑
k=0

w−k
(a)k(a− c+ 1)k

(k!)2
(2Ψ(k + 1)

−Ψ(a+ k)−Ψ(a− c+ 1 + k) + Ψ(a− c+ 1)−Ψ(c− a) + log(−w)) .

The sum in equation (2.26) converges absolutely for w < −1.

Proof. Substituting equation (2.13) into equation (2.9), we get:

(2.27) 2F1 ( a, a
c |w) = lim

δ→0
[Γ(δ)A(δ) + Γ(−δ)B(δ)] .

Around δ = 0, we recall4:

(2.28) Γ(±δ) = ±1

δ
− γ +O(δ).

4wolfram.com/GammaBetaErf/Gamma/06/01/01/01/
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Substituting equation (2.28) into equation (2.27), we obtain:

(2.29) 2F1 ( a, a
c |w) = lim

δ→0

[
A(δ)−B(δ)

δ
− γ(A(δ) +B(δ)) +O(δ · (A(δ) +B(δ)))

]
= lim

δ→0

(
A(δ)−B(δ)

δ

)
− γ lim

δ→0
(A(δ) +B(δ)) .

For each k ≥ 0, we introduce:

(2.30) Ck = Ak(0) = Bk(0) = w−k(−w)−a
(a)k(a− c+ 1)kΓ(c)

(k!)2Γ(a)Γ(c− a)
.

Since A(δ) and B(δ) are continuous, we calculate:

(2.31) γ lim
δ→0

(A(δ) +B(δ)) = γ (A(0) +B(0)) = 2γ
∞∑
k=0

Ck.

Recall from Lemma 2.3 that A(δ) and B(δ) are holomorphic for δ ∈ D0(1/2). Since A(0) =
B(0), we deduce that:

(2.32) lim
δ→0

(
A(δ)−B(δ)

δ

)
= lim

δ→0

(
A(δ)− A(0)−B(δ) +B(0)

δ

)
= A′(0)−B′(0),

Substituting equations (2.31) and (2.32) into equation (2.29), we see that:

(2.33) 2F1 ( a, a
c |w) = A′(0)−B′(0)− 2γ

∞∑
k=0

Ck.

Around δ = 0, we observe:

(2.34)
1

Γ(a+ δ)
=

1

Γ(a)
(1− δΨ(a)) +O

(
δ2
)
.

We recall from equation (2.20) that:

(2.35)
1

(1− δ)k
=

1

k!
(1 + δHk) +O

(
δ2
)
.

Substituting equations (2.34) and (2.35) into equation (2.10), we see that:

(2.36) Ak(δ) = Ck + δ (Hk −Ψ(a))Ck +O
(
δ2
)
.

From equation (2.36), it follows that:

A′k(0) = lim
δ→0

(
Ak(δ)− Ak(0)

δ

)
= (Hk −Ψ(a))Ck.

Since, for δ ∈ D0(1/2), each Ak(δ) is holomorphic and
∑∞

k=0Ak(δ) converges uniformly to
A(δ), we may differentiate term-by-term to get:

(2.37) A′(0) =
∞∑
k=0

A′k(0) =
∞∑
k=0

(Hk −Ψ(a))Ck.

Replacing a by c− a and δ by −δ in equation (2.34), we find:

(2.38)
1

Γ(c− a− δ)
=

1

Γ(c− a)
(1 + δΨ(c− a)) +O

(
δ2
)
.
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We recall from equation (2.20) that:

(2.39)
1

(1 + δ)k
=

1

k!
(1− δHk) +O

(
δ2
)
.

From equation (2.5), we know:

(2.40) (a+ δ)k = (a)k (1 + δ(Ψ(a+ k)−Ψ(a))) +O(δ2),

Replacing a by a− c+ 1 in equation (2.40), we obtain:

(2.41) (a+ c− 1 + δ)k = (a+ c− 1)k(1 + δ(Ψ(a− c+ 1 + k)−Ψ(a− c+ 1))) +O
(
δ2
)
,

Substituting equations (2.38), (2.39) (2.40), and (2.41), into equation (2.11), it follows that:

(2.42) Bk(δ) = (−w)−δCk + (−w)−δδCk (−Hk + Ψ(a+ k) + Ψ(a− c+ 1 + k)

−Ψ(a− c+ 1) + Ψ(c− a)−Ψ(a)) +O
(
δ2
)
.

Noting that −w > 0, writing (−w)−δ = exp(−δ log(−w)), and taking the Taylor expansion
of the exponential function, we conclude:

(2.43) (−w)−δ = 1− δ log(−w) +O
(
δ2
)
.

Substituting equation (2.43) into equation (2.42), we deduce:

(2.44) Bk(δ) = Ck + δCk (−Hk + Ψ(a+ k) + Ψ(a− c+ 1 + k)

−Ψ(a− c+ 1) + Ψ(c− a)−Ψ(a)− log(−w)) +O
(
δ2
)
.

From equation (2.44), it follows that:

B′k(0) = lim
δ→0

(
Bk(δ)−Bk(0)

δ

)
= Ck (−Hk + Ψ(a+ k) + Ψ(a− c+ 1 + k)

−Ψ(a− c+ 1) + Ψ(c− a)−Ψ(a)− log(−w)) .

Since, for δ ∈ D0(1/2), each Bk(δ) is holomorphic and
∑∞

k=0Bk(δ) converges uniformly to
B(δ), we may differentiate term-by-term to get:

(2.45) B′(0) =
∞∑
k=0

Ck (−Hk + Ψ(a+ k) + Ψ(a− c+ 1 + k)

−Ψ(a− c+ 1) + Ψ(c− a)−Ψ(a)− log(−w)) .

Subtracting equation (2.45) from equation (2.37) we find:

(2.46) A′(0)−B′(0) =
∞∑
k=0

Ck (2Hk −Ψ(a+ k)−Ψ(a− c+ 1 + k) + Ψ(a− c+ 1)

−Ψ(c− a) + log(−w)) ,

Substituting equation (2.46) into equation (2.33), it follows that:

(2.47) 2F1 ( a, a
c |w) =

∞∑
k=0

Ck (2Hk − 2γ −Ψ(a+ k)−Ψ(a− c+ 1 + k) + Ψ(a− c+ 1)

−Ψ(c− a) + log(−w)) .
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The result follows upon substituting equations (2.4) and (2.30) into equation (2.47). �

2.2. Additive twists. Given a Dirichlet character ψ and complex sequences {an}∞n=1, {bn}∞n=1,
we introduce:

(2.48) Lf (s, ψ) =
∞∑
n=1

ψ(n)ann
−s, Lg(s, ψ̄) =

∞∑
n=1

ψ(n)bnn
−s.

If, for some σ ∈ R>0, we have |an|, |bn| = O (nσ), then the Dirichlet series Lf (s, ψ) and
Lg(s, ψ̄) converge for Re (s) > σ + 1. We highlight that, in equation (2.48), the subscript f
(resp. g) corresponds to the Dirichlet coefficients {an}∞n=1 (resp. {bn}∞n=1). This notation is
suggestive of what follows, in which {an}∞n=1 (resp. {bn}∞n=1) emerge as the Fourier–Whittaker
coefficients of a Maass form denoted by f (resp. g).

Fix N ∈ Z>0 and a Dirichlet character χ mod N (not necessarily primitive). In the
sequel we will assume that, for all primitive Dirichlet characters ψ modulo q coprime to N ,
the functions Lf (s, ψ) and Lg(s, ψ̄) admit meromorphic continuation to C, and, for some
ε ∈ {0, 1}, satisfy:

(2.49) Λf (s, ψ) = (−1)ε−εψχ(q)ψ(N)
τ(ψ)2

q
(q2N)

1
2
−sΛg(1− s, ψ̄),

where τ(ψ) =
∑

a mod q ψ(a)e2πi
a
q is the Gauss sum, the constant εψ ∈ {0, 1} is chosen such

that ψ(−1) = (−1)εψ , and

(2.50) Λf (s, ψ) = ΓR(s+ [ε+ εψ])2Lf (s, ψ), Λg(s, ψ̄) = ΓR(s+ [ε+ εψ])2Lg(s, ψ̄),

where, for an integer k, we denote by [k] ∈ {0, 1} the unique choice such that k ≡ [k] mod
2. In the case that ψ = 1 is the trivial character, we omit it from the notation, that is:

(2.51) Lf (s,1) = Lf (s), Λf (s,1) = Λf (s), Lg(s,1) = Lg(s), Λg(s,1) = Λg(s).

For r ∈ Z≥0, denote by cos(r) the rth derivative of cos. For α ∈ Q×, the additive twist of
Lf (s) by α is the Dirichlet series:

(2.52) Lf
(
s, α, cos(r)

)
=
∞∑
n=1

cos(r) (2πnα) ann
−s.

We define the completed additive twists by:

(2.53) Λf

(
s, α, cos(r)

)
= ΓR (s+ [ε+ r])2 Lf

(
s, α, cos(r)

)
,

where ΓR(s) is as in equation (1.1). We define Lf (s, α, sin) (resp. Λf (s, α, sin)) as in equa-
tion (2.52) (resp. equation (2.53)) with cos replaced by sin, and note that Λ(s, α, sin) =
−Λ

(
s, α, cos(1)

)
. Taking the Fourier expansion of a primitive Dirichlet character ψ mod q,

we deduce

(2.54) Λg(s, ψ) = (−i)εψ τ(ψ)

q

∑
b mod q

ψ̄(−b)Λg

(
s,
b

q
, cos(εψ)

)
.
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The inverse relationship is

(2.55) Λf

(
s, α, cos(r)

)
=

ir

q − 1

∑
ψ mod q
ψ 6=ψ0

ψ(−1)=(−1)r

τ(ψ̄)Λf (s, ψ)

+

{
(−1)r/2

[
Λf (s)− q

q−1Λf (s, ψ0)
]
, r even,

0, r odd,

where ψ0 denotes the principal character mod q. Combining equation (2.49) with equa-
tion (2.55), we deduce the following.

Proposition 2.6 (Proposition 3.4 in [NO20]). Let α = a
q

for a ∈ Z and q coprime to

N . If Λf (s, ψ) satisfies functional equation (2.49) for all primitive Dirichlet characters ψ of
conductor q, then Λf

(
s, α, cos(r)

)
satisfies the following functional equation:

(2.56) Λf

(
s, α, cos(r)

)
= (−1)ε

ir(q2N)
1
2
−sχ(q)

q − 1

∑
ψ mod q
ψ 6=ψ0

ψ(−1)=(−1)r

ψ(Nα)τ(ψ)Λg

(
1− s, ψ̄

)

+

{
(−1)r/2

[
Λf (s)− q

q−1Λf (s, ψ0)
]
, r even,

0, r odd.

3. Converse theorems

For real u 6= 0, we will write K(u) := K0(|u|), where, for u > 0, K0(u) is the K-Bessel
function:

K0(u) =
1

2

∫ ∞
0

e−u(t+t
−1)/2dt

t
.

By H we denote the upper half-plane. Consider complex sequences {an}∞n=1, {bn}∞n=1 such
that |an|, |bn| = O(nσ) for some σ ∈ R>0. Given ε ∈ {0, 1}, define a−n = (−1)εan, b−n =
(−1)εbn, and introduce, for z = x+ iy ∈ H:

(3.1) f(z) = f0(z) + f̃(z), g(z) = g0(z) + g̃(z),

where:

f̃(z) =
1

2

∑
n6=0

an
√
yK(2πny) exp(2πinx),

g̃(z) =
1

2

∑
n6=0

bn
√
yK(2πny) exp(2πinx),

(3.2)

and, with Λf (s) and Λg(s) as in equation (2.51):

f0(z) = −Ress=0 Λf (s)y
1
2 + Ress=0 sΛf (s)y

1
2 log y,

g0(z) = −Ress=0 Λg(s)y
1
2 + Ress=0 sΛg(s)y

1
2 log y.

(3.3)

In this Section, we will prove:
11



Theorem 3.1. Let N be a positive integer, let χ be a Dirichlet character mod N , let ε ∈
{0, 1}, and let an, bn be sequences of complex numbers indexed by n ∈ N such that |an|, |bn| =
O (nσ) for some 0 < σ < 1. For all q relatively prime to N , and all primitive Dirichlet
characters ψ modulo q, define Λf (s, ψ) and Λg(s, ψ̄) as in equation (2.50). Let P be a set
of odd primes such that {p ∈ P : p ≡ u (mod v)} is infinite for every u, v ∈ Z>0 with
(u, v) = 1 and p - N for any p ∈ P. Whenever the conductor q of ψ is either 1 or a prime in
P, assume that Λf (s, ψ) and Λg(s, ψ̄) continue to meromorphic functions on C, and satisfy
equation (2.49). If there is a non-zero polynomial P (s) ∈ C[s] such that P (s)Λf (s) continues
to an entire function of finite order, then the functions Λf (s) and Λg(s) have at most double
poles in the set {0, 1}, the functions f(z) and g(z) defined by equation (3.1) are weight 0
Maass forms on Γ0(N) of parity ε, nebentypus χ (resp. χ) and eigenvalue 1

4
and, furthermore,

f(z) = g(−1/Nz) for all z ∈ H.

Remark 3.2. Whilst the L-functions associated with irreducible 2-dimensional Galois rep-
resentations satisfy several conditions in Theorem 3.1, they are not yet known to have only
finitely many poles and so we do not draw any conclusions about their automorphy. That
said, Theorem 3.1 combined with the analogue for holomorphic modular forms [BK14, The-
orem 1.1] implies [Boo03, Corollary] which says that if the Artin L-function of an irreducible
2-dimensional Galois representation is not automorphic, then it has infinitely many poles.

We will prove Theorem 3.1 by showing that the assumptions imply that the twists are
entire and bounded in vertical strips, at which point we may apply:

Theorem 3.3 (Theorem 3.1 in [NO20]). Let an, bn be sequences of complex numbers such
that |an|, |bn| = O (nσ) for some σ ∈ R, and let N , χ, ε, and P be as in Theorem 3.1.
Assume that:

(1) If ε = 0, then Λf (s) and Λg(s) continue to holomorphic functions of finite order on
C − {0, 1} which are bounded in vertical strips with at most double poles in the set
{0, 1},

(2) If ε = 1, then Λf (s) and Λg(s) continue to entire functions of finite order which are
bounded in vertical strips,

(3) For all primitive characters ψ of conductor q ∈ P, the functions Λf (s, ψ) and Λg(s, ψ̄)
continue to entire functions of finite order which are bounded in vertical strips,

and, for all primitive characters ψ of conductor q ∈ P ∪ {1}, the functions Λf (s, ψ) and
Λg(s, ψ̄) satisfy equation (2.49), then the functions f(z) and g(z) defined by equation (3.1)
are weight 0 Maass forms on Γ0(N) of parity ε, nebentypus χ (resp. χ) and eigenvalue 1

4
and, furthermore, f(z) = g(−1/Nz) for all z ∈ H.

Remark 3.4. The assumption that 0 < σ < 1 in Theorem 3.1 is stronger than the as-
sumption that 0 < σ in Theorem 3.3. The assumption made in Theorem 3.1 is sufficient for
application to Theorem 1.1, but it can presumably be relaxed with some additional tech-
nicalities. Following the argument below, the assumption that σ < 1 can be avoided until
after Corollary 3.11.

We begin with the following Lemma:

Lemma 3.5 (Lemma 4.2 in [NO20]). Make the assumptions of Theorem 3.1. Let z ∈ H
and write w = Re (z)

Im (z)
. We have:
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(3.4) f̃(z)− g̃
(
− 1

Nz

)
=

(2w)ε

2πi

∮
Λf (s) 2F1

(
s+ε
2
, s+ε

2
1
2
+ε

∣∣∣− w2
)

Im(z)
1
2
−sds,

where the integral is taken so that the contour encloses all poles5 of Λf (s).

Remark 3.6. Lemma 3.5 was originally stated in terms of a parameter ν which was assumed
to be non-zero, though this assumption was never used in the proof and the statement remains
valid as stated above. In particular, the integrand in equation (3.4) is rapidly decaying as
|s| → ∞ in a vertical strip, and this is an essential part of the proof.

From now on, we consider α ∈ Q>0, and set z = α(1 + iy) ∈ H. Equation (3.4) now reads:

(3.5) f̃(z)− g̃
(
− 1

Nz

)
=

(2y−1)ε

2πi

∮
Λf (s) 2F1

(
s+ε
2
, s+ε

2
1
2
+ε

∣∣∣− y−2) (αy)
1
2
−sds.

Suppose that y ∈ (0, 1). Replacing w by−y−2 in equation (2.26), multiplying by (2y−1)
ε
(αy)

1
2
−s,

and noting that 2εΓ
(
1
2

+ ε
)

=
√
π for ε ∈ {0, 1}, we get:

(3.6)
(
2y−1

)ε
2F1

(
s+ε
2
, s+ε

2
1
2
+ε

∣∣∣− y−2) (αy)
1
2
−s =

√
π α

1
2
−s

∞∑
k=0

(−1)ky2k+
1
2

(k!)2
Gk(s)

· (−2 log(y) + Jk(s)) ,

where, for k ∈ Z≥0, we define:

(3.7) Gk(s) =

(
s+ε
2

)
k

(
s−ε+1

2

)
k

Γ( s+ε
2

)Γ(1−s+ε
2

)
,

and

(3.8) Jk(s) = 2Ψ(k + 1)−Ψ

(
s+ ε

2
+ k

)
−Ψ

(
s− ε+ 1

2
+ k

)
+ Ψ

(
s− ε+ 1

2

)
−Ψ

(
1 + ε− s

2

)
.

Though it is not reflected in the notation, we mention that the functions defined in equa-
tions (3.7) and (3.8) depend on ε. Note that Gk(s) is entire, and the product Jk(s)Gk(s) has
only removable singularities. For 0 < y < 1, we deduce from equation (3.6) that:

(3.9)
(
2y−1

)ε
2F1

(
s+ε
2
, s+ε

2
1
2
+ε

∣∣∣− y−2) (αy)
1
2
−s

=
√
π α

1
2
−s

`0−1∑
k=0

(−1)ky2k+
1
2

(k!)2
Gk(s) (−2 log(y) + Jk(s)) +O

(
y2`0+

1
2 log(y)

)
.

5By assumption, there is a polynomial P (s) ∈ C[s] so that P (s)Λf (s) is entire. We make no similar
assumptions about the twists Λf (s, ψ), ψ 6= 1. This will be relevant again in equations (3.11) and (3.12).
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For s in a fixed compact set, the error term can be chosen independently from s. Integrating
equation (3.9) around a contour enclosing all poles of Λf (s), we obtain:

(3.10)
(2y−1)ε

2πi

∮
Λf (s) 2F1

(
s+ε
2
, s+ε

2
1
2
+ε

∣∣∣− y−2) (αy)
1
2
−sds

=

`0−1∑
k=0

(
−2 log(y)Ik(α) + Ĩk(α)

)
y2k+

1
2 +O

(
y2`0+

1
2 log(y)

)
,

where

(3.11) Ik(α) = (−1)k
√
π

(k!)2
· 1

2πi

∮
Λf (s)Gk(s)α

1
2
−sds,

and

(3.12) Ĩk(α) = (−1)k
√
π

(k!)2
· 1

2πi

∮
Λf (s)Jk(s)Gk(s)α

1
2
−sds.

The functions in (3.11) and (3.12) depend on ε.

Definition 3.7. For any open interval (a, b) ⊂ R denote byM(a, b) the set of meromorphic
functions which are holomorphic on a < Re (s) < b except for at most double poles at each
s ∈ Z, and which are bounded on the strips {s ∈ C : Re (s) ∈ [c, d], |Im (s)| ≥ 1} for each
compact [c, d] ⊂ (a, b). Furthermore, let H(a, b) denote the set of f ∈ M(a, b) such that f
is holomorphic at each s ∈ Z.

Given α ∈ Q>0, from now on we will write β = −1/Nα.

Lemma 3.8. For α ∈ Q>0 and `0 ∈ Z>0, the following function is in H
(
3
2
− 2`0,∞

)
:

(3.13) Mα(s) = (Nα2)s−
1
2

∑
a∈{0,1}

i−a
2`0−1∑
t=0

t≡a+ε mod 2

(2πiNα)tΓR(1− s)2Λg

(
s+ t, β, cos(a)

)
t!ΓR (1− s− 2 bt/2c)2

− i−επεΛf

(
s, α, cos(ε)

)
+ αs−

1
2

`0−1∑
k=0

(
Ĩk(α)

s+ 2k
+ 2

Ik(α)

(s+ 2k)2

)
,

where bt/2c denotes the largest integer m ≤ t/2.

Proof. Replacing y by αy in [BCK19, Lemma 2.4], for y ∈ (0, 1
2
] and `0 ∈ Z>0, we get6:

(3.14) g̃

(
− 1

N(α + αiy)

)
= O

(
y2`0−1

)
+
∑

a∈{0,1}

i−a
2`0−1∑
t=0

t≡a+ε mod 2

(2πiNα)t

t!

· 1

2πi

∫
Re(s′)=2

ΓR (1− s′)2 Λg

(
s′ + t, β, cos(a)

)
ΓR (1− s′ − 2 bt/2c)2

( y

Nα

) 1
2
−s′

ds′.

6Equation (3.14) was originally stated for a function constructed using a Maass form, though the proof
demonstrates that it remains valid for g. The chosen contour Re(s′) = 2 requires that σ < 1, however could
be replaced with Re(s′) = 1 + σ + ι, for any ι > 0.
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Denote by 1(0,1) the indicator function for the interval (0, 1). For y > 0, we introduce the
following function:

(3.15) Fα(y) :=
∑

a∈{0,1}

i−a
2`0−1∑
t=0

t≡a+ε mod 2

(2πiNα)t

t!

· 1

2πi

∫
Re(s′)=2

ΓR(1− s′)2Λg

(
s′ + t, β, cos(a)

)
ΓR (1− s′ − 2bt/2c)2

( y

Nα

) 1
2
−s′

ds′

− f̃(α + iαy) + 1(0,1)(y)

`0−1∑
k=0

(
−2 log(y)Ik(α) + Ĩk(α)

)
y2k+

1
2 .

Using equations (3.5), (3.10), and (3.14), and noting that y2`0+
1
2 log(y) = O

(
y2`0−1

)
as

y → 0+, we deduce that Fα(y) = O
(
y2`0−1

)
as y → 0+. On the other hand, shifting

the contour in equation (3.15) to the right, we see that Fα(y) decays rapidly as y → ∞.
Using the theory of Mellin transforms, we deduce that the following integral transform is in
H
(
3
2
− 2`0,∞

)
:

M (Fα) (s) =

∫ ∞
0

Fα(y)(αy)s−
1
2
dy

y
.

The result follows upon identification ofM (Fα) (s) with Mα(s), which is achieved as follows.
Firstly, note that:

(3.16)

∫ ∞
0

1(0,1)(y)

`0−1∑
k=0

(
−2 log (y) Ik(α) + Ĩk(α)

)
y2k+

1
2 (αy)s−

1
2
dy

y

= αs−
1
2

∫ ∞
0

1(0,1)(y)

`0−1∑
k=0

(
−2 log (y) Ik(α) + Ĩk(α)

)
ys+2k dy

y

= αs−
1
2

`0−1∑
k=0

(
Ĩk(α)

s+ 2k
+ 2

Ik(α)

(s+ 2k)2

)
.

Secondly, using Mellin inversion, we calculate:

(3.17)

∫ ∞
0

 ∑
a∈{0,1}

i−a
2`0−1∑
t=0

t≡a+ε mod 2

(2πiNα)t

t!

· 1

2πi

∫
Re(s′)=2

ΓR(1− s′)2Λg

(
s′ + t, β, cos(a)

)
ΓR (1− s′ − 2bt/2c)2

( y

Nα

) 1
2
−s′

ds′

)
(αy)s−

1
2
dy

y

= (Nα2)s−
1
2

∑
a∈{0,1}

i−a
2`0−1∑
t=0

t≡a+ε mod 2

(2πiNα)tΓR(1− s)2Λg

(
s+ t, β, cos(a)

)
t!ΓR (1− s− 2 bt/2c)2

.
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In order to evaluate the remaining integral, we will apply [GR15, 6.561(16)] with µ = s− 1,
ν = 0, and a = 2πα, which is valid for for Re(µ+ 1± ν) = Re(s) > 0:

(3.18) 4

∫ ∞
0

K(2παy)ys
dy

y
= (πα)−s Γ

(s
2

)2
= α−sΓR(s)2.

For n > 0, we recall that an = (−1)εa−n. Using equations (3.2), (2.53), and (3.18), for
Re(s) > 1 + σ > 0, we compute:∫ ∞

0

f̃(α + iαy)(αy)s−
1
2
dy

y

=

∫ ∞
0

1

2

∑
n6=0

an
√
αyK(2πnαy) exp(2πinα)(αy)s−

1
2
dy

y

=
αs

2

∑
n6=0

an exp(2πinα)|n|−s
∫ ∞
0

K(2παy)ys
dy

y

=
αs

2

∞∑
n=1

an (exp(2πinα) + (−1)ε exp(−2πinα))n−s
∫ ∞
0

K(2παy)ys
dy

y

=αsi−ε
∞∑
n=1

an cos(ε)(2πinα)n−s
∫ ∞
0

K(2παy)ys
dy

y

=i−ε
∞∑
n=1

an cos(ε)(2πinα)n−sΓR(s)2

=i−επεLf
(
s, α, cos(ε)

)
ΓR(s+ [ε+ ε])2

=i−επεΛf

(
s, α, cos(ε)

)
.

(3.19)

Since the functions in equation (3.19) extend to meromorphic functions on Re(s) > 3
2
−

2`0, the identity remains valid within this larger domain away from any poles. Combining
equations (3.15), (3.16), (3.17), and (3.19), we deduce that Mα(s) =M (Fα) (s). �

Let β = u
v
∈ Q×, where (u, v) = 1 and v > 0. As in [BK14, NO20], we introduce the

infinite set

Tβ :=
{p
u
∈ Q>0 : p ≡ u mod v, p ∈ P

}
.

The set Tβ is unbounded by assumption on P . An important property is that if λ ∈ Tβ then
Λg

(
s, λβ, cos(r)

)
= Λg

(
s, β, cos(r)

)
. Given t0 ∈ Z≥0, choose `0 ∈ Z>0 such that 2`0 > t0.

Consider any subset Tβ,M ⊂ Tβ such that |Tβ,M | = M ≥ 2`0 > t0. By the theory of
Vandermonde determinants, for each λ ∈ Tβ,M there exists cλ ∈ C such that

(3.20)
∑

λ∈Tβ,M

cλλ
−t = δt0(t), t ∈ {0, 1, . . . ,M − 1},

where δt0(t) is the Kronecker delta function.
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Lemma 3.9. Let α ∈ Q>0, t0 ∈ Z≥0, Tβ,M ⊂ Tβ of size M ≥ 2`0 > t0, and choose cλ ∈ C to
satisfy equation (3.20). The following function is in H

(
t0 + 3

2
− 2`0,∞

)
:

(3.21) i−[ε+t0](Nα2)s−
1
2α−t0

(2πi)t0ΓR(1− s+ t0)
2Λg

(
s, β, cos([ε+t0])

)
t0!ΓR (1− s+ [t0])

2

−
∑

λ∈Tβ,M

cλλ
2s−2t0−1

[
(−iπ)εΛf

(
s− t0, αλ−1, cos(ε)

)
− (λ−1α)s−t0−

1
2

`0−1∑
k=0

(
Ĩk(αλ−1)
s− t0 + 2k

+ 2
Ik(αλ−1)

(s− t0 + 2k)2

)]
.

Proof. The function in (3.21) is equal to
∑

λ∈Tβ,M cλλ
2s−2t0−1Mλ−1α(s− t0), where Mλ−1α(s−

t0) is as in equation (3.13). The result is a consequence of Lemma 3.8. For the first term we
apply (3.20) as follows:

∑
λ∈Tβ,M

cλλ
2s−1

(
N
(
λ−1α

)2)s− 1
2
∑

a∈{0,1}

i−a
2`0−1∑
t=0

t≡a+ε mod 2

(2πiNλ−1α)t

t!

·
ΓR(1− s)2Λg

(
s+ t, λβ, cos(a)

)
ΓR (1− s− 2 bt/2c)2

= i−[ε+t0]
(
Nα2

)s− 1
2

(2πiNα)t0Λg

(
s+ t0, β, cos([ε+t0])

)
ΓR(1− s)2

t0!ΓR (1− s− 2 bt0/2c)2
.

To deduce equation (3.21), we use that t0 − 2 bt0/2c = [t0]. �

For t ∈ Z, we define the following subset of M(a, b):

Mt(a, b) = {h ∈M(a, b) : h is holomorphic at s ∈ 2Z + t+ 1}.
TakingM = 2`0+1, Lemma 3.9 implies that the following function is inMt0

(
t0 −M + 5

2
,∞
)
:

(3.22) i−[ε+t0](Nα2)s−
1
2α−t0

(2πi)t0ΓR(1− s+ t0)
2Λg

(
s, β, cos([ε+t0])

)
t0!ΓR (1− s+ [t0])

2

− (−iπ)ε
∑

λ∈Tβ,M

cλλ
2s−2t0−1Λf

(
s− t0, αλ−1, cos(ε)

)
.

Proposition 3.10. Let q ∈ P ∪ {1} and let β = b
Nq

for some b ∈ Z such that (b,Nq) = 1.

Under the assumptions of Theorem 3.1, for any r ∈ {0, 1}, the functions Λf

(
s, β, cos(r)

)
and

Λg

(
s, β, cos(r)

)
continue to elements of M(−∞,∞).

Proof. Consider first the function Λg

(
s, β, cos(r)

)
. If b′ ≡ −b mod Nq, then Λg

(
s, β, cos(r)

)
=

Λg

(
s,− b′

Nq
, cos(r)

)
. Without loss of generality, we may therefore assume β < 0 and −b ∈ P .

Let q′ ∈ P − {q} satisfy (b, q′) = 1. Write β′ = b
Nq′

and α′ = − 1
Nβ

. Since β and β′ have

the same numerator, the intersection Tβ ∩ Tβ′ is infinite. For t0 ∈ Z≥0 we can thus choose a
set TM ⊂ Tβ ∩Tβ′ with M > t0 elements and we can find cλ ∈ C such that equation (3.20) is
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satisfied. Evaluating the function in equation (3.22) at β and β′ and taking the difference,
we deduce that the following function is an element of Mt0

(
t0 −M + 5

2
,∞
)
:

(3.23)
ΓR(1− s+ t0)

2

ΓR (1− s+ [t0])
2

(
α2s−t0−1Λg

(
s, β, cos([ε+t0])

)
− α′2s−t0−1Λg

(
s, β′, cos([ε+t0])

))
− i−[ε+t0](−iπ)εt0!

N s− 1
2 (2πi)t0

∑
λ∈TM

cλλ
2s−2t0−1

(
Λf

(
s− t0, αλ−1, cos(ε)

)
− Λf

(
s− t0, α′λ−1, cos(ε)

))
.

Note that the poles of ΓR(s) lie in the region Re (s) < 1. By assumption we have that
an = O (nσ), for some σ > 0. For all λ ∈ TM , we see that Λf

(
s, αλ−1, cos(ε)

)
is holomorphic

for Re (s) > σ + 1. Using equation (2.56), we deduce that the following function is in
H (−∞, t0 − σ):

Λf

(
s− t0, αλ−1, cos(ε)

)
− Λf

(
s− t0, α′λ−1, cos(ε)

)
.

For every t0 ∈ Z≥0, equation (3.23) thus implies that the following function continues to an
element of Mt0

(
t0 −M + 5

2
, t0 − σ

)
:

(3.24)
ΓR(1− s+ t0)

2

ΓR (1− s+ [t0])
2

(
α2s−t0−1Λg

(
s, β, cos([ε+t0])

)
− α′2s−t0−1Λg

(
s, β′, cos([ε+t0])

))
.

The function in equation (3.24) is independent of TM . Taking M to be arbitrarily large, it
follows that the function in equation (3.24) is in Mt0 (−∞, t0 − σ). We observe that the
zeros of the following function have order 2 and are contained in the set 2Z≥0 + 1 + [t0]:

(3.25)
ΓR(1− s+ t0)

2

ΓR (1− s+ [t0])
2 .

Dividing the function in equation (3.24) by that in (3.25), we conclude that the following
function is in M (−∞, t0 − σ):

α2s−t0−1Λg

(
s, β, cos([ε+t0])

)
− α′2s−t0−1Λg

(
s, β′, cos([ε+t0])

)
.

Since α 6= α′, varying t0 ≥ 0 implies that Λg

(
s, β, cos([ε+t0])

)
continues to an element in

M (−∞, t0 − σ). Since [t0+ε] depends only on the parity [t0], taking t0 arbitrarily large whilst
keeping [t0] constant implies that Λg

(
s, β, cos([ε+t0])

)
is in M(−∞,∞). Reversing the roles

of f and g and repeating the argument above, we find the same for Λf

(
s, β, cos([ε+t0])

)
. �

Corollary 3.11. Let q ∈ P ∪ {1} and let β = b
q

for some b ∈ Z such that (b, q) = 1.

Under the assumptions of Theorem 3.1, for any r ∈ {0, 1}, the functions Λf

(
s, β, cos(r)

)
and

Λg

(
s, β, cos(r)

)
continue to elements of M(−∞,∞).

Proof. As in the proof of Proposition 3.10, we may assume that β < 0 and −b ∈ P . Let
t0 ∈ Z≥0, M > t0 and consider Tβ,M ⊂ Tβ of cardinality M satisfying (3.20). We have
α = − q

Nb
and so, if λ ∈ Tβ,M , then αλ−1 = − q

Np
. Applying Proposition 3.10, we see that

Λf

(
s− t0, αλ−1, cos(ε)

)
continues to an element inM(−∞,∞). By equation (3.22) we know

that Λg

(
s, β, cos([ε+t0])

)
is inM

(
t0 −M + 5

2
,∞
)

for t0 ∈ {0, 1}. Taking M to be arbitrarily

large, we conclude that Λg

(
s, β, cos(r)

)
is inM(−∞,∞). Reversing the roles of f and g and

repeating the argument above, the same follows for Λg

(
s, β, cos(r)

)
. �
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Taking b = q = 1 in Corollary 3.11, we see that Λf (s) and Λg(s) are holomorphic away from
at most double poles at s ∈ Z and bounded in vertical strips. On the other hand, recall that
the Dirichlet series defining Lf (s) and Lg(s) in equation (2.48) converge for Re (s) > 1 + σ,
and so Λf (s) and Λg(s) are holomorphic for Re (s) > 1 + σ. The functional equation (2.49)
moreover implies that Λf (s) and Λg(s) are holomorphic for Re (s) < −σ. In Theorem 3.1 we
assume that 0 < σ < 1, and so we deduce that Λf (s) and Λg(s) are holomorphic away from
at most double poles at s ∈ {0, 1}. In particular, we see that assumption (1) in Theorem 3.3
is valid.

Lemma 3.12. Assume that α ∈ Q>0 and β = −1/Nα are such that, for r ∈ {0, 1},
the functions Λg

(
s, β, cos(r)

)
and Λf

(
s, α, cos(r)

)
continue to elements of M(−∞,∞). For

s0 ∈ Z<1, choose t0 ∈ Z>1 such that [t0] = [s0] and write j = 1
2
(t0 − s0). Let Tβ,M ⊂ Tβ be a

set of size M ≥ 2`0 > t0− s0 + 3/2 > t0− s0 = 2j > 0 and choose cλ ∈ C satisfying equation
(3.20). If ε = 1, then

(3.26) iπ
∑

λ∈Tβ,M

cλλ
2s0−2t0−1 Ress=s0(s− s0)Λf

(
s− t0, αλ−1, sin

)
= i−[1+t0](Nα2)s0−

1
2α−t0

(2πi)t0ΓR(1− s0 + t0)
2

t0!ΓR (1− s0 + [t0])
2 Ress=s0(s− s0)Λg

(
s, β, cos([1+t0])

)
+(−1)j

√
π

(j!)2
αs0−t0−1

(
δ0(s0)G

′
j(1) Ress=1(s−1)Λf (s)+δ0(s0)Gj(1) log(α) Ress=1(s−1)Λf (s)

−Gj(1)
∑

λ∈Tβ,M

cλλ
s0−t0 log(λ) Ress=1(s− 1)Λf (s) +Gj(1)δ0(s0) Ress=1 Λf (s)

)
.

Proof. Specifying ε = 1 in equation (3.21), recalling that Λ(s, α, sin) = −Λ
(
s, α, cos(1)

)
, and

multiplying by (s− s0) we get:

(3.27) i−[1+t0](Nα2)s−
1
2α−t0

(2πi)t0ΓR(1− s+ t0)
2(s− s0)Λg

(
s, β, cos([1+t0])

)
t0!ΓR (1− s+ [t0])

2

−
∑

λ∈Tβ,M

cλλ
2s−2t0−1

[
iπ(s− s0)Λf

(
s− t0, αλ−1, sin

)
− (λ−1α)s−t0−

1
2 (s− s0)

`0−1∑
k=0

(
Ĩk(αλ−1)
s− t0 + 2k

+ 2
Ik(αλ−1)

(s− t0 + 2k)2

)]
.

19



Since s0 > t0−2`0+ 3
2
, Lemma 3.9 implies that the function in equation (3.27) is holomorphic

at s = s0. Taking its residue, we deduce:

(3.28) iπRess=s0

 ∑
λ∈Tβ,M

cλλ
2s−2t0−1(s− s0)Λf

(
s− t0, αλ−1, sin

)
= Ress=s0

[
i−[1+t0](Nα2)s−

1
2α−t0

(2πi)t0ΓR(1− s0 + t0)
2(s− s0)Λg

(
s, β, cos([1+t0])

)
t0!ΓR (1− s+ [t0])

2

]
+ 2

∑
λ∈Tβ,M

cλ(λα)s0−t0−
1
2Ij(αλ−1),

where, we have used

(3.29) Ress=s0

[
(λα)s−t0−

1
2 (s− s0)

`0−1∑
k=0

(
Ĩk(αλ−1)
s− t0 + 2k

+ 2
Ik(αλ−1)

(s− t0 + 2k)2

)]
= 2(λα)s0−t0−

1
2Ij(αλ−1),

which holds because j ∈ Z satisfies 0 ≤ j < `0, and appears because λ2s−2t0−1 (λ−1α)
s−t0− 1

2 =

(λα)s−t0−
1
2 . As per the discussion following Corollary 3.11, we know that Λf (s) is holomor-

phic away from integer points in the range −1 < −σ < s < 1 + σ < 2. It follows that:

(3.30) Ij(αλ−1) = (−1)j
√
π

(j!)2
1

2πi

∮
Λf (s)Gj(s)(αλ

−1)
1
2
−sds

= (−1)j
√
π

(j!)2

∑
p∈{0,1}

Ress=p

[
Λf (s)Gj(s)(αλ

−1)
1
2
−s
]
,

where Gj(s) is as in equation (3.7) with ε = 1. Since Gj(s)(αλ
−1)

1
2
−s is entire and Λf (s) has

at most double poles at s ∈ {0, 1}, it follows that Λf (s)Gj(s)(αλ
−1)

1
2
−s has at most a double

pole at s ∈ {0, 1}. In fact, Gj(s)(αλ
−1)

1
2
−s has a simple zero at s = 0 and so the product

Λf (s)Gj(s) has at most a simple pole at s = 0. For s close to 0, we note the expansion:

(3.31) Gj(s) =
(1/2)j (j − 1)!

2
√
π

s+O
(
s2
)
,

in which the implied constant depends on j. Substituting equation (3.31) into equation
(3.30), we deduce:

(3.32) Ij(αλ−1) =
(−1)j

2(j!)2

[
(αλ−1)

1
2 (1/2)j (j − 1)! Ress=0 sΛf (s)

+
√
π
(
G′j(1)(αλ−1)−

1
2 +Gj(1) log(αλ−1)(αλ−1)−

1
2

)
Ress=1(s− 1)Λf (s)

+
√
π Gj(1)(αλ−1)−

1
2 Ress=1 Λf (s)

]
.
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The functions (s−s0)Λf (s− t0, αλ−1, sin) and (s−s0)Λg

(
s, β, cos([1+t0])

)
have at most simple

poles at s = s0. Therefore, substituting equation (3.32) into equation (3.28), we have:

(3.33) iπ
∑

λ∈Tβ,M

cλλ
2s0−2t0−1 Ress=s0(s− s0)Λf

(
s− t0, αλ−1, sin

)
= i−[1+t0](Nα2)s0−

1
2α−t0

(2πi)t0ΓR(1− s+ t0)
2

t0!ΓR (1− s+ [t0])
2 Ress=s0(s− s0)Λg

(
s, β, cos([1+t0])

)
+ (−1)j

(1/2)j
j(j!)

αs0−t0
∑

λ∈Tβ,M

cλλ
s0−t0−1 Ress=0 sΛf (s)

+ (−1)j
√
π

(j!)2
αs0−t0−1

∑
λ∈Tβ,M

cλλ
s0−t0

[
G′j(1) Ress=1(s− 1)Λf (s)

+Gj(1) log(α) Ress=1(s−1)Λf (s)−Gj(1) log(λ) Ress=1(s−1)Λf (s) +Gj(1) Ress=1 Λf (s)
]
.

Equation (3.26) follows from equation (3.33) using equation (3.20), upon noting that δt0(t0−
s0) = δ0(s0) and that the second term on the right hand side of (3.33) vanishes since
−t0 > s0 − t0 − 1 > −2`0. �

Lemma 3.13. Given t0 ∈ Z≥0 and β ∈ Q×, consider `0 ∈ Z>0 so that 2`0 > t0 and Tβ,M ⊂ Tβ
of cardinality M ≥ 2`0 > t0. There exists λ0 ∈ Tβ such that the vectors (λ−t)λ∈Tβ,M∪{λ0} and

(λ−t0 log(λ))λ∈Tβ,M∪{λ0} are linearly independent, for t ∈ {0, 1, . . . ,M − 1}.

Proof. Consider any λ0 ∈ Tβ\{1}. For t ∈ {0, 1, . . . ,M − 1}, consider the (M + 1)× (M +
1)-matrix with columns given by the vectors (λ−t)λ∈Tβ,M∪{λ0} and (λ−t0 log(λ))λ∈Tβ,M∪{λ0}.

Expanding along the λ0−row we see that the determinant of this matrix has the form:

(3.34) λ−t00 log(λ0)c+ P (λ−10 ),

where c is a non-zero constant7 and P (x) ∈ C[x]. Suppose for a contradiction that the
expression in equation (3.34) vanishes for all λ0 ∈ Tβ\{1}, that is:

(3.35) − c =
λt00 P (λ−10 )

log(λ0)
, λ0 ∈ Tβ \ {1}.

Since the set Tβ is unbounded, it follows that we may choose λ0 to be arbitrarily large. The
right hand side of (3.35) will always either tend to 0 or ±∞ as λ0 → ∞, depending on P
and t0. This is a contradiction since c 6= 0. �

In particular, for all z ∈ C, there exists λ0 ∈ Tβ, cλ0 ∈ C and cλ ∈ C associated to each
λ ∈ Tβ,M such that

(3.36)
∑

λ∈Tβ,M∪{λ0}

cλλ
−t0 log(λ) = z,

∑
λ∈Tβ,M∪{λ0}

cλλ
−t = δt0(t), t ∈ {0, 1, . . . ,M − 1}.

Lemma 3.14. Make the assumptions of Theorem 3.1. If ε = 1, then Λf (s) and Λg(s) have
at most simple poles at s ∈ {0, 1}.

7More precisely, c is the determinant of the Vandermonde matrix with columns (λ−t)λ∈Tβ,M for t =

0, . . . ,M − 1.
21



Proof. By assumption, Λf (s) and Λg(s) are holomorphic for Re (s) ≥ 2 > 1 +σ and Re (s) <
−σ < 0. Using the functional equation (2.49), we see it suffices to show that:

(3.37) Ress=1(s− 1)Λf (s) = Ress=1(s− 1)Λg(s) = 0.

We will show that Ress=1(s − 1)Λf (s) = 0. Reversing the roles of f and g will yield that
Ress=1(s− 1)Λg(s) = 0.

For q ∈ P ∪ {1}, consider β = − 1
Nq

, so that α = q. Given a subset Tβ,M ⊂ Tβ containing

M elements, choose cλ ∈ C satisfying equation (3.20). Take λ = p ∈ Tβ,M , so that αλ−1 =
q
p
. For t0 ∈ Z>1, our assumptions on {an}∞n=1 and σ imply, using equation (2.56), that

Λf (s− t0, αλ−1, sin) is holomorphic at s = 0. For all t0 ∈ Z>1 such that [t0] = 0, substituting
s0 = 0 into equation (3.26) gives:

(3.38) iN−1/2
(2πi)t0 ΓR(1 + t0)

2

t0!ΓR (1)2
Ress=0 sΛg (s, β, sin)

= (−1)
t0
2

√
π(

t0
2

!
)2[G′t0/2(1) Ress=1(s− 1)Λf (s) +Gt0/2(1) log (α) Ress=1(s− 1)Λf (s)

−Gt0/2(1)
∑

λ∈Tβ,M

cλλ
−t0 log (λ) Ress=1(s− 1)Λf (s) +Gt0/2(1) Ress=1 Λf (s)

]
.

By Lemma 3.13, for any z ∈ C we can find λ0 ∈ Tβ and cλ, cλ0 ∈ C such that equation
(3.36) is satisfied. The proof of Lemma 3.12 remains valid if we replace Tβ,M by Tβ,M ∪{λ0}.
In particular, equation (3.38) holds with

∑
λ∈Tβ,M cλλ

−t0 log(λ) replaced by an arbitrary

complex number. Since Gt0/2(1) 6= 0, we conclude that Ress=1(s− 1)Λf (s) = 0. �

Lemma 3.15. Make the assumptions of Lemma 3.12, so that, in particular, we have ε = 1
and [t0] = [s0]. We have:

(3.39) iπRess=s0

 ∑
λ∈Tβ,M

cλλ
2s−2t0−1Λf

(
s− t0, αλ−1, sin

)
= Ress=s0

[
i−[1+t0](Nα2)s−1/2α−t0

(2πi)t0ΓR(1− s+ t0)
2

t0!ΓR (1− s+ [t0])
2 Λg

(
s, β, cos([1+t0])

)]
+ (−1)j

√
π

(j!)2
Gj(1)αs0−t0−1

∑
λ∈Tβ,M

cλλ
−t0 log(λ) Ress=1 Λf (s)

+ (−1)j
√
π

(j!)2
Gj(1)αs0−t0−1 log(α)δ0(s0) Ress=1 Λf (s)

+ (−1)j
√
π

(j!)2
Jj(1)Gj(1)αs0−t0−1δ0(s0) Ress=1 Λf (s).

Proof. For j as in Lemma 3.12, we compute:

(3.40) Ress=s0

[
(λα)s−t0−

1
2

`0−1∑
k=0

Ik(αλ−1)
(s− t0 + 2k)2

]
= log(λα)(λα)s0−t0−

1
2Ij(αλ−1).
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By Lemma 3.14, the function Λf (s) has at most simple poles. Simplifying equation (3.32)
accordingly, we get:

(3.41) Ij(αλ−1) = (−1)j(αλ−1)−
1
2

√
π Gj(1)

2(j!)2
Ress=1 Λf (s).

Substituting equation (3.41) into equation (3.40), we obtain:

(3.42) Ress=s0

[
(λα)s−t0−

1
2

`0−1∑
k=0

Ik(αλ−1)
(s− t0 + 2k)2

]

= (−1)j log(λα)λs0−t0αs0−t0−1
√
πGj(1)

2(j!)2
Ress=1 Λf (s).

On the other hand, we observe:

(3.43) Ress=s0

[
(λα)s−t0−1

`0−1∑
k=0

Ĩk(αλ−1)
s− t0 + 2k

]
= (λα)s0−t0−1Ĩj(αλ−1).

Mimicking the computation of Ij(αλ−1) presented in the proof of Lemma 3.12, we deduce:

(3.44) Ĩj(αλ−1) = (−1)j
√
π

(j!)2

∑
p∈{0,1}

Ress=p

[
Λf (s)Jj(s)Gj(s)(αλ

−1)
1
2
−s
]
,

where Jj(s) is as in equation (3.8), both with ε = 1. Since Λf (s) has at most simple poles,
equation (3.44) implies8:

(3.45) Ĩj(αλ−1) = (−1)j
√
π

(j!)2

(
α

1
2λ−

1
2Jj(0)Gj(0) Ress=0 Λf (s)

+α−
1
2λ

1
2Jj(1)Gj(1) Ress=1 Λf (s)

)
.

Substituting equation (3.45) into equation (3.43), we get:

(3.46) Ress=s0

[
(λα)s−t0−1

`0−1∑
k=0

Ĩk(αλ−1)
s− t0 + 2k

]

= (−1)j(λα)s0−t0−1
√
π

(j!)2

(
α

1
2λ−

1
2Jj(0)Gj(0) Ress=0 Λf (s) + α−

1
2λ

1
2Jj(1)Gj(1) Ress=1 Λf (s)

)
.

8Note that Jj(s)Gj(s) has a removable singularity at s = 0, and lims→0 Jj(s)Gj(s) 6= 0. Abusing notation,
we write Jj(0)Gj(0) = lims→0 Jj(s)Gj(s).
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The function in equation (3.21) is holomorphic at s0. Taking the residue of this function at
s = s0 and applying equations (3.42) and (3.46), we obtain:

(3.47) iπRess=s0

 ∑
λ∈Tβ,M

cλλ
2s−2t0−1Λf

(
s− t0, αλ−1, sin

)
= Ress=s0

[
i−[1+t0](Nα2)s−1/2α−t0

(2πi)t0ΓR(1− s+ t0)
2

t0!ΓR (1− s+ [t0])
2 Λg

(
s, β, cos([1+t0])

)]
+ (−1)j

√
π

(j!)2
Gj(1)αs0−t0−1

∑
λ∈Tβ,M

cλλ
s0−t0 log(λ) Ress=1 Λf (s)

+ (−1)j
√
π

(j!)2
Gj(1)αs0−t0−1 log(α)

∑
λ∈Tβ,M

cλλ
s0−t0 Ress=1 Λf (s)

+ (−1)j
√
π

(j!)2
Jj(0)Gj(0)αs0−t0

∑
λ∈Tβ,M

cλλ
s0−t0−1 Ress=0 Λf (s)

+ (−1)j
√
π

(j!)2
Jj(1)Gj(1)αs0−t0−1

∑
λ∈Tβ,M

cλλ
s0−t0 Ress=1 Λf (s).

Equation (3.39) follows from equation (3.47), using equation (3.20) and noting that δt0(t0−
s0) = δ0(s0) as in Lemma 3.12. �

Proposition 3.16. Make the assumptions of Theorem 3.1. If ε = 1, then Λf (s) and Λg(s)
are entire and bounded in vertical strips.

That is, assumption (2) in Theorem 3.3 is valid.

Proof. Since Λf (s) and Λg(s) are in M(−∞,∞), it suffices to prove entirety. Mimicking
the argument surrounding equation (3.37), we see it suffices to show that Ress=1 Λf (s) = 0
(reversing the roles of f and g will yield that Ress=1 Λg(s) = 0).

Consider t0 ∈ Z>1 such that [t0] = 0, let α ∈ Q>0 and β = −1/Nα be such that,
for r ∈ {0, 1}, the functions Λg

(
s, β, cos(r)

)
and Λf

(
s, α, cos(r)

)
continue to elements of

M(−∞,∞), let M > t0 + 3/2, let Tβ,M be a set of size M , and, for λ ∈ Tβ,M , choose cλ
satisfying equation (3.20). We may apply Lemma 3.15 in the case that s0 = 0. For λ ∈ Tβ,M ,
our assumptions on t0, {an}∞n=1 and σ imply, using equation (2.56), that Λf (s− t0, αλ−1, sin)
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is holomorphic at s = 0. Taking s0 = 0, equation (3.39) simplifies to:

(3.48) − Ress=0

[
iN−1/2

(2πi)t0ΓR(1− s+ t0)
2

t0!ΓR (1− s+ [t0])
2 Λg

(
s, β, cos([1+t0])

)]
= (−1)

t0
2

√
π

( t0
2

!)2
Gt0/2(1)

∑
λ∈Tβ,M

cλλ
−t0 log(λ) Ress=1 Λf (s)

+ (−1)
t0
2

√
π

( t0
2

!)2
Gt0/2(1) log(α) Ress=1 Λf (s)

+ (−1)
t0
2

√
π

( t0
2

!)2
Jt0/2(1)Gt0/2(1) Ress=1 Λf (s).

We conclude that Ress=1 Λf (s) = 0 via an argument analogous to that presented in the final
paragraph in the proof of Lemma 3.14, using (3.48) in place of equation equation (3.38). �

Lemma 3.17. Let α, β, r, s0, t0, j,M, cλ be as in Lemma 3.12. If ε = 0, then

(3.49)
∑

λ∈Tβ,M

cλλ
2s0−2t0−1 Ress=s0(s− s0)Λf

(
s− t0, αλ−1, cos

)
= i−[t0](Nα2)s0−1/2α−t0

(2πi)t0ΓR(1− s0 + t0)
2

t0!ΓR (1− s0 + [t0])
2 Ress=s0(s− s0)Λg

(
s, β, cos([t0])

)
+ δ0(s0)(−1)j+1 (1/2)j

j!
αs0−t0−1 Ress=1(s− 1)Λf (s).

Proof. The proof is similar to that of Lemma 3.12. In place of equation (3.28), we get:

Ress=s0

 ∑
λ∈Tβ,M

cλλ
2s−2t0−1(s− s0)Λf

(
s− t0, αλ−1, cos

)
= Ress=s0

[
i−[t0](Nα2)s−

1
2α−t0

(2πi)t0ΓR(1− s+ t0)
2(s− s0)Λg

(
s, β, cos([t0])

)
t0!ΓR (1− s+ [t0])

2

]
+ 2

∑
λ∈Tβ,M

cλ(λα)s0−t0−
1
2Ij(αλ−1).

We may compute Ij(αλ−1) as in equation (3.30). When ε = 0, the function Gj(s) has a
double zero at s = 0, and a single zero at s = 1. For s close to 1, we have the expansion:

1

Γ
(
1−s
2

) = −s− 1

2
+O

((
1− s

2

)2
)
,

and so:

(3.50) Ij(αλ−1) =
(−1)j+1(1/2)j

2(j!)
(αλ−1)−

1
2 Ress=1(s− 1)Λf (s).

We conclude as in the proof of Lemma 3.12, noting again that δt0(t0 − s0) = δ0(s0). �
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Lemma 3.18. Make the assumptions of Theorem 3.1. If ψ is a primitive Dirichlet char-
acter with conductor q ∈ P , then the twisted L-functions Λf (s, ψ) and Λg(s, ψ) extend to
holomorphic functions except for at most simple poles in the set {0, 1}.

Proof. Mimicking the argument surrounding equation (3.37), we see it suffices to show that
Ress=0 sΛg(s, ψ) = 0 (reversing the roles of f and g will yield that Ress=0 sΛf (s, ψ) = 0).

Given s0 ∈ Z<1, choose `0,M, t0 ∈ Z>1 such that M ≥ 2`0 > t0− s0 + 3
2
. For α ∈ Q>0 and

β = −1/Nα choose Tβ,M ⊂ Tβ of size M , and, for each λ ∈ Tβ,M , choose cλ ∈ C satisfying
equation (3.20). Since s0 > t0 − 2`0 + 3

2
the function in equation (3.21) is holomorphic at

s = s0. Multiplying this function by (s− s0) and taking the residue at s = s0, we see that:

(3.51) i−[ε+t0](Nα2)s0−
1
2α−t0

(2πi)t0ΓR(1− s0 + t0)
2

t0!ΓR (1− s0 + [t0])
2 Ress=s0(s− s0)Λg

(
s, β, cos([ε+t0])

)
=

∑
λ∈Tβ,M

cλλ
2s0−2t0−1(−iπ)ε Ress=s0(s− s0)Λf

(
s− t0, αλ−1, cos(ε)

)
.

The remainder of the proof is split into five steps.

Step 1: Additive twists (ε = 1). First set β = b
Nq

, for some b < 0 such that (b,Nq) = 1.

For λ ∈ Tβ, it follows that αλ−1 = q
p

for some p ≡ b mod Nq. Using our assumptions

on s0, t0, {an}∞n=1, and σ, we deduce from equation (2.56) that Λf (s − t0, αλ
−1, sin) is

holomorphic at s = s0. It follows that the expression in the right-hand side of equation
(3.51) is zero. Choosing t0 of different parity to s0, we get [ε + t0] = [s0]. Therefore

Ress=s0(s− s0)Λg

(
s, b

Nq
, cos([s0])

)
= 0 for all s0 < 1.

If instead b > 0, and still satisfying (b,Nq) = 1, then we can take b′ ∈ P with b′ ≡
−b mod Nq, so that we have Λg

(
s, b

Nq
, cos([s0])

)
= Λg

(
s,− b′

Nq
, cos([s0])

)
. Combining the

cases b < 0 and b > 0, we observe that Ress=s0(s − s0)Λg

(
s, β, cos([s0])

)
= 0 for all β = b

Nq

with (b,Nq) = 1.
Taking t0 of the same parity as s0, we may apply equation (3.26) and Proposition 3.16 to

obtain

(3.52) i−[1+t0](Nα2)s0−
1
2α−t0

(2πi)t0ΓR(1− s0 + t0)
2

t0!ΓR (1− s0 + [t0])
2 Ress=s0(s− s0)Λg

(
s, β, cos([1+t0])

)
= iπ

∑
λ∈Tβ,M

cλλ
2s0−2t0−1 Ress=s0(s− s0)Λf

(
s− t0, αλ−1, sin

)
.

If β = b
Nq

, for some b ∈ Z such that (b,Nq) = 1, then, using equation (2.56), we conclude

as above that the right-hand side of equation (3.52) vanishes. Hence, for all s0 < 1, we have

Ress=s0(s− s0)Λg

(
s, b

Nq
, cos([1+s0])

)
= 0.

On the other hand, if β = b
q

for some b < 0 such that (b, q) = 1, then λ−1α = q
Np

for some

prime p ≡ −b mod q and the right-hand sides of equations (3.51) and (3.52) vanish. Thus,

applying equation (3.51) with s0 = 0 and t0 = 3, we obtain that Ress=0 sΛg

(
s, b

q
, cos

)
= 0,

and, applying equation (3.52) with s0 = 0 and t0 = 2, we infer that Ress=0 sΛg

(
s, b

q
, sin

)
= 0.
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Step 2: Additive twists (ε = 0). Consider two negative rational numbers β, β′ with the
same numerator. For t0 ∈ Z>1 we can choose, as in the proof of Proposition 3.10, a set
TM ⊂ Tβ ∩ Tβ′ of size M as in Step 1, and we can find cλ ∈ C such that equation (3.20)
is satisfied. For s0 ∈ Z<1, applying equation (3.51) to both β and β′, then subtracting, we
compute:

(3.53) i−[t0]N s0− 1
2

(2πi)t0ΓR(1− s0 + t0)
2

t0!ΓR (1− s0 + [t0])
2

(
α2s0−t0−1 Ress=s0(s− s0)Λg

(
s, β, cos([t0])

)
−α′2s0−t0−1 Ress=s0(s− s0)Λg

(
s, β′, cos([t0])

))
=
∑
λ∈TM

cλλ
2s0−2t0−1 Ress=s0

[
(s− s0)

(
Λf

(
s− t0, αλ−1, cos

)
− Λf

(
s− t0, α′λ−1, cos

))]
,

where we write α′ = −1/Nβ′.
Consider β = b

Nq
and β′ = b

Nq′
for some b < 0 and q′ ∈ P such that q 6= q′ and

(b,Nq) = (b,Nq′) = 1. Since s0 − t0 < −σ, equation (2.56) implies that the difference
Λf (s− t0, αλ−1, cos)− Λf (s− t0, α′λ−1, cos) is holomorphic at s = s0. Thus the last line of
equation (3.53) vanishes, so that:

α2s0−t0−1 Ress=s0(s− s0)Λg

(
s, β, cos([t0])

)
= α′2s0−t0−1 Ress=s0(s− s0)Λg

(
s, β′, cos([t0])

)
.

Replacing t0 by another integer of the same parity does not alter the residues on either side of
the above equation. Choose t0 of different parity to s0, so that [t0] = [s0+1]. Since α 6= α′, by
varying t0 whilst preserving its parity, we deduce that Ress=s0(s− s0)Λg

(
s, β, cos([s0+1])

)
= 0

for all s0 < 1. The condition that b < 0 can be relaxed by mimicking the argument presented
in Case 1.

On the other hand, choosing t0 to have the same parity as s0, equation (3.49) applies to
both β and β′. Subtracting these cases of equation (3.49), and noting that

Ress=s0
[
(s− s0)

(
Λf

(
s− t0, αλ−1, cos

)
− Λf

(
s− t0, α′λ−1, cos

))]
= 0,

we obtain:

(3.54) δ0(s0)(−1)j
(1/2)j

(j!)

(
αs0−t0−1 − α′s0−t0−1

)
Ress=1(s− 1)Λf (s)

= i−[t0]N s0− 1
2

(2πi)t0ΓR(1− s0 + t0)
2

t0!ΓR (1− s0 + [t0])
2

(
α2s0−t0−1 Ress=s0(s− s0)Λg

(
s, β, cos([t0])

)
− α′2s0−t0−1 Ress=s0(s− s0)Λg

(
s, β′, cos([t0])

) )
,

where j = 1
2
(t0 − s0). In the case that s0 < 0, the first line of equation (3.54) vanishes. It

follows that:

q2s0−t0−1 Ress=s0(s− s0)Λg

(
s,

b

Nq
, cos([s0])

)
= q′2s0−t0−1 Ress=s0(s− s0)Λg

(
s,

b

Nq′
, cos([s0])

)
.

By varying t0 we see that Ress=s0(s− s0)Λg

(
s, b

Nq
, cos([s0])

)
= 0 for s0 < 0.
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Consider β = b
q

for b < 0. In this case, we have λ−1α = q
Np

for λ ∈ Tβ. We conclude from

the previous paragraph that Ress=0 sΛf (s− 3, λ−1α, cos) = 0, and so equation (3.51) with

s0 = 0, and t0 = 3 implies that Ress=0 sΛg

(
s, b

q
, sin

)
= 0.

Step 3: Odd character twists. Combining Step 1 and Step 2, we have shown that, for ε ∈
{0, 1}, we have Ress=0 sΛg

(
s, b

q
, sin

)
= −Ress=0 sΛg

(
s, b

q
, cos(1)

)
= 0. Varying b mod q and

summing, we deduce from equation (2.54) that, for any odd character ψ of conductor q, we
have Ress=0 sΛg(ψ, s) = 0 as required.

Step 4: Even character twists (ε = 1). It was shown in Step 1 that Ress=0 sΛg

(
s, b

q
, cos

)
= 0.

Varying b mod q, we deduce from equation (2.54) that, for any even character ψ of conductor
q, we have Ress=0 sΛg(ψ, s) = 0 as required.

Step 5: Even character twists (ε = 0). When s0 = 0 and t0 = 2, the left-hand side of
equation (3.49) vanishes. Equating the right-hand side of equation (3.49) with zero, and
multiplying by 2α3, we observe:

(3.55) N−
1
2

(2πi)2ΓR(3)2

ΓR (1)2
Ress=0 sΛg(s, β, cos) = −Ress=1(s− 1)Λf (s).

Equation (3.55) implies that Ress=0 sΛg

(
s, b

q
, cos

)
does not depend on b coprime to q. For

a primitive even character ψ, we may write Λg(s, ψ) as a sum of Λg

(
s, b

q
, cos

)
using equa-

tion (2.54). Multiplying by s and taking the residue at s = 0, we get a constant multiplied by∑
b mod q ψ(b) which is zero by character orthogonality. It follows that Ress=0 sΛg(ψ, s) = 0

as required. �

Lemma 3.19. Let α, β, r, s0, t0,M, cλ be as in Lemma 3.12. If ε = 0, then:

(3.56) Ress=s0

 ∑
λ∈Tβ,M

cλλ
2s−2t0−1Λf

(
s− t0, αλ−1, cos

)
= i−[t0]

(
Nα2

)s0− 1
2 α−t0

(2πi)t0

t0!

[
log(Nα2)

ΓR(1− s0 + t0)
2

ΓR (1− s0 + [t0])
2 Ress=s0(s− s0)Λg

(
s, β, cos([t0])

)
+

d

ds

ΓR(1− s+ t0)
2

ΓR (1− s+ [t0])
2

∣∣∣∣∣
s=s0

Ress=s0(s− s0)Λg

(
s, β, cos([t0])

)
+

ΓR(1− s0 + t0)
2

ΓR (1− s0 + [t0])
2 Ress=s0 Λg

(
s, β, cos([t0])

) ]

+ (−1)jαs0−t0−1
[
δ0(s0)

d

ds
(Jj(s)Gj(s))

∣∣∣
s=1

Ress=1(s− 1)Λf (s)

− 2δ0(s0)

(
1
2

)
j

j!
log(α) Ress=1(s− 1)Λf (s) + δ0(s0)

(
1
2

)
j

j!
Ress=1 Λf (s)

]
.
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Proof. Proceeding as in the proof of Lemma 3.15, we observe:

(3.57) Ress=s0

[
(λα)s−t0−

1
2

`0−1∑
k=0

(
Ĩk(αλ−1)
s− t0 + 2k

+ 2
Ik(αλ−1)

(s− t0 + 2k)2

)]
= (λα)s0−t0−

1
2 Ĩj(αλ−1) + 2 log(αλ)(αλ)s0−t0−

1
2Ij(αλ−1),

where j as in Lemma 3.12. We may evaluate Ij(αλ−1) as in equation (3.50). On the other
hand, recalling that Λf (s) is holomorphic away from at most double poles in the set {0, 1},
we compute:

Ĩj(αλ−1) = (−1)j
√
π

(j!)2

∑
p∈{0,1}

Ress=p

[
Λf (s)Jj(s)Gj(s)(αλ

−1)
1
2
−s
]
,

where Gj(s) is as in equation (3.7) and Jj(s) is as in equation (3.8), with ε = 0. Since
Jj(s)Gj(s) has a double zero at s = 0, but is non-zero at s = 1, we deduce

(3.58) Ĩj(αλ−1) = (−1)j(αλ−1)−
1
2

√
π

(j!)2

(
d

ds
(Jj(s)Gj(s))

∣∣∣
s=1

Ress=1(s− 1)Λf (s)

− Jj(1)Gj(1) log(αλ−1) Ress=1(s− 1)Λf (s) + Jj(1)Gj(1) Ress=1 Λf (s)

)
.

Observing the evaluation
√
π Jj(1)Gj(1) = (1/2)j j!, and using equations (3.50), (3.57),

and (3.58), we obtain

Ress=s0

 ∑
λ∈Tβ,M

cλ(λα)s−t0−
1
2

`0−1∑
k=0

(
Ĩk(αλ−1)
s− t0 + 2k

+ 2
Ik(αλ−1)

(s− t0 + 2k)2

)
= (−1)jαs0−t0−1

[
δ0(s0)

√
π

(j!)2
d

ds
(Jj(s)Gj(s))

∣∣∣
s=1

Ress=1(s− 1)Λf (s)

− 2δ0(s0)
(1/2)j
j!

log(α) Ress=1(s− 1)Λf (s) + δ0(s0)
(1/2)j
j!

Ress=1 Λf (s)

]
,

in which we note that the log(λ) terms cancel. On the other hand, we compute directly:

Ress=s0

[
i−[t0]

(
Nα2

)s− 1
2 α−t0

(2πi)t0ΓR(1− s+ t0)
2

t0!ΓR (1− s+ [t0])
2 Λg

(
s, β, cos([t0])

)]
= i−[t0]

(
Nα2

)s0− 1
2 α−t0

(2πi)t0

t0!

[
log(Nα2)

ΓR(1− s0 + t0)
2

ΓR (1− s0 + [t0])
2 Ress=s0(s− s0)Λg

(
s, β, cos([t0])

)
+

d

ds

ΓR(1− s+ t0)
2

ΓR (1− s+ [t0])
2

∣∣∣∣∣
s=s0

Ress=s0(s− s0)Λg

(
s, β, cos([t0])

)
+

ΓR(1− s0 + t0)
2

ΓR (1− s0 + [t0])
2 Ress=s0 Λg

(
s, β, cos([t0])

) ]
.
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By assumption s0 > t0 − 2`0 + 3
2
, and so the function in equation (3.21) is holomorphic at

s = s0. Equation (3.56) follows by taking the residue of this function at s = s0. �

Proposition 3.20. Make the assumptions of Theorem 3.1. If ψ is a primitive Dirichlet
character with conductor q ∈ P , then Λf (s, ψ) and Λg(s, ψ) are entire and bounded in
vertical strips.

That is, assumption (3) in Theorem 3.3 is valid.

Proof. Since Λf (s, ψ) and Λg(s, ψ) are inM(−∞,∞), it suffices to prove entirety. Mimicking
the argument surrounding equation (3.37), we see it suffices to show that Ress=0 Λg(s, ψ) = 0
(reversing the roles of f and g will yield that Ress=0 Λf (s, ψ) = 0).

Given s0 ∈ Z<1, choose `0,M, t0 ∈ Z>1 such that M ≥ 2`0 > t0− s0 + 3
2
. For α ∈ Q>0 and

β = −1/Nα choose Tβ,M ⊂ Tβ of size M , and, for each λ ∈ Tβ,M , choose cλ ∈ C satisfying
equation (3.20). As in the proof of Lemma 3.18, function in equation (3.21) is holomorphic
at s = s0. Taking the residue at s = s0, we get:

(3.59) Ress=s0

[
i−[ε+t0](Nα2)s−

1
2α−t0

(2πi)t0ΓR(1− s+ t0)
2

t0!ΓR (1− s+ [t0])
2 Λg

(
s, β, cos([ε+t0])

)]

= Ress=s0

 ∑
λ∈Tβ,M

cλλ
2s−2t0−1(−iπ)εΛf

(
s− t0, αλ−1, cos(ε)

) .
Following the strategy from Lemma 3.18, we split the remainder of the proof into five steps.

Step 1: Additive twists (ε = 1). Consider first β = b
Nq

for some b < 0 coprime to Nq.

Using our assumptions on s0, t0, {an}∞n=1, and σ, we deduce from equation (2.56) that
Λf (s− t0, αλ−1, sin) is holomorphic at s = s0. In particular, the right-hand side of equation
(3.59) is zero. Choose t0 of different parity to s0, so that [ε + t0] = [s0]. In the proof of
Lemma 3.18, it was demonstrated that Λg

(
s, β, cos([s0])

)
has at most a simple pole at s = s0.

Therefore, the left hand side of equation (3.59) is equal to

i−[ε+t0](Nα2)s0−
1
2α−t0

(2πi)t0ΓR(1− s0 + t0)
2

t0!ΓR (1− s0 + [t0])
2 Ress=s0 Λg

(
s, β, cos([s0])

)
.

It follows that Ress=s0 Λg

(
s, β, cos([s0)]

)
= 0 for all s0 < 1.

In the proof of Lemma 3.18 it was established that the function Λg

(
s, β, cos([1+s0])

)
has

at most a simple pole at s = s0. Taking t0 of the same parity to s0, we may apply equation
(3.26) to obtain:

(3.60) i−[1+t0](Nα2)s0−1/2α−t0
(2πi)t0ΓR(1− s+ t0)

2

t0!ΓR (1− s+ [t0])
2 Ress=s0 Λg

(
s, β, cos([1+s0])

)
= Ress=s0

iπ ∑
λ∈Tβ,M

cλλ
2s−2t0−1Λf

(
s− t0, αλ−1, sin

) .
The second line of equation (3.60) vanishes, and so Ress=s0 Λg

(
s, b

Nq
, cos([1+s0])

)
= 0 for all

s0 < 1.
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If, instead, β = b
Nq

for some b > 0 such that (b,Nq) = 1, then we may reduce to the case

b < 0 as in the proof of Lemma 3.18.
Consider β = b

q
for b < 0 coprime to q, so that λ−1α = q

Np
for a prime p ≡ −b mod q. As

above, the second lines of equations (3.59) and (3.60) vanish. Applying equation (3.59) with

s0 = 0, t0 = 3 gives Ress=0 Λg

(
s, b

q
, cos

)
= 0, and applying equation (3.60) with s0 = 0,

t0 = 2 gives Ress=0 Λg

(
s, b

q
, sin

)
= 0.

Step 2: Additive twists (ε = 0). Consider β = b
Nq

with b < 0, and let β′ ∈ Q<0 have the same

numerator. For t0 ∈ Z≥0 we can choose as in the proof of Proposition 3.10 a set TM ⊂ Tβ∩Tβ′
with M as in Step 1, and we can find cλ ∈ C such that equation (3.20) is satisfied. Taking
t0 of different parity to s0, equation (3.59) applies to both β and β′. Subtracting these cases
of equation (3.59), we get

(3.61) i−[t0]N s0− 1
2

(2πi)t0ΓR(1− s+ t0)
2

t0!ΓR (1− s+ [t0])
2

·
(
α2s0−t0−1 Ress=s0 Λg

(
s, β, cos([1+s0])

)
− α′2s0−t0−1 Ress=s0 Λg

(
s, β′, cos([1+s0])

))
= Ress=s0

[∑
λ∈TM

cλλ
2s−2t0−1

(
Λf

(
s− t0, α′λ−1, cos

)
− Λf

(
s− t0, αλ−1, cos

))]
,

where we have written α′ = −1/Nβ′ and used the fact that the functions Λg

(
s, β, cos([1+s0])

)
and Λg

(
s, β′, cos([1+s0])

)
have at most a simple pole at s = s0 (which was established in

the proof of Lemma 3.18). As per the argument following equation (3.53), the last line of
equation (3.61) vanishes. It follows that:

α2s0−t0−1 Ress=s0 Λg

(
s, β, cos([1+s0])

)
= α′2s0−t0−1 Ress=s0 Λg

(
s, β′, cos([1+s0])

)
.

Varying t0, whilst keeping the same parity, we deduce that Ress=s0 Λg

(
s, b

Nq
, cos([1+s0])

)
= 0,

for all s0 < 1 and b < 0 coprime to q.
Taking t0 of the same parity as s0, equation (3.56) applies to both β and β′. Arguing as

above, we are lead to:

q2s0−t0−1 Ress=s0 Λg

(
s,

b

Nq
, cos([s0])

)
= q′2s0−t0−1 Ress=s0 Λg

(
s,

b

Nq′
, cos([s0])

)
.

Varying t0, we conclude that Ress=s0 Λg

(
s, b

Nq
, cos([s0])

)
= 0 for all s0 < 0. If, instead,

β = b
Nq

for some b > 0 such that (b,Nq) = 1, then we may reduce to the case b < 0 as in

the proof of Lemma 3.18.
Consider β = b

q
with b < 0, so that λ−1α = q

Np
for λ ∈ Tβ. As per the previous

paragraph, we find that Ress=0 Λf (s− 3, λ−1α, cos) = 0. From Lemma 3.18 we know

Ress=0 sΛg

(
s, b

q
, sin

)
= 0. Applying equation (3.59) with s0 = 0 and t0 = 3, we there-

fore see that Ress=0 Λg

(
s, b

q
, sin

)
= 0.
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Step 3: Odd character twists. Combining Step 1 and Step 2, we have shown that, for ε ∈
{0, 1}, we have Ress=0 Λg

(
s, b

q
, sin

)
= −Ress=0 Λg

(
s, b

q
, cos(1)

)
= 0. Varying b mod q and

summing, we deduce from equation (2.54) that, for any odd character ψ of conductor q, we
have Ress=0 Λg(ψ, s) = 0 as required.

Step 4: Even character twists (ε = 1). It was shown in Step 1 that Ress=0 Λg

(
s, b

q
, cos

)
= 0.

Varying b mod q, we deduce from equation (2.54) that, for any even character ψ of conductor
q, we have Ress=0 Λg(ψ, s) = 0 as required.

Step 5: Even character twists (ε = 0). When s0 = 0 and t0 = 2, the left-hand side of
equation (3.56) vanishes. Substituting in equation (3.55) and dividing through by α−3, we
see that:

(3.62)
ΓR(3)2

ΓR(1)2
Ress=0 Λg(s, β, cos)

= −

(
log(N)

ΓR(3)2

ΓR(1)2
+

d

ds

ΓR(3− s)2

ΓR(1− s)2

∣∣∣∣∣
s=0

)
Ress=0 sΛg(s, β, cos)

+N
1
2

2

(2πi)2
d

ds
(Jj(s)Gj(s))

∣∣∣
s=1

Ress=1(s− 1)Λf (s).

Since we make the same assumptions as in Lemma 3.18, equation (3.55) holds. Substituting
equation (3.62) into equation (3.55), we deduce that Ress=0 sΛg(s, β, cos) does not depend
on b coprime to q. Therefore Ress=0 Λg(s, β, cos) is also independent of b coprime to q. As in
the proof of Lemma 3.18, it follows from equation (2.54) and character orthogonality that,
for even primitive characters ψ, we have Ress=0 Λg(s, ψ) = 0.

�

Altogether, we have established that the assumptions of Theorem 3.1 imply those of
Theorem 3.3.

4. Proof of Theorem 1.1

We will use the notation of Section 1. From equation (1.4), we recall the quotient L(s) =

L(s, φ)/ζ(s), and, denoting by φ̃ the contragredient to φ, we introduce analogously L̃(s) =

L(s, φ̃)/ζ(s). Both L(s) and L̃(s) may be written as Dirichlet series:

L(s) =
∞∑
n=1

ann
−s, L̃(s) =

∞∑
n=1

cnn
−s.

One can compute the Dirichlet coefficients an (resp. cn) of L(s) (resp. L̃(s)) by first ex-

panding each factor in equation (1.2) (resp. the analogous equation for φ̃) as a geometric
series, and subsequently performing the necessary Dirichlet series manipulations. Doing so,
we deduce that an = O(nσ) (resp. cn = O(nσ)) for all σ > 0.

For any primitive Dirichlet character ψ modulo q, the Dirichlet L-function L(s, ψ) has
completion Λ(s, ψ) = ΓR(s+ εψ)L(s, ψ), where εψ ∈ {0, 1} is such that ψ(−1) = (−1)εψ . As
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reviewed in [BC+03, Chapter 1], the completion Λ(s, ψ) satisfies the functional equation:

(4.1) Λ(s, ψ) = i−εψ
τ(ψ)

q1/2
q

1
2
−sΛ(1− s, ψ̄).

Recall that p (resp. m) denotes the dimension of the (+1)-eigenspace (resp. (−1)-eigenspace)
of φ(c), and consider first the case that p ∈ {1, 3}. Let N denote the conductor of φ, and
let P denote the set of odd primes coprime to N . For any primitive ψ mod q ∈ P , the
tensor product representation φ⊗ψ (resp. φ̃⊗ ψ̄) is a 3-dimensional Artin representation of
Gal(Q/Q), with completed L-function Λ(s, φ⊗ψ) = ΓR(s+ εψ)pΓR(s+ [εψ + 1])mL(s, φ⊗ψ).
Similarly to equation (1.4), we have

Λ(s, φ⊗ ψ)

Λ(s, ψ)
= ΓR(s+ εψ)p−1ΓR(s+ [εψ + 1])m

∞∑
n=1

anψ(n)n−s,(
resp.

Λ(s, φ̃⊗ ψ̄)

Λ(s, ψ)
= ΓR(s+ εψ)p−1ΓR(s+ [εψ + 1])m

∞∑
n=1

cnψ̄(n)n−s

)
.

(4.2)

As reviewed in [BC+03, Chapter 4], the completed Artin L-function Λ(s, φ ⊗ ψ) satisfies a
functional equation of the form:

(4.3) Λ(s, φ⊗ ψ) = ε(s, φ⊗ ψ)Λ(1− s, φ̃⊗ ψ̄).

Appling the formulae in [Del73, Section 5], we get

(4.4) ε(s, φ⊗ ψ) = w(φ)i−3εψχ(q)ψ(N)
τ(ψ)3

q3/2
(
Nq3

) 1
2
−s
,

for some character χ mod N (not necessarily primitive), for some w(φ) = w(φ ⊗ 1) with
absolute value 1. According to [Del73, Section 3.11], we may write w(φ) as a product of local
factors w(φ) =

∏
v wv(φv), in which the index v varies over the places of F . Denoting by

w∞(φ) (resp. w<∞(φ)) the product over the archimedean (resp. non-archimedean) places,
we have w(φ) = w∞(φ)w<∞(φ). Using [Kna94, equations (3.6), (3.7)], at each archimedean
place we may infer the local epsilon factor from the corresponding gamma factor written in
canonical form. Doing so, we ultimately calculate w∞(φ) = im.

Combining this with equations (4.3) and (4.4), we deduce that Λ(s, φ ⊗ ψ) satisfies the
functional equation:

(4.5) Λ(s, φ⊗ ψ) = w<∞(φ)im−3εψχ(q)ψ(N)
(
Nq3

)1/2−s
Λ(1− s, φ̃⊗ ψ̄).

For each primitive ψ mod q ∈ P , dividing equation (4.5) by equation (4.1), using equa-
tion (4.2), and noting that im−2εψ = (−1)m/2−εψ , we recover equation (2.49) with bn =
w<∞(φ)cn and ε = m/2 ∈ {0, 1}. Assuming for a contradiction that Λ(s, φ)/ξ(s) has finitely
many poles, Theorem 3.1 implies that L(s) = Lf (s) for some weight 0 Maass form f . There-
fore, we may write:

f(z) =
∑
k

αkhk(z) +
∑
`

β`E`(z),

for cuspidal Hecke eigenforms hk and Eisenstein series E`. It follows that:

(4.6) Lf (s) =
∑
k

αkLhk(s) +
∑
`

β`LE`(s).
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By construction Lf (s) is equal to the quotient L(s, φ)/ζ(s), and so:

(4.7) L(s, φ) = ζ(s)Lf (s) = ζ(s)

(∑
k

αkLhk(s) +
∑
`

β`LE`(s)

)
.

Since we assumed that L(s, φ) was primitive, and ζ(s) has an Euler product, it cannot
happen that Lf (s) has an Euler product. Since each Lhk(s) (resp. LE`(s)) does have an
Euler product, it follows that #{k} + #{`} > 1. Equation (4.7) therefore contradicts the
main theorem [KMP06], which establishes the linear independence of Euler products in a
large axiomatic class including Artin L-functions and automorphic L-functions.

The case p = 2 is similar. Indeed, in this case, the gamma factor in equation (1.4) is
equal to (half of) the gamma factor ΓC(s) = 2ΓR(s)ΓR(s + 1) for a holomorphic modular
form. Dividing equation (4.5) by equation (4.1), we get [BK14, equation (1)]. If the quotient
Λ(s, φ)/ξ(s) had only finitely many poles, then [BK14, Theorem 1.1] would imply that it is
the completed L-function of a weight 1 modular form and we may argue as above.
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