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1 Introduction and summary

Non-perturbative configurations, such as solitons, together with their fascinating properties
are integral parts of understanding field theories. Apart from topological defects, which are
stable due to the presence of topological charges, there also exist non-topological solitons,
such as Q-balls [1, 2]. Q-balls are spatially localized and stationary but non-static, and are
stable due to the presence of Noether charges. For example, Q-balls exist in U(1) symmetric
scalar field theories with a potential that grows slower than the quadratic term away from its
minimum. The shallow potential creates some sort of “attractive forces between particles”
in the theory, so particles prefer to condense to form a localized lump rather than dissipate
to infinity. In other words, the Q-ball condensate is the energetically preferred state for such
a system. The properties and dynamics of Q-balls have been extensively studied [3–24].
Crucially, they may play an important role in the early universe (see, e.g., [25–41]) and can
be candidates of dark matter (see, e.g., [42–50]). They can also be prepared in cold atom
systems [51, 52].

The most stable form of Q-balls is spherically symmetric, as other forms of spatial con-
figurations increase the gradient energy. Recently, non-spherically symmetric, composite
Q-balls have been identified [53]. In the theories where the spherically symmetric Q-balls
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exist, there are also a tower of composite Q-balls with different multipoles, within which
both positive and negative charges co-exist and swap with time (see figure 2 for a dipole
CSQ and see figure 23 for higher multipole CSQs). They are thus dubbed charge-swapping
Q-balls (CSQs) [53]. Nevertheless, their energy densities remain mostly spherically sym-
metric (see figures 3 and 23). They have been shown to exist in 2+1D and 3+1D, and
can be prepared by simply placing positive and negative charge elementary Q-balls (or in
general simply lumps) tightly together such that their nonlinear cores overlap, and then
the configurations, after initially emitting a burst of radiation, can quickly relax to CSQs.

As expected, CSQs are only quasi-stable and will ultimately decay. In this sense,
although much more complex, they are spiritually like oscillons [54, 55] which are spatially
localized and quasi-stationary and exist even in real scalar field theories. (Indeed, CSQs
decay to oscillons, as will see in this paper.) Oscillons do not contain any Noether charges
but nonetheless live for an extended period of time (see, e.g., [56–76] for more details).
While the existence of CSQs has been identified in [53], their detailed properties have
not been sufficiently explored. In particular, ref. [53] makes use of periodic boundary
conditions, which are not suitable for extracting the lifetimes of the CSQs.

In this paper, we shall investigate the properties and evolution of the CSQs in more
detail, and determine their lifetimes. We will focus on dipole CSQs in 2+1D and 3+1D in
the simplest φ6 potential, with quadrupole and octupole CSQs also briefly touched on. To
be able to determine the lifetimes of CSQs, we shall utilize absorbing boundary conditions
(ABCs). This is crucial as our method of obtaining the CSQs simply involves superimposing
elementary Q-balls, which is, of course, not the configuration of a CSQ. Thus, in the
initial relaxing phase, the configuration radiates a substantial amount of energy (see, e.g.,
figure 8). With the previous periodic boundary conditions, this radiation would travel
back and echo around the periodic space, continuously perturbing the CSQ. So, while
the periodic boundary conditions of [53] are sufficient to determine the existence of CSQs,
the lifetimes of the CSQs can not be reliably determined in that setup. Therefore, for an
accurate determination of the lifetimes of CSQs, it is essential to employ effective ABCs.

We will survey the effectiveness of a few ABCs for our particular problem: sommerfeld’s
ABCs [77], Engquist-Majda’s ABCs [78] and Hidgon’s ABCs [79, 80]. Sommerfeld’s ABCs
are first order, designed to absorb spherically symmetric radiation, while Engquist-Majda’s
ABCs and Hidgon’s ABCs can be implemented at higher orders. For our applications, we
find that the second order ABCs are sufficient to determine the lifetimes within a couple of
percent, and Hidgon’s second order ABCs with a judicial choice of the c1 and c2 generally
give the best absorbing effects, which are used to produce most of the results in the paper.
Another way to damp radiation in the far field regions would be to add a Kreiss-Oliger
term. However, in our simulations, we do not find the Kreiss-Oliger term significantly
increases the accuracy, and therefore this artificial term is not adopted for the results
presented in the paper.

We find that the evolution of a CSQ can be divided into 4 distinct stages (see figures 8
and 9): (1) Initial relaxation, (2) First plateau (CSQ stage), (3) Fast decay and (4) Second
plateau (oscillon stage). The presence of the initial relaxation stage is, as mentioned,
because the CSQ is not precisely prepared. Indeed, we find that the CSQ is an attractor
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solution, as a quasi-stable configuration should be, and can be formed with relatively
general initial configurations (see figures 20, 21 and 22). After settling down, the CSQ
stage is characterized by a mostly spherical and slightly oscillating energy density profile
(see figure 3) with charges swapping with time (see figure 2). The total energy and charge
decrease slowly with time, and the swapping period remains mostly constant (see figure 10),
which is a few times the oscillating period of an elementary Q-ball. We find that long-lived
dipole CSQs in 2+1D can be achieved in a diagonal strip of the parameter space of the
initial Q-ball frequency ω and the initial separation between them d (see figure 18). We
also find the lifetime of the dipole CSQ has an exponential dependence on the φ6 coupling
g (see figure 19). The CSQ stage is followed by a short stage of fast decay of both energy
and charges, the end result of which is, interestingly, an oscillon with roughly half of the
total CSQ energy (and with very small charge densities). In this oscillon stage, the charge
of the Q-ball components comprising the CSQ, Qs, decays exponentially. Although within
the time limits of our simulations we have not seen the decay of the second oscillon plateau,
the oscillons will ultimately decay as they are not absolutely stable.

For the higher multipole CSQs in 2+1D, their lifetimes are shorter than those of the
dipoles but nevertheless remain at the same order, while their total energies are about
twice those of the dipoles. On the other hand, the charges of the Q-ball components, Qs,
decays faster than that of the dipoles, unless the coupling g is tuned to be a smaller value
(see figure 26). Also, for high multipoles, it appears that the lifetimes converge to the
same value for different g (see figure 27). In 3+1D, the lifetimes of the CSQs are much
shorter (see figures 29 and 30), presumably because there are more possible decay modes
with three spatial directions. However, this is also largely to do with the potential of the
theory. For example, for the logarithmic potential, which is the fiducial example of [53],
the 3+1D CSQs are also long-lived, even for the higher multipoles [81].

The paper is organized as follows. In section 2, we first introduce the fiducial field
model we consider in this paper, define a few quantities that will be used later, and review
elementary Q-balls and CSQs; then we specify the numerical implementations and intro-
duce Higdon’s ABCs that are used to produce the results in the paper; additional ABCs,
which are used to cross-check some of the results, are introduced in the appendix A. In
section 3, we investigate the evolution histories, lifetimes and attractor behavior of the
dipole CSQs in 2+1D; the different stages of a CSQ evolution are detailed, and various
properties of the dipole CSQs are explored, in particular the lifetimes of the dipole CSQs
are surveyed for different parameters ω, d and g. In section 4, we briefly study higher
multipole CSQs in 2+1D. In section 5, we briefly study CSQs in 3+1D.

2 Model and setup

The existence of Q-balls in a complex scalar field theory requires a potential with an
attractive nature that condenses field perturbations (or, loosely speaking, “particles” in
the language of quantum field theory), rather than dissipates them. The simplest Z2
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symmetric (ϕ→ −ϕ), polynomial potential that supports Q-balls is given by

S =
∫

dd+1x̃

[
−
∣∣∣ ∂ϕ
∂x̃µ

∣∣∣2 − V (|ϕ|)
]
, with V (|ϕ|) = m2|ϕ|2 − λ|ϕ|4 + g̃|ϕ|6, (2.1)

where d is the number of the spatial dimensions. Defining dimensionless variables xµ=mx̃µ,
φ = λ1/2ϕ/m and g = g̃m2/λ2, the action can be re-written as

S = λ−1m3−d
∫

dd+1x
[
− |∂µφ|2 − V (|φ|)

]
, with V (|φ|) = |φ|2 − |φ|4 + g|φ|6, (2.2)

which only contains one dimensionless free parameter g. In other words, we are expressing
the coordinates in the units of the particle mass, m−1, and the field value in the units
of mλ−1/2. Unless otherwise stated, in the following, we will consider the potential with
g = 1/2 as a fiducial model,

V (|φ|) = |φ|2 − |φ|4 + 1
2 |φ|

6. (2.3)

The energy density and conserved energy for a spatial volume are given respectively by

H = |φ̇|2 + |∇φ|2 + V, E =
∫

ddxH. (2.4)

Since the action is invariant under a global symmetry φ → eiαφ (α being constant), by
Noether’s theorem, there is a conserved current and thus a conserved charge for this sym-
metry. The associated charge density and conserved charge are given respectively by

ρ = i(φφ̇∗ − φ∗φ̇) = −2Im(φφ̇∗) = 2(φ1φ̇2 − φ̇1φ2), Q =
∫

ddxρ, (2.5)

where we have defined
φ = φ1 + iφ2. (2.6)

Numerically, we are simulating the system in a large but finite box, so the total energy E
and total charge Q will refer to the total energy and charge in the simulation box.

Note that for this potential the |φ|4 term is negative, which provides the attractive
force mentioned above, and thus Q-balls can form. Technically, this means that V/|φ|2
has a minimum away from |φ| = 0. Since V/|φ|2 at |φ| = 0 gives the mass of the particle
in the free theory, V/|φ|2 having a minimum at |φ| 6= 0 means in the interacting theory
there are condensate configurations where the mass of the particle is smaller than that of
the free theory. The minimum of these configurations, i.e., elementary Q-balls, are the
minima of the energy functional [2]. That is, because of the leading interacting potential
being shallower than the free quadratic potential, particles tend to condense rather than
propagate away from each other.

Elementary Q-balls are stable stationary solutions that are spherically symmetric. To
obtain the radial profile of an elementary Q-ball, we take the following ansatz

φ(t, r) = f(r)eiωt, (2.7)
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Figure 1. Profiles (left plot), total charges and ratios of total charge to total energy (right plot)
of elementary Q-balls with different frequencies for potential (2.3). The fact that E/Q < 1 ensures
the stability of elementary Q-balls. Dimensionful quantities are in units of the scalar mass m.

where ω is the Q-ball frequency or the angular velocity in the φ field space. We shall call
it an anti-Q-ball if ω is negative. Substituting this ansatz to the equation of motion for φ∗,
we get an equation for f(r)

d2f

dr2 = 1− d
r

df

dr
− ω2f + 1

2
∂V

∂f
, (2.8)

which is subject to the boundary conditions df(0)/dr = 0 and f(∞) = 0. Viewing r as
“time”, eq. (2.8) along with its boundary conditions can be viewed as a problem where a
point mass, initially at rest df(0)/dr = 0, moves with a time-dependent friction term and
in the effective potential Veff = 1

2ω
2f2 − 1

2V , and eventually comes to stop in the infinite
future at f(∞) = 0. For an appropriate ω, we can find a unique solution that interpolates
between f(0) 6= 0 and f(∞) = 0 without oscillations. If ω2 is greater than the perturbative
mass of the free theory, f = 0 is a local minimum of Veff , such a non-oscillating solution
is impossible. To get an elementary Q-ball solution, the upper bound of the frequency
is given by ω2

+ = 1
2d2V /df2|f=0 = V/f2|f=0 = 1. If ω2 is smaller than the minimum of

V/f2 at some f0 6= 0, Veff does not have a maximum away from f = 0 that is greater than
Veff(f = 0), such a Q-ball solution is again impossible, so the lower bound of the frequency
is ω2

− = V/f2|f=f0 . For our fiducial potential, we have ω− = 1/
√

2. Solving eq. (2.8)
numerically by the shooting method, we can get the Q-ball profile and total charge for the
corresponding ω; see figure 1. We see that the total charge Q is larger for smaller ω and the
peak of f(r) is also higher except when ω is close to ω−. Also, for an elementary Q-ball,
the ratio between the total energy and the total charge E/Q is, as expected, smaller than
1, meaning that the Q-ball will not decay into free particles.

Apart from the elementary Q-ball solutions, the theory (2.2) also admits nonlinear,
quasi-stationary, real solutions called oscillons [54, 55], which take the form

φ = g(t, r), (2.9)
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where the imaginary part of the field vanishes. As a very crude approximation, g(t, r)
goes like

g(t, r) ∼ g0(r) cosωt. (2.10)

These are also localized lumps, very similar to the elementary Q-ball. Oscillons can be
supported by merely a real scalar field theory. For a complex field, if the initial configuration
is real, the field remains real through out its time evolution. Indeed, for oscillons to exist,
we also need a potential that supports attractive forces. But different from the elementary
Q-balls, without the protection of any exact symmetry, oscillons are only quasi-stable
solutions, although in 2+1D their lifetimes can be long [66].

2.1 Charge-swapping Q-balls (CSQs)

Recently, it has been observed that, apart from the elementary Q-balls, which have been
proven to be stable [2], there are also composite, quasi-stable solutions in the theory where
elementary Q-balls exist [53]. These composite Q-balls are not spherically symmetric.
They can form when Q-balls and anti-Q-balls are placed closely together with their cores
overlapping. Remarkably, the positive and negative charges of the composite Q-balls swap
with time, and thus they are dubbed charge-swapping Q-balls (CSQs).

The simplest CSQ can be prepared by superposing a Q-ball and an anti-Q-ball. For
example, we can place a Q-ball on the positive y-axis and an anti-Q-ball with equal but
negative charge on the negative y-axis, i.e. a system with reflection symmetry about the
x-axis. The initial relative phase difference between the two Q-balls can be chosen to be
zero. Because of this placement, the real component of the scalar field is symmetric about
the x-axis and y-axis, while the imaginary component is symmetric about the y-axis and
antisymmetric about the x-axis. The charges will swap along the y axis as the system
evolves. Of course, this superposed configuration is not the quasi-stable CSQ, but it will
quickly relax to a CSQ, as we shall see later. In fact, it is not essential to superpose
exact Q-balls and anti-Q-balls in the initial preparation; we may as well initially superpose
oscillating lumps that resemble Q-balls and anti-Q-balls. That is, CSQs are attractor
solutions of the theory. See figures 2 and 3 for the sequence of one charge-swapping period
for the already relaxed dipole CSQ, and see figure 4 for the evolution of the different charge
integrals defined shortly below. On the other hand, the energy density of a CSQ is mostly
spherically symmetric. There are also more complex CSQs with more Q-balls and anti-Q-
balls, as we shall see in section 4. Their lifetime is shorter in 3+1D; see section 5. We are
focusing on the polynomial potential in this paper, but they also exist in other models [53].

For later convenience, we shall define a few energy and charge quantities denoting
integrations over various different regions of the dipole CSQ (the center of the CSQ is
placed at the origin of the coordinate system):

• E and Q: the total energy and charge in the simulation box respectively

• Q+: the positive charge over the whole simulation box

• Eup and Qup: the energy and charge obtained by integrating over the upper half
space (y > 0 for 2D or z > 0 for 3D) respectively
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Figure 2. Evolution sequence of the charge density of the dipole CSQ in one charge-swapping
period Tswap. The red color depicts positive charge density and the blue color depicts negative
charge density. Tswap is usually a few times the oscillation period of the field, which is roughly
T0 ≡ 2π/m = 2π.

Figure 3. Evolution sequence of the energy density of the dipole CSQ in the same charge-swapping
period Tswap as figure 2, with the blue depicting lower density and the red depicting higher density.
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Figure 4. Evolutions of three different charge integrals Qs, Qup and Q+ with time, the absolute
values of which are mostly the same. T0 = 2π/m is roughly the oscillation period of the field φ.
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14

Figure 5. Circular disk region used to evaluate Ec and Qc and semi-circular disk region to evaluate
energy Es and charge Qs. The radius of the semi-circle is 14, in units of 1/m. (In 3D, we will use
a corresponding semi-ball with radius of 20).

• Es and Qs: the energy and charge obtained by integrating over an upper semi-circular
disk (2D) or an upper semi-ball (3D) with a radius of 14 (for 2D) or 20 (for 3D) around
the CSQ respectively (see the black solid line in figure 5 for 2D)

• Ec and Qc: the energy and charge obtained by integrating over a circular disk (2D)
or a ball (3D) with a radius of 14 (for 2D) or 20 (for 3D) around the CSQ respectively
(see the thick, dashed line in figure 5 for 2D)

While the existence of CSQs has been firmly shown in [53], the properties of CSQs
are yet to be studied in more detail. In particular, the periodic boundary conditions used
in the simulations of [53] are not appropriate to determine the lifetimes of these CSQs, as
CSQs radiate perturbations, which propagate back to affect the CSQs in a periodic box.
In this paper, we shall set up lattices that have absorbing boundary conditions that can
absorb radiation effectively from the CSQs, which allows us to investigate CSQs in much
more detail and determine the lifetimes of various CSQs.

2.2 Numerical setup

Our lattice code makes use of the open-source LATfield2 C++ library [82], which defines
objects such as Lattice, Site and Field, allowing for fast and easy implementations of
classical field simulations. However, LATfield2 uses periodic boundary conditions, which
is not suitable for our purposes. We modified the library to incorporate several absorbing
boundary conditions, which will be introduced in section 2.3 and appendix A. We use a 4th
order finite difference stencil for spatial derivatives and evolve in time with the classical
Runge-Kutta 4th order method. The code has excellent parallel speedups for many CPU
cores with MPI as seen in figure 6.
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Figure 6. Times used to run simulations with a 2562 grid for 145600 time steps on a workstation
with dual CPUs (two Intel Xeon Platinum 8280 CPUs) and shared memory. The “speed” is defined
as the reciprocal of the time duration.

We shall superimpose elementary Q-ball solutions, both for φ(0,x) and φ̇(0,x), as
the initial configuration and let it relax to obtain CSQs. The internal frequency ω of the
elementary Q-ball and the initial distance d between the elementary Q-balls are the free
parameters we choose, and we will chart the lifetime of the CSQ in this two dimensional
parameter space.

The Courant-Friedrichs-Lewy (CFL) factor dt/dx is set to be 0.1 both for 2D and 3D
simulations. Unless otherwise stated, in 2D simulations, we will use a 5122 lattice and the
grid spacing is dx = 0.2, with a 10242 lattice frequently used to check for convergence,
and in 3D we will use a 2563 lattice and the grid spacing is dx = 0.4, with a 5123 lattice
to check for convergence. As we will see (e.g., in figures 17 and 16) that these numerical
settings are sufficient for our purposes.

2.3 Higdon’s absorbing boundary conditions

As mentioned above, to determine the lifetime of a CSQ, we need to run the code for
an extended period of time, and the periodic boundary conditions, while sufficient for
determining the existence of CSQs [53], is unsuitable for this purpose. This is because
CSQs emit radiation (or waves), especially during the initial relaxation phase, and this
radiation travels back to interfere with the CSQs when using periodic boundary conditions.
In reality we are interested in the lifetimes of CSQs in Minkowski space where radiation
should simply propagate to infinity. To use a finite computation region to solve an infinite
domain problem, we may make use of suitable absorbing boundary conditions (ABCs).
Unless the problem is highly symmetric (say spherical symmetry) or the outgoing waves are
very simple, ABCs are usually not perfect. However, a good ABC should let the majority
of outgoing waves go through the boundary transparently and only incur minor reflections.
We will explore several ABCs in this paper, namely Sommerfeld’s ABC [77], Engquist-
Majda’s ABC [78] and Higdon’s ABC [79, 80]. We find that Higdon’s 2nd order ABCs
usually produce the best accuracy, which will be adopted in the majority of the simulations
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in this paper, while the other ABCs are used for sanity checks. We will introduce the Higdon
ABCs below and the other ABCs are introduced in appendix A.

The Higdon ABCs are a set of easily implementable conditions at boundary xi = a [79]:

M∏
j=1

(
∂

∂t
± cj

∂

∂xi

)
φ|xi=a = 0, (2.11)

where the + (−) sign is for a right (left) boundary, t and xi are Cartesian coordinates
and cj , to be chosen by the user for specific problems, are the phase velocities of the
normal outgoing plain waves that can be absorbed exactly. For the massive Klein-Gordon
equation, cj should be chosen to be no less than 1. It is clear that cj should be chosen
to annihilate the dominant wavenumbers near the boundary, which can be obtained by
performing Fourier transforms of the field near the boundary. A rough guide is that cj is
to be chosen to minimize the reflection rate between the amplitudes of the incoming waves
and the outgoing waves

R[ki] =
M∏
j=1

∣∣∣∣∣∣
−
√

(ki)2 +m2 + cjk
i

−
√

(ki)2 +m2 − cjki

∣∣∣∣∣∣ , (2.12)

for the dominant wavenumbers, where ki is the wavenumber and m is the perturbative
mass of field. From the reflection rate formula, we can see that even for the outgoing waves
whose phase velocities are not cj , the Higdon ABC can still often absorb much of them.
In practice, the most commonly used Higdon ABCs are when M = 1, 2, which are simply
given by (

∂

∂t
± c1

∂

∂xi

)
φ|xi=a = 0, (2.13)(

∂2

∂t2
± (c1 + c2) ∂

∂xi∂t
+ c1c2

∂2

∂(xi)2

)
φ|xi=a = 0, (2.14)

where the + (−) sign is for a right (left) boundary. Note that the 1st and 2nd order
Higdon ABC with c1 = 1 and c1 = c2 = 1 are actually equivalent to the 1st and 2nd order
Engquist-Majda ABC respectively, upon using the equations of motion. It is advised that,
without prior knowledge of the spectrum of the outgoing waves, the default 2nd Higdon
parameters can be chosen as c1 = c2 = 1 [79].

As we find CSQs by superimposing elementary Q-balls and letting them relax, the
initial relaxation phase of the CSQ evolutions produces the largest amount of radiation,
and we shall choose our ABCs to maximize the absorption of the radiation at the boundary
from this phase. We shall compare the absorbing effects of different ABCs and select the
best one among them. Since the relaxation phase is short, we can actually simulate this
phase with a sufficiently large lattice such that by the end of this phase the radiation has
not reached the boundary yet. We compare the effects of different ABCs with this reference
run, which allows us to pick the one with the smallest deviations. The ABCs that we have
tested against the reference run are:
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errors Sommerfeld EM1 EM2 Hig1(2) Hig2(1,2.5)
σEc 2.80× 10−2 2.53× 10−2 1.08× 10−2 3.72× 10−2 0.91× 10−2

σQs 1.93× 10−1 2.19× 10−1 1.18× 10−1 1.38× 10−1 0.20× 10−1

Table 1. Standard deviations of the various ABCs (see the text below eq. (2.14)) against the
reference simulation for energy Ec(t) and charge Qs(t), which are defined in section 2.1. The
reference simulation is set up such that the lattice is sufficiently large so that the radiation has not
reached the boundaries at the end of the run. The Hig2(1,2.5) ABC has the best accuracy and is
the default ABC used below unless stated otherwise.

• Sommerfeld: Sommerfeld boundary condition with v = 1, φ0 = 0 and no non-wavelike
term h(t)

• EM1 : Engquist-Majda’s 1st order condition, which is equivalent to Higdon’s 1st order
condition with c1 = 1

• EM2 : Engquist-Majda’s 2nd order condition, which is equivalent to Higdon’s 2nd
order condition with c1 = c2 = 1

• Hig1(2): Higdon’s 1st order condition with c1 = 2

• Hig2(1,2.5): Higdon’s 2nd order condition with c1 = 1, c2 = 2.5 (this is the best
ABC for our problem, and we will mostly use this method in the following, with
other methods used for sanity checks.)

Specifically, we test the different ABCs against the reference simulation in a 2562 grid
for a run of 32769 steps. We use the fiducial model and prepare the consistent Q-balls with
ω = ±0.84 and place them together with a separation d = 2.8. We compute energy Ec(t)
and charge Qs(t), which are defined in section 2.1, as functions of time, and compute the
standard deviations:

σEc =

 N∑
i=1

(
EABC
c (ti)− Eref

c (ti)
)2

N


1/2

, (2.15)

σQs =

 N∑
i=1

(
QABC
s (ti)−Qref

s (ti)
)2

N


1/2

. (2.16)

From table 1 and figure 7, we see that all these ABCs, especially the second order ABCs, are
relatively good, and the Hig2(1,2.5) ABC appears to have the best accuracy in eliminating
the outgoing radiation from the initial relaxation phase of the CSQ. The effectiveness of
the Hig2(1,2.5) ABC can also be seen by looking at far-field regions of the CSQ, i.e., at
points far from the CSQ, in which case the runs with the Hig2(1,2.5) ABC match the
reference run much better than the other ABCs.

Among the properties of CSQs that will be explored in the later sections, the lifetimes
of CSQs are probably most sensitive to the ABCs. Indeed, if we use different ABCs to find
the lifetimes, we get slightly different results. However, the differences are small, about
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Figure 7. Comparisons of simulations with various absorbing boundary conditions (ABCs) in the
initial relaxation phase. The left two plots are from the reference simulation, and the right two plots
are the deviations of the simulations with various ABCs from the reference simulation. The various
ABCs are defined in the text below eq. (2.14), and energy Ec(t) and charge Qs(t) are defined in
section 2.1. The reference simulation is obtained by using a large lattice such that the radiation
has not reached the boundaries in the run. Dashed lines represent first-order ABCs and solid lines
represent second-order ones. We see that second order ABCs generally perform better than the
first order ABCs, and the Hig2(1,2.5) ABC has the best behavior with regard to eliminating the
initial relaxing radiation. T0 = 2π/m is roughly the oscillation period of the field φ.

a couple of percent. Generally, the Hig2(1,2.5) ABC leads to the longest lifetimes. We
will assume that a longer lifetime means that the ABC absorbs the radiation better at the
boundaries, on which basis we will use the Hig2(1,2.5) ABC as our default ABC.

3 Dipole CSQs in 2+1D

In this section, we will explore the properties of the simplest dipole CSQ in 2+1D, derived
from a figuration with a Q-ball and an equal (opposite) charge anti-Q-ball. We will see
that they have distinct stages of evolution and can be formed from various different initial
setups, confirming that they are attractor solutions. We will also chart the lifetimes of
these CSQs for different initial conditions.
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Figure 8. Evolution of total energy E and energy Ec, which are defined in section 2.1. t is in the
units of the oscillation period of the field T0, which is 2π in the units of 1/m. Inset: an enlarged
view of the initial relaxation phase where there are noticeable differences between E and Ec. The
constituent elementary Q-balls are initially placed d = 2.8 apart from each other, with ω = ±0.86.
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Figure 9. Envelope of the Qs evolution, where Qs is defined in section 2.1. Qs oscillates quickly
according to the charge swapping frequency Tswap within the envelope. All the settings are identical
to figure 8. T0 = 2π/m is roughly the oscillation period of the field φ.

3.1 Stages of a CSQ evolution

As we mentioned above, we prepare the dipole CSQ by superimposing an elementary Q-ball
and an equal charge elementary anti-Q-ball with a short separation. An elementary Q-ball
or anti-Q-ball is totally specified by ω in eq. (2.7), that is, f(r) is determined by ω. For a
typical CSQ prepared in this way, there are four distinct stages of its evolution, as can be
seen in figures 8, 9, 10 and 11: (1) Initial relaxation, (2) First plateau (CSQ stage), (3)
Fast decay and (4) Second plateau (oscillon stage). In the following, we will discuss these
four stages separately.

(1) Initial relaxation. As we set up the initial configuration by simply superimposing
two elementary Q-balls, which we emphasize are not the quasi-stable CSQs, this stage is
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Figure 10. Charge-swapping period Tswap. T0 = 2π/m = 2π is roughly the oscillation period of
the field φ. All the settings are identical to figure 8.
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Figure 11. Evolution of the period of the real part of the field φ at the origin (x = 0, y = 0). All the
settings are identical to figure 8. The orange dashed line is the oscillation period of an elementary
Q-ball with the same energy as the CSQ. Note that if we prepare the CSQ with elementary Q-balls
with different frequencies, the period of the resulting CSQ remains the same.

characterized by a fast decrease of energy and charges from the initial lump. For example,
in figures 8 and 9, we see that, for a typical CSQ, about a third of the energy and about
three quarters of the charge of the initial lump are shed during about a hundred oscillations,
after which the initial configuration settles down to become a CSQ. The radiation of energy
from the initial lump can be easily seen in the inset of figure 8, where the energy in the
central circle Ec initially decreases much faster than that of the total energy in the box
E, and upon absorption at the boundaries the difference between Ec and E diminishes
within about a hundred oscillations for this fiducial model. During this transition stage,
the swapping period of the lump Tswap, which is defined at zero points of Qs by summing
the time durations to the previous and next zero point, decreases quickly to the plateau
of the CSQ (see figure 10), and the oscillating period of the real part of the field φ at
the origin, which is defined at zero points of Reφ(t, 0, 0) by summing the time durations
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to the previous and next zero point, quickly settles to a value that is slightly larger than
the intrinsic period of the elementary Q-ball with the same energy(see figure 11). From
the trends in this initial stage of these figures, we might have expected that the CSQs are
attractor solutions. We will look at this in more detail in the next subsection.

(2) First plateau (CSQ stage). In this stage, the energy and the charge of the CSQ
have reached a plateau, decreasing very slowly with time; see figures 8 and 9. While the
average value of the swapping period of the CSQ , Tswap, also remains mostly unchanged,
its value oscillates noticeably around the average; see figure 10. This stage lasts for an
extended period of time, the length of which depends on the oscillation frequency ω of the
constituent elementary Q-balls and the initial separation d between them, the parameter
space of which will be charted in section 3.2. This stage is usually what we refer to as the
CSQ, and we will refer to the duration of this stage as the lifetime of a CSQ.

In figure 11, we see that if an elementary Q-ball and a dipole CSQ have the same
energy, the oscillation period of the CSQ, defined as the period of Reφ(x = 0, y = 0), is
greater than that of the elementary Q-ball. On the other hand, if an elementary Q-ball and
a dipole CSQ have the same oscillation frequency, the energy of the elementary Q-ball is
greater than that of the CSQ. In figure 12, we plot the evolution of the field values and their
Fourier transforms at point (x = 0, y = 0) and point (x = 6.4, y = 6.4). We see that most
power in the spectra occurs around the first few odd times of the base frequency ω0 = 0.82.
This is similar to the case of oscillons, the real scalar “cousin” of a Q-ball, where again only
odd times of the base frequencies are significant in the spectra with a potential with the
Z2 symmetry [66]. In figure 13, we plot the phase portraits of various points on the y axis
within the CSQ, which carve out near-rectangle areas. When the elementary Q-balls are
not prepared to be exactly in anti-phase, these portrait rectangles will be rotated around
the origin by an angle proportional to the initial phase misalignment. For an elementary
Q-ball, the corresponding phase portrait is a circle at every field point, and for an oscillon
the corresponding phase portrait is a line at every point, so the CSQ may be considered a
hybrid between the two, whose phase portraits are different at different points.

From figure 11 and figure 12, we see that the charge swapping frequency is about one
fifth of the oscillation frequency of the real component of the field. This can be estimated
by the difference between the dominant frequencies of the imaginary and real component.
To see this, let us approximate the real and imaginary component using their dominant
frequencies at a given point x0 in the CSQ:

φ1(t,x0) ' A1(x0) cos
(
ω(d)
r t

)
, φ2(t,x0) ' A2(x0) cos

(
ω

(d)
i t+ ϕ0

)
, (3.1)

where ω(d)
r and ω(d)

i are the frequency of the real and imaginary component respectively.
The charge density at x0 is then given by

ρ ' A1A2
(
ω(d)
r + ω

(d)
i

)
sin
[(
ω(d)
r − ω

(d)
i

)
t− ϕ0

]
, (3.2)

where we have dropped the ω(d)
r +ω

(d)
i frequency piece whose amplitude is suppressed due

to a factor of ω(d)
i − ω

(d)
r as ω(d)

r is closed to ω(d)
i for a point x0 within the CSQ (in fact,
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Figure 12. Field values at (x = 6.4, y = 6.4) and (x = 0, y = 0) and their temporal Fourier
transforms in the CSQ stage. Φω(x, y) is the Fourier transform of φ(t, x, y) from t = 1800T0 to
3000T0. Dashed lines in the two bottom plots show the odd multiples of ω = 0.82, which match
the spectral peaks.

ω
(d)
r and ω

(d)
i are constant across the points within the CSQ). For the concrete case of

figure 11 and figure 12, we have ω(d)
r ≈ 0.82, ω(d)

i ≈ 0.99 and ω
(d)
i − ω(d)

r ≈ 0.17, which
gives a charge swapping period of 36.5, matching the value of Tswap in figure 10 very well.
In figure 14, we show how the ratio between the charge swapping period and the oscillation
period of the real component of the field varies with the coupling constant g.

(3) Fast decay. In this short stage, the energy and charge of the CSQ decrease dramat-
ically in a short period of time and the Q-ball swapping period starts to increase unbound-
edly, which may be taken as the end of the life of the CSQ. The significant changes during
the decay process can also be seen from the power spectra of the field Φ̃k = k

∫
dkθ|Φ(k)|2

where k = |k| and Φ(k) =
∫

d2xφ(x)e−ik·x. From the left plot of figure 15, we can see the
CSQ power spectrum decreases significantly during the decay, while, from the right plot, we
see that the second peak of the power spectrum of the outgoing waves shifts to the higher
wave-numbers, and the power of the first peak at low wave-numbers decreases substantially.
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Figure 13. Phase portraits on three points on the y axis in the CSQ stage. The time duration of
these data is about 4 charge-swapping periods, i.e., about 23 T0.

0.46 0.48 0.5 0.52 0.54 0.56

g

4.5

5

5.5

Figure 14. Ratio between the average charge-swapping period T swap and the average oscillation
period T r of the real component of the field for different coupling constant g. Note that the average
oscillation period T r is very close to dominant oscillation period of the real component.
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Figure 15. Power spectra of φ(x) over the whole lattice (left plot) and over a small rectangular area
outside the CSQ along the positive x-axis (right plot). Typical results before the decay (orange line,
t ≈ 3766T0) and after the decay (green line, t ≈ 5793T0) are shown. The constituent elementary
Q-balls with ω = ±0.86 are initially placed at d = 4.0 away from each other.

– 17 –



J
H
E
P
0
7
(
2
0
2
1
)
0
6
2

0 4000 8000 12000

t/T
0

0

10

20

30

40

E
c

default size

1.5 times

2 times

(a)

0 4000 8000 12000

t/T
0

0

10

20

30

40

E
c

CFL=0.4

CFL=0.2

CFL=0.1

(b)

Figure 16. Convergence study with different physical box sizes (left) and different Courant-
Friedrichs-Lewy (CFL) factors (right). In the left plot, the blue solid line is the physical box size
we use for most of our simulations, which is 102.4 in each spatial direction, and the red and orange
lines are 1.5 and 2 times of the default size respectively with dx kept at 0.2.

(4) Second plateau (oscillon stage). In this stage, the energy becomes quasi-stable
again at a second plateau, which is around half of the first plateau. After dropping a
couple of orders of magnitudes in the fast decay stage, the charge in this stage decays
exponentially with time. That is, in this stage, the charge has been mostly radiated away,
and the remnant of the fast decay of the CSQ is essentially an oscillon, which only oscillates
along one linear direction in the phase space of Reφ and Imφ.

3.2 Lifetimes of CSQs

An important goal of this paper is to determine the lifespans of CSQs. In this subsection,
we shall survey the lifespans of the dipole CSQs in 2D.

Calculating the CSQ lifetimes is prone to accumulated numerical errors, as we need
to run the code for a very long time. So it is essential that we get all the numerical errors
under sufficient control. Let us first check how the lifetimes vary with different numerical
setups. From the left plot of figure 16, we see that, thanks to the effective absorbing
boundary condition, a box size of around 100/m is sufficient for our purposes. Also, from
the right plot, we see that our choice of the CFL factor 0.1 is also very accurate to compute
the lifetime. Our main numerical uncertainties for the lifetimes of the CSQs are from the
lattice resolution dx, or the number of lattice points for a fixed physical box size, which
however are also under good control, as one may see in figure 17. If we define the lifetime
of the CSQ stage by how long the charge-swapping period oscillates around a steady value,
then the difference between the lifetimes of the 5122 and 10242 runs is about 0.39% in
figure 17. With the three resolutions, we find the convergence rate for the lifetime, due
to the long evolution, is about second order. (At any given time, the differences between
energies of the three resolutions always remain fourth order, as expected for the finite
difference method we use.) Using the linear Richardson extrapolation, even for a second

– 18 –



J
H
E
P
0
7
(
2
0
2
1
)
0
6
2

0 4000 8000 12000

t/T
0

0

10

20

30

40

E
c

256
2

512
2

1024
2

Figure 17. Convergence study with different spatial resolutions. The lifetime decreases slightly as
the resolution increases. We use a 5122 lattice to survey the lifespans of the CSQ, and the uncertainty
due to the lattice resolution is within 1%. The physical box size is 102.42 and thus dx = 0.2.

order convergence, we see that the difference between the extrapolated value and the 5122

run is about 0.55%. In the following, we will survey the lifetimes in the parameter space
of ω and d with a 5122 lattice, and thus the accuracy of this survey is expected to be
around 1%.

We also need to adopt a reasonable measure to define the lifetime of a CSQ. One
way, as we just used above, is to extract the length of the plateau of the CSQ stage in
the Tswap evolution plot (such as in figure 17). One can similarly define the lifetime from
other plots, but the easily recognizable feature of the swapping period plateau in figure 10
arguably provides the best measure for this purpose. After all, those objects have been
dubbed charge-swapping Q-balls. So, for definiteness, we define the lifetime of a CSQ as
the length of the thick bar in figure 10.

Figure 18 is the survey of the lifespans of the dipole CSQ in 2+1D in the parameter
space of ω and d, where ω is the oscillating frequency of the constituent elementary Q-balls
and d is the initial separation between them. We see that they can form in the diagonal
strip of the parameter space, roughly between the lines of d + 60ω = (50.8, 56.8). That
is, if the constituent Q-ball has lower frequencies, the separation between the constituents
should be greater. When CSQs do form, as we see in figure 20, they evolve to some universal
values of Ec and Qs, and their lifetimes are typically of the order of a few thousands of
swapping periods, or tens of thousands in terms of 1/m. The longest lifetime is observed
at when ω ' 0.9, d ' 0.4. Of course, not every set of parameters leads to the formation of
a CSQ. When trying to prepare a CSQ with initial elementary Q-balls placed too close to
each other, they will violently repel each other and scatter. On the other hand, if they are
placed too far away, they will attract and pass through each other and scatter.

If one wants to prolong the lifetimes of CSQs, changing the Q-ball frequency ω and
the initial distance d is not the most efficient way. In our fiducial model (eq. (2.2)), the
only theory parameter is the coupling of the φ6 term g. In figure 19, we show how the
lifetime will vary with g. We see that the lifetime increases at least exponentially when
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Figure 18. Lifespans of a dipole CSQ with different initial parameters. The parameter space is
spanned by the internal frequency ω of constituent Q-balls and the initial distance d between the
Q-ball centers. Lifetimes are shown in units of T0 = 2π/m. The white regions are where CSQ can
not form. The two dashed guiding lines are d+ 60ω = 50.8 and d+ 60ω = 56.8 respectively.
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Figure 19. Dependence of the dipole CSQ lifetime on the coupling constant g. The green dashed
line is the exponential fit a0e

b0g with a0 = 3.23× 10−8, b0 = 51.5. The data points are obtained by
superposing two Gaussian lumps with an oscillating frequency ω = 0.84 and with the same peak
amplitude and width as those of an elementary Q-ball with ω = 0.84 and g = 0.5, for more equal
comparison. We vary distance d to get the maximum lifetime for a given g.

g is increased. There are also some other effects caused by increasing g: 1) the plateau
CSQ energy Ec decreases slightly; 2) the CSQ charge Qs decreases; 3) the CSQ swapping
period increases.

We also find that the initial relative phase of the two constituent Q-balls does not
significantly affect the lifetime of CSQs. It mainly changes the relative magnitude of the
real and imagery part of the field φ. For this reason, in the above we set the initial relative
phase of the two constituent Q-balls to be zero.
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Figure 20. Attractor behaviors of the dipole CSQ in the Ec and envelope of Qs plot. The initial
configurations are constructed by superimposing elementary Q-balls.
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Figure 21. Evolution of the envelope of Qs for the case where ω = 0.88, d = 0.1. In this case, the
initial amplitude of Qs is smaller than the steady value of the CSQ, and the amplitude of Qs will
increase from 0.29 to 0.53 before the decay of the CSQ. This leads to a longer lifetime.

3.3 Attractor behaviors of CSQs

As quasi-stable solitons, CSQs must be attractor solutions, that is, their formation should
be insensitive to initial conditions: if there are favorable but otherwise quite generic initial
conditions, they can form spontaneously. Arguably, this is what makes them relevant in
many physical circumstances. In this section, we will explore this aspect of the dipole CSQs.

In figure 20, we see that for different initial ω and d the CSQ energy Ec and charge
Qs evolves to the same trajectories after the short relaxation. This is why in figure 18 we
see that once CSQs are formed, their lifetimes are usually quite similar to each other. On
the other hand, if the initial constituent Q-balls are (slightly) too close to each other, for
0.86 . ω . 0.92, the envelope of Qs will steadily increase to that of the quasi-stable CSQ,
which leads to longer lifetimes; see figure 21.
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Figure 22. Evolution of energy Ec and charge Qs for deformed CSQs. The deformation is done
by multiplying the profile f(r) of the constituent elementary Q-ball by a factor of Λ, Λ = 1 being
the un-deformed elementary Q-ball. Different cases are shifted to match the fast decay stages. We
see that different initial configurations are attracted to the same quasi-stable CSQ configuration.

We have so far only superimposed elementary Q-balls to prepare the CSQs. The
attractor nature of the CSQs means that one should also be able to use other configurations
to prepare CSQs. For example, we can prepare the CSQs with oscillating Gaussian lumps

φ(t,x) = Ae−(x−x0)2/σ2
eiωt, (3.3)

or deformed Q-balls
φ(t,x) = Λf(|x− x0|)eiωt, (3.4)

where A, σ,Λ are constants and f(|x− x0|) is the elementary Q-ball profile. We find that
if they are sufficiently close to the elementary Q-balls, CSQs can form. Indeed, these
configurations evolve to the same trajectory as those prepared with elementary Q-balls,
although their lifespans are slightly shorter; see figure 22.

Of course, if they are too different from Q-balls, CSQs can not form. Take the deformed
Q-balls above for example. If Λ is too big, the two deformed Q-balls will repel without
forming a CSQ, while if Λ is too small, the configuration will quickly shed away energy
and charge and then decay to an oscillon without having the CSQ plateau.

Here we have focused on the evolution of Ec and Qs for different initial conditions,
and we demonstrated an attractor behavior. One can also verify that similar attractor
behaviors can be found in the evolution of the charge-swapping frequencies, field-oscillating
frequencies inside the CSQs and so on.

4 Higher multipole CSQs in 2+1D

The dipole CSQs are the simplest ones one can construct. As shown in [53], there are
also more complex, higher multipole CSQs. In this section, we shall only briefly touch
on these CSQs. In particular, we will look at the basic features and lifetimes of the
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depicts negative charges. The corresponding energy density sequences are displayed in the second
and fourth rows, with the blue depicting lower density and the red depicting higher density.

quadrupole and octupole CSQs with equal charges, as shown in figure 23. There are many
possible configurations for higher multiple CSQs, a full characterization of which is certainly
interesting but is beyond the scope of this paper.

Higher multiple CSQs can be prepared analogously as the dipole case. In figure 23,
we place relevant numbers of equal and opposite Q-balls next to each other with no phase
differences, and then we see, with time, the positive charge will turn negative and the
negative charge will turn positive. That is, the charges are swapping with neighboring
charges, rather than swapping with the opposite part with respect to the origin, which are
the same kind of charges in the quadrupole and octupole CSQs case. This is due to the
limitation of 2 spatial dimensions, and we will see that in 3+1D, we can construct higher
multipole CSQs with charges swapped between the opposite parts. We see from figure 23
that the energy density of higher multipole CSQs are mostly spherically symmetric. The
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Figure 24. Energy evolution of different multipole CSQs. The initial distances between constituent
Q-balls and the coordinate origin are: 2 for the dipole CSQ, 4 for the quadrupole CSQ and 8 for the
octupole CSQ, in units of 1/m. The frequencies of constituent Q-balls are all chosen to be ω = 0.84.
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Figure 25. Lifetimes of quadrupole (left) and octupole (right) CSQs with different initial ω and
d. Lifetimes are shown in units of T0 = 2π/m.

charge swapping periods for the quadrupole and octupole CSQ are about 29/m, while in
the dipole case it is about 36/m.

The evolution of energy Ec of the quadrupole and octupole CSQ are plotted, together
with the dipole CSQ, in figure 24. Similar to the dipole case, the energy initially drops
rapidly before coming to a plateau, which lasts for thousands of oscillation periods, and
then quickly decays to a second plateau. The quadrupole and octupole CSQ share almost
the same duration of lifetime, which is less than the lifetime of the dipole CSQ. Also, we
see that the first Ec plateau of the quadrupole and octupole CSQ is about twice that of the
first Ec of the dipole CSQ, which interestingly is around the level of the second plateau of
the quadrupole and octupole CSQ. Figure 25 shows how the lifetime of the CSQ changes
with different initial Q-ball frequency ω and distance from the origin d. Roughly speaking,
along the diagonal strip of figure 18, higher multipole CSQs share similar lifespans, while
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Figure 26. Charge plateau of a quadrupole CSQ. The other parameters are set to be d = 3
and ω = 0.84.

away from the diagonal strip (i.e., the case of ω = 0.84, d = 4.5), the lifespans can be
much shorter.

However, for the model with g = 1/2, the charges of the quadrupole and octupole CSQ
decrease much faster than those in the dipole CSQ, so even in the first plateau the charges
in these higher multipole CSQs are very small at late times, due to the fast exponential
decay. Nevertheless, fully fledged higher multipole CSQs do exist for different g or with
different forms of the potential [81]. For example, in figure 26, we see that for a smaller
g the first charge plateau does form at least for quadrupole CSQs. As we have seen in
section 3.2, this is surprising as reducing g increases the amplitude of the charge densities,
thus increasing the charge to energy ratio. Note that here Qs is defined only in the spirit
of figure 5: it is defined as the same charge in one sector of the CSQ, that is, a quadrant
for the quadrupole Q-balls CSQ.

In figure 27, we show how the CSQ lifetime changes with coupling g and its multipole.
Note that for smaller g the higher multipole CSQs actually have longer lifetimes, and it
appears that the lifetimes converge to the same value at high multipoles for different g.
(Note that here the lifetime is directly extracted from the energy Ec plateaus.)

5 CSQs in 3+1D

In this section, we shall briefly investigate CSQs and their lifetimes in 3+1D. We shall
still construct the CSQs with elementary Q-balls. See figure 28 for the dependence of the
total charge and the ratio between the total energy and the total charge on the oscillating
frequency for 3+1D elementary Q-balls in the potential (2.3). From figure 28, we see that
Q-balls become unstable when frequency ω & 0.92 as their E/Q > 1.

To construct dipole CSQs in 3+1D, we still superimpose an elementary Q-ball and an
elementary anti-Q-ball closely to each other so that their nonlinear cores overlap, and then
let the configuration relax. In figure 29, we see that the charge swapping patterns of a dipole
CSQ in 3+1D is very similar to the 2+1D counterpart (cf. figure 4), although the charge
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Figure 30. Evolution of energy E and Ec and envelope of charge Qs for a dipole CSQ in 3+1D.
The initial constituents are elementary Q-balls with frequency ω = ±0.84 and spacing d = 10.
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Figure 31. Attractor behavior of the dipole CSQ in 3+1D. The initial configurations are super-
imposed elementary Q-balls. Initial configurations close to ω = 0.80, d = 14 have longer lifetimes.

swapping period in 3+1D is about 1.5 times that in 2+1D for the dipole case. In figure 30,
we see that the time evolution still has four stages: (1) Initial relaxation, (2) First plateau
(CSQ stage), (3) Fast decay and (4) Second plateau (oscillon stage). The big difference is
that the lifetimes of the CSQ stages are much shorter than those in 2+1D, which is in line
with the fact that in 3+1D there are more “channels” to decay for the quasi-stable CSQs.
However, it is also to do with the potential we are using. For the logarithmic potential, for
example, the 3+1D CSQs are also very long lived [81], even for the quadrupole or octupole
CSQs. In figure 31, we see that CSQs in 3+1D are also attractor solutions, as expected,
and their lifetimes can be significantly prolonged by tuning initial ω and d.

There are also higher multipole CSQs in 3+1D, although their lifetimes are even
shorter. In 3+1D, while the quadrupole CSQ still has a planar configuration, the oc-
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Figure 32. Octupole CSQ in 3+1D.
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Figure 33. Energy (left) and charge (right) evolution of the octupole CSQ of figure 32. The
parameters in the potential are chosen as g = 0.6, ω = 0.84, d = 3.

tupole CSQ could be arranged as in figure 32, unlike the planar octupole configuration in
2+1D. In figure 33, we find a very short CSQ stage for the octupole CSQ, which is close to
the oscillon plateau. If we were to construct the planar octupole CSQ in 3+1D, we would
not be able to identity the first CSQ plateau in its evolution.
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A Other absorbing boundary conditions

Here we describe other ABCs we have explored and used to cross-check the validity of
some of our results. The Sommerfeld ABC is widely used in numerically relativity [77],
while the Engquist-Majda ABCs have been previously used to study stability of oscillons
in spherically symmetry [66].

A.1 Sommerfeld’s absorbing boundary condition

The Sommerfeld boundary condition assumes that the outgoing waves have a spherical form

φ = φ0 + u(r − vt)
r(d−1)/2 + h(t)

rn
, (A.1)

where d is the number of the spatial dimensions, φ0 is the field value at the spatial infinity,
v is the wave velocity at spatial infinity, u(r − vt) is an out-going spherical perturbation
and h(t) simulates the non-wavelike behavior that has an n-th power law decay. The
Sommerfeld ABC that absorbs such a wave is given by

∂tφ+ v∂rφ+ (d− 1)v
2r (φ− φ0) = h′

rn
, (A.2)

and can be re-cast in Cartesian coordinates as

∂tφ+ vxi

r
∂iφ+ (d− 1)v

2r (φ− φ0) = h′

rn
, (A.3)

with r replaced by (δijxixj)1/2. Setting v = 1 and φ0 = 0, in the large r limit, eq. (A.2)
is just the 1st order Higdon ABC with the addition of a non-wavelike term. Practically, h′
is taken as only a function of t, and its value at fixed t is evaluated at the outermost layer
adjacent to the boundary by eq. (A.3), which is then used to solve the boundary conditions
at the boundary.

A.2 Engquist-Majda’s absorbing boundary conditions

The Engquist-Majda ABCs [78] are designed to absorb plane waves φ = φ0e
i(ωt+kjx

j). At
boundary xi = a, such a wave is annihilated by the local operator(

∂

∂xi
− iki

)
φ|xi=a =

 ∂

∂xi
− i sign(ki)

√
ω2 −

∑
j 6=i

kjkj −m2

φ|xi=a = 0, (A.4)

which uses both the Fourier space and real space coordinates. To extract boundary con-
ditions in real space in terms of differential operators, we expand the square root around∑
j 6=i kjkj + m2 = 0 by a Taylor series (Alternatively, one may also use a Pade expan-

sion [78].). The first two orders are given by (
∂

∂xi
− sign(ki)iω

)
φ|xi=a = 0, (A.5)−iω ∂

∂xi
+ sign(ki)

(iω)2 − 1
2
∑
j 6=i

(ikj)(ikj) + 1
2m

2

φ|xi=a = 0. (A.6)
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Transforming the Fourier space coordinates to real space coordinates, we have(
∂

∂t
± ∂

∂xi

)
φ|xi=a = 0, (A.7) ∂

∂xi∂t
∓

 ∂2

∂t2
−
∑
j 6=i

1
2

∂2

∂xj∂xj
+ 1

2m
2

φ|xi=a = 0, (A.8)

where the + (−) sign is for the right (left) boundary. The 1st order ABC above is just that
of the 1st order Higdon ABC with c1 = 1, and, as mentioned, the 2nd order ABC above
is just that of the 2nd order Higdon ABC with c1 = c2 = 1, upon using the linearized
Klein-Gordon equation of motion. Engquist and Majda also generalized their absorbing
boundary conditions for general curvilinear coordinates [78].
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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