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We exploit local quantum estimation theory to investigate the measurement of linear (g1) and
quadratic (g2) coupling strengths in a driven-dissipative optomechanical system in the red-sideband
regime. We consider model parameters inspired by recent experiments, in the regime g2 < g1. We
find that: (i) g1 is easier to estimate than g2 at lower driving strengths, while (ii) strong enough
driving allows the two parameters to be estimated with similar relative precision. Our analysis
also reveals that the majority of information about g1 and g2 is encoded in the reduced state of
the mechanical element, and that the best estimation strategy for both coupling parameters is well
approximated by a direct measurement of the mechanical position quadrature. Interestingly, we
also show that temperature does not always have a detrimental effect on the estimation precision.

I. INTRODUCTION

Quantum optomechanics focuses on the inter-
action between the electromagnetic radiation and
motional degrees of freedom of mechanical oscilla-
tors [1–3]. The simplest optomechanical system con-
sists of a single cavity mode interacting with a sin-
gle mechanical mode and is realised, for example,
in an optical cavity with a movable mirror. In this
case the mechanism responsible for the interaction
is radiation pressure, which entails momentum ex-
change between light and matter. The presence of a
cavity boosts the otherwise weak radiation pressure
force, enhancing the light-matter interaction. The
quantum effects of radiation pressure forces and the
associated limits they set on the precision of mirror-
displacement measurements are of great importance
for many applications including gravitational wave
detectors, scanning probe microscopy and force sens-
ing [1–4].

Although the radiation pressure interaction is in-
trinsically non-linear [5], approximate models are
usually used [1, 2] which assume a linear depen-
dence of the cavity frequency ω(Xb) on the dimen-
sionless position of the movable mirror, Xb. So far
these “linear” models have proved extremely suc-
cessful, aided by the fact that the bare (or ‘single-
photon’) optomechanical coupling strength is usu-
ally very small [1, 2]. However, researchers are con-
tinuously exploring ways of enhancing the optome-
chanical coupling, as well as the potential of optome-
chanics for ultra-high-accuracy applications such as
Planck physics [6]. Hence, extensions to the linear
model are becoming a necessity. The next step be-
yond the linear approach is to expand the cavity fre-
quency up to and including second order in Xb, lead-

FIG. 1: Schematic of the parameter estimation methodology
for driven-dissipative optomechanics. We consider a
driven-dissipative optomechanical system featuring a driven
and lossy cavity, where one of the mirrors is also a damped
mechanical oscillator. The mechanical support has low but
finite temperature. To carry out the estimation procedure
we wait for the system to reach a steady state, then measure
an observable. We repeat the process (relaxation to steady
state plus measurement) many times to get reliable
statistics. Finally, we process the data to find the best guess
for the coupling parameters of interest.

ing to what we will call the “quadratic model” [7, 8].
Accurate knowledge of all the relevant optomechan-
ical coupling parameters will indeed be crucial for
virtually any application of these systems. With
such motivation in mind, this paper exploits lo-
cal quantum estimation theory [9] (QET) to investi-
gate how precisely the linear and quadratic coupling
strengths may be measured in a model quantum op-
tomechanical system. In a nutshell, QET looks for
the best strategy for estimating unknown parame-
ters encoded in the density matrix of a quantum



system (i.e. a quantum statistical model) [10, 11].
The ultimate limits to the precision with which the
desired parameters can be estimated may be quanti-
fied via the quantum Cramér-Rao bounds [9, 12, 13].

Within such framework, we consider an optome-
chanical set-up featuring a driven (and lossy) cav-
ity, whose dynamics is described by a Lindblad mas-
ter equation. As is typical in recent optomechanics
experiments, we assume sufficiently strong driving
to approximate the dynamics via a master equation
that is bilinear in the canonical operators. This leads
to a Gaussian steady state [14], whose first and sec-
ond moments we characterise via a combination of
matrix algebra and numerical methods. This state,
with its explicit dependence on all the model param-
eters (in particular the unknown coupling strengths),
will embody our quantum statistical model. This in
turn may be attacked via general closed-form ex-
pressions that are available for QET in Gaussian
models [15]. The visual representation of the param-
eter estimation methodology for driven-dissipative
optomechanics is shown in Fig. 1.

Using this approach, and for parameters inspired
by recent experimental works, we find that at
low intracavity photon numbers the linear coupling
strength is easier to estimate than the quadratic
one. At high intracavity photon numbers, however,
the achievable estimation precisions for the two con-
stants are comparable.

We then investigate how well some specific mea-
surements perform when compared to the fundamen-
tal limits imposed by QET. We in particular focus
on measurements of the mechanical position Xb, field
amplitude Q, mechanical momentum Pb and field
phase P, which can all be analyzed within the Gaus-
sian formalism [16]. In the range of intracavity pho-
ton numbers explored, we find that the best strategy
for estimating the coupling parameters is through a
direct measurement of the mechanical position Xb.

We additionally explored the influence of temper-
ature on the estimation precision of the coupling
strengths. In the case of the linear coupling pa-
rameter we found that the effect of temperature is
mostly significant at lower intracavity photon num-
bers (i.e. lower driving strengths), where it improves
the estimation precision. At higher intracavity pho-
ton numbers, the zero temperature scenario predicts
a better estimation precision instead. Interestingly,
in the case of the quadratic coupling parameter we
found that a hotter mechanical bath gives a higher
estimation precision at all intracavity photon num-
bers in our range.

We note that the application of QET in closely
related optomechanical set-ups was previously con-

sidered in works by Bernad, Sanavio and Xuereb [11,
17], who adopted the linear model of optomechanics.
In Ref. [11], purely Hamiltonian (non-dissipative)
dynamics was assumed, and it was found that larger
intracavity photon numbers would facilitate the esti-
mation of the linear coupling strength. Analogously,
our results to follow show that a similar conclusion
holds in the strong driving regime. However, we
also find that for weaker drive strengths the pic-
ture is more complicated when considering finite-
temperature effects. We note that very recently the
same authors went on to consider a driven-damped
system [17] though using a somewhat different ap-
proach to ours and without considering quadratic
couplings. In particular, Ref. [17] neglects the con-
tribution of the steady state’s first moments (i.e. the
averages of the canonical operators) to the quan-
tum Fisher information (QFI). We checked that this
is a well-justified assumption for the model param-
eters adopted therein. However, our results show
clearly that there are experimentally accessible pa-
rameter regimes where the picture changes dramat-
ically and the first moments can come to dominate
the QFI. Finally, Schneiter et al. [18] have applied
local QET to a time-dependent, purely Hamiltonian
and quadratic optomechanical system. There, a non-
trivial dependence of the QFI (and hence the preci-
sion bounds of the coupling parameters) on the tem-
perature was also observed.

This paper is organised as follows. In Sec. II we
introduce our model of driven-dissipative optome-
chanics, including both linear and quadratic cou-
pling terms, and outline how the dynamics may be
approximated via a bilinear master equation in the
limit of strong driving. In Sec. III we calculate the
steady state of the system, which is Gaussian within
the considered approximations, and hence is fully
characterized by its first and second moments. We
then develop the necessary QET tools to investigate
the optimal estimation of linear and quadratic cou-
pling parameters. In Sec. IV we present and discuss
the findings of our research. Finally, in Sec. V we
summarise our results.

II. MODEL

We consider a simple optomechanical system con-
sisting of two quantum harmonic oscillators, describ-
ing a single-mode cavity field and a single mechani-
cal mode, respectively. The two modes are coupled
non-linearly via radiation pressure [1–3]. We thus
assume that our system is described by the Hamil-
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tonian

H0 = ~ω(X̂b)
Q̂2 + P̂2

2
+ ~ωm

X̂ 2
b + P̂2

b

2
, (1)

with Q̂ and P̂ the amplitude and phase quadratures
for the cavity mode, X̂b and P̂b the dimensionless
position and momentum operators of the movable
mirror, whilst m and ωm are the effective mass and
frequency of the mechanics [5, 7, 11, 19]. The only

nontrivial commutators read [Q̂, P̂] = [X̂b, P̂b] = i .
The optomechanical coupling arises from a paramet-
ric dependence of the cavity frequency on the me-
chanical position ω(X̂b). We note that in this work
we rely heavily on the formalism of Gaussian states
[16], hence we find it convenient to model our system
via dimensionless quadrature operators. These are
denoted via capital letters to avoid confusion with
the commonly used dimensional operators of the me-
chanics.

In the widely accepted “linear” model of optome-
chanics, the mechanical range of motion is assumed
to be very small (e.g. compared to the average cavity

length) and ω(X̂b) is approximated by an expansion

to linear order in X̂b. For the “quadratic model” of
optomechanics, instead, terms up to and including
X̂ 2

b are retained:

ω(X̂b) ≈ ω0 + ω′(0)X̂b +
1

2
ω′′(0)X̂ 2

b , (2)

where ω0 is the bare cavity frequency [1, 2, 7]. The
strength of the optomechanical interaction can be
quantified with the linear and quadratic coupling
strengths, which for a generic set-up are defined as

g1 ≡
1√
2
ω′(0), (3)

g2 ≡
1

2
ω′′(0), (4)

respectively [2]. Note that we can always ensure that
g1 is positive by a redefinition of the positive direc-
tion of Xb, and that the linear model is recovered by
setting g2 to zero.

A purely Hamiltonian description of the system
is however not sufficient for our purposes, since we
aim to describe a (more realistic) driven-dissipative
optomechanical system featuring a driven and lossy
cavity, as well as a damped mechanical oscillator in
contact with a thermal bath. In order to conve-
niently introduce coherent driving in the model, we
shall move to a frame rotating at the frequency of
the driving laser, ωL. In this frame the Hamiltonian

of the driven system may be written as

H =~
(

∆0 + ω′(0)X̂b +
1

2
ω′′(0)X̂ 2

b

)
Q̂2 + P̂2

2

+ ~ωm
X̂ 2

b + P̂2
b

2
+
√

2~EQ̂, (5)

where ∆0 = ω0 − ωL is the detuning between the
cavity and driving laser and E is the drive amplitude.

In our model we will include weak cavity decay
at a rate κ � ω0 and weak mechanical damping at
a rate Γm � ωm, assuming that the thermal occu-
pation of the cavity mode is negligible. We assume
that the corresponding master equation describing
the dynamics of the system is of the general Lind-
blad form [20–22]:

ρ̇(t) =− i

~
[H, ρ(t)]

+
∑

ij

γij

2

[
2R̂iρ(t)R̂j − {R̂j R̂i , ρ(t)}

]
, (6)

where we defined the vector of quadrature operators

R̂ = (Q̂, P̂, X̂b, P̂b), (7)

while γ is the damping matrix:

γ =


κ
2 −i κ2 0 0
i κ2

κ
2 0 0

0 0 Γm

2 (2n̄m + 1) −i Γm

2

0 0 i Γm

2
Γm

2 (2n̄m + 1)

 , (8)

n̄m = 1/
(
e~ωm/kB T − 1

)
is the mean occupancy of

the mechanical oscillator, kB is the Boltzmann con-
stant and T is the temperature of the mechanical
reservoir [1, 2]. We note that, in choosing a Lind-
blad form, we automatically excluded the use of
the standard Brownian motion master equation (SB-
MME) [22] to describe mechanical damping. Indeed,
a Lindblad form greatly simplifies our analysis, since
it avoids non-positivity issues that are known to oc-
cur in the SBMME [23].

A. Bi-linear approximation of the model

The main effect of the drive is to displace the
steady states of both the cavity field and the me-
chanical position [2]. We assume that the cavity is
driven sufficiently strongly (and that the optome-
chanical couplings are weak enough) so that the sys-
tem dynamics can be approximated via a bilinear
master equation description, where only small quan-
tum fluctuations around the semi-classical steady
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state are considered [2, 17]. In detail, we start by dis-

placing our canonical operators as per R̂→ R̂ + R0,
where

R0 = (Q0,P0, x0, p0) (9)

is the vector of steady-state quadrature averages.
Here, x0 and p0 are the average position and mo-
mentum of the mechanics in the steady state, while
Q0 and P0 are the steady state displacements of the
amplitude and phase quadratures, respectively [2].
Of course, the steady-state expectation values of the
transformed operators will now vanish. This results
in the following equations for the steady-state values
of the system’s first moments:

Q0 =
−2∆eff E

√
2
(

∆2
eff + κ2

4

) , (10)

P0 =
−κE

√
2
(

∆2
eff + κ2

4

) , (11)

x0 = − ω′(0)ωmE2(
ω2

m +
Γ2

m

4

)(
∆2

eff + κ2

4

)
+ ω′′(0)ωmE2

,

(12)

p0 =
Γm

2ωm
x0, (13)

where ∆eff = ∆0 −
√

2g1x0 + g2x
2
0 is the effective

detuning. The non-linearity of Eqs. (10-13) sug-
gests that multiple steady state solutions are possi-
ble [1, 2]. This is known as dynamical multistability
[1, 2]. In detail, depending on the driving strength
up to five (quadratic model) or three (linear model)
different steady states solutions can exist. In this
work, we only focus on parameters regimes where
the system is stable, i.e., where a unique real solu-
tion to Eqs. (10-13) exists. This in turn places an
upper bound to the drive strength |E|2 [11].

After the displacement has been implemented, we
neglect terms that are beyond quadratic order in
the transformed canonical operators [2]. The cor-
responding master equation reads

ρ̇(t) =− i

~
[HB , ρ(t)]

+
∑

ij

γij

2

[
2R̂iρ(t)R̂j − {R̂j R̂i , ρ(t)}

]
, (14)

where we note that the Lindblad operators remain
unchanged, while the Hamiltonian now takes the bi-
linear form

HB =
~
2

∆eff

(
Q̂2 + P̂2

)
+

~
2
ωmP̂

2
b +

~
2
ωeff X̂

2
b

+ ~geff X̂b

(
Q̂Q0 + P̂P0

)
, (15)

with ωeff = ωm + 2g2|α|2 the effective mechanical

frequency and geff = −
√

2g1 + 2g2x0 the effective
coupling strength. Note that the assumption of
strong cavity driving translates into the condition
that the intracavity photon number is large, i.e.,
|α|2 ≡ (Q2

0 + P2
0 )/2� 1.

B. Limits of validity of Eq. (15).

In the bi-linearization procedure we neglect terms
that are beyond second order in the quadrature op-
erators (nonlinear terms for brevity), under the as-
sumption that the terms we keep are the dominant
ones. We here discuss the validity of this approach
and hence of Hamiltonian (15). In particular, our
approach requires that the dominant nonlinear term
∝ g1Xb(Q2 +P2) is negligible compared to the bilin-
ear terms that depend on g2. In general, the dom-
inant g2-dependent bilinear term is proportional to
g2|α|2. Hence, a necessary condition for the validity
of our approximations (within the framework of the
quadratic model) is g2 � g1/|α|2 — note that this
is effectively a constraint on the driving strength.
Regarding the remaining g2-dependent terms, they
may or may not be negligible depending on the
driving strength considered. At high enough drive
strengths we expect that all (bilinear) terms should
be kept to maximise the accuracy of our approxi-
mate model. Conversely at lower driving powers,
where only the term ∝ g2|α|2 should be kept, the ef-
fect of the additional g2-dependent contributions is
so minuscule that their inclusion (or otherwise) has
no visible effect on the QFI. Therefore, we conclude
that all bilinear terms in our Hamiltonian (15) can
be kept, provided that the condition g2 � g1/|α|2
is satisfied. We checked numerically that this argu-
ment indeed holds for the drive strengths considered
in this manuscript.
Finally, we note that the above discussion depends
on the parameters g1, g2, which are a priori unknown
in our scenario of interest. Yet, it is worth point-
ing out that in practical situations one would not
start the quantum estimation procedure with com-
plete ignorance of the parameters: at least an order-
of-magnitude estimate is typically available (e.g. via
first principles modelling). The validity conditions
for Eq. (15) can then be checked in the worst-case
scenario compatible with the initial rough estimates
for g1, g2.
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III. ESTIMATING COUPLING
CONSTANTS FROM THE STEADY STATE

A. Covariance Matrix Formalism

Due to its bilinear form, the master equation (14)
admits a Gaussian steady state that can, in gen-
eral, be fully characterised by its first and second
moments of the quadrature operators R̂ [14]. After
having determined our steady state, we will be able
to exploit general closed-form expressions that are
available for QET in Gaussian models [15].

As anticipated in the previous section, the first
moments of our Gaussian steady state are given
by R0 = (Q0,P0, x0, p0), and are found by solving
Eqs. (10-13) — recall also that we will only con-
sider parameter regimes in which such solution is
unique. The second moments are instead encoded
in the steady state covariance matrix σ̄, which in
our displaced frame of reference is given by [14]

σ̄ =


〈Q̂2〉 〈 1

2{Q̂, P̂}〉 〈Q̂X̂b〉 〈Q̂P̂b〉
〈 1

2{Q̂, P̂}〉 〈P̂2〉 〈P̂X̂b〉 〈P̂P̂b〉
〈X̂bQ̂〉 〈X̂bP̂〉 〈X̂ 2

b 〉 〈 1
2{X̂b, P̂b}〉

〈P̂bQ̂〉 〈P̂bP̂〉 〈 1
2{X̂b, P̂b}〉 〈P̂2

b 〉

, (16)

where {Â, B̂} ≡ ÂB̂ + B̂Â is the anticommutator.
As detailed in Appendix A, master equation (14) im-
plies the following Lyapunov equation for the steady
state covariance matrix:

BT σ̄ + σ̄B = C , (17)

where

B =
i

~
HW + γAW, (18)

C = −WγSW, (19)

H =

 ~∆eff 0 ~geff Q0 0
0 ~∆eff ~geff P0 0

~geff Q0 ~geff P0 ~ωeff 0
0 0 0 ~ωm

 , (20)

W =

 0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0

 , (21)

γS =
γ + γT

2
, (22)

γA =
γ − γT

2
. (23)

We note that Eq. (17) can be solved analytically
in terms of the model parameters and the vector of
averages R0. The latter, however, may in general

not admit an analytical expression in terms of the
model parameters, as we recall it is the solution to
the nonlinear system of equations (10)-(13). In the
next section we shall show how to develop a com-
prehensive QET analysis of the coupling parameters
solely from the knowledge of the first and second
moments of our Gaussian steady state.

B. Quantum Estimation Theory for Gaussian
States

The aim of quantum estimation theory (QET) is
to identify the best strategy for estimating one or
more parameters encoded in the density matrix of
a quantum system [9–11]. Here we focus on local
QET, which seeks a strategy that maximises the
Fisher information over all possible measurements,
and implicitly assumes that a rough estimate of the
parameter value is known in advance [9].

In our model of driven-dissipative optomechanics,
the parameters to be estimated shall be the coupling
strengths g1 and g2. As anticipated, all of the infor-
mation about these parameters will be contained in
the steady-state averages, R0, as well as in the steady
state covariance matrix, σ̄. Specifically, for our cou-
pling parameters (g1, g2) the elements of the quan-
tum Fisher information matrix (QFIM) are given by

Ii ,j =
(
∂gi R

T
0

)
σ̄−1

(
∂gj R0

)
+ 2Tr

[
(∂gi σ̄) (4Lσ̄ + LW )−1 (∂gj σ̄)

]
, (24)

where Lσ̄(A) = σ̄Aσ̄, LW (A) = WAW. Note

also that the term (4Lσ̄ + LW )−1
refers to the pseu-

doinverse if the term inside the bracket is singular
[15, 24]. The first term is the contribution due to the
averages, while the second term is the contribution
due to the variances and covariances towards each
QFI matrix element [24]. This terminology will be
convenient later on as we seek to unravel how the
different terms contribute across different parame-
ter regimes. We note, however, that our terminol-
ogy only describes the origin of the dependence of
the gradients with respect to the coupling param-
eters. Hence whilst the first term in eq. (24) only
contains gradients of the averages with respect to
the coupling constants, and we will therefore call it
the contribution of the averages, it does also depend
on the covariance matrix. Eq. (24) facilitates effi-
cient numerical computation of the QFI [24].

The ultimate limit to parameter estimation in this
context is set by the QCRB [9, 12, 13]. In multi-
parameter estimation theory both coupling param-
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eters are assumed to be unknown (or only known
with low precision). In this case, the QCRB relates
the covariance matrix of any pair of unbiased estima-
tors for the parameters (g1, g2) to the QFIM. For M
experimental runs, the corresponding QCRB reads
[13, 15]

Cov(g1, g2) ≥ 1

M
I−1. (25)

The limiting case of single-parameter estimation the-
ory can be reached if we assume that only one pa-
rameter is unknown, say gi . In this case the QCRB
relates the variance Var(gi ) of an unbiased estimator
of the parameter gi to the corresponding diagonal el-
ement of the QFIM. For M experimental runs, the
corresponding bound reads [15, 16, 24–27]

Var(gi ) ≥
1

M Iii
. (26)

In other words, the diagonal elements of the QFI ma-
trix quantify the “best-case-scenario” performance
for the estimation of each individual parameter.
Hence, in what follows we shall pick Eq. (26) as our
benchmark in evaluating the performance of vari-
ous measurements (see below). For brevity, we shall
also refer to I11 as the “g1−QFI”, and I22 as the
“g2−QFI”. Note that in single-parameter estima-
tion theory the saturation of the QCRB is guaran-
teed, at least in the limit M → ∞, and assuming
that every mathematically allowed quantum mea-
surement can be implemented [13, 15, 24]. This,
however, is not true for the estimation of multiple
parameters: in this case the optimal measurements
for different parameters may not be compatible [13].

While the QFI quantifies the ultimate quantum
limit to parameter estimation [9, 13, 28], the esti-
mation performance of specific measurement strate-
gies may be quantified via the classical Fisher infor-
mation (FI) matrix [9, 29]. In our context, the FI
measures the amount of information that a classical
random variable s (the outcome of a quantum mea-
surement) contains about the parameters g1, g2 [30].
The FI matrix elements take the form

Ji ,j =

∫ ∞
−∞

ds
1

pg1,g2 (s)

(
∂pg1,g2 (s)

∂gi

)(
∂pg1,g2 (s)

∂gj

)
,

(27)

where pg1,g2 (s) is the probability distribution of the
measurement outcome s, assumed to be a smooth
function of (g1, g2) [15, 30]. Depending on the cho-
sen observables, analytical solutions to the integral
in Eq. (27) may exist. This is particularly true for

quadrature measurements (i.e. a measurement of

Q̂, P̂, X̂b, P̂b or a linear combination thereof), pro-
vided that the measured state is Gaussian [16].

In the case of optomechanics, it is well known that
one can use a homodyne detection scheme to mea-
sure the light quadratures Q̂, P̂ [16, 31]. However,
we shall also consider a direct measurement of the
mechanical quadratures, X̂b and P̂b, for complete-
ness. In practice this could potentially be achieved
using e.g. another optical mode of the cavity. In
this scenario, the probability distribution associated
with a measurement of ŝ ∈ {Q̂, P̂, X̂b, P̂b} has the
following expression [16]:

pg1,g2 (s) =
e
− (s−s0(g1,g2))2

2σ̄kk (g1,g2)√
2πσ̄kk (g1, g2)

, (28)

where s0(g1, g2) is the steady state average of the
chosen quadrature, appropriately chosen from the
set {Q0,P0, x0, p0}, while σ̄kk (g1, g2) is the corre-
sponding diagonal element of the steady state co-
variance matrix (σ̄11 for ŝ = Q̂, σ̄22 for ŝ = P̂ and
so on). In this setting an analytical solution to the
integral in Eq. (27) exists and is given by

Ji ,j =
1

2σ̄kk (g1, g2)2
×[

2σ̄kk (g1, g2)

(
∂s0(g1, g2)

∂gj

)(
∂s0(g1, g2)

∂gi

)
+

(
∂σ̄kk (g1, g2)

∂gj

)(
∂σ̄kk (g1, g2)

∂gi

)]
. (29)

Note that the choice of a strategy to estimate the
parameters (g1, g2) is optimal if the FI and QFI ma-
trices are equal, i.e. J = I.

As anticipated, we shall focus solely on the di-
agonal elements of the QFIM (Eq. (24)): I1,1 and
I2,2, respectively. As noted above, the diagonal ele-
ments are indeed the “most optimistic” quantifiers
of estimation precision of the coupling strengths. In
general, however, the combined precision of the two
parameter estimations will be worse than what the
diagonal elements suggest.

Both, the definitions of the QFI (Eq. (24)) and the
FI (Eq. (29)) rely on the derivatives of the steady
state covariance matrix and the averages with re-
spect to the coupling strengths. Since we have seen
that both σ̄ and R0 are determined by the nonlinear
system of equations (10)-(13), which in general can
only be solved numerically, we use implicit differen-
tiation to calculate the derivatives in question. This
allows us to express all our quantities of interest in
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terms of the numerical solution to the above non-
linear equations, and allows us to avoid numerical
differentiation altogether.

IV. RESULTS

In this section we explore how the achievable es-
timation precision of the coupling strengths is im-
pacted by temperature and drive amplitude, while
also highlighting similarities and differences between
the quadratic and linear models. For concrete-
ness, we choose parameters matching those used in
a recent experiment employing a microwave cavity,
where the ground state of a mechanical oscillator
was approached via back-action cooling arising from
a red-detuned laser drive [33]. Correspondingly, we
adopt the following parameter values ωm = 1.1×107

Hz, m = 4.8 × 10−14 kg, Γm = 32 Hz, ∆0 = ωm,
κ = 105 Hz and g1 = 2×102 Hz [33]. In order to en-
sure that the driving is strong enough for the Gaus-
sian approximation to hold, and in order to avoid
stability issues in the linear model, we consider a
range of driving amplitudes 108 ≤ E ≤ 3.8× 109 Hz.
In terms of the intracavity photon number, |α|2, this
corresponds to the range 80 . |α|2 . 1.2 × 105 [or
1.9 . log10(|α|2) . 5.1]. For the quadratic model
we additionally need to ensure that the Hamiltonian
(15) is valid, for which we require g2 � g1/|α|2 — see
Section II B. We therefore choose a value of g2 = 10
Hz to ensure the latter condition is satisfied across
the whole range of intracavity photon numbers con-
sidered. Although such values of the quadratic cou-
pling strength are not compatible with the set-up
in [33], they can be achieved in others. One such
set-up is featured in [34], where the authors con-
sider g2 = 0.07g1, which is the same order of mag-
nitude as in our work. As an interesting aside, a
membrane-in-the-middle optomechanical system al-
lows for great flexibility in the choice of both g1 and
g2, so that both regimes g1 > g2 and g2 < g1 are in
principle possible [2, 32].

Notice also that we have chosen to work in the
red-detuned regime. Our choice is motivated by
two factors. Firstly, red-detuning gives rise to back-
action cooling whereby the second moments of the
mechanical quadratures can become strongly depen-
dent on the drive and coupling strengths (particu-
larly at finite temperatures). As we shall see, this
leads to interesting behavior in the QFI. Secondly,
the back-action in this regime enhances the mechan-
ical damping avoiding the dynamical instabilities
that arise in the blue-detuned regime, thus ensur-
ing that the Gaussian formalism remains applicable.

In future work, our approach will be applicable to
other choices of the detuning provided that the sta-
bility conditions discussed in Appendix B are met.
The results will in general depend on the specific
detuning value chosen.

We examine three scenarios: zero temperature
(T = 0 K), low temperature (T = 1 mK) and “high”
temperature (T = 80 mK). In each case we are look-
ing for the best strategy to estimate the linear, g1,
and quadratic, g2, coupling strengths. First, we es-
tablish the fundamental quantum limits on the es-
timation precision, which, in accordance with the
quantum Cramér-Rao bound (QCRB), are quanti-
fied with the “global” QFIs (i.e. the QFIs calcu-
lated from the bipartite state of light plus mechan-
ics). Additionally, by tracing out the mechanical
(light) mode, we can calculate “local” QFIs that are
relevant when only the light (mechanical) mode is di-
rectly measurable. Comparing these local QFIs with
the global ones will also reveal how much informa-
tion about the coupling parameters is contained in
the reduced states of light and mechanics. Finally,
we compare the QFI limits to the performance of a
small selection of “realistic” measurements (quanti-

fied with the respective FI), including those of Q̂, P̂,

X̂b and P̂b. This can help us discern which of the ex-
perimentally common measurements constitute the
best strategy to parameter estimation in each sce-
nario. In most of our reported results we have chosen
to measure the estimation precision with the “single
shot” relative error, which obeys the inequality

∆gi

gi
≥ 1

gi

√
Ii ,i
≡ δgmin

i . (30)

Note how Eq. (30) is a consequence of the QCRB
for the case of M = 1 experimental runs [the case of
M > 1 experimental runs can be trivially obtained
by dividing the right hand side of Eq. (30) by

√
M].

In Fig. 2(a) we investigate the effects of the higher
order g2 term, temperature and driving on the es-
timation precision of the linear coupling strength,
g1. Overall, δgmin

1 displays a surprisingly complex
dependence on temperature. There is a crossover
around log10(|α|2) ∼ 4.7 (or |α|2 ∼ 5 × 104): be-
low this value the high temperature scenario offers
the best precision for estimating g1, but above it the
best precision is found at lower temperatures. Addi-
tionally, pronounced local maxima in δgmin

1 are ob-
served for the linear model at nonzero temperature,
as well as the quadratic model in the low temper-
ature scenario. In contrast, δgmin

1 shows a compar-
atively weak dependence on |α|2 for the quadratic
model at high temperature.
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FIG. 2: (a) Log-log plot of the relative error bound on g1, δgmin
1 , against the intracavity photon number |α|2. The plot

compares linear and quadratic models in the zero temperature (blue squares and purple dot-dashed line, respectively), low
temperature (brown triangles and black line, respectively) and high temperature (green circles and orange dashed line,
respectively) scenarios. (b) Log-log plot of the relative error bound on g2, δgmin

2 , against the intracavity photon number, |α|2
as predicted by the quadratic model in the zero temperature (purple dot-dashed line), low temperature (black line) and high
temperature (orange dashed line) scenarios.

As discussed in Appendix B (see in particular
Fig. 5), this behavior can be partly understood
by looking at the relative contributions of the vari-
ances and averages to the QFI [see discussion be-
low Eq. (24)], and noting how these contributions
change with temperature. The contribution of the
averages to the g1-QFI increases monotonically with
the intracavity photon number, and eventually pro-
vides the dominant contribution to the g1−QFI in
all the explored examples — with the exception the
high temperature quadratic model, as explained be-
low. However, for non-zero temperatures the contri-
bution of the variances to the g1−QFI is important,
and it is in fact dominant at sufficiently low driving.
In the region of driving strengths where linear and
quadratic models are in agreement, the important
role played by the contribution of the variances can
be related to the cavity-assisted cooling of the me-
chanics [1, 2], which makes the effective mechanical
temperature (hence the system’s covariance matrix)
strongly coupling-dependent. Note also that the im-
pact of the cooling effect gets stronger at higher tem-
peratures. The local maximas observed in δgmin

1 at
finite temperature occur close to the crossover point
between the contributions of the averages and vari-
ances. In contrast, at zero temperature the contri-

bution of the variances is very weakly dependent on
g1, so that in that case the averages always dominate
and no local maximum is observed. Additionally,
the fact that the contribution of the averages to the
g1−QFI involves the inverse of the covariance matrix
[see Eq. (24)] suggests that the best precision may
eventually be expected when the mechanical bath is
at zero-temperature. As anticipated, the quadratic
model at 80mK provides an exception to the above
discussion: there δgmin

1 is dominated by the (approx-
imately constant) contribution from the variances to
the g1−QFI for all the considered driving strengths.

In Fig. 2(b) we explore the effect of cavity driving
and temperature on the estimation precision of the
quadratic coupling strength, g2. At low intracavity
photon numbers the relative error bounds are sig-
nificantly larger for g2 than g1. At high intracavity
photon numbers (log10 |α|2 & 5), however, δgmin

1 and
δgmin

2 become comparable, reflecting the fact that g2

is amplified by a factor |α|2 in Hamiltonian (15).

Interestingly, for all |α| within our allowed range
the high temperature scenario predicts the lowest
relative errors bound on g2: a hotter mechanical
bath gives a (potentially) better estimation preci-
sion for all driving strengths studied. This can be
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FIG. 3: Relative error bounds on coupling constants (a) g1 and (b) g2, as a function of the intracavity photon number, |α|2 as
implied by the global, light and mechanics QFIs in the case of zero temperature (black line, orange dashed line, blue squares,
respectively) and high temperature (purple dot-dashed line, red dotted line and green circles, respectively).

traced back to the fact that, also in the estimation of
g2, the information content of the variances increases
with temperature. In this case the contribution of
the variances is always higher than that of the av-
erages at lower driving strengths and for sufficiently
high temperatures it remains so over the full range
of driving strengths — see Appendix. B. The overall
result is that the relative error bounds on g2 decrease
monotonically with increasing drive.

In Fig. 3 we compare global and local QFIs for g1

(Fig. 3(a)) and g2 (Fig. 3(b)). In a nutshell, we find
that the majority of information about the coupling
parameters is contained in the reduced state of the
mechanics. Note that, in standard optomechanical
experiments, measurements are typically performed
on the light mode. Nevertheless, our results suggest
that significantly more information about the cou-
plings might be available by probing the mechanical
motion more directly.

For g1 the precision bounds obtained from either
the mechanical subsystem, or the optical subsystem,
drop monotonically with drive strength at T = 0,
but display more complex behavior at nonzero tem-
perature. This matches what happens with the pre-
cision bounds of the full system. Indeed, the g1-
QFI of the mechanical subsystem is very close to
the global g1-QFI for all the considered tempera-
tures. However, while the g2−QFI of the mechani-

cal subsystem is close to the global one for T = 0,
for T = 80mK there is a visible gap between the
two that only closes at strong enough driving, i.e.
log10(|α|2) & 3.8.

Finally, in Fig. 4 we show how some realistic mea-
surements perform in comparison to the ultimate
limits given by the g1− and g2−QFIs. Out of the
measurements considered, the mechanical position
almost always does best at estimating the coupling
parameters. The ultimate limits to the estimation
precision of the coupling strengths can only be ap-
proached at zero temperature, usually by measure-
ment of X̂b. For higher temperatures this limit is
never achieved for either coupling parameter. No-
tice also the unusual behaviour of the measurement
of P in the case of g2 at T = 80mK. The two peaks
correspond to two minima of the classical FI, where
the information about g2 is very close to zero.

V. CONCLUSIONS

We employed local QET to the problem of es-
timating linear and quadratic coupling parameters
in driven-dissipative optomechanics. For experi-
mentally realistic values of the model parameters,
inspired by Refs. [33] and [34], we found that at
low intracavity photon numbers the linear coupling
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FIG. 4: Log-log plots of relative error bounds for coupling constants against the intracavity photon number, |α|2 as implied by

the QFI (black line) and the measurements of P̂ (red dotted line), Q̂ (purple dot-dashed line), X̂b (green circles) and P̂b

(orange dashed line). (a) and (b) are for g1 and g2 in the high temperature scenario respectively, whilst (c) and (d) are for g1

and g2 in the zero-temperature scenario.

strength is easier to estimate than the quadratic one.
At high intracavity photon numbers, however, their
estimation precisions become comparable. Our anal-
ysis also shows that, at zero temperature, a measure-
ment of the mechanical quadrature X̂b is the best
possible choice to a very good approximation.

Exploring the effect of temperature on the esti-

mation precision of the coupling strengths, we found
that higher temperatures are not always detrimental
to the estimation performance. Temperature has a
particularly striking effect in the estimation of the
quadratic coupling parameter: in this case we found
that a hotter mechanical bath resulted in a higher
estimation precision for all drive strengths consid-
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ered. In contrast, in the case of the linear coupling
strength the effect of temperature is most signifi-
cant at lower driving. Past a certain drive strength,
better estimation precision for the linear coupling
parameter is achieved at lower temperatures.

In future work, one could investigate how the
estimation precision of g1, g2 may be affected by
the inclusion of anharmonicities in the mechanical
potential [37], and by different choices of detun-
ing. Additionally, our methods could be extended
to purely quadratic settings (g1 = 0), or to cases
where g2 > g1.
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Appendix A: Covariance matrix language

In this section we introduce the covariance matrix
language. This is particularly convenient for Gaus-
sian states, which can be fully characterised by their
first and second moments [16].

Let us consider a system of N bosonic modes,
described by a vector of quadratures R̂ =
(X̂1, P̂1, ..., X̂N , P̂N ) [14]. The commutator between
any two quadrature operators is given by the cor-
responding element of a matrix of commutators W
which, by construction, satisfies WT = −W. Sym-
bolically, the elements of W are

Wij = [R̂i , R̂j ]. (A1)

In the main text we are dealing with open system
dynamics which can be approximated via a bilinear
master equation of the general form

ρ̇(t) = − i

~
[H ′, ρ(t)]

+
∑

ij

γij

2

[
2R̂iρ(t)R̂j − {R̂j R̂i , ρ(t)}

]
, (A2)

where

H ′ =
1

2

∑
ij

Hij R̂i R̂j =
1

2
R̂

T
HR̂ (A3)

is the bilinear Hamiltonian, H is the Hamiltonian
matrix and γij is the corresponding damping rate
[16]. Eq. (A3) is the general expression for a strictly
quadratic Hamiltonian. Without loss of generality
we may assume that H is a symmetric matrix, that
is H = HT . If the master equation admits a steady
state, the latter will be Gaussian provided that the
additional condition H > 0 is satisfied [14, 16]. The
first moments R0 of a quantum state ρ(t) form a
vector of average values defined as [35, 36]

R0 = 〈R̂〉 = Tr [ρ(t)R̂], (A4)

while the second moments σ are encoded in the co-
variance matrix with elements [14, 16, 35]

σkl =
1

2
〈{R̂k , R̂l}〉 − 〈R̂k〉〈R̂l〉. (A5)

Moreover, given a master equation of the form (A2)
the equation of motion for the average value of a
generic observable Â can be deduced

d

dt
〈Â〉 ≡ Tr [ρ̇(t)Â] =

i

~
〈[H ′, Â]〉+ 〈D†(Â)〉, (A6)

where

D†(Â) =
∑

ij

γij

2
(R̂j [Â, R̂i ] + [R̂j , Â]R̂i ) (A7)

is the dissipator [22]. Using the same convention, we
find that the vector of first moments evolves accord-
ing to [14, 16]:

Ṙ0 = − i

~
WHR0 + WγAR0, (A8)

where γ is a matrix with elements γij that has been
conveniently decomposed into its symmetric and an-
tisymmetric parts:

γS =
γ + γT

2
, (A9)

γA =
γ − γT

2
. (A10)

Instead, the covariance matrix obeys the following
equation of motion

σ̇ = (− i

~
WH + WγA)σ + σ(

i

~
HW + γAW)

+ WγSW. (A11)

The steady state covariance matrix, σ̄, can thus be
found by solving the Lyapunov equation

BT σ̄ + σ̄B = C , (A12)

11



FIG. 5: Log-log plots comparing the contributions from the variances (orange dashed line) and the averages (green circles) to
the g1−QFI in the quadratic model (black line) for g1 in (a) the zero temperature scenario, (b) T = 1mK, (c) T = 80mK. The
corresponding results for the linear model are not shown, but are qualitatively similar to figure (a) for zero temperature, and
to (b) for both T = 1mK and T = 80mK cases.

FIG. 6: Log-log plots comparing the variances (orange dashed line) and averages (green circles) contributions to QFI (black
line) for g̃2 at (a) zero temperature (b) T = 1mK and (c) T = 80mK.

where

B =
i

~
HW + γAW, (A13)

C = −WγSW. (A14)

In order for the steady state covariance matrix to
describe a physical state ρ(t) it must be a real, sym-
metric and a positive semi-definite matrix [14, 16].
The semi-positivity requirement is satisfied pro-
vided that B is stable, i.e. the real parts of the
eigenvalues of B are all negative [14]. Addition-
ally, the Robertson-Schrödinger uncertainty relation
must hold:

2σ̄ + W ≥ 0, (A15)

The inequality (A15) is in fact a necessary and suf-
ficient condition for σ̄ to represent the steady state

covariance matrix of a Gaussian state [14, 16]. In our
case, assuming that B is indeed stable, Eq. (A15) can
be further simplified to WγT W ≥ 0, which is equiv-
alent to the simpler condition γ ≥ 0. It is easy to
check that the latter is always satisfied for the choice
of γ adopted in the main text.

Appendix B: Non-monotonic behavior of the
QFI

In this Appendix we explore the origins of the
non-monotonic behavior of the QFI when mechani-
cal temperature is introduced, by investigating how
the different contributions to the QFI (those due to
the averages and the variances) behave in the zero,
low and high temperature cases.
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In our set-up, the coupling strengths have dimen-
sions of frequency, whilst the averages and the steady
state covariance matrix are dimensionless.To obtain
dimensionless QFIs we shall consider the dimension-
less linear and quadratic coupling strengths defined
as g̃1 = g1/ωm and g̃2 = g2/ωm, respectively. It is
straightforward to show that the QFIs for the di-
mensionless and the original coupling strengths are
related via Ĩii = ω2

mIii for i = {1, 2}.
We can now compare the contributions from the

variances and averages (as defined below Eq. (24))
to the QFI in the cases of g̃1 and g̃2, separately.

Figure 5 shows the contributions to the g̃1−QFI
versus the steady-state intracavity photon number.
In the zero temperature limit (Fig. 5(a)) the contri-
bution of the averages dominates at all |α|. Thus,
here the majority of information about g1 is always
encoded in the averages. In contrast, in the low tem-
perature scenario (Fig. 5(b)) we observe a crossover
of the contributions from the variances and the aver-

ages at log10(|α|2) ∼ 4.3. In this case, the variances
encode most of the g̃1−QFI at lower drive strengths,
but the contribution of the averages grows mono-
tonically until it eventually becomes dominant. The
contribution of the variances remains approximately
constant with drive before declining and then even-
tually growing again, but at a slower rate than the
contribution of the averages. For T = 80mK (Fig.
5(c)), we instead find that the variances contribution
is always dominant (and approximately constant) for
all drives considered.

In Fig. 6 we investigate the QFI contributions for
g̃2. In contrast to the g̃1 case, the g̃2−QFI displays
monotonic bahavior as a function of the intracavity
photon number. A crossover between the two con-
tributions is only observed in the zero temperature
scenario (at log10(|α|2) ∼ 4.2), with the majority
of information about g2 contained in the variances
over the whole range of |α| studied for T = 1mK
and 80mK.
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