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We solve the classical square-lattice dimer model with periodic boundaries and in the presence of a field t that
couples to the (vector) flux, by diagonalizing amodified version of Lieb’s transfer matrix. After deriving the torus
partition function in the thermodynamic limit, we show how the configuration space divides into ‘topological
sectors’ corresponding to distinct values of the flux. Additionally, we demonstrate in general that expectation
values are t-independent at leading order, and obtain explicit expressions for dimer occupation numbers, dimer–
dimer correlation functions and the monomer distribution function. The last of these is expressed as a Toeplitz
determinant, whose asymptotic behavior for large monomer separation is tractable using the Fisher–Hartwig
conjecture. Our results reproduce those previously obtained using Pfaffian techniques.

I. INTRODUCTION

The dimer model is a paradigmatic example of a strongly-
correlated system, in which dimers cover the edges of a lattice
subject to a close-packing constraint, i.e., each vertex touches
exactly one dimer. It was first solved independently by Kaste-
leyn [1, 2] and Temperley and Fisher [3, 4] in 1961 using a
combinatoric method, in which the partition function is ex-
pressed as the Pfaffian of a signed adjacency matrix known as
the Kasteleyn matrix.

Because the dimer model is exactly solvable, it offers a use-
ful setting for the study of novel phenomena in geometrically
frustrated systems [5] or, more specifically, ‘Coulomb-phase’
physics [6]. In particular, its extensive entropy reflects macro-
scopic ground-state degeneracy, while the configuration space
splits into topological sectors labeled by horizontal and ver-
tical ‘flux’ components, reflecting topological order [7]. The
Pfaffian method can be used to calculate partial partition func-
tions for these sectors, as demonstrated by Boutillier and de
Tilière [8].

Moreover, a dimer can be replaced by a pair of monomers,
which can be separated by subsequent dimer updates and thus
play the role of fractionalized excitations. Fisher and Stephen-
son’s Pfaffian calculation of themonomer distribution function
in 1963 [9] implies that, due to the entropy of the background
dimer configuration, the monomers interact through an effec-
tive Coulomb potential, which is logarithmic in two dimen-
sions. They have also shown that dimer–dimer correlations
are long-range with algebraic, rather than exponential, depen-
dence on separation. This is despite the absence of long-range
order, and instead a consequence of the close-packing con-
straint.

Perhaps amore elegant solution of the dimermodel is Lieb’s
transfer-matrix method [10], analogous to the well-known so-
lution of the Ising model by Schultz et al. [11], which maps the
problem to free fermions. In this approach, the partition func-
tion is expressed in terms of a transfer matrix, which, given a
configuration on a row of vertical bonds, generates all dimer
configurations compatible with the close-packing constraint
on the subsequent row of horizontal and vertical bonds. This
can be expressed in terms of spin- 12 operators and mapped to
fermions through a Jordan–Wigner transformation.

This method has been used in the literature to derive the par-

tition function [10] and to determine its vertical-flux decom-
position [12, 13]. In this work, we show how Lieb’s transfer
matrix can be modified in order to calculate the full flux-sector
decomposition. We also provide a general framework for the
calculation of expectation values and explicitly calculate dimer
occupation numbers, dimer–dimer correlation functions and
the monomer distribution function. For the last of these, we
show how the asymptotic dependence for large monomer sep-
aration, which was deduced by numerical means in Ref. [9],
can be evaluated exactly by applying the Fisher–Hartwig con-
jecture [14].

Outline

In Sec. II we define the model before showing how it can be
formulated in terms of a transfer matrix in Sec. III. We then di-
agonalize the two-row transfer matrix in Sec. IV, whose spec-
trum is used to calculate the partition function, including its
flux-sector decomposition, in Sec. V, and various expectation
values in Sec. VI. We conclude in Sec. VII.

II. MODEL

We consider the close-packed dimer model on an Lx × Ly
square lattice with periodic boundary conditions (PBCs), as-
suming both Lx, Ly even. In the following, we define the flux
along with the weights that appear in the partition function.
Denoting by dr,� the dimer occupation number (equal to

zero or one) on the bond joining sites r and r + ��, with �� a
unit vector in direction � ∈ {x, y}, the flux is given by

Φ� =
1
L�

∑

r
�rdr,� , (1)

where �r = (−1)rx+ry = ±1 depending on the sublattice. Due
to the close-packing constraint, this is equivalent to the sum of
�rdr,� on links crossing a surface normal to �� (to see this, one
usually defines an effective ‘magnetic field’ [6, 15]). The latter
definition highlights that Φ� is integer valued, and can only
be changed by shifting dimers around a loop encircling the
whole system [16]. The flux thus plays the role of a topological
invariant.



2

r = (1, 1)

FIG. 1. An example configuration of the close-packed dimer model
on a 6×6 lattice with periodic boundaries. The number of horizontal
dimers is Nx = 8 and the flux is � = (1, 1) [see Eq. (1) and text
thereafter]. Hence, this configuration has weight �8eit⋅(1,1).

To each configuration, we assign weight �Nxeit⋅�. In the
first factor � > 0 and Nx are the ‘activity’ and number of
horizontal dimers, respectively. (The total number of dimers
Nx +Ny =

1
2LxLy is fixed, so the activity of vertical dimers

is set to unity without loss of generality.) Hence, for � ≠ 1, the
model is anisotropic, with horizontal (vertical) dimers favored
for � > 1 (� < 1). In the second factor t is a field, with com-
ponents t� ∈ (−�, �], that couples to the flux �. An example
configuration is shown in Fig. 1.

The partition function is

Z(t) =
∑

c∈ℭ0

�Nxeit⋅� , (2)

where ℭ0 denotes the set of all close-packed dimer configura-
tions, and can be thought of as a moment-generating function
for Φ�. Similarly, expectation values of a function O of the
dimer occupation numbers dr,� are given by

⟨O⟩ = 1
Z(t)

∑

c∈ℭ0

O�Nxeit⋅� . (3)

III. TRANSFER MATRIX

We construct the partition function, Eq. (2), by modifying
Lieb’s transfer matrix [10] to include the Φx weighting (the
Φy weighting can be included without modifying the transfer
matrix).

We first define a vector space whose basis vectors |d̄y⟩ cor-
respond to all possible configurations d̄y of the dimer occupa-
tion numbers on a single row of vertical bonds. As illustrated
in Fig. 2, the transfer matrix V is defined so that

V |d̄y⟩ =
∑

d̄′y

|d̄′y⟩
∑

d̄x∈ℭ(d̄y,d̄′y)
w(d̄x) , (4)

where d̄′y is the configuration on the subsequent row of vertical
bonds and ℭ(d̄y, d̄′y) is the (possibly empty) set of configura-
tions d̄x of the intermediate row of horizontal bonds that are
compatible with d̄y and d̄′y. The weight function w is chosen
to give the correct weights forNx andΦx in the partition func-
tion of Eq. (2). On even rows, where �r = (−1)rx in Eq. (1), it
is given by

w(d̄x) =
Lx
∏

j=1
�
d̄j,x
j , (5)

where

�j = � exp
[

i(−1)j
tx
Lx

]

, (6)

while on odd rows w is defined in the same way, but with �j
replaced by �∗j . (Here, d̄j,x denotes the occupation number of
the bond between sites rx = j and j + 1 in the configuration
d̄x of the horizontal bonds.)
It is convenient to split the action of V into two steps:
1. Generate the (single) configuration d̄′y = (1, 1,… , 1) −
d̄y with all horizontal bonds on the intermediate row
empty (left configuration in Fig. 2).

2. Starting with the result of step 1, one may produce all
other configurations by replacing pairs of neighboring
vertical dimers with a horizontal dimer (middle and
right configurations in Fig. 2). The effect on d̄′y is that
an adjacent pair of dimers is removed.

In order to reproduce theweight functionw, a horizontal dimer
on the bond between sites j and j + 1 in step 2 comes with a
factor �j (�∗j ) on even (odd) rows.
An explicit operator expression for the transfer matrix is ob-

tained by representing occupied and empty vertical bonds by
spin up |↑⟩ and down |↓⟩ states, respectively [i.e., eigenstates
of �zj , where �j = (�xj , �

y
j , �

z
j ) are the Pauli matrices]. The

above steps are easy to formulate in the spin language. As
shown in Fig. 2, step 1 is equivalent to flipping all spins, which
is achieved by the operator

V1 =
Lx
∏

j=1
�xj , (7)

since �±j =
1
2 (�

x
j ± i�

y
j ) satisfy �

+
|↓⟩ = |↑⟩ and �−|↑⟩ = |↓⟩.

In step 2, pairs of neighboring up spins are flipped, so the
operator

dj,x = �j�−j �
−
j+1 (8)

effectively generates a horizontal dimer between sites j and
j + 1, with the correct weight on even rows. Because (�−j )

2 =

0, the operator (m!)−1
(

∑Lx
j=1 dj,x

)m
generates m horizontal

dimers (PBCs require �−Lx+1 = �
−
1 ), and hence

V3 = exp

( Lx
∑

j=1
dj,x

)

(9)
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FIG. 2. Action of the transfer matrix V of Eq. (10) on a row of vertical bonds (top), in which occupied and empty vertical bonds are represented
by spin up |↑⟩ and down |↓⟩ states (red), respectively. The result is all dimer configurations on the subsequent row of vertical bonds that are
consistent with the close-packing constraint (bottom). The left configuration with all dimers vertical is generated by V1, which flips all spins.
The middle and right configurations, obtained from the left configuration by replacing pairs of neighboring vertical dimers with horizontal
dimers, are generated by V3, which flips neighboring up spins. In order to obtain the correct weights in the partition function, Eq. (2), V and
V ∗ = V † act on alternate rows and assign weight �j = � exp [itx(−1)j∕Lx] and �∗j to a horizontal dimer between sites j and j +1, respectively.

generates an arbitrary number of horizontal dimers. To obtain
the correct weights on odd rows, one should instead use the
operator V ∗3 .

It is therefore necessary to define two transfer matrices,

V = V3V1 (10)

on even rows and V ∗ = V † on odd rows.1 (Note that V T = V
because �x�+ = �−�x.) We also define the two-row transfer
matrix

W = V V † = V3V
†
3 , (11)

which is manifestly Hermitian.
TheΦy weighting is included in the transfer-matrix formal-

ism as follows: The operator for the dimer occupation number
on a vertical bond is simply

dj,y =
1
2
(1 + �zj ) , (12)

since spin up (down) corresponds to an occupied (empty)
bond. In terms of this, the vertical flux component on even
rows is [see Eq. (1) and text thereafter]

Φy =
Lx
∑

j=1
(−1)jdj,y , (13)

which satisfies the (anti)commutation relations {Φy, V } = 0
and [Φy,W ] = 0.2 The latter implies that it is possible to

1 Lieb’s transfer matrix V = V3V2V1 includes a third operator V2, which
generates an arbitrary number of monomers on a row [10].

2 Φy appears in Refs. [12, 13, 17] as the operator  , whose eigenvalues are
referred to as the ‘variation index’.

construct mutual eigenstates of the two-row transfer matrixW
and Φy. The partition function, Eq. (2), is then given by

Z(t) = Tr
[

eityΦyW
Ly
2

]

(14)

(the trace arises due to PBCs in the vertical direction).
Similarly, the operator analog of Eq. (3), in the case of the

correlation function between observables O and O′ in rows
1 ≤ l ≤ l′ ≤ Ly, is given by

⟨O′(l′)O(l)⟩ = 1
Z(t)

Tr
[

eityΦyW
Ly
2 O′(l′)O(l)

]

, (15)

where O(l) = U (l)−1OU (l) and

U (l) =⋯V †V V †
⏟⏞⏞⏞⏟⏞⏞⏞⏟

l

=

{

V †W (l−1)∕2 for l odd
W l∕2 l even.

(16)

Note that [O(l)]† = O†(−l), where U (−l) = [U (l)†]−1 is de-
fined by the second equality of Eq. (16).
To compute expectation values of dimer observables, it is

necessary to find operators that correspond to these quantities.
While a suitable operator for the dimer occupation number on
vertical bonds has already been defined in Eq. (12), no such
operator exactly represents the dimer occupation number on
horizontal bonds, since the vector space on which the trans-
fer matrix acts contains only dimer configurations on vertical
bonds.
One can nonetheless calculate expectation values involving

horizontal dimers using an appropriately constructed operator.
From Eqs. (4) and (5), one finds

�j
)
)�j

V |d̄y⟩ =
∑

d̄′y

|d̄′y⟩
∑

d̄x∈ℭ(d̄y,d̄′y)
d̄j,xw(d̄x) , (17)
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whereas Eqs. (8)–(10) give the operator identity

�j
)
)�j

V = dj,xV , (18)

since [dj,x, dj′,x] = 0. Comparing the right-hand sides, we
therefore interpret dj,x as the operator corresponding to the
horizontal dimer occupation number d̄j,x on an even row, but
only when appearing in the combination3 dj,xV . Similarly,
d∗j,x acts as the horizontal dimer occupation number on an odd
row in the combination d∗j,xV

†. Setting O equal to dj,x (d∗j,x)
on even (odd) rows in Eq. (15) gives the correct combination
dj,xV (d∗j,xV

†) in O(l), allowing one to calculate expectation
values involving the horizontal dimer number.

IV. DIAGONALIZATION OF THE TWO-ROW TRANSFER
MATRIX

To calculate Eq. (14) it is sufficient to diagonalize the two-
row transfer matrix W . We do so in this section through a
series of transformations.

We map between spins and spinless fermions using the
Jordan–Wigner transformation [18–20]

Cj =

(j−1
∏

i=1
−�zi

)

�−j (19)

C†j =

(j−1
∏

i=1
−�zi

)

�+j (20)

C†j Cj =
1
2
(1 + �zj ) , (21)

which identifies spin up and down with filled and empty
fermion orbitals, respectively, while preserving the usual
(anti)commutation relations

[��i , �
�
j ] = 2i�ij������ (22)

{Ci, Cj} = {C
†
i , C

†
j } = 0 {Ci, C

†
j } = �ij . (23)

In terms of fermions, Eqs. (8) and (12) become

dj,x = −�jCjCj+1 (24)

dj,y = C
†
j Cj , (25)

while the condition �−Lx+1 = �
−
1 is equivalent to

CLx+1 = −C1(−1)
Φy = (−1)ΦyC1 (26)

with

Φy =
∑

j
(−1)jC†j Cj . (27)

3 This means that, for example, d2j,x does not give the square of the horizontal
dimer number; in fact d2j,x = 0, whereas d̄

2
j,x = d̄j,x.

We now define projectors

Πp =
1
2
[1 + (−1)p(−1)Φy ] (28)

into the subspaces with even (p = 0) or odd (p = 1) Φy,
which satisfy

∑

p Πp = 1 and (−1)ΦyΠp = (−1)pΠp. Then,
since (−1)Φy commutes with any quadratic form in fermions,
we have

W = W
∑

p
Πp (29)

=
∑

p
WpΠp , (30)

where

Wp = exp

(

−
Lx
∑

j=1
�jCjCj+1

)

× h.c. , (31)

and the fermion operator CLx+1 depends implicitly on p
through the boundary condition

CLx+1 = −(−1)
pC1. (32)

More generally, for any operator O containing CLx+1 of
Eq. (26), we define an operator Op that instead only contains
CLx+1 of Eq. (32) (and thus depends on p), such that the action
of both operators on a state with Φy parity p yields the same
result, i.e., O =

∑

pOpΠp. (For operators that do not contain
CLx+1, such as Φy, one has Op = O.)
For later reference (see Sec. VI) we note that, after the

Jordan–Wigner transformation, the single-row transfer matrix
is given by V =

∑

p VpΠp, with

Vp = exp

(

−
Lx
∑

j=1
�jCjCj+1

) Lx
∏

j=1

[

Cj + (−1)jC
†
j

]

, (33)

where the operators in the product should be ordered from
right to left.
We now make a Fourier expansion

Cj =
e−i�∕4
√

Lx

∑

k∈Kp

eikj�k , (34)

with

K0 = {±�∕Lx,±3�∕Lx,… ,±(Lx − 1)�∕Lx} (35)

and

K1 = {0,±2�∕Lx,±4�∕Lx,… ,±(Lx − 2)�∕Lx, �} , (36)

which ensure the correct boundary condition on CLx+1 in
Eq. (32) [10].4 The �k fermions obey standard anticommu-

4 As an alternative to the approach in Sec. III, one could instead implement
the Φx weighting using �j = � and twisted boundary conditions �−Lx+1 =
eitx�−1 in place of Eq. (6) and �−Lx+1 = �−1 , respectively [see Eq. (1) and
text thereafter]. However, a Fourier expansion of the new set of fermions
C̃j is no longer useful because of the absence of translation symmetry [21,
22]. Instead, one would have to perform the gauge transformation C̃j =
e−ij(−1)j tx∕LxCj back to Cj fermions, before proceeding as in the main text.
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tation relations, as follows from Eq. (23).
Using the result

1
Lx

Lx
∑

j=1
�jei(k+k

′)j =

�
[

�k+k′,0 cos
(

tx
Lx

)

+ i�k+k′,� sin
(

tx
Lx

)]

, (37)

valid for both k and k′ in either K0 or K1, the operator appear-
ing in the exponential of Eq. (31) can be written as

−
Lx
∑

j=1
�jCjCj+1 =

i�
∑

k∈Kp

e−ik�k
[

cos
(

tx
Lx

)

�−k − i sin
(

tx
Lx

)

��−k

]

. (38)

Restricting the sum to 0 ≤ k ≤ �
2 , this becomes

−
Lx
∑

j=1
�jCjCj+1 =

∑

k∈Kp
0≤k≤ �

2

Qk(A(k)) , (39)

where the quadratic form

Qk(X) =
{

1
2�
†
kX�k for k ∈

{

0, �2
}

�†kX�k otherwise.
(40)

Here,

�k =
⎛

⎜

⎜

⎜

⎝

�k
�k−�
�†−k
�†�−k

⎞

⎟

⎟

⎟

⎠

(41)

[its Hermitian conjugate means the row vector �†k =
(�†k �

†
k−� �−k ��−k)], while the 4 × 4 matrix

A(k) =
(

0 0
A21 0

)

, (42)

with

A21 = 2�
⎡

⎢

⎢

⎣

− sin k cos
(

tx
Lx

)

cos k sin
(

tx
Lx

)

−cos k sin
(

tx
Lx

)

sin k cos
(

tx
Lx

)

⎤

⎥

⎥

⎦

. (43)

The additional factor of 1
2 for k ∈ {0, �2 } prevents double

counting of these terms in Eq. (39), and ensures the commu-
tation relation

[

Qk(X), Qk′ (Y)
]

= �kk′Qk ([X,Y]) , (44)

is valid for all 0 ≤ k ≤ �
2 .

5

Since Q†k(X) = Qk(X
†), and all quadratic forms in Eq. (39)

commute by Eq. (44), the two-row transfer matrix, Eq. (31), is
given by

Wp =
⎡

⎢

⎢

⎢

⎣

∏

k∈Kp
0≤k≤ �

2

eQk(A(k))
⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

∏

k∈Kp
0≤k≤ �

2

eQk(A†(k))
⎤

⎥

⎥

⎥

⎦

, (47)

which can be reordered as the following product of commuting
terms:

Wp =
∏

k∈Kp
0≤k≤ �

2

eQk(A(k))eQk(A†(k)) . (48)

To proceed, we map to the corresponding one-dimensional
quantum Hamiltonian  through

W = e−2 . (49)

Then, by Eq. (30), we have

 =
∑

p
pΠp , (50)

where

Wp = e−2p , (51)

since the projectors satisfy [Πp,Wp′ ] = 0 andΠpΠp′ = Πp�pp′ .
After inserting Eq. (48), this implies

p = −
1
2

∑

k∈Kp
0≤k≤ �

2

log
[

eQk(A(k))eQk(A†(k))
]

. (52)

TheBaker–Campbell–Hausdorff formula [23] states that the
logarithm in Eq. (52) can be expressed in terms of nested com-
mutators of Qk(A) and Qk(A†). Using Eq. (44), these can be
expressed in terms of nested commutators ofA andA†, giving

p = −
1
2

∑

k∈Kp
0≤k≤ �

2

Qk
(

log(eA(k)eA†(k))
)

. (53)

5 For k ∈ {0, �2 }, because of the nonzero anticommutator {�k,i, �k,j} =
(Wk)i,j , where

W0 = �x ⊗ I2 W�∕2 = �x ⊗ �x , (45)

with ⊗ denoting the Kronecker product, Eq. (44) is only true if X satisfies
the conditionWkXTWk = −X (or the same for Y). However, it is always
possible to symmetrize X to meet this condition: Using (�†k)

T = Wk�k,j ,
one can show

Qk(X) = Qk(X′) +
1
2
Tr(WkXTWk) , (46)

where X′ = 1
2 (X −WkXTWk) is a matrix that satisfies the condition. The

matrix A(k) in Eq. (42) has been constructed in this way.
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The problem is thus reduced to diagonalization of the 4 × 4
matrix eAeA† for each k.
In order to solve the eigenvalue problem

eAeA†v = �v , (54)

we expand eA as a power series and use A2 = 0 to obtain

eAeA† = I + A + A† + AA† . (55)

After substituting Eq. (42) and writing v = (v1 v2)T , Eq. (54)
reduces to a pair of simultaneous equations which, on rear-
rangement, read

v1 =
1

� − 1
A†21v2 (56)

A21A
†
21v2 =

(� − 1)2

�
v2 . (57)

The latter is a 2×2 eigenvalue problem, which is easily solved.
The result implies

eAeA† = U diag[�−(k − tx∕Lx), �+(k − tx∕Lx),
�−(k + tx∕Lx), �+(k + tx∕Lx)]U† , (58)

where

�±(k) =
[

� sin k ± (1 + �2 sin2 k)
1
2
]2

, (59)

and U is a unitary matrix whose columns are the eigenvectors
of eAeA† .
By inserting Eq. (58) into Eq. (53), we obtain the free-

fermion Hamiltonian

p =
∑

k∈Kp

�(k − tx∕Lx)�
†
k�k , (60)

with dispersion

�(k) = 1
2
log �+(k) = sinh−1(� sin k) , (61)

where the �k and �k fermions are related by the Bogoliubov
transformation

�k =
⎛

⎜

⎜

⎜

⎝

�k
�k−�
�†−k
�†�−k

⎞

⎟

⎟

⎟

⎠

= U†�k , (62)

for 0 ≤ k ≤ �∕2. Both sets of fermions obey standard anti-
commutation relations.

The transformation of Eq. (62) may be expressed as a single
transformation valid for all k:

�k =
1
√

2

(

cos �k−tx∕Lx�k + cos �k+tx∕Lx�
†
−k −

sin �k+tx∕Lx�
†
�−k + sin �k−tx∕Lx�k−�

)

, (63)

with

tan(2�k) =
1

� sin k
, �k ∈

[

0, �
2

]

. (64)

Combining Eqs. (34) and (63), the transformation relating the
Cj and �k fermions is

Cj =

√

2
Lx
e−i�∕4

∑

k∈Kp

eikj ×

{

cos �k+tx∕Lx�
†
−k for j odd

cos �k−tx∕Lx�k j even,
(65)

with inverse

�k =

√

2
Lx
ei�∕4 cos �k−tx∕Lx

∑

even j
e−ikjCj +

√

2
Lx
e−i�∕4 sin �k−tx∕Lx

∑

odd j
e−ikjC†j . (66)

This makes it clear that the annihilation operator �k removes
a fermion (or equivalently, removes a vertical dimer) on even
sites or adds one on odd sites. According to Eq. (27), it there-
fore reduces Φy by one.
We now construct the spectrum of . As discussed in

Sec. III, one can find simultaneous eigenstates of  and Φy.
After substituting Eq. (65) into Eq. (27), the latter is given by

Φy = −
Lx
2
+

∑

k∈Kp

�†k�k (67)

in terms of �k fermions, which counts the number of occupied
states relative to half filling [the number of available k-states
is Lx by Eqs. (35) and (36)].6
The occupation-number states of the �k fermions with k ∈

Kp form a complete set of mutual eigenstates of p and Φy.
From Eq. (50), the complete set of eigenstates of  is given
by the union of all eigenstates of0 that have even Φy eigen-
value and all eigenstates of 1 that have odd Φy eigenvalue.
We will denote |Φy⟩n as the nth excited eigenstate [NW: of
?] with vertical fluxΦy, andEn(Φy) as its eigenenergy. The
spectrum of the two-row transfer matrixW follows from that
of  through Eq. (49): |Φy⟩n is also an eigenstate of W , but
with eigenvalue e−2En(Φy).
As illustrated in Fig. 3 (top-left panel), the ground-state is

half filled and thus denoted by |0⟩0. Formally, it is defined by

�k|0⟩0 = 0 for 0 < k < �

�†k |0⟩0 = 0 for − � < k < 0 ,
(68)

where k ∈ K0, and has energy

E0(0) =
∑

k∈K0
k<0

�(k − tx∕Lx) . (69)

6 Φy does not contain CLx+1 and so does not depend on p; either p gives the
same result.
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FIG. 3. Simultaneous eigenstates of the Hamiltonian , given by Eqs. (50) and (60), and the vertical flux Φy of Eq. (67), for Lx = 12, � = 1
and tx = �∕2: The nth excited eigenstate with vertical flux Φy is denoted by |Φy⟩n, while filled and empty circles represent filled and empty
�k orbitals, respectively. Top-left panel: Ground state |0⟩0, where k-states, given by Eq. (35) for Φy even (dashed blue lines), are all occupied
for �(k − tx∕Lx) < 0. Top-right panel: First excited state in the Φy = 0 sector |0⟩1, obtained by adding a particle-hole excitation to |0⟩0.
Bottom-left panel: Lowest-energy state in the Φy = 1 sector |1⟩0, where k-states, given by Eq. (36) for Φy odd (dashed red lines), are occupied
for −� ≤ k ≤ 0. Bottom-right panel: Lowest-energy state in the Φy = 2 sector |2⟩0, obtained by adding two particles to |0⟩0.

Fig. 3 also illustrates some eigenstates with higher energy.
To calculate the ground-state energy E0(0), in the limit

Lx → ∞ and including O(1∕Lx) corrections, we rewrite the
sum in Eq. (69) as an integral using the Euler–Maclaurin for-
mula

n
∑

i=0
f (a + i�) = 1

� ∫

a+n�

a
f (�) d� +

1
2
[f (a) + f (a + n�)] + �

12
[f ′(a + n�) − f ′(a)] + O(�3) ,

(70)

with a = −(Lx − 1)
�
Lx

, � = 2�
Lx

and n = Lx
2 − 1. The inte-

gral can be performed by extending the range of integration to
[−�, 0] and expanding �(k− tx∕Lx) as a power series in 1∕Lx.
The leading term is then

Lx
2� ∫

0

−�
dk sinh−1(� sin k) =

iLx�2(i�)
�

, (71)

where �2(z) =
1
2 [Li2(z) − Li2(−z)] is the Legendre chi func-

tion [in particular, �2(i) = iG, where

G =
∞
∑

n=0

(−1)n

(2n + 1)2
(72)

is Catalan’s constant]. The O(L0x) term vanishes, while the
O(1∕Lx) term is t2x�∕2�Lx.
The correction terms

−1
�

[

∫

a

−�
f (�) d� + ∫

0

a+n�
f (�) d�

]

, (73)

which arise when extending the integration bounds, as well as
the remaining terms in Eq. (70), can be calculated using the
Taylor expansion

�(k) = vFk + O(k3), |k|≪ 1 , (74)

where vF = � is the Fermi velocity. The final result is

E0(0) =
iLx�2(i�)

�
− ��
6Lx

+
t2x�
2�Lx

+ O

(

1
L3x

)

, (75)

and a similar calculation for the lowest-energy state in the
Φy = 1 sector gives

E0(1) = E0(0) +
��
2Lx

+ O

(

1
L3x

)

. (76)

Note that the tx dependence of E0 is the standard result
[24] for the O(L−1x ) correction to the ground-state energy of
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fermions with a twist tx in their boundary conditions (see Foot-
note 4). Relating this to the (effective) central charge c [25],
we have

−�c�
6Lx

= − ��
6Lx

+
t2x�
2�Lx

, (77)

and so

c = 1 −
3t2x
�2

. (78)

V. PARTITION FUNCTION

In this section, we write down the partition function Z(t)
using Eq. (14) and eigenvalues of the two-row transfer matrix,
before taking the thermodynamic limit.

By Eqs. (30) and (51), one can split Z(t) into contributions
from each parity sector, giving

Z(t) = Tr

(

∑

p
eityΦye−LypΠp

)

. (79)

The projector Πp can be expanded using Eqs. (28) and (67) as

Πp =
1
2
∑

�=±
�p exp

⎡

⎢

⎢

⎣

−i���,−
⎛

⎜

⎜

⎝

−
Lx
2
+

∑

k∈Kp

�†k�k
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

, (80)

and hence

eityΦye−LypΠp =
1
2
∑

�=±
�pe−Ly̃p,� , (81)

where

̃p,� =
iLx
2Ly

(ty − ���,−) +
∑

k∈Kp

�̃�(k)�
†
k�k , (82)

with

�̃�(k) = �(k − tx∕Lx) −
i
Ly
(ty − ���,−) . (83)

The partition function, Eq. (79), can therefore be written as

Z(t) = 1
2
∑

p,�
�pZp,� , (84)

where Zp,� = Tr e−Ly̃p,� . Because the trace of an operator is
equivalent to the sum of its eigenvalues, one has

Zp,± = (±eity )−Lx∕2
∏

k∈Kp

[

1 ± e−Ly�(k−tx∕Lx)eity
]

, (85)

which reduces to Lieb’s partition function for t = 0 [see
Ref. [10], Eq. (3.14)].

We now take the thermodynamic limit, retaining leading-
order corrections to the free-energy density. To do so forZ0,±,

we factor out ±e−Ly�(k−tx∕Lx)eity for all terms in the product
with k < 0 and restrict the product to 0 < k ≤ �∕2, which
gives

Z0,± = e−LyE0(0) ×
{

⌈Lx∕4⌉
∏

n=1

[

1 ± e−Ly�(k−tx∕Lx)eity
] [

1 ± e−Ly�(k+tx∕Lx)e−ity
]

}

×

{

⌊Lx∕4⌋
∏

n=1

[

1 ± e−Ly�(k−tx∕Lx)e−ity
] [

1 ± e−Ly�(k+tx∕Lx)eity
]

}

,

(86)

where k = (2n − 1) �Lx by Eq. (35).
In the limit Lx, Ly → ∞, we can replace �(k ± tx∕Lx)

by its leading-order dependence �(k ± tx∕Lx) [see Eq. (74)],
since the next-order terms will eventually be of order Ly∕L3x.
Hence, Eq. (86) becomes

Z0,± = e−LyE0(0)
∞
∏

n=1
(1 ± yqn−1∕2)(1 ± y−1qn−1∕2) ×

(1 ± y∗qn−1∕2)(1 ± y∗−1qn−1∕2) , (87)

where y = e�txeity , q = e−2�� and � = �Ly∕Lx. This can
be expressed in terms of Jacobi theta functions using the first
equality of Eqs. (A4) and (A5):

Z0,+ = e−LyE0(0)q1∕12
�3(y|q)�3(y∗|q)

�2(q)
, (88)

where �(q) is the Dedekind eta function defined in Eq. (A1),
and the same for Z0,− but with �3 → �4. An analogous calcu-
lation for Z1,± yields

Z1,+ = e−LyE0(1)q−1∕6
�2(y|q)�2(y∗|q)

�2(q)
, (89)

with �2 → �1 for Z1,−.
Combining the results for Zp,� with Eqs. (75) and (76),

Eq. (84) becomes

Z(t) = exp
[−iLxLy�2(i�)

�

]

exp

(

−
�t2x
2�

)

×

∑4
i=1 �i(y|q)�i(y

∗
|q)

2�2(q)
, (90)

which is consistent with Eq. (8.41) of Ref. [12] when tx = 0.
When t = 0, �1(1|q) = 0 and the partition function is

Z(0) = exp
[−iLxLy�2(i�)

�

]
∑4
i=2 �

2
i (1|q)

2�2(q)
, (91)

in agreement with Ref. [26].
The first factor in Eq. (90) grows exponentially with system

volume, and represents the weight of dimer configurations in



9

the bulk, i.e., it specifies the bulk free-energy density [12]

fbulk = − lim
Lx,Ly→∞

1
LxLy

logZ(t) (92)

=
i�2(i�)
�

. (93)

As one might expect, fbulk does not depend on the choice of
boundary conditions, although we note that this is not true in
the case of the honeycomb lattice [27].

The remaining terms inZ(t), which give leading finite-size
corrections to the free-energy density, are boundary dependent
and, in the case of PBCs, encode information about topologi-
cal flux sectors (see subsection below). Previously, these terms
have also been evaluated (for t = 0) with closed [26] and cylin-
drical [28] boundaries, as well as embeddings on the Möbius
strip and Klein bottle [29]. In general, one obtains terms in
the free energy proportional to the edge of the system [e.g.,
2(Lx +Ly) for closed boundaries] and of order Ly∕Lx. How-
ever, with PBCs (i.e., a torus) the edge is zero and we only
observe the latter.

Using the modular identities given in Appendix A, one can
confirm that the partition function Z(t) behaves as expected
under 90◦ rotations, in spite of the asymmetry between x
and y in the transfer-matrix method. Such a rotation takes
(tx, ty) → (−ty, tx), while swapping Lx ↔ Ly and making

the replacement �Nx → �Ny = �
1
2LxLy−Nx in the definition of

the patition function, Eq. (2). We therefore expect Z(t) to be
multiplied by �

1
2LxLy while � = �Ly∕Lx becomes 1∕�.

From Eqs. (A6) and (A7), we find

exp

(

−
�t2x
2�

)

∑4
i=1 �i(y|q)�i(y

∗
|q)

2�2(q)

= exp

(

−
t2y
2��

)

∑4
i=1 �i(y

′
|q′)�i(y′

∗
|q′)

2�2(q′)
, (94)

where y′ = e−ty∕�eitx and q′ = e−2�∕� correspond to y and
q under rotation. Since �2(i∕�) = �2(i�) −

i�
2 log � [30,

Sec. 25.12], the remaining (bulk) factor in Eq. (90) is replaced
by

exp
[−iLyLx�2(i∕�)

�

]

= �
1
2LxLy exp

[−iLxLy�2(i�)
�

]

,

(95)
giving the expected transformation of Z(t).

Flux sectors

We now show how the partition function, Eq. (91), divides
into topological sectors labeled by the flux. By construction,
Z(t) is periodic in t� (with period 2�), so can be expressed as
a Fourier series

Z(t) =
∑

�
Z̃�eit⋅� . (96)

Comparison of Eqs. (2) and (96) implies

Z̃� =
∑

c∈ℭ0(�)
�Nx , (97)

where the set ℭ0(�) contains all close-packed dimer config-
urations with flux �. In other words, the Fourier coefficient
Z̃� can be interpreted as the partial partition function, or total
weight, of flux sector�.
To calculate Z̃�, we use the second equality of

Eqs. (A2)–(A5) to rewrite Eq. (90) as [8]

Z(t) = e−LxLyfbulk
∑

m∈ℤ e−�(tx−2�m)
2∕2�∑

n∈ℤ e
intye−��n2∕2

�2(q)
(98)

(the periodicity in tx is now apparent). The sum over m can be
written in the same form as the sum over n through the Poisson
summation formula, giving

Z(t) = e−LxLyfbulk
∑

m∈ℤ eimtxe−�m
2∕2�∑

n∈ℤ e
intye−��n2∕2

√

2��2(q)
,

(99)
which allows us to read off from Eqs. (96) and (99)

Z̃� = e−LxLyfbulk
e−�(Φ

2
x∕�+�Φ

2
y)∕2

√

2��2(q)
. (100)

This result has previously been obtained for the honeycomb-
lattice dimer model using Pfaffianmethods [8], while Ref. [12]
has used the transfer matrix to calculate the partial partition
function of flux sector Φy, equivalent to

∑

Φx Z̃� [see their
Eqs. (8.19) and (8.36)].
Knowledge of Z̃� can be used to calculate flux moments.

The probability of flux� is given by

P (�) =
Z̃�

∑

� Z̃�
(101)

= e−�(Φ
2
x∕�+�Φ

2
y)∕2

∑

m,n∈ℤ e−�(m
2∕�+�n2)∕2

, (102)

which implies thatΦx andΦy are independent variables. This
form is known from effective field theories [31, 32]. The
mean flux vanishes by symmetry, while the mean-square flux
is given by

⟨Φ2x⟩ =
∑

n∈ℤ n
2e−�n2∕2�

∑

n∈ℤ e−�n
2∕2�

, (103)

and the same for Φy but with �→ 1∕�.

VI. EXPECTATION VALUES

In this section, we compute various expectation values in
the thermodynamic limit, using the spectrum of the two-row
transfer matrix.
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We use Eq. (15), and restrict to operators O that con-
serve parity of Φy, i.e., [O, (−1)Φy ] = 0. From Eq. (27),
this includes any product of an even number of Cj fermions,
and hence any operator constructed from dj,x and dj,y [see
Eqs. (24) and (25)]. It also allows us to calculate the monomer
distribution function, as we show in Sec. VID. With this re-
striction, and because (−1)Φy commutes with any quadratic
form in fermions, O(l) = U (l)−1OU (l) can be written as

O(l) = O(l)
∑

p
Πp (104)

=
∑

p
O(l)pΠp , (105)

where

O(l)p = Up(l)−1OpUp(l) , (106)

and Up(l) is given by Eq. (16) but with V replaced by Vp.
As for the partition function, the trace in Eq. (15) can be

split into parity sectors by inserting Eqs. (30), (51) and (105),
which yields

⟨O′(l′)O(l)⟩ = 1
Z(t)

∑

p
Tr

[

eityΦye−LypΠpO′(l′)pO(l)p
]

,

(107)
where we have used [Vp,Πp] = 0 and assumed [Op,Πp] = 0
(it is always possible to choose Op in this way). By Eq. (81),
this can be rewritten as

⟨O′(l′)O(l)⟩ =
∑

p,� �
pZp,�⟨O′(l′)O(l)⟩p,�
∑

p,� �pZp,�
, (108)

where, assuming Zp,� ≠ 0,

⟨O′(l′)O(l)⟩p,� =
1
Zp,�

Tr
[

e−Ly̃p,�O′(l′)pO(l)p
]

. (109)

Expectation values are therefore given by an average over the
four (p, �) sectors, each weighted by Zp,� .

A. Two-point correlation functions of Cj fermions

For an operatorO given by a product ofCj fermions, the cor-
responding time-evolved operator O(l)p can also be expressed
as a product of Cj(l)p, with the same p for each. For example,
when O = dj,y one has

dj,y(l)p = Up(l)−1C
†
j CjUp(l) (110)

= Up(l)−1C
†
j Up(l)Up(l)

−1CjUp(l) (111)

= C†j (l)pCj(l)p . (112)

Here, Cj(l)p is defined by extending [NW: the definition of]
Eq. (106) to Cj , even though it does not conserve parity and
so does not obey Eq. (105).

An expectation value ⟨O′(l′)O(l)⟩p,� can then be expressed
in terms of a product of an even number ofCj(l) operators. Be-
cause this is a time-ordered product and ̃p,� is a free-fermion
Hamiltonian, Wick’s theorem [33] applies, which allows us to

write ⟨O′(l′)O(l)⟩p,� as a sum over products of two-pointCj(l)
correlators in each (p, �) sector. [We similarly extend the def-
inition Eq. (109) to include O = Cj , even though Eq. (108) is
not valid in this case.] We calculate these two-point correlators
in this section.
To do so, we first use Eqs. (16) and (106) to derive an ex-

pression forCj(l)p in terms of �k fermions. For l even, Eq. (60)
implies

W −1
p �kWp = e−2�(k−tx∕Lx)�k , (113)

which can be used in Eq. (65) to give

Cj(l)p =

√

2
Lx
e−i�∕4

∑

k∈Kp

eikj ×

{

cos �k+tx∕Lxe
−l�(k+tx∕Lx)�†−k for j odd

cos �k−tx∕Lxe
−l�(k−tx∕Lx)�k j even.

(114)

For l odd, as well as Eq. (113) we additionally require the re-
sults

(V †p )
−1�∗kV

†
p = −e

−�(k−tx∕Lx)�†k−�
(V †p )

−1(�†k
)∗
V †p = −e

�(k−tx∕Lx)�k−� ,
(115)

which can be derived from Eq. (33). This time we use these in
the complex conjugate of Eq. (65), to find

Cj(l)p =

√

2
Lx
ei�∕4

∑

k∈Kp

eikj ×

{

cos �k−tx∕Lxe
−l�(k−tx∕Lx)�k for j odd

−cos �k+tx∕Lxe
−l�(k+tx∕Lx)�†−k j even.

(116)

Finally, by combining Eqs. (114) and (116), we have

Cj(l)p =

√

2
Lx
e−i(−1)l�∕4

∑

k∈Kp

eikj ×

{

(−1)l cos �k+tx∕Lxe
−l�(k+tx∕Lx)�†−k for j + l odd

cos �k−tx∕Lxe
−l�(k−tx∕Lx)�k j + l even,

(117)

for all l.
Since ̃p,� , defined in Eq. (82), is a free-fermion Hamilto-

nian with dispersion �̃� , and Eq. (109) describes a thermal dis-
tribution with effective temperature 1∕Ly, the two-point cor-
relation functions of the �k fermions are given by

⟨�k�k′⟩p,� = ⟨�†k�
†
k′⟩ = 0

⟨�†k�k′⟩p,� = �kk′nF(Ly�̃�(k))

⟨�k�
†
k′⟩p,� = �kk′nF(−Ly�̃�(k)) ,

(118)

where nF(z) = (ez+1)−1 is the Fermi–Dirac distribution func-
tion.

Hence, denoting R = (X, Y ), the Cj(l) correlators are
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⟨Cj+X(l + Y )Cj(l)⟩p,� =
⎧

⎪

⎨

⎪

⎩

−ei'(l,Y )Γp,�(R,−t) for X + Y odd, j + l odd
−e−i'(l,Y )Γp,�(R, t) X + Y odd, j + l even
0 X + Y even

(119)

⟨C†j+X(l + Y )C
†
j (l)⟩p,� =

⎧

⎪

⎨

⎪

⎩

e−i'(l,Y )Γp,�(R, t) for X + Y odd, j + l odd
ei'(l,Y )Γp,�(R,−t) X + Y odd, j + l even
0 X + Y even

(120)

⟨C†j+X(l + Y )Cj(l)⟩p,� =
⎧

⎪

⎨

⎪

⎩

0 for X + Y odd
ei'(l,Y )

[

Δp,�(R,−t) − Γp,�(R,−t)
]

X + Y even, j + l odd,
e−i'(l,Y )

[

Δp,�(R, t) − Γp,�(R, t)
]

X + Y even, j + l even
(121)

⟨Cj+X(l + Y )C
†
j (l)⟩p,� =

⎧

⎪

⎨

⎪

⎩

0 for X + Y odd
e−i'(l,Y )

[

Δp,�(R, t) + Γp,�(R, t)
]

X + Y even, j + l odd,
ei'(l,Y )

[

Δp,�(R,−t) + Γp,�(R,−t)
]

X + Y even, j + l even
(122)

where

'(l, Y ) =

{

(−1)l �2 for Y odd
0 Y even,

(123)

and

Γp,�(R, t) =
1
Lx

∑

k∈Kp

e−ikXeY �(k−tx∕Lx)nF(Ly�̃�(k)) ×

{

i sin(2�k−tx∕Lx ) for X + Y odd
−cos(2�k−tx∕Lx ) X + Y even

(124)

Δp,�(R, t) =
1
Lx

∑

k∈Kp

e−ikXeY �(k−tx∕Lx)nF(Ly�̃�(k)) . (125)

These results are exact, with the correct (anti)periodicity in
the horizontal direction, and could be used to calculate expec-
tation values for finite system sizes as a function of flux sector.

Instead, we take the thermodynamic limit Lx, Ly → ∞,
keeping the ratio Ly∕Lx and the separation |R| finite. In this
limit, nF(z) can be replaced by a step function #(−Re z) and
the discrete k values become continuous, giving

Γp,�(R, t) ≈ Γ(R) = ∫

�

0

dk
2�

eikXe−Y �(k) ×
{

i sin(2�k) for X + Y odd
cos(2�k) X + Y even

(126)

Δp,�(R, t) ≈ Δ(R) = ∫

�

0

dk
2�

eikXe−Y �(k) . (127)

Some values of these integrals for small |R| are shown in Ta-

ble I, expressed in terms of the quantities

�x =
arctan �

�
�y =

arctan (1∕�)
�

, (128)

which satisfy �x + �y =
1
2 . For large |R|, the asymptotic be-

havior is obtained by integrating by parts repeatedly, treating
the cases Y ≫ 1 [where Eq. (74) can be used] and Y of order
unity separately.
These expressions are independent of p and �, i.e., all four

(p, �) sectors make equal contributions in the thermodynamic
limit. Hence, Eq. (108) is redundant to this order, and we sim-
ply have ⟨O′(l′)O(l)⟩ = ⟨O′(l′)O(l)⟩0,+ for operators O that
are products of an even number of Cj fermions. We therefore
drop the (p, �) indices from now on.
Furthermore, they are independent of t, whose leading-

order dependence is O(L−1x , L
−1
y ). This implies that expecta-

tion values are the same in any fixed flux sector in the thermo-
dynamic limit (but note that that we have taken Lx, Ly → ∞,
so this does not apply for� ∼ Lx, Ly). To see this we rewrite
Eq. (3) as a sum over Fourier modes [cf. Eqs. (96) and (97)]

⟨O⟩ = 1
Z(t)

∑

�
⟨O⟩�Z̃�eit⋅� , (129)

where

⟨O⟩� =
1
Z̃�

∑

c∈ℭ0(�)
O�Nx (130)

is the expectation value of the observableO in a fixed flux sec-
tor�. After multiplying both sides of Eq. (129) byZ(t)e−it⋅�′

and integrating over t, one finds that ⟨O⟩� = ⟨O⟩ when the
latter is independent of t.
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Integral Value

Γ(0) �x

Γ(1, 0) −
�x
�

Γ(0, 1) i�y

Γ(2, 0) − 1
��

+
�x
�2

Γ(1, 2) − 1
�
+ ��y

Γ(2, 1) − i
�2

(

�x −
�
�

)

Γ(3, 0) −�x
( 1
�
+ 2
�3

)

+ 2
��2

Γ(0, 3) i
[

�y(1 + 2�2) −
2�
�

]

Γ(|R|≫ 1), X odd, Y even − 1
�

X
X2 + (�Y )2

Γ(|R|≫ 1), X even, Y odd i
�

�Y
X2 + (�Y )2

Γ(|R|≫ 1), X odd, Y odd 2i�
�

X�Y
[X2 + (�Y )2]2

Γ(|R|≫ 1), X even, Y even −�
�

X2 − (�Y )2

[X2 + (�Y )2]2

Δ(Xeven, 0) 1
2
�X,0

Δ(|R|≫ 1), X odd i
�

X
X2 + (�Y )2

Δ(|R|≫ 1), X even 1
�

�Y
X2 + (�Y )2

TABLE I. Values of the integrals Γ(R) and Δ(R), defined in
Eqs. (126) and (127), respectively, for small |R|, as well as their
asymptotic behavior for |R| ≫ 1. Values for X < 0 may be ob-
tained using the relation Γ(−X, Y ) = (−1)XΓ(R) and the same for
Δ(R).

In subsequent sections we use Eqs. (119)–(122) to calculate
various observables in the dimer model in the thermodynamic
limit. We expect our results to reproduce those of Ref. [9] in
this limit, since the choice of boundary conditions (PBCs ver-
sus closed) becomes irrelevant. We also note that asymptotic
behavior of correlation functions can be predicted using effec-
tive field theories, although the results depend on phenomeno-
logical parameters known as the stiffnesses [32] [NW: also cite
[34], where we do this properly, and modify this reference so
that it has, at least, bosonization in the title?].

B. Dimer occupation numbers

We first calculate the probability that a vertical or horizontal
bond is occupied by a dimer, given by ⟨dj,y(l)⟩ and ⟨dj,x(l)⟩,
respectively. (In the thermodynamic limit, there is no t depen-
dence, and so d∗j,x = dj,x.)
Using Eqs. (24) and (25), one finds

⟨dj,x(l)⟩ = −�Γ(1, 0) (131)
= �x , (132)

and

⟨dj,y(l)⟩ = Δ(0) − Γ(0) (133)
= �y , (134)

consistent with Sec. 5 of Ref. [9]. As required, each lattice site
is touched by a dimer with probability unity, since ⟨dj,x(l)⟩ +
⟨dj,y(l)⟩ =

1
2 . In the isotropic case, � = 1, one has ⟨dj,x(l)⟩ =

⟨dj,y(l)⟩ =
1
4 , whereas in the limit � → 0 (� → ∞) only

vertical (horizontal) bonds are occupied.

C. Dimer–dimer correlation functions

Due to the close-packing constraint, the occupation of a
given bond by a dimer is influenced by dimers far away. Hence,
dimer–dimer correlations are non-trivial even in the absence of
interactions. In this section, we show how they can be calcu-
lated by extending the above discussion to two-point correla-
tors of dj,x and dj,y.
The connected correlation function of two horizontal dimers

with separation R, illustrated in Fig. 4 (top), is given by (we
assume Y > 0 throughout this section)

Gxx(R) = ⟨dj+X,x(l + Y )dj,x(l)⟩ −
⟨dj+X,x(l + Y )⟩⟨dj,x(l)⟩, R ≠ 0 (135)

[for R = 0 the first term vanishes due to C2j (l) = 0; see Foot-
note 3]. Inserting Eq. (24) and using Wick’s theorem [33]
yields

Gxx(R)
�2

= ⟨Cj+X+1(l + Y )Cj(l)⟩⟨Cj+X(l + Y )Cj+1(l)⟩ −

⟨Cj+X+1(l + Y )Cj+1(l)⟩⟨Cj+X(l + Y )Cj(l)⟩ , (136)

hence, by Eq. (119),

Gxx(R)
�2

=

{

−Γ(R)2 for X + Y odd
Γ(X − 1, Y )Γ(X + 1, Y ) X + Y even.

(137)
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From Table I, some values for small |R| are

Gxx(1, 0) = −�2x (138)
Gxx(0, 1) = �2�2y (139)

Gxx(1, 1) = �y
(

�x −
�
�

)

(140)

Gxx(2, 1) =
(�x
�
− 1
�

)2
(141)

Gxx(0, 2) = −
(�
�
− �2�y

)2
(142)

Gxx(0, 3) = �2
[

�y(1 + 2�2) −
2�
�

]2
, (143)

while the asymptotic behavior for |R|≫ 1 is algebraic, rather
than exponential:

Gxx(R)
�2

≈ (−1)X 1
�2[X2 + (�Y )2]2

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X2 for X odd, Y even
(�Y )2 X even, Y odd
(�Y )2 X odd, Y odd
X2 − 1 X even, Y even.

(144)

Similarly, the connected correlation function of two vertical
dimers with separationR, illustrated in Fig. 4 (bottom left), is

Gyy(R) = ⟨dj+X,y(l + Y )dj,y(l)⟩ − ⟨dj+X,y(l + Y )⟩⟨dj,y(l)⟩ .
(145)

Following the same procedure as for Gxx(R), but now using
Eqs. (25) and (119)–(122), yields

Gyy(R) =

{

Γ(R)2 for X + Y odd
Δ(R)2 − Γ(R)2 X + Y even.

(146)

Note that the correlatorsGxx andGyy should be related by 90◦
rotations, in a similar way to that shown for Z(t) in Sec. V.
The third possibility is the connected correlation function of

a horizontal and vertical dimer with separation R, illustrated
in Fig. 4 (bottom right), which is

Gxy(R) = ⟨dj+X,y(l + Y )dj,x(l)⟩ − ⟨dj+X,y(l + Y )⟩⟨dj,x(l)⟩ .
(147)

The result is

Gxy(R)
�

=
{

Γ(R)[Δ(X − 1, Y ) − Γ(X − 1, Y )] for X + Y odd
Γ(X − 1, Y )[Γ(R) − Δ(R)] X + Y even,

(148)

Gxx(R)

R

Gyy(R)

R

Gxy(R)

R

FIG. 4. Dimer–dimer correlation function between two horizontal
dimers (top), two vertical dimers (bottom left), and a horizontal and
vertical dimer (bottom right). In each case, the disconnected part
of the correlator [i.e., the first term in Eqs. (135), (145) and (147)] is
equal to the probability that the two bonds with separationR are both
occupied.

with asymptotic behavior

Gxy(R)
�

≈ (−1)X+Y 1
�2[X2 + (�Y )2]2

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X�(Y + 1) for X odd, Y even
(X − 1)�Y X even, Y odd
X�Y X odd, Y odd
(X − 1)�(Y + 1) X even, Y even.

(149)

The results in this section are in agreement with Sec. 7 of
Ref. [9].

D. Monomer distribution function

Finally, we characterize the (entropic) interaction between
a pair of inserted test monomers by calculating the monomer
distribution function

Gm(R) =
1

Z(t)
∑

c∈ℭ(r+,r−)
�Nx , (150)

where the set ℭ(r+, r−) contains all configurations with
monomers at sites r±. For simplicity, we consider the case
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of two monomers on the same row, though the formalism can
be extended to the general case.

Because �−j inserts a monomer on site j, in the transfer-
matrix formalism one has

Gm(X, 0) = ⟨�−j (l)�
−
j+X(l)⟩ , (151)

which becomes

Gm(X, 0) = −

⟨

Cj

[j+X−1
∏

i=j+1
(1 − 2C†i Ci)

]

Cj+X

⟩

(152)

after performing the Jordan–Wigner transformation,
Eqs. (19)–(21) (from here on we do not explicitly show
dependence on the row l).7

Following Refs. [11, 19, 20], we now define operators

Aj = C
†
j + Cj (153)

Bj = C
†
j − Cj (154)

(note that 1 − 2C†j Cj = AjBj), which, by Eqs. (119)–(122),
satisfy

⟨AjAj+X⟩ = �X,0 (155)
⟨BjBj+X⟩ = −�X,0 (156)
⟨BjAj+X⟩ = −⟨Aj+XBj⟩ = −2Γ(X, 0) . (157)

In terms of these, Eq. (152) is a sum of four 2X-point corre-
lators, each of which can be expressed as a sum of products
of two-point correlators through Wick’s theorem [33]. Then,
by Eqs. (155) and (156), the two correlators containing an un-
equal number of Aj and Bj vanish, while the remaining two
are

(B,A) = 1
4

⟨j+X−1
∏

i=j
BiAi+1

⟩

(158)

= 1
4

∑

�∈SX

sgn(�)
X
∏

i=1
⟨Bj+i−1Aj+�i⟩ , (159)

where SX denotes the symmetric group of order X, and
(−1)X−1(A,B). Inserting Eq. (157) and using the relation
Γ(−X, 0) = (−1)XΓ(X, 0) with

∏X
i=1(−1)

i−�i = 1, it follows
that(A,B) =(B,A), and hence

Gm(X, 0) =
⎧

⎪

⎨

⎪

⎩

1
2

∑

�∈SX

sgn(�)
X
∏

j=1
−2Γ(1 − (j − �j), 0) for X odd

0 X even,
(160)

7 In the case of two monomers on different rows, the operator on each row
has an odd number of Cj operators and so does not commute with (−1)Φy .
To treat this case, we would not be able to use Eq. (108) and would instead
require the analogous expression for O anticommuting with (−1)Φy .

which can be expressed as a Toeplitz determinant

Gm(X, 0) =
1
2
det TX for X odd, (161)

where TX is anX×Xmatrix with elements (TX)j,j′ = −2Γ(1−
(j − j′), 0).
From Table I, the first two non-zero values are

Gm(1, 0) =
�x
�

(162)

Gm(3, 0) =
4�x
�5

[

(1 + �2)2�2x −
�2

�2

]

(163)

[cf. Eqs. (11.1) and (11.3) of Ref. [9]], where, up to a factor
of �, the former is equivalent to the occupation probability of
a horizontal bond as calculated in Sec. VI B.
To calculate the asymptotic behavior for largeX, we define

'(k) = −2
∑∞
j=−∞ e

ikjΓ(1− j, 0) = −eike2i�k sgn(k) for −� ≤
k < �. Unlike on the triangular lattice [35, 36], Szegő’s limit
theorems do not apply, since ' is not a continuous function,
and instead we apply the Fisher–Hartwig conjecture [14].
The discontinuities at k = 0 and k = ±� can be expressed

by defining t�(k) = e−i�(�−k) for 0 < k < 2� [37], in terms
of which '(k) = b(k)t1∕2(k)t1∕2(k − �). Here, b(k) = −ie2i�k
is continuous and has zero winding number when viewed as
a map from eik to the unit circle. Its Wiener–Hopf factoriza-
tion, b(k) = b+(eik)b−(eik), with b+ (b−) analytic and nonzero
everywhere inside (outside) the unit circle [38], is

b±(z) =

√

±
c± − z
c± + z

, (164)

where c± = �−1 ±
√

1 + �−2.
According to the Fisher–Hartwig conjecture [37], we then

have

det TX ≈ G[b]XXΩE , (165)

for large X, with G[b] = 1, Ω = − 12 and

E = 22∕3e6� ′(−1)

(1 + �2)1∕4
≃
(

1 + �2
2

)−1∕4
× 0.494744 , (166)

where � ′ is the derivative of the Riemann zeta function.
The monomer distribution function therefore obeys

Gm(X, 0) ≈
E

2
√

X
for X ≫ 1, odd. (167)

A consistent result was found by Hartwig [39] for the case of
monomers separated along a diagonal (i.e., X = Y ) using the
Pfaffian method.
Note that the algebraic dependence on X, stemming math-

ematically from the discontinuity in ', contrasts with the ex-
ponential behavior on the triangular lattice [35, 36]. As noted
by Au-Yang and Perk [40], the decrease withX−1∕2 can be un-
derstood by relating the dimer model to two uncoupled Ising
models at the critical point.
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VII. CONCLUSIONS

We have expressed Lieb’s transfer matrix for the classical
square-lattice dimer model in terms of a free-fermion Hamilto-
nian, and used its spectrum to rederive some useful results. Al-
though these can equally be derived using Pfaffian techniques,
the second quantized approach presented in this paper is per-
haps more elegant.

Specifically, our results include the torus partition func-
tion which, by including a field t, can be interpreted as a
moment-generating function of the flux. We have also shown
how expectation values can be expressed in terms of the
fermionic operators, and evaluated dimer occupation numbers,
dimer–dimer correlation functions and the monomer distribu-
tion function in the thermodynamic limit, all of which are inde-
pendent of flux sector for not-too-large flux. Finally, we have
derived a new result, namely the asymptotic behavior of the
monomer distribution function for large monomer separation
along the same row.

The results in this paper are also relevant to the correspond-
ing quantum dimer model at its Rokhsar–Kivelson point [41],
while the transfer-matrix method can be extended to other two-
dimensional lattices. Indeed, the straightforward generaliza-

tion of Lieb’s transfer matrix to the (bipartite) honeycomb
and square-octagon lattices, which can both be viewed as a
square lattice with certain horizontal bonds removed [i.e., cer-
tain terms omitted from the sum in V3; see Eq. (9)], has already
been demonstrated in Ref. [42].
One advantage of the transfer-matrix method is that dimer–

dimer interactions can be easily included in the operator for-
malism, in terms of products of the dimer occupation numbers
dj,x and dj,y. For example, on a row of vertical bonds, the
operator

∑

j dj,ydj+1,y describes interactions between parallel
pairs of nearest-neighbor dimers, as studied in Refs. [31, 43].
This is a four-fermion interaction, which is non-integrable [31]
but could be included perturbatively using standard diagram-
matic perturbation theory.
Furthermore, the well-known height field theory [44, 45]

of the two-dimensional classical dimer model can be rigor-
ously derived from the free-fermion form, by taking a long-
wavelength limit and using the technique of bosonization [46].
Interaction operators included perturbatively in this context
manifest themselves through renormalization of the ‘stiffness’
as well as the introduction of (cosine) potential terms consis-
tent with symmetry requirements. A detailed account of this
derivation will be the subject of a future publication [34].

Appendix A: Jacobi theta functions

We define the Dedekind eta function

�(q) = q1∕24
∞
∏

n=1
(1 − qn) , (A1)

for nome q such that |q| < 1. For a complex number y, the Jacobi theta functions are

�1(y|q) = −i
√

yq1∕12�(q)
∞
∏

n=1
(1 − yqn)(1 − y−1qn−1) = −i

∑

r∈ℤ+1∕2
(−1)r−1∕2yrqr2∕2 (A2)

�2(y|q) =
√

yq1∕12�(q)
∞
∏

n=1
(1 + yqn)(1 + y−1qn−1) =

∑

r∈ℤ+1∕2
yrqr

2∕2 (A3)

�3(y|q) = q−1∕24�(q)
∞
∏

n=1
(1 + yqn−1∕2)(1 + y−1qn−1∕2) =

∑

n∈ℤ
ynqn

2∕2 (A4)

�4(y|q) = q−1∕24�(q)
∞
∏

n=1
(1 − yqn−1∕2)(1 − y−1qn−1∕2) =

∑

n∈ℤ
(−1)nynqn2∕2 . (A5)

In terms of these definitions, which follow Ref. [12], the functions defined in Section 20 of Ref. [30] are �NISTi (z, q) = �i(e2iz|q2).
These functions obey the modular identities [30, Sec. 20.7]

�(es|e−2��) = 1
√

�
e
s2
4��

⎛

⎜

⎜

⎜

⎝

−i 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟

⎟

⎟

⎠

�(eis∕�|e−2�∕�) (A6)

where �(y|q) =
(

�1(y|q),… , �4(y|q)
)T , and [30, Sec. 23.18]

�(e−2��) = 1
√

�
�(e−2�∕�) . (A7)
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