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We extend a recently developed numerical code to obtain stationary, axisymmetric solutions that
describe rotating black hole spacetimes in a wide class of modified theories of gravity. The code utilizes
a relaxed Newton-Raphson method to solve the full nonlinear modified Einstein’s equations on a
two-dimensional grid with a Newton polynomial finite difference scheme. We validate this code by
considering static and axisymmetric black holes in general relativity. We obtain rotating black hole
solutions in scalar–Gauss-Bonnet gravity with a linear (linear scalar–Gauss-Bonnet) and an exponential
(Einstein-dilaton–Gauss-Bonnet) coupling and compare them to analytical and numerical perturbative
solutions. From these numerical solutions, we construct a fitted analytical model and study observable
properties calculated from the numerical results.
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I. INTRODUCTION

As we enter a new era of multimessenger astrophysics,
many new experiments will allow us to test Einstein’s
theory of general relativity (GR) in the strong field regime
[1–6]. Strong field observations test GR by probing
whether the properties of astrophysical compact objects
match GR’s prediction. However, one wants to test not only
whether GR predictions fit the data but also whether they
do so better than potential alternatives. This requires the
study of compact objects in modified gravity, and in
particular, the solution to the full field equations for
realistic astrophysical black holes. Although approximate
solutions might provide a simplification to the complexity
of the modified field equations, this simplification comes at
the expense of accuracy. As the precision of our observa-
tions is improving, so should the precision of our modeling,
which therefore motivates a fully numerical study.
Such numerical solutions serve multiple purposes. On

the one hand, they can be used to study the stability of black
holes in modified gravity. For example, in Einstein-dilaton–
Gauss-Bonnet gravity [1,6–11], stationary spacetimes have
been used to study the properties of perturbed black holes
through their quasinormal mode spectrum [12,13]. On the
other hand, numerical solutions can also be used directly to
determine how certain observables deviate from GR’s
predictions. For example, the locations of the innermost-
stable-circular-orbit and of the light ring can be calculated
from these numerical spacetimes, and these locations can
be inferred from observations of accretion disks around

black holes [14] and from black hole shadows [15],
respectively.
Several methods exist to numerically find black hole

solutions in modified gravity, and we recently developed
one such method that is applicable to a wide class of
theories but only to static and spherically symmetric black
holes [16]. Our infrastructure uses symbolic manipulation
software to calculate the modified field equations and
export them into an executable algorithm written in the
C programming language. These equations are then dis-
cretized using a finite element method by replacing each
differential operator at each grid point with a Newton
interpolation polynomial and calculating the residual of the
field equations. By minimizing this residual using a relaxed
Newton-Raphson method, we can iteratively converge to
the desired solution by calculating the linearized correction
to our functions through the solution to a linear system of
equations evaluated from the Jacobian matrix of our
discretized differential equations.
In this paper, we extend our numerical infrastructure to

rotating (i.e., stationary, axisymmetric, and vacuum) black
hole spacetimes. We first validate our numerics by studying
rotating black holes in GR, and we directly compare the
numerical result to the known Kerr solution. After this
validation, we construct stationary, axially symmetric black
holes in scalar–Gauss-Bonnet (sGB) gravity, a well-moti-
vated modified theory [7–10] that is a member of the
quadratic gravity class [1,6,11]. In the action of sGB
gravity, a scalar couples to the Gauss-Bonnet invariant,
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G, through a coupling function FðψÞ. Different coupling
functions have been considered in the literature: the
exponential case is commonly referred to as Einstein-
dilaton–Gauss-Bonnet (EdGB) gravity, while FðψÞ ¼ ψ
is commonly referred to as the linear sGB gravity.
Part of the motivation for considering sGB as the first

example to study with this new code is that black holes in
this class of theories have already received a lot of attention.
Stationary black holes have been found in sGB assuming
spherical symmetry [7–10,17] or working perturbatively in
slow rotation [18–21]. Stationary, axisymmetric black
holes with arbitrary spin in EdGB have only been obtained
numerically [22,23]. There has also been recent work on
the dynamical evolution of black holes and binaries in sGB
gravity [24–28]. Recently, it has also been shown that when
FðψÞ is quadratic in ψ certain models exhibit black hole
scalarization: the black holes acquire scalar hair only when
their mass or spin exceeds a certain threshold [29–33].
We will construct fully nonlinear solutions in linear sGB

and EDGB gravity that describe stationary and axially
symmetric black holes. We will compare these solutions to
perturbative ones found in a weak-coupling expansion
ᾱ ¼ α=ρ2H ≪ 1, where ρH the horizon radius. This allows
us to verify that our numerical solutions in the nonrotating
limit are equal to the analytically known, spherically
symmetric, perturbed solution, and to compare the fully
nonlinear solutions to the perturbed weak-coupling expan-
sion. We will also use these solutions to construct analytic,
closed-form functions that are excellent approximations to
our numerical solutions. We will conclude with an analysis
of the properties of some physical observables that can be
calculated with our nonlinear solutions and our analytic,
closed-form approximations.

A. Executive summary

One of the main products of our analysis is the extension
of our numerical infrastructure from spherical [16] to axial
symmetry, which we hereby openly release to the com-
munity. This extension requires the discretization of our
partial differential equations on a two-dimensional grid and
the replacement of each differential operator in the new
dimension with a similar Newton interpolation polynomial.
To discretize any mixed partial derivatives, we follow the
approach of [34] and introduce an auxiliary variable with a
corresponding differential equation whose residual must
simultaneously be minimized with the remaining system of
equations. Validation using GR shows convergence to the
Kerr solution with a tolerance of 10−5 in four iterations.
With the code validated, we then move to a study of

rotating black holes in linear sGB and EdGB gravity. In the
nonrotating case, we recover the previous observation that
the perturbative solution that assumes weak coupling
agrees exceptionally well with the exact solution in linear
sGB, while there are still large differences with the solution
in EdGB. When we include rotation, we find that the

magnitude of these differences in the exponential coupling
solution is suppressed as we increase the rotation of the
black hole. This seemingly counterintuitive behavior can be
explained through Fig. 1, which shows the relative frac-
tional correction in the Arnowit-Deser-Misner (ADM)
mass (top) and angular momentum (bottom), and the scalar
monopole charge (middle) as a function of the dimension-
less sGB coupling parameter ᾱ. For the same ᾱ, increasing
the angular velocity of the black hole horizon decreases its
scalar charge and suppresses the deviation in the mass from
its GR value, while increasing the angular momentum.
From the solutions, we calculate the location of the

innermost stable circular orbit (ISCO) and the light ring, as
shown in Fig. 2. These observables, when computed with
the weak-coupling solution, agree with those computed

FIG. 1. Fractional change in ADM mass (top) and angular
moment (bottom), and the dimensionless scalar charge (middle)
versus dimensionless coupling ᾱ for three event horizon angular
velocities. Weak-coupling solutions are denoted with solid lines,
linear sGB solutions with dashed lines, and EdGB solutions with
dotted lines, while the analytic perturbative solution in spherical
symmetry is shown with dashed lines. The weak-coupling
solution agrees with the linear sGB solution, but disagrees with
the EdGB solution. As we increase the spin of the black hole, the
scalar charge decreases, and correspondingly the GR deviations
in the mass decrease, while the angular momentum increases.
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with the linear sGB solution, while they disagree with those
calculated with the EdGB solution as ᾱ increases. Observe
also that as the rotation of the black hole increases, the
location of the ISCO and the light ring decreases such that
in the extremal limit it is coincident with the event horizon,
as one also finds in GR. However, in linear sGB gravity an
increase in ᾱ increases both the mass and the scalar charge
of the black hole, which shifts the location of the ISCO and
light ring to larger radii. We observe these two competing
effects in Fig. 2, where the rotation of the black hole
reduces and eventually changes the sign of the fractional
change in the location of both the ISCO and the light ring.
Finally, we use the numerical solutions found in linear

sGB and EdGB gravity to construct analytic, closed-form
expressions for the four-dimensional spacetime metric
that is capable of reproducing the numerical results to
the accuracy of the latter. We provide the fitting coefficients
for this analytic representation online, together with the
Mathematica routine that provides the metric components
themselves. This analytic representation now enables future
studies of the stability of such black hole solutions.
The numerical infrastructure is freely available to the

scientific community to use as a tool to explore black hole

spacetimes beyond GR. The generality of the numerics
stems from the use of minimal assumptions about the
specific modified theory of gravity considered, about the
boundary conditions on the horizon and infinity, and about
the existence of additional fields beyond the metric tensor.
The analytical, closed-form representation can be used
directly to calculate astrophysical observables, such as
those associated with accretion disks around black holes
[14], shadows [15], or quasinormal modes of black hole
mergers [12]. These analytic metrics can also serve as the
basis for the construction of initial data for full numerical
simulations of merging black holes in EDGB and sGB
gravity.
The remainder of this paper is organized as follows.

Section II outlines adjustments that are required to extend
the numerical algorithm to partial differential equations in
axial symmetry. Section III validates the algorithm using a
rotating Kerr black hole. Section IV applies the algorithm
to sGB gravity and derives the results described above.
Section V constructs a fitted analytical model from the
numerical solutions and compares physical observables
determined by the numerical solutions and the fits. Finally,
Sec. VI summarizes our results and points to future direc-
tions. For the remainder of this paper we use the following
conventions: Greek letters denote spacetime indices; the
metric has the spacetime signature ð−;þ;þ;þÞ; we use
geometric units where G ¼ 1 ¼ c.

II. NUMERICAL METHODS

The numerical infrastructure extends recent work from
[16] to axial symmetry, following the approach in [22,34],
to build a partial differential equation solver for rotating
black hole solutions in an arbitrary modified theory of
gravity. The algorithm is split into three main parts: the
relaxedNewton-Raphsonmethod, the discretizationmethod,
and the discretization error estimation. TheNewton-Raphson
method is a flexible root-finding algorithm that can beused to
iteratively solve a nonlinear system of equations. Starting
with an initial “guess” for the solution, the Newton-Raphson
methodupdates the guess tominimize the difference between
the guess and the actual solution. By iteratively updating the
guess, it will converge to the true solution. The field
equations are discretized using a Newton interpolation
polynomial which are related to the finite difference coef-
ficients typically used to estimate derivative operators in
differential equations. This estimation method naturally
introduces discretization errors that must be controlled by
ensuring these errors have a negligible impact on the updated
guess of the solution for our system of equations.We control
these discretization errors through an adaptive step size.
Once the errors are controlled, we can apply the relaxed
Newton-Raphson method to our discretized system of
equations until we converge to the solution.
As most of the foundations of this infrastructure are

detailed in [16], we will focus on the extensions to

FIG. 2. Scaled fractional change in the location of the inner-
most stable circular orbit (top) and light ring (left) versus
dimensionless coupling ᾱ for three event horizon angular
velocities, using the same conventions as in Fig. 1. As before,
observe that the observables computed with the weak-coupling
solution agree with those of linear sGB theory, while they
disagree with the predictions of EdGB gravity for large ᾱ. The
deviations from GR are suppressed as the spin increases, with the
locations of the innermost stable circular orbit and light ring
shifting closer to the horizon.
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axisymmetry in this section. In axisymmetry, the Newton
interpolation polynomial and the discretization error
remains identical to the spherical symmetry case but with
an additional dimension. Specifically, we replace each ∂u

∂x
and ∂u

∂y operator with their discretized equivalents which
introduces their respective discretization errors,

∂xe⃗ðx;dÞ ¼ ∂xu⃗
ðrþ2Þ
d − ∂xu⃗

ðrÞ
d ;

∂xxe⃗ðx;dÞ ¼ ∂xxu⃗
ðrþ2Þ
d − ∂xxu⃗

ðrÞ
d ; ð1Þ

and

∂ye⃗ðy;dÞ ¼ ∂yu⃗
ðrþ2Þ
d − ∂yu⃗

ðrÞ
d ;

∂yye⃗ðy;dÞ ¼ ∂yyu⃗
ðrþ2Þ
d − ∂yyu⃗

ðrÞ
d ; ð2Þ

where e⃗ðx;dÞ and e⃗ðy;dÞ are the discretized error vectors1 at

each grid point in the x and y dimensions, respectively. u⃗ðrÞd
is the discretized solution vector u⃗ that we wish to minimize
to the Newton polynomial order r. With two discretization
errors now, we obtain an additional discretization error
correction equation that must be minimized,

JΔu⃗y;e ¼ −D⃗y;e; ð3Þ
where J is the Jacobian matrix, Δu⃗y;e is the correction on
the solution vector u⃗ due to the discretization error vector
D⃗y;e in the y dimension. This additional equation must be
minimized along with our two previous equations

JΔu⃗d ¼ −b⃗d; ð4Þ

JΔu⃗x;e ¼ −D⃗x;e: ð5Þ
To control the discretization error, we require that the
relative correction due to both the x and the y dimension
(u⃗x;e and u⃗y;e) discretization errors is below a specified
tolerance,

kΔu⃗x;ek
ku⃗dk

≤ tol; ð6Þ

kΔu⃗y;ek
ku⃗dk

≤ tol: ð7Þ

The main addition from spherical to axisymmetry is the
treatment of mixed derivatives. We utilize the method in
[34] and treat each mixed derivative as a separate field
equation. Namely, we define a new auxiliary variable

∂u0
∂y ¼ u1; ð8Þ

and substitute it into each mixed derivative operator,

∂2u0
∂x∂y ¼ ∂u1

∂x : ð9Þ

We then treat the auxiliary variable definition of Eq. (8) as a
separate field equation whose residual we simultaneously
must minimize,

∂u0
∂y − u1 ¼ b1; ð10Þ

which will double the amount of differential equations we
must solve. This increases the computational resource
requirement and becomes the limiting factor for larger
grid domains.
The relaxed Newton-Raphson method leads to a system

of linear equations that must then be solved using various
methods. In the spherically symmetric case, iterative solver
methods were comparable but had faster convergence
over direct methods. In the axisymmetric case, the field
equations become less diagonally dominant and iterative
methods fail to successfully accelerate the computation
time. Due to this, we find that direct methods once
again become the faster method because the size of our
linear system is not large enough (on the order of
millions of elements) for the iterative methods to accelerate
convergence.

III. VALIDATION

We now apply our numerical infrastructure using
the method described in the previous section to a sta-
tionary rotating black hole in general relativity described
by the Kerr metric. Although the solution is known
analytically, we can use it to benchmark our numerical
infrastructure.
The familiar Einstein-Hilbert action in general relativity

in a vacuum is given by

SGR ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð11Þ

where R is the Ricci scalar and g is the determinant of the
metric gμν. Varying the action with respect to the metric
gives the vacuum Einstein field equations

Gμν ¼ 0; ð12Þ

where Gμν is the Einstein tensor.
We begin with an axisymmetric and stationary metric

ansatz in isotropic coordinates,2

1In this paper, the word vector stands for a standard Euclidean
vector in flat space.

2Note that this is a slightly modified ansatz from [16]. This
ansatz produces field equations that are easier to diagonalize as
we will see later.
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ds2 ¼ −fðρ; θÞdt2 þmðρ; θÞ
fðρ; θÞ ðdρ

2 þ ρ2dθ2Þ

þ lðρ; θÞ
fðρ; θÞ ρ

2sin2θ

�
dϕ −

ωðρ; θÞ
ρ

dt

�
2

; ð13Þ

where ρ is the isotropic radial coordinate. For a Kerr metric
with mass M0 and spin a0, the isotropic coordinate ρ is
related to the Boyer-Lindquist radial coordinate by

r ¼ ρ

�
1þM0 þ a0

2ρ

��
1þM0 − a0

2ρ

�

¼ ρþM0 þ
M2

0 − a20
4ρ

: ð14Þ

It is convenient to replace the spin parameter a0 with the
event horizon radius ρH using the relation

a0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − 4ρ2H

q
: ð15Þ

Replacing this in the above coordinate transformation
yields

r ¼ ρþM0 þ
ρ2H
ρ
: ð16Þ

The Kerr metric in isotropic coordinates is

fGR ¼
�
1 −

ρ2H
ρ2

�
2 F1

F2

;

mGR ¼
�
1 −

ρ2H
ρ2

�
2 F2

1

F2

;

lGR ¼
�
1 −

ρ2H
ρ2

�
2

;

ωGR ¼ F3

F2

; ð17Þ

where

F1 ¼
2M2

0

ρ2
þ
�
1 −

ρ2H
ρ2

�
2

þ 2M0

ρ

�
1þ ρ2H

ρ2

�

−
M2

0 − 4ρ2H
ρ2

sin2θ;

F2 ¼
�
2M2

0

ρ2
þ
�
1 −

ρ2H
ρ2

�
2

þ 2M0

ρ

�
1þ ρ2H

ρ2

��
2

−
�
1 −

ρ2H
ρ2

�
2M2

0 − 4ρ2H
ρ2

sin2θ;

F3 ¼
2M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − 4ρ2H
p

ð1þ M0

ρ þ ρ2H
ρ2
Þ

ρ2
: ð18Þ

The following properties of the Kerr metric in
isotropic coordinates are used. On the event horizon,

fGRjρ¼ρH
¼ mGRjρ¼ρH

¼ lGRjρ¼ρH
¼ 0, the frame dragging

term ω is a constant,

ωjρ¼ρH
¼ ωH ¼ ρH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − 4ρ2H
p

2M0ðM0 þ 2ρHÞ
; ð19Þ

and is proportional to the angular velocity of the black hole
event horizon ΩH,

ΩH ¼ ωH

ρH

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − 4ρ2H
p

2M0ðM0 þ 2ρHÞ
: ð20Þ

In the nonrotating (Schwarzschild) limit M0 ¼ 2ρH and

fSCHWGR ¼
ð1 − ρH

ρ Þ2
ð1þ ρH

ρ Þ2
;

mSCHW
GR ¼

�
1 −

ρH

ρ

�
2
�
1þ ρH

ρ

�
2

;

lSCHWGR ¼ mSCHW
GR ;

ωSCHW
GR ¼ 0: ð21Þ

Regularity of the solutions along the symmetry axis
θ ¼ 0 and θ ¼ π implies that the metric functions should
satisfy the boundary conditions

∂f
∂θ

����
θ¼0;π

¼ 0;

∂m
∂θ

����
θ¼0;π

¼ 0;

∂l
∂θ

����
θ¼0;π

¼ 0;

∂ω
∂θ

����
θ¼0;π

¼ 0; ð22Þ

which our solution indeed satisfies. As expected, the metric
is asymptotically flat, fGRjρ→∞ ¼ mGRjρ→∞ ¼ lGRjρ→∞ ¼
1 and ωGRjρ→∞ ¼ 0. Asymptotically far from the black
hole, the observable mass and angular momentum can be
extracted from the decay of the metric components

gtt ¼ −f þ l
f
ω2 sin2 θ ¼ −1þ 2M

ρ
þO

�
1

ρ2

�
;

gtϕ ¼ −
l
f
ωρ sin2 θ ¼ −

2J
ρ
sin2 θ þO

�
1

ρ2

�
; ð23Þ

whereM and J are the ADMmass and angular momentum,
respectively. For the Kerr solution, we find MGR ¼ M0

and JGR ¼ M0a0 ¼ M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − 4ρ2H
p

.
With this ansatz, we can compute the components of the

Einstein tensor Gμν. To simplify the partial differential
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equations, following [22], we use linear combinations of
the Einstein tensor to diagonalize the equations with respect
to the operator Ô ¼ ∂2

∂ρ2 þ 1
ρ2

∂2

∂θ2,

m
f

�
Gμ

μ − 2Gt
t −

2ω

ρ
Gt

ϕ

�
¼ 1

f
Ôf þ � � � ;

2
m
f

�
Gϕ

ϕ −
ω

ρ
Gt

ϕ

�
¼ 1

m
Ômþ � � � ;

2
m
f
ðGρ

ρ þ Gθ
θÞ ¼

1

l
Ôlþ � � � ;

2
fm

l sin2θ

�
−
1

ρ
Gt

ϕ

�
¼ Ôωþ � � � : ð24Þ

As in the spherical symmetry case, we again use a
compactified coordinate defined by

x ¼ 1 −
ρH

ρ
: ð25Þ

This changes our domain of integration from ρ ∈ ½ρH;∞Þ to
the finite domain x ∈ ½0; 1�. This will fix the location of the
event horizon at x ¼ 0, and now the ADMmassM must be
determined from Eq. (23). In these compactified isotropic
coordinates, the functions have the form

fGR ¼ x2ðx − 2Þ2 F
x
1

Fx
2

;

mGR ¼ x2ðx − 2Þ2 ðF
x
1Þ2
Fx
2

;

lGR ¼ x2ðx − 2Þ2;
ωGR ¼ Fx

3

Fx
2

; ð26Þ

where Fx
1, F

x
2, and Fx

3 are the functions from Eq. (18) in
compactified coordinates. As before, we have similar
boundary conditions, fGRjx¼0 ¼ mGRjx¼0 ¼ lGRjx¼0 ¼ 0
and ωGRjx¼0 ¼ ωH. At infinity we have fGRjx¼1 ¼
mGRjx¼1 ¼ lGRjx¼1 ¼ 1 and ωGRjx¼1 ¼ 0.
To prepare our field equations for numerical integration,

we make an additional substitution following [35,36]. We
find that this substitution is necessary to eliminate a
numerical divergence on the event horizon in the scalar–
Gauss-Bonnet case considered in Sec. IV. The diagonal-
ization procedure from Eq. (24) introduces factors of 1=x in
the field equations that we resolved using a similar
substitution by [35,36] which was used to find near horizon
quantities in a similar framework. We thus replace the
metric functions with corresponding barred functions
defined by

f ¼ x2f̄;

m ¼ x2m̄;

l ¼ x2 l̄; ð27Þ

which removes this numerical divergence. This substitution
leaves the boundary conditions as x → 1 unchanged. At the
horizon, the boundary conditions are obtained from exam-
ining an expansion of the metric functions around x ¼ 0
(see [35]) and become

�
f̄ −

∂f̄
∂x

�����
x¼0

¼ 0;

�
m̄þ ∂m̄

∂x
�����

x¼0

¼ 0;

�
l̄þ ∂ l̄

∂x
�����

x¼0

¼ 0: ð28Þ

Similar to the spherically symmetric case, the Newton-
Raphson method requires an initial guess for the numerical
system. We shall again, choose an initial guess that is a
small perturbation away from the Kerr metric and that
satisfies the boundary conditions

uð0Þ0 ¼ f̄GR½1þ δΔxΔy�;
uð0Þ1 ¼ m̄GR½1þ δΔxΔy�;
uð0Þ2 ¼ l̄GR½1þ δΔxΔy�;
uð0Þ3 ¼ ωGR½1þ δΔxΔy�; ð29Þ

where δ ¼ 0.1 and can be adjusted to improve or worsen
the initial guess.3 The normalized functions Δx and Δθ are
chosen to be

Δx ¼ 256

27
x3ð1 − xÞ;

Δy ¼ 512

π3

�
θ

π=2

�
3
�
1 −

θ

π=2

�
3

: ð30Þ

To solve our problem numerically, we begin by replacing
the metric functions of our ansatz with their barred
definitions of Eq. (27). We then define the auxiliary mixed
derivative functions

∂f̄
∂θ ≡ u4;

∂m̄
∂θ ≡ u5;

∂ l̄
∂θ≡ u6;

∂ω
∂θ ≡ u7; ð31Þ

3We find that the convergence in GR is largely independent of
the value of δ. Even initial guess values as large as δ ¼ 1
converge to the desired solution in less than 10 iterations.
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and replace each mixed derivative operator given by4

∂2f̄
∂x∂θ ¼ ∂u4

∂x ;

∂2m̄
∂x∂θ ¼ ∂u5

∂x ;

∂2 l̄
∂x∂θ ¼ ∂u6

∂x ;

∂2ω

∂x∂θ ¼ ∂u7
∂x ; ð32Þ

in the diagonalized Einstein equations of Eq. (24) in
compactified isotropic coordinates. From Eq. (10), the

mixed derivative definitions above add four additional field
equations we must solve simultaneously with the Einstein
equations, and we obtain a nonlinear system of eight partial
differential equations for our eight functions to solve:
f̄; m̄; l̄;ω; u4; u5; u6; u7.
We then discretize our differential operators using their

Newton polynomial representation of order r ¼ 16 on a
two-dimensional grid of 61 × 31 points and initialize our
solver with the initial guess of Eq. (29). The two input
parameters that we must specify is the horizon radius where
we choose ρH and the angular velocity on the event horizon
ΩH. For all computations in this paper, we set ρH ¼ 1. The
horizon angular velocity is chosen to coincide with that
of a Kerr black hole of dimensionless spin χGR ¼ JGR=
M2

0 ¼ 0.6 which from Eq. (20) implies ΩH ¼ 0.0667,
where we have set ρH ¼ 1. We find that our numerical
infrastructure converges to the desired solution below our
specified tolerance of tol ¼ 10−5 in four iterations. The
absolute error between the metric functions and the Kerr
solution for each iteration is shown in Fig. 3. This figure

FIG. 3. Absolute error during each iteration for each metric element to the Kerr solution for three selected angles. Here we show the
metric components f (top left),m (top right), l (bottom left), and ω (bottom right) for each iteration denoted by color and for three angles
θ ¼ 0, π=4, π=2 denoted by the dotted, dashed, and solid lines, respectively. We find that with our chosen initial guess, our numerical
infrastructure converges to the Kerr solution to a maximum absolute error of Oð10−6Þ and a minimum error of Oð10−10Þ in four
iterations.

4We find that it is unnecessary to make the second order
replacement ∂2f̄

∂θ2 ¼ ∂u4∂θ as the second derivative ∂2f̄
∂θ2 terms can be

evaluated very accurately with our Newton polynomial repre-
sentation. We find that this substitution only slows down
convergence.
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validates our numerical code to construct stationary and
axisymmetric black hole solutions.

IV. AXIALLY SYMMETRIC BLACK HOLES IN
SCALAR–GAUSS-BONNET GRAVITY

In this section we solve the modified Einstein field
equations in sGB gravity with both a linear coupling and an
exponential coupling function, assuming a vacuum space-
time that is stationary and axially symmetric.

A. Action and field equations

The action in scalar–Gauss-Bonnet gravity in a vacuum
is given by

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R −∇μψ∇μψ þ 2αFðψÞG�; ð33Þ

where R is the Ricci scalar and g is the determinant of the
metric gμν. The real dimensionless scalar field ψ is coupled
to the Gauss-Bonnet invariant

G ¼ R2 − 4RμνRμν þ RμνρσRμνρσ; ð34Þ

through a function of the scalar field FðψÞ with a coupling
constant α that has dimensions of length squared.
By varying the action with respect to the metric and the

scalar field we obtain two field equations. Variation with
respect to the metric field yields

Gμν − Tμν þ αKμν ¼ 0; ð35Þ

where the scalar field stress-energy tensor is

Tμν ¼ ∇μψ∇νψ −
1

2
gμν∇γψ∇γψ ð36Þ

and

Kμν ¼ ðgρμgδν þ gρνgδμÞ
×∇σ½ϵγδαβϵρσληRληαβ∇γFðψÞ�: ð37Þ

Variation with respect to the scalar field yields

□ψ þ α
∂F
∂ψ G ¼ 0: ð38Þ

The scalar field is subject to the following boundary
conditions: it must be asymptotically flat, and its first
derivative must vanish on the horizon in isotropic coor-
dinates, which follows from the regularity condition on the
horizon [9,10,17], namely

∂ψ
∂ρ

����
ρ→ρH

¼ 0; ψ jρ→∞ ¼ 0: ð39Þ

In this paper we will consider two coupling functions
typically explored in sGB gravity,

FðψÞ ¼ ψ ↔ linear sGB;

FðψÞ ¼ eψ ↔ EdGB; ð40Þ
and will consider them separately in the following sections.

B. Linear scalar–Gauss-Bonnet gravity

Let us first consider solving the field equations for an
axially symmetric black hole perturbatively in the coupling
α. If we assume the dimensionless coupling ᾱ≡ α=ρ2H ≪ 1
where ρH sets the order of the curvature length of the
system, we can perturbatively expand our metric as

gμν ¼ gð0Þμν þ ϵgð1Þμν þ ϵ2gð2Þμν ; ð41Þ
where ϵ ≪ 1 is a bookkeeping parameter and α ¼ OðϵÞ.
This expansion with our metric ansatz is

f ¼ f0 þ ϵf1 þ ϵ2f2;

m ¼ m0 þ ϵm1 þ ϵ2m2;

l ¼ l0 þ ϵl1 þ ϵ2l2;

ω ¼ ω0 þ ϵω1 þ ϵ2ω2;

ψ ¼ ψ0 þ ϵψ1 þ ϵ2ψ2: ð42Þ
We can then substitute this ansatz into our field equations
and expand order by order in ϵ.
To Oðϵ0Þ, we find

Gð0Þ
μν − Tð0Þ

μν ¼ 0;

□
ð0Þψ ð0Þ ¼ 0; ð43Þ

where Gð0Þ
μν , T

ð0Þ
μν , and □

ð0Þ are the Einstein tensor, scalar
field stress-energy tensor, and the d’Alambertian associated

with the background metric gð0Þμν . By requiring the scalar
field to be asymptotically flat and regular on the horizon,

we find ψ ð0Þ ¼ 0 which implies that Tð0Þ
μν ¼ 0. As expected

we then see that gð0Þμν is the solution toGð0Þ
μν ¼ 0, which is the

Kerr metric, and each f0, m0, l0, ω0 corresponds to their
respective Kerr values from Eq. (26). Indeed, this is
expected by the well-known no hair theorem that covers
the case of a minimally coupled scalar field [37].
At OðϵÞ, we find

Gð1Þ
μν − Tð1Þ

μν þ αKð0Þ
μν ¼ 0;

□
ð1Þψ ð0Þ þ□

ð0Þψ ð1Þ þ αGð0Þ ¼ 0: ð44Þ

Since ψ ð0Þ ¼ 0 from before, we know Kð0Þ
μν ¼ 0.

Additionally, Tð1Þ
μν ¼ 0 because the stress-energy tensor is

Oðψ2Þ. Thus the metric perturbation at OðϵÞ vanishes,

gð1Þμν ¼ 0, and f1 ¼ m1 ¼ l1 ¼ ω1 ¼ 0. The scalar field
equation then simplifies to
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□
ð0Þψ ð1Þ þ αGð0Þ ¼ 0: ð45Þ

In spherical symmetry, the scalar field correction at this
order can be calculated analytically [10,17,38], while for
axisymmetric backgrounds, it has only been found pertur-
batively in a slow-rotation expansion [18–20].
At Oðϵ2Þ, the modified field equations are

Gð2Þ
μν − Tð2Þ

μν þ αKð1Þ
μν ¼ 0; ð46Þ

□
ð2Þψ ð0Þ þ□

ð1Þψ ð1Þ þ□
ð0Þψ ð2Þ þ αGð1Þ ¼ 0: ð47Þ

Because gð1Þμν ¼ 0, we know that □ð1Þ ¼ Gð1Þ ¼ 0 which
simplifies the scalar field equation to

□
ð0Þψ ð2Þ ¼ 0; ð48Þ

which implies that ψ ð2Þ ¼ 0 by imposing asymptotic flat-
ness and regularity on the horizon. Thus, the nontrivial
modified field equations of interest are Eqs. (45) and (46).
In spherical symmetry [10,17,38] and in the slow rotation

FIG. 4. Difference between the axisymmetric small coupling
expansion and the analytic perturbative spherically symmetric
solution for the scalar field for three selected angles. The three
event horizon angular velocity values, ΩH ¼ 0.0, 0.0367, and
0.0667, are denoted by the black, blue, and red colors, respec-
tively, and the three angles θ ¼ 0, π=4, π=2 are denoted by the
dotted, dashed, and solid lines, respectively.

FIG. 5. Difference between metric elements for axisymmetric small coupling expansion and the analytic perturbative spherically
symmetric solution for three selected angles. Here we show the metric components f (top left), m (top right), l (bottom left), and
ω (bottom right) for three event horizon angular velocity values, ΩH ¼ 0.0, 0.0367, and 0.0667, denoted by the black, blue, and red
colors, respectively, and for three angles θ ¼ 0, π=4, π=2 denoted by the dotted, dashed, and solid lines, respectively.
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limit [7,8,18–20], these equations can be analytically
solved order by order because the scalar field equation
is sourced by the Gauss-Bonnet invariant evaluated on the

unperturbed background. In spherical symmetry, in our
compactified coordinate system (25) the perturbed solution
to second order is

fSPH2 ¼ α2x2ðx − 1Þ
4620ρ4Hðx − 2Þ14 ½1117x

10 − 24574x9 þ 246510x8 − 1415920x7 þ 4941728x6

− 10150448x5 þ 11892496x4 − 7411712x3 þ 2000768x2 − 98560xþ 19712�;

mSPH
2 ¼ −

8α2x2ðx − 1Þ2
1155ρ4Hðx − 2Þ10 ½71x

8 − 1420x7 þ 11554x6 − 49788x5 þ 118374x4 − 167280x3

þ 147600x2 − 78720xþ 19680�;
lSPH2 ¼ mSPH

2 ;

ωSPH
2 ¼ 0;

ψSPH
1 ¼ αð1 − xÞ

3ρ2Hðx − 2Þ6 ½3x
4 − 30x3 þ 118x2 − 176xþ 88�: ð49Þ

In axial symmetry, using a slow rotation expansion
around the dimensionless spin χ ¼ a

M ≪ 1, solutions
have been found to Oðα2; χ2Þ [18] and Oðα14; χ5Þ [20].
We cannot directly compare these solutions in the slow
rotation limit to the solutions in this work because they
are calculated in different coordinate systems. A proper
comparison would require calculating the solution to the
same order in isotropic coordinates. Instead of doing this,
we solve these equations directly without perturbatively
expanding in rotation.
To solve Eqs. (45) and (46) we apply our numerical

infrastructure to the partially decoupled nonlinear partial
differential equations using the method described in Sec. II.
One could solve for the scalar field first using Eq. (45) and
then use the result to solve Eq. (46) as is done in analytic
calculations. However, we find no noticeable difference
between solutions obtained this way and solutions obtained
by solving both equations simultaneously, which our code
can handle. This is possible because the scalar field equation
is partially decoupled from themetric perturbation equations;
i.e., the scalar field equation only depends on the known GR
background to zeroth order and it converges very rapidly.
Each successive iteration then only needs to minimize the
metric perturbations. We choose an initial grid of 61 × 31

points and a Newton polynomial order r ¼ 16. For the actual
computation, we set ρH ¼ 1. We set the desired tolerance of
the solution to tol ¼ 10−5 which is placed both on the
residual and on the relative tolerance of the discretization
correction. We use the spherically symmetric perturbed
corrections of Eq. (49) as our initial guess, and convergence
typically occurswithin one to three iterations. Figures 4 and 5
compare the numerical perturbed rotating solution to the
analytically known spherically symmetric solution. From
these plots, we can verify that the perturbative solution in the
spherically symmetric limit (ΩH ¼ 0) exactly recovers the
analytic spherically symmetric solution.

FIG. 6. The scalar field profile using both the linear coupling
(top) and the exponential coupling (bottom) for three selected
angles. The three event horizon angular velocity values,
ΩH ¼ 0.0, 0.0367, and 0.0667, are denoted by the black, blue,
and red colors, respectively, and the three angles θ ¼ 0, π=4, π=2
are denoted by the dotted, dashed, and solid lines, respectively.
The analytic perturbative spherically symmetric solution is in
cyan. As for the deviations of the metric functions, we find very
good agreement between the nonrotating linear sGB scalar field
and the analytic spherically symmetric perturbation but the scalar
charge is suppressed for larger spin values.

SULLIVAN, YUNES, and SOTIRIOU PHYS. REV. D 103, 124058 (2021)

124058-10



With this perturbed solution at hand, we can calculate the
full nonlinear solution to the modified field equations in
scalar–Gauss-Bonnet gravity. The modified field equations
are Eqs. (35) and (38) with FðψÞ ¼ ψ . In the top of each

panel in Figs. 6 and 7 we show the difference between the
full nonlinear sGB solution and the Kerr solution for the
scalar field and each metric element, respectively, for three
different angles and three event horizon angular velocities.

FIG. 7. Rescaled difference between metric elements and the Kerr metric for both the linear coupling solution (top half of each panel)
and the exponential coupling solution (bottom half of each panel) for three selected angles. Here we show the metric components f (top
left panel), m (top right panel), l (bottom left panel), and ω (bottom right panel) for three event horizon angular velocities, ΩH ¼ 0.0,
0.0367, and 0.0667, denoted by the black, blue, and red colors, respectively, and for three angles θ ¼ 0, π=4, π=2 denoted by the dotted,
dashed, and solid lines, respectively. We also show the analytic perturbative spherically symmetric solutions in cyan. Notice how the
nonrotating linear sGB solution has a larger deviation than the analytic perturbative spherically symmetric solution as expected but that
this deviation is then suppressed for larger spin values. For the exponential coupling (EdGB) solution we find an even larger deviation
from GR than with the linear sGB coupling, as expected.
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We recover that the magnitude of the deviation from GR is
slightly larger in the full nonlinear sGB solution in the
spherically symmetric case where ΩH ¼ 0 (solid black line)
than in the analytic perturbative spherically symmetric
solution (solid cyan line). As we increase the rotation, the
deviation from GR decreases as the magnitude of the polar
profile (solid dash-dotted lines) takes shape. Note that for the
m metric function (top right panel) the polar profile on the
equator θ ¼ π=2 (solid colored lines) remains relatively
constant for different values of rotation, while the polar
profile at the pole θ ¼ 0 (dotted lines) has enhanced variation
in comparison to the other metric elements, whose profiles
are relatively similar but change only in magnitude.
Let us point out that the physical dimensionless spin χ ¼

a0=M0 of the black hole will depend on ᾱ. It is for this
reason that we report the angular velocity of the event
horizon from Eq. (20) to compare our solutions, which is
also the input parameter to our numerical infrastructure.
Therefore, although each rotating solution represents a
rotating black hole with the same event horizon angular
velocity, due to their different ᾱ, their physical dimension-
less spin χ will vary slightly. From our range of ᾱ, we find
that these differences in χ are smaller than 2%.

C. Einstein-dilaton–Gauss-Bonnet gravity

Let us now consider the case of an exponential coupling
function. The resulting field equations are Eqs. (35) and
(38) with FðψÞ ¼ eψ . We find a full nonlinear numerical
solution using the computational infrastructure of Sec. II,
with the same choices for the grid spacing, Newton
polynomial order, etc., as in the previous subsection. We
show the results in the bottom of each panel in Figs. 6 and
7. This time we find a much larger deviation from GR in the
EdGB solutions than in the linear sGB coupling case of the
previous subsection by comparing the full nonlinear EdGB
solution in spherical symmetry where ΩH ¼ 0 (solid black
line) to the analytic perturbative spherically symmetric
solution (solid cyan line). As we increase the angular
momentum of the black hole, the magnitude of the
deviation from GR is suppressed.
We also find a much larger variation of the polar profile

for the m metric function than for the f, l, and ω
components. This is particularly interesting, as this metric
function happens to have a negligible impact on the
physical observables we have calculated. For example,
as we will see in the next section, geodesics in an axially
symmetric spacetime are completely independent of the grr
component of the metric. Although strictly speaking this is
not true for an isotropic metric because ρ2sin2θgϕϕ ¼ gρρ,
these results suggest that even in isotropic coordinates, the
dependence on the gρρ metric function is minimal. With our
nonlinear numerical solutions at hand, we now use these
solutions to construct analytical fitted models, and we
compare physical observables such as the location of the
innermost-stable-circular orbit and the light ring.

V. PROPERTIES OF SOLUTION

In this section we explore some physical properties of the
numerical solutions found in the previous sections. We
begin by finding analytical models that we fit to the data to
provide accurate, closed-form expressions that allow for the
rapid computation of physical observables. We then use the
numerical results to calculate the location of the ISCO and
the light ring (LR) by analyzing the motion of null and
timelike geodesics. We use a Newton-Raphson method to
numerically calculate the location of the ISCO and the LR
from the resulting equations.

A. Fitting function

In the compactified coordinate system introduced in
Eq. (25), the full nonlinear solutions for a given coupling ᾱ
can be expressed as

fðx; θÞ ¼ fGR þ fnonlinðx; θÞ;
mðx; θÞ ¼ mGR þmnonlinðx; θÞ;
lðx; θÞ ¼ lGR þ lnonlinðx; θÞ;
ωðx; θÞ ¼ ωGR þ ωnonlinðx; θÞ;
ψðx; θÞ ¼ ψnonlinðx; θÞ: ð50Þ

We propose best fit models for the nonlinear corrections of
the form

fnonlinðx; θÞ ¼ x2ðx − 1Þ
�X

i

X
j

ai;jxiPjðcos θÞ
�
;

mnonlinðx; θÞ ¼ x2ðx − 1Þ2
�X

i

X
j

bi;jxiPjðcos θÞ
�
;

lnonlinðx; θÞ ¼ x2ðx − 1Þ2
�X

i

X
j

ci;jxiPjðcos θÞ
�
;

ωnonlinðx; θÞ ¼ ðx − 1Þ2
�X

i

X
j

di;jxiPjðcos θÞ
�
;

ψnonlinðx; θÞ ¼ ðx − 1Þ
�X

i

X
j

ei;jxiPjðcos θÞ
�
; ð51Þ

where xi is a polynomial of order i and Pjðcos θÞ are
Legendre polynomials. Because our solution is symmetric
about a reflection of the equatorial plane θ ¼ π=2, we need
only consider even Legendre polynomials. We then fit these
models to our numerical solutions to determine the con-
stants ðai;j; bi;j; ci;j; di;j; ei;jÞ on the grid domain x ∈ ½0; 1�
and θ ∈ ½0; π=2�. The fitting order of our models is
determined by systematically increasing the polynomial
order of each function until the residual between the
numerical solution and the model saturates. The best-fit
coefficients ðai;j; bk;l; cm;n; dp;q; er;sÞ are available in a
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FIG. 8. Difference between metric elements and the Kerr metric using the linear coupling function (top half of each panel) and
exponential coupling function (middle of each panel) for three selected angles. Overlaid is the analytical fit denoted by the solid line
while the dots denote the numerical solution for a black hole of ᾱ ¼ 0.5 and ΩH ¼ 0.0667. The bottom of each panel is the absolute
value of the residual between the analytical fit and the numerical data. Here we show the metric components f (top left panel), m (top
right panel), l (bottom left panel), and ω (bottom right panel) for three angles θ ¼ 0, π=4, π=2 denoted by the red, blue, and green colors,
respectively. Notice the residual remains below the specified tolerance on the numerical solution on the entire domain.
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Mathematica file at https://github.com/sullivanandrew/
XPDES.
We plot the difference between both the numerical

solutions and the fitted models for a coupling of ᾱ ¼ 0.5
and horizon angular velocity ΩH ¼ 0.0667 to the Kerr
solution as well as the residuals between the models and the
numerical data for the metric components and the scalar
field for the linear sGB and EdGB solutions in Figs. 8 and
9. We find that the residual between the models and the
numerical data is always below the specified tolerance on
the numerical solution of Oð10−5Þ. Thus the fitted models
can be treated as “exact” for practical applications to the
specified tolerance.

B. Marginal stable circular orbits

To numerically calculate the location of the marginal
stable circular orbits (MSCO) around a stationary, axially
symmetric black hole, we begin with a generic metric
ansatz of the form

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gϕϕdϕ2 þ 2gtϕdtdϕ:

ð52Þ
The two killing vectors of our spacetime tμ and ϕμ

correspond to the reduced energy E and angular momen-
tum L of the particle,

E ¼ −tμ
dxμ

dλ
¼ −gtt_t − gtϕ _ϕ;

L ¼ ϕμ
dxμ

dλ
¼ gtϕ_tþ gϕϕ _ϕ; ð53Þ

which can be combined to obtain expressions for _t and _ϕ,

_t ¼ Egtt þ Lgtϕ
gtϕ2 − gttgϕϕ

;

_ϕ ¼ −
Egtϕ þ Lgtt
gtϕ2 − gttgϕϕ

: ð54Þ

If we consider orbits constrained to the equatorial plane
θ ¼ π=2, the four-velocity normalization condition becomes

−ϵ ¼ gtt_t2 þ grr _r2 þ gϕϕ _ϕ
2 þ 2gtϕ_t _ϕ; ð55Þ

where ϵ ¼ 0 for photon and ϵ ¼ 1 for massive particles.
Inserting _t and _ϕ, we can solve for _r2 and define an effective
potential Ueff given by

_r2 ¼ 1

grr

�
−ϵþ E2gϕϕ þ 2ELgtϕ þ L2gtt

gtϕ2 − gttgϕϕ

�
≡Ueff: ð56Þ

The condition for a circular orbit is _r ¼ 0 ¼ ̈r, and by
differentiating

d
dλ

_r2 ¼ 2_r ̈r ¼ dUeff

dr
_r → ̈r ¼ dUeff

dr
¼ 0; ð57Þ

we find that these two conditions imply that the effective
potential and its derivative must vanish.
These two conditions can be rearranged into two

algebraic equations that must be simultaneously satisfied:

E2gϕϕ þ 2ELgtϕ þ L2gtt − ϵðgtϕ2 − gttgϕϕÞ ¼ 0; ð58Þ

E2gϕϕ0 þ 2ELgtϕ0 þ L2gtt0 − ϵðgtϕ2 − gttgϕϕÞ0 ¼ 0; ð59Þ

where the primes denote radial derivatives, e.g.,
gtt0 ¼ dgtt=dr, evaluated at the radius r. We now turn to
specific cases of these marginal stable circular orbits: the
light ring, and the innermost stable circular orbit.

C. Light ring

For a photon, ϵ ¼ 0 and Eq. (58) can be solved
quadratically for E or L,

L ¼ E

0
B@gtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtϕ2 − gttgϕϕ

q
gtt

1
CA; ð60Þ

and this result can be inserted into Eq. (59) to obtain the
equation

FIG. 9. The scalar field using the linear coupling function and
its analytical fit for ᾱ ¼ 0.5 and ΩH ¼ 0.0667 and the absolute
residual between the analytical fit and the numerical data
(bottom). The analytic fit for three angles θ ¼ 0, π=4, π=2 are
denoted by the red, blue, and green solid lines, respectively, while
the dots denote the numerical solution.

SULLIVAN, YUNES, and SOTIRIOU PHYS. REV. D 103, 124058 (2021)

124058-14

https://github.com/sullivanandrew/XPDES
https://github.com/sullivanandrew/XPDES
https://github.com/sullivanandrew/XPDES


gϕϕ0 þ 2gtϕ0

0
B@gtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtϕ2 − gttgϕϕ

q
gtt

1
CA

þ gtt0

0
B@gtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtϕ2 − gttgϕϕ

q
gtt

1
CA

2

¼ 0; ð61Þ

which is to be evaluated at a radius r; the smallest root of
the above equation is the location of the light ring.
Once we insert the metric functions known analytically

or numerically, we only need to determine the root of the
above equation to find the location of the light ring. With
our nonlinear numerical solutions, we can approximate the
derivatives using our Newton interpolation polynomial and
use a Newton-Raphson algorithm to find the root. The
results were presented in the top of Fig. 2. We find that the
increased scalar charge of a black hole in sGB due to an
increasing in coupling ᾱ will push the location of the ISCO
away from the horizon (δISCO > 0), but increasing the
rotation of the black hole pushes the ISCO toward the
horizon (δISCO < 0) as in GR. These competing effects can
even cause the fractional shift in the ISCO to vanish in the
special case that they exactly cancel. We also find that
the magnitude of the fractional change in the location of the
ISCO is suppressed by increasing the angular momentum.

D. Innermost stable circular orbit

For a massive particle, ϵ ¼ 1 and the innermost stable
circular orbit is located at the saddle point of the effective
potential, specifically when U00

eff ¼ 0. This adds another
condition that must be satisfied and another equation
analogous to Eq. (59), namely

E2gϕϕ00 þ 2ELgtϕ00 þ L2gtt00 − ϵðgtϕ2 − gttgϕϕÞ00 ¼ 0: ð62Þ
To find the ISCO, we begin by solving Eq. (58)

quadratically for L similar to the approach taken for the
light ring, namely

L ¼
Egtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 þ ϵgttÞðgtϕ2 − gttgϕϕÞ

q
gtt

: ð63Þ

We insert this expression into Eq. (59) and solve for E as a
function of only the metric and its first derivatives

E ¼ E½gμν; gμν0�; ð64Þ
which can also be substituted back into Eq. (63) to obtain L
also as a function of only the metric and its first derivatives

L ¼ L½gμν; gμν0�: ð65Þ
These expressions are calculated in the symbolic manipu-
lation software Maple 2018 available at https://github.com/
sullivanandrew/XPDES and will not be presented here.

Finally, we can substitute both of these into Eq. (62) to
obtain a second order equation, the smallest root of which is
the ISCO.
As in the case with the light ring, this is done numerically

with a Newton-Raphson algorithm and the result is shown
on the bottom plot of Fig. 2. We find a similar competing
effect between the scalar charge and the angular momentum
as with the ISCO. The light ring appears to be more
sensitive to the effect from the angular momentum due to its
closer proximity to the event horizon than the ISCO.

VI. CONCLUSIONS

We have presented here a numerical infrastructure to
calculate the exterior spacetimes of rotating black holes in a
wide class of modified theories of gravity.We have validated
this infrastructure by obtaining the Kerr solutions in GR and
by direct comparison with a rotating, weak-coupling pertur-
bative numerical solution in sGB gravity. We then compared
the full nonlinear solutions to rotating black holes to find the
deviations from GR in the metric functions and the physical
observables such as the mass and angular momentum.
We have also used these numerical solutions to construct

analytical fitted models that reproduce the data to within the
accuracy of the solutions and calculated other physical
observables such as the location of the ISCO and light ring.
We have found that the solutions in linear sGB gravity are
very closely approximated by the perturbative weak-cou-
pling expansion and that these solutions differ quite
drastically from the corresponding solutions in EdGB
gravity. We have also found that the deviations of rotating
black holes from the Kerr spacetime become increasingly
suppressed for larger black hole spins, as the deviations
sourced by the scalar charge begin to become dominated by
the gravitational effects of the angular momentum.
The analytical fitted models constructed from these

solutions can be used to calculate other astrophysical
observables such as accretion disks around black holes
[14] or black hole shadows [15]. These solutions can also
be used as a background to study polar and axial pertur-
bations to predict the quasinormal mode spectrum of
scalar–Gauss-Bonnet black holes [12,39–41]. These can
then be compared to gravitational wave ringdown obser-
vations of merging black holes of future detectors to place
constraints on a variety of modified gravity theories.
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