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Understanding Sensory Induced Hallucinations: From Neural Fields to Amplitude
Equations

Rachel Nicks*, Abigail Cocks*, Daniele Avitabile®, Alan Johnston?, and Stephen Coombes*

Abstract. Explorations of visual hallucinations, and in particular those of Billock and Tsou [Neural interactions
between flicker-induced self-organized visual hallucinations and physical stimuli. Proceedings of the
National Academy of Sciences, 104(20):8490-8495, 2007], show that annular rings with a background
flicker can induce visual hallucinations in humans that take the form of radial fan shapes. The well-
known retino-cortical map tells us that the corresponding patterns of neural activity in the primary
visual cortex for rings and arms in the retina are orthogonal stripe patterns. The implication is that
cortical forcing by spatially periodic input can excite orthogonal modes of neural activity. Here we
show that a simple scalar neural field model of primary visual cortex with state-dependent spatial
forcing is capable of modelling this phenomenon. Moreover, we show that this occurs most robustly
when the spatial forcing has a 2:1 resonance with modes that would otherwise be excited by a
Turing instability. By utilising a weakly nonlinear multiple-scales analysis we determine the relevant
amplitude equations for uncovering the parameter regimes which favour the excitation of patterns
orthogonal to sensory drive. In combination with direct numerical simulations we use this approach
to shed further light on the original psychophysical observations of Billock and Tsou.

Key words. Visual hallucinations, Neural field model, Spatially forced pattern forming system, Amplitude
equations.

AMS subject classifications. 92C20, 35B36, 37L10.

1. Introduction. The story of spontaneous pattern formation in models of visual cortex
is one that has attracted much attention since it was developed in the 1970s by Ermentrout
and Cowan to explain drug induced geometric visual hallucinations [10]. These often take the
form of lattice (a.k.a. honeycomb, grating, or chessboard), cobweb-like, tunnel (a.k.a. funnel,
cone or vessel), and spiral patterns, as described in the experiments of Kliiver [15] in which
participants were given mescaline. When transformed from the retinocentric coordinates of
the eye to the coordinates of the primary visual cortex (V1), these so-called Kliiver form con-
stants manifest as simple geometric planforms such as rolls, hexagons, squares, etc. [27]. It
was the great insight of Ermentrout and Cowan that some of these could be generated via a
Turing instability in a simple neural field model of V1. Neural fields are essentially continuum
descriptions of cortical neural activity described by integro-differential equations. They are
specified by a set of non-local spatial interaction kernels and nonlinear firing rate functions
to describe the coarse grained activity of interacting excitatory and inhibitory neuronal pop-
ulations, and for a recent review see [6]. Despite the difference in their mathematical form to
many other pattern forming systems that arise in the modelling of physical systems, and in
particular partial differential equations of reaction-diffusion type, they can be analysed using
many of the same techniques. For example, a weakly nonlinear analysis can be used to derive
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2 R. NICKS, A. COCKS, D. AVITABILE, A. JOHNSTON AND S. COOMBES

the amplitude equations for patterns emerging beyond the point of a Turing instability [30, 8].
More recently an extension of the original work by Ermentrout and Cowan has been developed
by Bressloff et al. [4] to describe the dynamics of orientation selective cells. This more bio-
logically realistic neural field model includes anisotropic lateral connections that only connect
distal elements with the same orientation preference along the direction of their (common)
orientation preference. Interestingly this model can generate representatives of all the Kliiver
form constants. Nonetheless both this and the original model of Ermentrout and Cowan have
a focus on spontaneous pattern formation that is induced by changes of parameters intrinsic
to the models, rather than by external drive. However, it is particularly important to address
this when trying to understand the mechanisms of sensory induced illusions and hallucinations
in response to the presentation of either static or dynamic visual input. An example of the
former is the flickering wheel illusion whereby a static wheel stimulus, with 30 — 40 spokes,
is experienced as flickering when viewed in the visual periphery [29]. A perhaps more well
known sensory induced percept is that of illusory rotational motion experienced when looking
at the rotating snakes image [5] (and for an example visit [14]). Interestingly, since the work
of MacKay in the 1950s it is well known that relatively simple patterns of regular stimuli, such
as radial lines or concentric rings, are enough to induce illusory motion at right angles to those
of the stimulus pattern [18]. Many of these phenomenon are amenable to further study using
the tools of psychophysics. A case in point, and the focus of the theoretical study presented
here, are the visual hallucinations reported in the work of Billock and Tsou [3]. These authors
tried to induce certain geometric hallucinations by biasing them with an appropriate visual
stimuli from a flickering monitor. For example, a set of centrally presented concentric rings
was expected to induce a hallucination of circle in the surround. Instead, and to their surprise,
they found that fan-shaped patterns were perceived in the surround (and a complementary
pattern of concentric ring circles in the surround for radial patterns in the centre). The retino-
cortical map, mentioned above, tells us that the corresponding patterns of neural activity in
the primary visual cortex for rings and arms in the retina are orthogonal stripe patterns.
The implication of the psychophysical experiments of Billock and Tsou is that cortical forcing
by spatially periodic input can excite orthogonal modes of neural activity. Thus, a natural
question arises as to whether there is a minimal model of visual cortex with external drive
capable of supporting this observed orthogonal response and does it require a departure from
existing neural field models. In short the answer is that standard neural field models with
a state-dependent drive are sufficient. Although the orthogonal response property may seem
somewhat surprising from an experimental perspective, relatively recent theoretical studies of
the spatially forced Swift-Hohenberg equation have shown that under certain mild conditions
orthogonal responses are robust [20]. Here we adapt and develop the techniques originally
developed for analysing spatially forced partial differential equation models to nonlocal neural
fields, and use these to uncover the parameter windows that robustly reproduce orthogonal
responses to spatially periodic forcing. In doing so we highlight the potential mechanisms
that can underpin the original psychophysical observations of Billock and Tsou.

In §2 we describe in more detail the psychophysical experiments of Billock and Tsou as
well as introduce a simple neural field model with state-dependent drive that will subsequently
be shown to be a minimal model for their observations. The key mechanism for the success of
the model is the combination of a Turing instability and a 2:1 resonance arising between the
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UNDERSTANDING SENSORY INDUCED HALLUCINATIONS 3

spatial scale of the periodic forcing and that of the emergent Turing pattern. An important
parameter of the model is then the spatial frequency mismatch between these two scales. The
Turing and resonance effects are analysed in §3. In §4 we develop a weakly nonlinear analysis,
valid for weak forcing in the neighbourhood of a Turing instability, and derive equations
governing the amplitude of emergent planforms. These in turn are analysed using bifurcation
theory to uncover appropriate parameter choices (in the strength of forcing, the frequency
mismatch, and shape of the nonlinear firing rate) to generate an orthogonal response. This
theoretical work is complemented in §5 with direct numerical simulations, for both globally
periodic and spatially structured patterns of drive, to both confirm our analysis and make a
more concrete connection with psychophysical observations. Finally in §6 we discuss the main
results of our paper and highlight areas for future work.

2. Psychophysics and a model. Surprisingly little is known about the interactions be-
tween sensory driven and self organised cortical activity. Billock and Tsou have worked to
address this deficit by probing the link between natural visual perception and the geometric
hallucinations that can be induced by the presentation of certain regular spatio-temporal pat-
terns. In a set of human psychophysical experiments using a flickering monitor (at 10-15 Hz
in a dark room where the stimuli was 1/10th to 1/3rd of the flickered area) they found the
surprising result that biasing stimuli could provoke an orthogonal response. For example, if
the area around a small fan shape is flickered, subjects report seeing illusory circular patterns.
This is considered an orthogonal response since the corresponding patterns of activity in V1
are stripes of activity oriented at right angles to each other. This latter result stems from the
well known retino-cortical map that maps radial arms in the visual field to horizontal stripes
of activity in V1, and concentric rings to vertical stripes (with respect to a ventral-dorsal
axis). To a first approximation this map (away from the fovea) is often approximated by a
quasi-conformal dipole map [2] that would map spiral arms in retinal coordinates to oblique
stripes in cortical coordinates, as illustrated in Fig. 1. The cortical map can also be thought
of as a spherical map in the eye stretched along the optical axis and viewed from the side [13].
One might say that if the image of a circle opposed by a radial arm is considered on the retina
then it is locally orthogonal, whereas if the corresponding cortical activity is considered then
it is globally orthogonal. Billock and Tsou also reported similar orthogonal responses in three
other scenarios: i) if the area around a circular pattern is flickered, an illusory rotating fan
shape is perceived (and if the circles are flickering too, the rotating fan shape extends through
the physical circles), ii) if a biasing pattern of peripheral radial arms is presented then central
(tightly packed) rings are perceived, and iii) a rotating petal-like pattern often appears in
the flickering central area in response to a peripheral set of biasing concentric rings. These
types of hallucinatory percepts are all illustrated in Fig. 2. In all cases of perceived rotation
(typically between 0.75 and 1.3 revolutions per second) the direction of rotation is arbitrary
and subject to reversal.

A major conclusion of Billock and Tsou is that the pattern of sensory induced hallucina-
tions in their psychophysical experiments reflects the same cortical properties, including local
connectivity and lateral inhibition within a retinotopic map in V1, that shape routine visual
processing. Given the success of neural field models in describing drug-induced (spontaneous)
hallucinations in V1, it is thus natural to see if they are also capable of explaining the op-
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Retina Cortex

® O %

Figure 1: An illustration of the retino-cortical map that takes points of stimuli on the retina
to points in V1 (left and right primary visual cortex), showing how radial arms, rings, and
spirals on the retina transform to oriented stripes on V1.

ponency in these flicker-induced visual phenomena. To this end we now consider a minimal
model of V1 with the inclusion of a forcing term to mimic sensory input to the system.

Here we consider a simple neural field model for the evolution of synaptic activity in an
effective single population with adaptation. The different effects of excitatory and inhibitory
interactions are encoded in a single kernel whose sign indicates whether an interaction is ex-
citatory (positive) or inhibitory (negative). We do this for mathematical convenience though
stress that the approach developed for model analysis is equally applicable to treating popula-
tions of interacting excitatory and inhibitory neuronal populations separately. The inclusion
of adaptation means that the model is more realistic, in the sense that this gives a phe-
nomenological description of metabolic processes that lead to fatigue. It also provides a well
known route to dynamic instabilities leading to the formation of travelling waves. The latter
are expected to be a key requirement for illusory motion. We shall also work with a kernel
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UNDERSTANDING SENSORY INDUCED HALLUCINATIONS 5

(a) (b) \
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Figure 2: An illustration of the biasing stimuli (black) and hallucinatory percepts (grey)
as reported by Billock and Tsou and redrawn from [3]. (a) If the area around a small fan
shape is flickered, subjects report seeing illusory circular patterns, (b) if the area around a
circular pattern is flickered, an illusory rotating fan shape is perceived, (c) if a biasing pattern
of peripheral radial arms is presented then central rings are perceived, and (d) a rotating
petal-like pattern often appears in the flickering central area in response to a peripheral set
of biasing concentric rings. The arrows indicate perceived rotation.

that describes a tissue with short-range excitation and long-range inhibition, which is well
known for its pattern forming properties [1, 8]. Given the phenomenological nature of neural
field models we adopt a similar approach for the modelling of visual input to V1. From a
biological perspective cells in V1 would be driven by synaptic currents, and these in turn
would be mediated by conductance changes arising from afferent inputs. These currents have
a simple ohmic form that multiplies the voltage of the post-synaptic neuron with that of the
conductance change. Thus the input signal is mized with the state of the neuron. We shall
be careful to carry over this important effect into our phenomenological model of drive.
Introducing the vector field (u, a) we write our neural field model with drive in the succinct
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form

ou
(2.1) Ez—u—l—w@f(u)—ga—f—'yul,
(2.2) Ta% =u — a.

Here u is a scalar field representing neural activity and a is a scalar field representing a
negative feedback adaptation variable. The symbol ® denotes a spatial convolution, and f is
a nonlinear firing rate (typically sigmoidal in shape). The kernel w is chosen to encode the
spatial interactions between points in the tissue (taken to be translationally and rotationally
invariant). The parameter g > 0 represents the strength of the adaptive feedback and 7, > 0
sets the relative time-scale. The external input is described by I and we allow for a simple
form of mixing by including a multiplication with the state u. The strength of forcing is
described by v € R. We could, of course, have placed the forcing I inside the firing rate f.
However, a nonlinear Taylor expansion would expose multiplicative terms, and to keep the
analysis in this paper as uncomplicated as possible we prefer instead the choice made, though
emphasise that the analysis to follow is easily adapted to this case (albeit at the expense
of slightly more complicated calculations). The model described by (2.1) and (2.2) can be
posed in a variety of spatial domains. In this paper we shall focus on a planar system so that
(u,a,I) = (u(r,t),a(r,t),I(r,t)) with r = (z,y) € R? and t > 0, so that

(2.3) [w® f(u)](r,t) = /RQ dr’'w(r — ') f(u(r',t)).

Here the kernel function w depends only upon distance so that w(r) = w(r), where r = |r|.
For concreteness we will work with the rotationally symmetric Wizard hat function (although
the theory we develop is ambivalent to the particular choice of Mexican-hat style function):

(2.4) w(r)=Ae777 —eT A>1, o<1

Moreover, for later convenience and without undue restriction, we impose the balance condi-
tion [p. drw(|r|) = 0, which is achieved when A = ¢~2. The firing rate function is chosen as
a sigmoid with a threshold h and steepness parameter u:

1

(2.5) flu) = [Epo=AL

Finally the model is completed with the choice of drive I(r,t). Since we are primarily inter-
ested in the mechanisms that underly an orthogonal response we shall develop theory for the
case that this is a simple spatial pattern of stripes in the z-direction with a spatial forcing
wavenumber ky and write I(r,t) = cos(ksr). Our interest is in the development of striped
patterns in neural activity along the y-direction.

3. Turing instability and resonances. The use of a Turing instability analysis to under-
stand pattern formation in neural fields is exemplified by the work of Ermentrout and Cowan
[10]. In their original work the emphasis was on spontaneous pattern formation in the ab-
sence of external input, and they highlighted that a mixture of short-range excitation and
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UNDERSTANDING SENSORY INDUCED HALLUCINATIONS 7

long-range inhibition was key for the emergence of global patterning. Perhaps surprisingly,
the study of forced neural fields has received relatively little attention in the mathematical
literature, one exception being the work of Rule et al. [26] which considers spatially homo-
geneous, time periodic forcing and shows (using symmetric bifurcation theory) that stripes
occur at high frequency forcing (2:1 resonance) and hexagons at low. In the current work we
consider spatially inhomogeneous forcing, namely forcing with stripes. To gain insight into the
effects of spatial forcing it is timely to adapt recent results developed for the Swift-Hohenberg
equation [20]. Here we first review the spontaneous patterning behaviour of the neural field
model without drive and then show how resonant patterns can emerge when spatially periodic
drive is introduced.

3.1. Patterning in the absence of drive. First consider the case with no drive, namely
with v = 0 and write the model (2.1)-(2.2) in the integro-differential form

0
(3.1) a—?z—u—l—w@f(u)—gn*u.

Here we have exploited the linearity of (2.2) to integrate the equations of motion for a (as-
suming vanishing initial data) and introduced the temporal convolution

(3.2) el = [ atn-Oue), a0 = e HE),

— 00 Ta

where H is a Heaviside step function.
It is convenient to introduce the Fourier transform of w as @ in the form

(3.3) (k) = / drw(r)e T keR?
R2
and the Laplace transform of 7 as 7 in the form
oo
(3.4) nA) = / dtn(t)e ™, reC.
0

For a rotationally symmetric kernel we also have that w(k) = w(k), where k = |k|. For the
choice (2.4) we have the explicit result that

A B 1
0-(0-72 + k;2)3/2 (1 + k2)3/2 ’

(3.5) @(k) = 21 [

and for 17 we have that

1

(3.6) nA) = e

The homogeneous steady state (u(r,t),a(r,t)) = (ug, ap) of the neural field model is then
given by ag = ug with ug = w(0)f(ug)/(1 4+ g7(0)). For a balanced kernel @w(0) = 0 and we
have that (ug,ap) = (0,0) for all model parameter choices (when v = 0). Linearising around
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the homogeneous steady state by writing u(r,t) = ug + edu(r,t), for some small amplitude
le| < 1, and expanding to first order gives the evolution for the perturbations as
0

(3.7) aéu = —6u+ f'(up)w @ du — gn * du.

We note that for the choice (2.5) we have f'(u) = wpf(u)(l — f(u)). Equation (3.7) has
separable solutions of the form du(r,t) = eMeT where the dispersion relation between A and

|k| can be written implicitly in the form £(\, k) = 0 with
(3.8) EOVK) = 1+ A+ gif(\) — f'(uo) (k).

To obtain the above we have used the result that w ® ¢’*T = @(k)e’ ™ and 5 * e = 77(\)e.
For g = 0 (no adaptation) then the spectrum is given explicitly by

(3.9) A= =1+ f'(ug)(k).

Since w is translationally invariant then @ is real and we see that in this case A € R. A static
Turing instability (to a purely spatially periodic time-independent pattern) is then possible,
with the bifurcation condition being w (ko) = 1/f'(ug). Here ko > 0 is the point at which
w(k) has a local maxima (namely w(kyg) = maxw(k)). Note that any direction on a circle
of wavevectors of magnitude |k| = ko can be excited. When g > 0 it is possible that A can
become complex. After decomposing A = v + iw, and then equating real and imaginary parts
of (3.8) it can be shown that the spectrum lies on the curve given by

(3.10) T2(V% 4 W) + 270 = Tag — 1,

a

and to the left of the line,

(3.11) L~ 470 = 7o f'(u0) @ (ko))

27,

Thus for ¢ > 0 a Turing instability to a dynamic (time-dependent) pattern (w # 0) will
occur when w(kg) = (1 + 74)/(7af (ug)) for 7,9 > 1 and g > f'(ug)w(ky) — 1 (and the
latter condition excludes the possibility of a static bifurcation). The emergent frequency of
oscillation is w. = \/7o9 — 1/7,. We note that the conditions for static and dynamic Turing
instabilities given here agree those in [7] since the model equations only differ in the placement
of the nonlinear firing rate.

3.2. Resonant patterns in the presence of drive. The periodic forcing of pattern form-
ing system can lead to novel behaviours as well as frequency or wavenumber locking. The
mathematical study of periodic temporal forcing is more well developed than its spatial struc-
tured counterpart, and it is well known that this can lead to n:1 resonances in both ordinary
differential systems with a Hopf bifurcation [11] and partial differential equations [17]. The
mathematical study of spatially forced pattern forming systems is relatively underdeveloped
compared to that of temporal forcing, with an exception being the work of Manor et al. [19].
In this and follow up work [20, 21, 22], these authors consider idealised pattern forming sys-
tems of Swift-Hohenberg type poised near Turing instability to a pattern with a wavenumber
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UNDERSTANDING SENSORY INDUCED HALLUCINATIONS 9

ko with weak spatial periodic spatial forcing at wavenumber k;. They show that if k¢ is close
to 2kg then stable resonant stripes can be formed. Importantly, they also establish that if
the mismatch between ky and kg is high, then a locked pattern can still develop albeit with
a wavevector component perpendicular to the forcing direction. Given that this is one of the
major properties of the psychophysical experiments of Billock and Tsou that we are seeking
to understand, it is natural to see if the corresponding phenomenon can arise in a neural field
model. To first probe whether resonances arise naturally in a neural field model with forcing
we note that this question does not require a treatment in two spatial dimensions. Given that
resonances can be explored in a one dimensional setting we consider here the neural field model
(3.1) posed on the real line (rather than the plane). This is useful not only for simplifying
calculations, but also for setting the scene for the analysis of the fully two-dimensional model
that we shall present next in §4. Although the psychophysical experiments of Billock and
Tsou involve temporal flicker we will show below that it is not strictly necessary to include
this to generate opponent patterns.
In the presence of spatially periodic drive the model equation is

0
(3.12) 6—1: =—u+w® f(u) —gn*u+yucos(ksr).
We consider a scalar field u = u(z,t), with x € R and ¢ > 0, governed by (3.12) with v # 0.
For simplicity we drop the treatment of adaptation for now and set ¢ = 0. From now on
we will assume that the forcing wavenumber k; is approximately a multiple of kg, so that
k¢ ~ nkg, n € Z and introduce a mismatch parameter v

(3.13) v=ko—kf/n.

The value of n can be used to describe an n:1 resonance. If the system is poised at a static
Turing instability to a pattern with wavenumber k¢ and the forcing is weak (|y| < 1) then
it is natural to consider a multiple-scales analysis to understand the response properties of
the driven system. We assume that the small detuning can be scaled as v = ec for a small
parameter €. We then define new scaled variables ¥ = ex and 7 = €’t and consider power
series expansions for u and 7y as

(3.14) u = ug + eu + 2uy + Suz + ...,
(3.15) =€y + v+l 4.,
with, as yet, unknown functions u, = uq(z,t,x,7), « = 1,2,3,.... Further, we substitute the

firing rate function f by its Taylor series expansion f(u) = f(uo) + B1(u — ug) + B2 (u — ug)? +
B3(u — ug)® + ..., where Bo = f"(uo)/2, B3 = f"(ug)/6, and we treat B; as a bifurcation
parameter and write 31 = . + €26 where 3. = f’(ug) subject to 8. = 1/w(ko) (the static
Turing bifurcation condition). A further Taylor series expansion of the functions u, as

ua(y7 S, €Y, 623) = uOt(y: S, X + E(y - [B), 628)
82

~ a2 21, 2 07 3
(3.16)  ~ua(y,s,x,7) +€(y x)axua(y,s,x,T)JreQ(y ) 8qua(y,mm)JrO(e)
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facilitates an evaluation of the spatial convolution in (3.12). Balancing terms at powers of €
in (3.12) yields a hierarchy of equations as

(3.17) o =M
( ) My(Beut) + y1uo cos(k:fm)

(3.19) Mo(Beuz + Baui) + Mi(Beur) + (yiur + yauo) cos(k ),
(3.20) aam + uz =My(Beus + dur + 2Bauius + ,63u1) + M (Beug + ﬁzu%)

+ Ma(Beur) + (y1u2 + Y2u1 + y3uo) cos(ksx),

where the linear operators M, are given by My = w®, M1 = W*®0,, and M = %Wm@)axx.
Here we have introduced the new kernels W?(x) = —w(|z|) -z and W**(z) = w(|z|) - 2. One
can see that each equation in the hierarchy above contains terms of the asymptotic expansion
of u only of the same order or lower. This means that we can start from the first equation
and systematically solve for u,. In fact, if we set £ = —1+ S.w® the system (3.18)-(3.20) has
the general form Luy = go(ui,ug,...,uq—1) and the right-hand side g, will always contain
known quantities. The first equation (3.17) in the hierarchy fixes the steady state ug. By
choosing a balanced kernel we have ug = 0. Note that in one dimension the balance condition
J25 w(|z])dz = 0 for the kernel (2.4) is achieved when A = ¢~!. In this case we also have

~ _ —ikx _
(3.21) W(k) = 2/0 w(z)e Mo de =2 | 1oy —
The second equation (3.18) is linear with solutions u; = A(x,7)e*® + c.c. (where kg is

the critical wavenumber at the static bifurcation). Hence the null space of L is spanned
by et*o® A dynamical equation for the complex amplitude A(y,7) can be obtained by
deriving solvability conditions for the higher-order equations, a method known as the Fredholm
alternative.

We define the inner product of two periodic functions (with periodicity 27 /kg) as

ko

(3.22) V)=

/ U*(2)V (z)da.

For all u € ker LT then (u, go) = (u, Lua) = (LT, uy) = 0 where LT is the adjoint of £. It is
easy to establish that £ is self-adjoint so that the set of solvability conditions are (et%0% g.) =
0. To evaluate the solvability condition at o = 2 we note the useful results

(3.23) <eik°x, Lug) =0, (eikox, Bow & u%) =0, <eik0x, B @ Oyur) =0,

0 n # 2

ikox _
("% y1u; cos kfx> = {'y21A*e—2ivz n=9"

Hence to avoid secular terms we must set y; = 0 for the 2:1 resonance (with the solvability
condition automatically guaranteed for all o # 2). We write v; = (1 — d,,2)71. A particular
solution of us can be found by assuming that it is a linear combination of terms involving
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UNDERSTANDING SENSORY INDUCED HALLUCINATIONS 11

¢i(FksEko) and terms present in u?. Substitution into (3.19) and balancing terms gives, for our
balanced kernel (w(0) = 0),

(3.24) uy = doA%e?*0T (1 — 5n72)% dy AelFstko)e 4 d_A*ei(kf_kO)”} +c.c.,

where

Baw(2kq) 1

2 = = .
(3:25) = T Gtk T T Bl £ o)

A similar analysis of the solvability condition at o = 3, and using the results in appendix
A, gives the evolution of the amplitude A as

0A N - - 1 9%A
(3:20) 57 = 0 (ko)A + (26 (ko)do + 385(ko)] AIAF = 54 (ko) 55

—\ 2
+ %A*e_%cxén,g + (1 - 5n,2) <f;1> [(d+ + df)A + A*d,e_%cxéml] .

If we now introduce the amplitude variable a = ee’X A then to leading order the solution for
u is of the form

(3.27) w—ug ~ ae’®rM 4.

After rescaling back to the original time and space variables the amplitude a evolves according
to

Oa 2 2 1, . 2 5272 *
(3.28) BCE = €“0a — Plal"a + 53U (ko)[Be(v +i0)]"a + 5n727ﬁca
€Y1 2
+ (1 — (5n72),80 <2) [(d+ + d_)a + a*d_éml] .
where ® = —383 — 282dy. Thus, from the solution form of (3.27), constant solutions of

the amplitude equation (3.28) generate n:1 resonant stationary stripe patterns. We next
investigate the existence of such solutions for different values of n.

3.2.1. Existence of resonant stripe solutions. We consider the cases n # 2 and n = 2
separately. For n # 2, equation (3.28) becomes,

9 1 . :
(3:29) Aot = 2oa— Dlafa+ 50" (ko) [Belv + i) a+ B (3) [(ds +d-)a+a"d-d,1],

where 7 = €y7. This has constant (resonant stripe) solutions of the form,

} 4e2 200" 3 D) 62 NG -

(3.30) I
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For n = 1 the constant argument ¢ € {0, 7}, but for the higher order resonances the argument
is undetermined by the amplitude equations to cubic order. In the case that & > 0 we find
that the resonant stripe solutions exist for

(3.31) s \/ —20 (ko) (Bev)? — 46%

Beldy +d—(1+0n1)]
For n = 2, equation (3.28) becomes,

0 1. . .
(3.32) ﬁca—j = 25 — ®|af?a + 50" (ko) [Be(v + i0,))%a + %Bca ,

where v = €272. This has constant solutions of the form a = pee’® where,

(3.33) Py = \/ 2620 + @"(ko)(Bev) + (“1)™Be - mm

29 2

The solutions with m odd are unstable so we do not consider these further. Assuming that m
is even and also that ® > 0, the resonant stripe solutions exist for

(3.34) v > —w" (ko) Bev? — 2625.

The tongue shaped existence ranges for n:1 resonant stripe patterns for n = 1,...4 are
shown in Figure 3. The parameter values are such that ® > 0. We take 2§ > 0 so that we
are beyond the pattern forming instability. Notice that in this case the existence regions have
finite width, even at v = 0 so the unforced system also supports bands of stripe solutions
beyond the pattern forming instability. The 2:1 resonance tongue is noticeably wider than
those for other resonances and we also note that narrow bands of the tongues for the n:1
resonance patterns exists around ky/ko = 2 for all values of n # 2. This is due to the fact
that the tongue for n = 2 has a different form to those for other values of n. For n = 2, the
forcing strength coefficient v appears linearly in the amplitude equation and therefore forcing
has a stronger effect in this case than when n # 2 where v appears squared. This difference
in the power to which v is raised in the amplitude equation occurs as a direct result of the
forcing function I(r,t) being applied to a linear term in w in (2.1). If for instance we were to
add forcing via a cubic order term in u we would expect to see a prominent 4:1 resonance.
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Figure 3: Existence tongues for resonant stripe patterns in a one-dimensional neural field
model (without adaptation) with spatially periodic forcing. The kernel is chosen as in (2.4)
with o = 0.8. Other parameters are h = 0 and €26 = 10~*. The tongue with a 2:1 resonance
is dominant.

4. Weakly nonlinear analysis. We now carry out a weakly nonlinear analysis of the fully
two-dimensional model including adaptation which allows us to derive amplitude equations
for the emergent patterns in the neighbourhood of a Turing instability. The resulting four
(complex valued) amplitude equations can be reduced to a four-dimensional system in two
ways. We consider in section 4.1 the two-dimensional model without adaptation (¢ = 0) and
use bifurcation theory to investigate the spatial patterns which are supported. We focus on
discovering the parameter choices which give an orthogonal response to the spatially periodic
forcing. In section 4.2 we make a reduction to one spatial dimension with adaptation and
investigate the effects of forcing on travelling waves.

At the Turing instability all wavevectors k = (kz, ky) of magnitude |k| = ko are excited.
We investigate solutions which are locked to the forcing wavevector ke = (kf,0). Here, n:1
resonant solutions have "

ky = L + vy = ko — v
n
(see Figure 4) where the mismatch parameters vy, vy satisfy |v1 +k¢/n| < ko and equivalently
0 < vy < 2kg. The spatial structure of the two-dimensional patterns that form are, to leading
order, a superposition of the modes exp(ikyx £ ikyy), which can lead to rectangular (equal
amplitude) and oblique (unequal amplitude) patterns. These are n:1 resonant patterns that
respond to the spatial forcing by locking the wavevector components in the forcing direction
ky = ks/n and creating a wavevector component in the orthogonal direction, k,, to com-
pensate for the unfavourable forcing wave number, so that k, = \/kg — k2 to achieve the

This manuscript is for review purposes only.



393
394
395
396
397
398
399
400

101
402
403
404
405
406
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total wavenumber ko. Note that if we fix v1 = 0 as in [20] then dependence of existence and
stability of solutions patterns on the mismatch vy occurs through k, and k,. While we will
see that this suffices when considering patterns in two spatial dimensions, in section 4.2 we
make a reduction to one spatial dimension by setting k, = 0. In this case we have vy = 0 so
that k; = ko and we must have v; = kg — k¢/n # 0 so that k, depends on the mismatch v;.
In order to enable this reduction, we retain the mismatch parameter v; in the computation
of amplitude equations for emergent patterns in the fully two-dimensional model including
adaptation.

Figure 4: The circle indicates the ring of fastest growing wavenumbers with critical value
|k| = ko, for k = (kg, ky). The forcing wavevector is ke = (kf,0). We take k, = kf/n+ v =
ko — vo for mismatch parameters v; and vp, with n € Z. The wavevector component k,
satisfies k; = k:% — k2 to achieve the total wavenumber ky. The unforced system can support
a spatially periodic Turing pattern with |k| = ko. With the introduction of forcing there are
wide regions in parameter space that support a resonance with n = 2 leading to the formation
of rectangular and oblique solutions.

For the weakly nonlinear analysis we define new coordinates x = ex, ¥ = ey, 7 = €t for a
small parameter € and consider power series expansions for u and v as in (3.14)—(3.15) with as
yet unknown functions uy = uq(z,y,t,x, Y, 7), « = 1,2,3,.... We again use the Taylor series
expansion for the firing rate function f(u) = f(ug)+B1(u—1uo)+Bo(u—1ug)?+B3(u—ug)3+. ..,
where 2 = f"(uo)/2, B3 = f"(up)/6, and we treat 1 as a bifurcation parameter and write
B1 = Be + €26 where now . = f'(ug) subject to

1
A—;g at a static Turing bifurcation,
(4.1) g, =4 @lko),
a . . . e
————— at a dynamic Turing instability.
Taw(kO)
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We must now also consider further Taylor expansions of the functions u, to allow for the
evaluation of the spatial and temporal convolutions in (3.12):

ua (2, Yyt ex ey th') = uo (2, Yy, x + (2’ —2), T + ey —y), 62t')
0 0
= ol T ) el = )5 a6 X)) gl o Xo)

—|—12 (' — 2)? = > ua (2 Y, x, 0, 7))+ 2(2" — 2) (v — y) >
26 82 y X? T y yaaT

uo(2 Yyt x, Y, 7T)
52

o2

uo (2 e’ ey, €2t)) = ua (2, e’ ey, T + (' —t))

+( — y)? s ua(@, Y X, T, T) |+ O,

)
~ uo (2t x, Yo T) + E(H — t)a—ua(a:/, Yt x, T, 1) + O(eh).
T

Balancing the O(1) terms in (3.12) fixes the steady state uy = 0 since we choose a balanced
kernel as in (2.4) with A = 0~2. Balancing terms at higher powers of € in (3.12) yields a
hierarchy of equations as

(4.2) Egul = 0,
(4.3) Lyug = — Mo(ﬁgu%) — Mi(Beur) — yrug cos(kyx),
ou
(4.4) Lyuz = = — My(6ur +2Byurua + Byuf) — M (Beuz + fud)

— Ms(Beur) + Ni(gui) — (mug + y2ur) cos(kfx),

where we define the linear operators £, = —% — 14 Bew® —gnx, My = w®, M1 = W*®

O + WY ® Oy, My = 3 [W™ @ Oyy + 2WW @ Oyy + WY @ Oyy] and Ny = n' x 9. Here we

have introduced new spatial kernels W*(r) = —w(|r|)x and W*¥(r) = w(|r|)zy analogously

to the scalar case in section 3.2. We also introduce the new temporal kernel n'(t) = —tn(t).

The null space of the linear operator £, is spanned by {ejEZ kz‘”ikyyi“’ct)} where k2 + k; = k2,
= \/Tag — 1/74, and therefore (4.2) has solution

(4.5) w (:U, y.t,x, T, 7) =A1(x, Y, T)ei(kxm+kyy+th) + As(x, T, T)ei(kxm—kyy-&-wct)
+ A3(X7 T, T)ei(kxac+kyy—th) + A4(X> T, T)ei(kx:c—kyy—wct) +c.c.

Using the Fredholm alternative we find a particular solution to (4.3) and use a solvability
condition for (4.4) to derive amplitude equations for the evolution of the complex amplitudes
Ai(x,Y,7), j =1,2,3,4. Details of these calculations can be found in Appendix B and the
resulting amplitude equations, rescaled back to the original time and space variables are

. da N .
(1+ gn/(zwc))—l = —w(ko) ((¢1|a1|2 + <I>2|a2|2 + ¢3|6L3|2 + (I)4|(14|2) a + @5&2&3&4)
/Bc &

ot

2
(4.6) (ko) e*dar + 20" (ko) (10 +v1)” = 9y ) a1 + <2 ain

—\2
" (?) (1= 0n2) [(C4 + ¢-)ar + ¢-ajdn ],
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16 R. NICKS, A. COCKS, D. AVITABILE, A. JOHNSTON AND S. COOMBES

. Oda N N
(1 + gn'(zwc))—Q = —w(ko) ((@2‘@1’2 + ‘I>1|a2\2 + <I’4|a3\2 + <I>3]a4|2) as + @5@1&4@3)

ot
2
(4.7) + @(ko)e*6az + %@”(ko) (0 +v1)* = 0y ) a2 + 2 a30n2
—\2
€71 S *5
+ <2> (1= 6n,2) [(C+ + C=)az + (—azdn],
~ . da ~ * * * * * *
(1+ g77/(—zwc))8—t3 = —w(ko) ((<I>3|a1|2 + <I>4|a2|2 + <I>1]a3|2 + <I>2\a4|2) as + <I>5a1a4a2)
2
(4.8) + @ (ko)e2daz + %@”(k:o) ((zaz Fop)?— ayy) as + %a% -
671 ? 1 5 * * * ks
+ 7 ( - n,2) [(<+ + C_)CLS +(Cas n,l] s
~ . da ~ * * * * * *
(1+ g77'(—zwc))a—t4 = —w(ko) ((<I>4|a1\2 + <I>3]a2|2 + @2]a3|2 + @1\a4]2) ay + <I>5a2a3a1)
2
(4.9) + @ (ko)e2ay + %@"(ko) ((z’@x o) - ayy) as+ %amg
671 ? 1 5 * * )
+ bR (1- n,2) [(CJr +¢E)ag + Cay n,l} )
where ®q,...,®5 are as in (B.25). These four complex-valued coupled nonlinear ODEs de-

scribe the evolution of the amplitudes a;(z,y,t), j = 1,2,3,4 in the solution u of (3.12) which
to leading order is given by

(4.10) w(z,y,t) = ekrz/m (alei(ky“”t) + age!TRwyFet) o gaeithyy—et) 4 a4ei(*kyy*”t)> +c.c.

where w = w. + £ is the (temporal) frequency of the solution away from bifurcation and & is
an order €2 temporal frequency detuning parameter which does not appear in the amplitude
equations (see Appendix B). Constant solutions of the amplitude equations (4.6)—(4.9) for a
given value of n correspond to n:1 resonant patterns which exist beyond the Turing instability.
We have a particular interest in resonant patterns under the one-dimensional forcing in the
x direction which have a wavevector component in the orthogonal direction. This orthogonal
response is seen in the Swift—-Hohenberg equation for the 2:1 resonance [20] where stable
rectangles and oblique patterns are observed. We therefore also choose to focus on the 2:1
resonance. In section 4.1 we consider two-dimensional spatial patterns near a static instability
in the model without adaptation (¢ = 0), while in section 4.2 we consider the model with
adaptation where the unforced system supports travelling waves beyond the dynamic Turing
instability. (Note that for the study of dynamic patterns we make a reduction to one spatial
dimension to simplify calculations.)
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UNDERSTANDING SENSORY INDUCED HALLUCINATIONS 17

4.1. Spatial patterns without adaptation. First consider the 2:1 resonance in the case
where there is no adaptation so that there is a static Turing instability at 5. = 1/@w(ko). We
set g =0 and w. = 0 in (4.6)—(4.9) and also we let as = a3 = 0 as these terms are no longer
needed in u; given by (4.5) when w. = 0 (since the null space of £ is spanned by the terms
with coefficients A; and A4 in (4.5)). We also choose to set v1 = 0 so that k, = k¢/2 = ko —v2
and dependence on the mismatch between ky and ko enters the amplitude equations through
ks and k,, noting that ®4 depends on these parameters. We then have the following amplitude
equations for a1 = a and a4 = b:

da 2 2 2 CZA// ’YBc *
(4.11) ﬁca = e“da — P1|ala — Dylb| a5 (ko) (Ozz + Oyy) a + b*,
8 2 o~ C %
(4.12) By = = €26b — d1|b|*b — Dylal®b — 56 @" (ko) (Opz + Oyy) b+ 725
where v = 62’}’2 and we note that the coefficients ®; and ®, are real. These equations

have a similar structure to those for two-dimensional patterns in the spatially forced Swift—
Hohenberg equation [20]. We now look for spatially homogeneous solutions of (4.11)—(4.12).
Writing a = pae’®* and b = ppe’® we find that the phases and amplitudes satisfy

a a C

(4'13) Bc ,0 = 625pa - (I)lpg - fI)4pa,0§ =+ %Pb COSW),
8 c

(4.14) Ber pb = 20py — P1py — Paplpy + %pa cos(¢),
&b v (Pb pa)

4.15 — === —+ sin

(4.15) 5t AV (¥),
2 v (Pb pa)

4.16 —_— = —— sin

(4.16) 5= 5 (2L ) sinw)

where ¢V = ¢4+ ¢p and 0 = ¢, — ¢p,. Notice that 0 is determined once p,, pp and ¢ are known.
Looking for constant solutions we find that v» = mm, m = 0,1, however such solutions with
1 = m can be shown to be unstable and therefore we do not consider these further. With
1 = 0, we see from (4.16) that phases ¢, and ¢, = —¢, are constant and that constant
non-zero amplitudes p,, pp satisfy

vﬁc

(4.17)  €6pa — P1p) — Papapy + =0,  €6py— Pipy — uplpy+ 75‘:

o = 0.

Equations (4.17) admit the solution p, = pp = po where

2e¢25 + 0,

po = 2(@1 + @4) '

These are constant rectangular patterns

u(x’ Y, t) — pOeikf33/2 (ei(kyy+¢a) + e_i(kyy+¢a)> + c.c.
(4.18) = 4pg cos(kfx/2) cos(kyy + da),
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18 R. NICKS, A. COCKS, D. AVITABILE, A. JOHNSTON AND S. COOMBES

where k, = \/k:g — k2, ky = k¢/2 = ko — va. The undetermined phase ¢, arises due to
the continuous translational symmetry in the y-direction which is not broken by the forcing.
These solutions exist for 0 < vy < 2kq (to ensure that k, € R) and where also 2¢2§ + 3. and
®; + &4 have the same sign, noting that 4 = &4 (v9).

Equations (4.17) also admit the constant solution p, = p+, pp = px where

2 6276 + 6275 ’ _ ’)/Bc 2
P~ 99, 20, 20®1 — By) )

These are constant oblique patterns

u(z,y,t) = eihso/? (Piei(ky“%) + p;e*i(ky“d’“)) + c.c.
(4.19) = 2p4 cos(kfr/2 + kyy + ¢a) + 2px cos(krx /2 — kyy — da),

where ¢, is again undetermined and k, = \/k'g — k2, ky =k #/2 = ko — v2. These solutions
exist for 0 < vp < 2kg (to ensure that k, € R) and where also

2 2
€“0 €“0
— >0 and <

ol 5.0,

2P,

The values of vy and ~ for which resonant rectangle and oblique patterns exist depend on the
values of o (the spatial scale of interaction) and h (the firing rate threshold). The existence
regions for a range of values of h for ¢ = 0.5 are illustrated in Figure 5. Regions where rectangle
patterns exist are shaded blue, while red shading indicates existence of oblique patterns under
the additional assumption that ¢26/®; > 0. For h = 0 we observe similar existence regions
for these patterned states as observed in [20] for the Swift-Hohenberg equation under periodic
spatial forcing. For nonzero choices of h we observe more complex existence regions. We note
that the existence regions for —h are identical to those for h. This is due to the fact that
f'(up) is an even function of h. The values of 82 and f3 depend on p where p is fixed once
h and o are specified. Since for given a given value of h, pu satisfies 8. = 1/w(ko) = f’(uo),
then —h gives the same values of y as h.

We can also consider the linear stability of the two-dimensional constant resonance pat-
terns to uniform perturbations. Making perturbations Ap, and Ap, to the constant solution
Pa, pp and linearising we find that the perturbations satisfy

(4.20) 0 < Apq > 1 < €20 — 3P1p2 — Pyp?  —2P4papp + VTBC ) ( Ap, ) '

| D1 — Dy .

M\ Apy )~ B\ —20upapy+ 20 €25 — 3,2 — Dyp? Apy
The Jacobian, J, in (4.20) has eigenvalues
Tr(J)

re= %\/(Tr(J)P — Dot (J).

The zero state (p, = pp = 0) has eigenvalues (€26/3.) & /2 and is therefore stable for
2e26 4+ 3. < 0 since . > 0. Rectangular patterns have p, = p, = po and eigenvalues

)\+ — 9 <625 ’y) 7 P —2((131 — @4)625 — 2‘1’1")/50.

Be - 2 Be(P1 + Py)
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(a) h=0

(%) 2k0

0 ko

() |h] = 0.3

V2 2k

0 ko va 2k

(b) |A| = 0.15

20

o1
10
0
-10
—20
0 k(] U2 2k0
(d) |h| =05

Figure 5: Existence regions for patterned states in a two-dimensional neural field model
with spatially periodic forcing (and without adaptation). Blue shaded regions indicate where
stationary rectangle patterns exist and red shading indicates existence of oblique patterns.
The kernel is chosen as in (2.4) with o = 0.5 and the firing rate is given by (2.5) with (a)
h =0, (b) |h| = 0.15, (c) |h| = 0.3, (d) |h| = 0.5. Other parameters are €25 = 0.3 for (a)—(c)
and €20 = —0.3 for (d). Note that existence of oblique patterns also requires that €25/®; > 0.

Here 7. = —2€25 /..

Therefore rectangles are stable when 22§ + v, > 0 (and we need ®1 + ®4 > 0 so that the
solutions exist here) and also (®; — @4)625 + ®1v5. > 0. For oblique patterns, where p, # pp,
we note from (4.17) that the constant solutions satisfy

€5 =01(p2 +pp) and P = —2paps(P1 — Ba),
and therefore the Jacobian matrix J in (4.20) has

T(J) = — (@) + g

2

,Bc(I)l’

Det(J) = —2 (

€25 \* 3B; — D4\ % /72
50@1) ¢1(¢1_¢4)+(¢>1—¢>4> (5) ’

The oblique patterns are stable when Tr(.J) < 0 and Det(.JJ) > 0. The first of these conditions
is satisfied when the patterns exist and ®; + &4 > 0. Note then that all stable constant
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resonant two-dimensional patterns exist within the upper blue shaded regions in Figure 5a—
5d. Stability regions in the (vs,7) plane are indicated for rectangle and oblique patterns
in Figure 6 for €25 = 0.3 and |h| = 0.15. Stability results for |h| = 0.15 are illustrated in
the bifurcation diagrams in Figure 7. There is a change in stability between rectangles and
obliques at 7 = 7. = (®4 — ®1)e25/(®10.) for fixed €26 or at (e20), = YP13:/ (P4 — ®1) for
fixed . The stable two-dimensional leading order pattern for values of v increasing from 0
to ko (corresponding to k, decreasing from kg to 0) and a range of values of forcing strength
~ are shown in Figure 8. Here we choose h = 0 so that stable two-dimensional leading order
patterns exist for all values of vy. As vy is increased from 0 to kg the pattern changes from
vertical stripes to rectangles (when v > ~.) or oblique patterns (when v < 4.) to horizontal
stripes which are orthogonal to the forcing. At vy = ko/4 the rectangular patterns are square
and the oblique patterns are precisely diagonal. Direct numerical simulations confirm that
using the mismatch parameter vs to control the forcing can indeed lead to stripe patterns
along the z-direction changing to stripe patterns along the y-direction. Thus, a simple neural
field model can support an orthogonal response to patterned input.

The two-dimensional resonant patterns exist and are stable for a range of values of the
detuning vo and these lie in 1, 3 or 5 bands whose widths depend on the value of the firing
rate threshold h. The width of these bands does not depend on v and hence the resonant
patterns exist even in the limit of weak forcing v — 0. We also note in particular that a band
of stable resonant orthogonal response patterns exists around ve = kg for all |h| < h. where
he =~ 0.4196 for o = 0.5.

I8 FR

0 ko vs 2k 0 ko vy 2k

(a) Rectangles (b) Obliques

Figure 6: Stability tongues for constant two-dimensional 2:1 resonant solution patterns for
the forced neural field equation (3.12) with no adaptation (g = 0). The left (right) diagram
show the existence and stability tongues for rectangles (obliques). Darker shading indicates
where the pattern is stable. Here o = 0.5, |h| = 0.15, €25 = 0.3 and ~y, = —2€25 /..

4.2. Waves with adaptation. We now consider the 2:1 resonance patterns that exist in
the model with adaptation ((3.12) with g # 0). Here, beyond the dynamic Turing instability
at B = (1o + 1)/(1awW(ko)), the unforced system (7 = 0) supports travelling waves. Due to
the high dimension of the system of amplitude equations for the two-dimensional model with
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—]
(a) 2 (b) Pa Z

1 Obliques

Pa
15

1

Figure 7: Bifurcation diagrams for constant two-dimensional pattern solutions for the forced
neural field equation (3.12) with no adaptation (¢ = 0). Solid lines indicate stable states
while dotted lines indicate unstable solutions. In both diagrams parameter values are o = 0.5,
|h| = 0.15 and vy = 0.75kq. In diagram (a) we fix forcing strength v = 1 and range over values
of €26. Here the Turing bifurcation occurs at €26, = —v./2 and the bifurcation of rectangles
to stable obliques occurs at €26, = v3.®1/(®4 — ®1). In diagram (b) we hold the distance
from Turing instability, €26 = 0.3, and range over values of v with the bifurcation between
patterned states at v, = (@4 — ®1)e25/(8:91).

adaptation (4.6)—(4.9), to make analytical progress in establishing existence and stability of
resonant dynamical patterns under one-dimensional spatial forcing, we reduce to one spatial
dimension by taking k, = 0 and vp = 0 in (4.6)—(4.9) so that k, = ko = kf/n +vi. We
continue to focus on the 2:1 resonance so we take n = 2. We also let as = a3 = 0 as these
terms are no longer needed in u; given by (4.5) when k, = 0 (since the null space of L, is
spanned by the terms with coefficients A; and A4 in (4.5)). We also now use the kernel (2.4)
with A = o~! which is balanced in one spatial dimension and has Fourier transform (3.21).
We then have the following amplitude equations for a; = a and a4 = b:

. 0 ~ *

(4.21) 1+ gn’(zwc))gj = Aa — (ko) (®1]al® + ®4[b]*) a + %b ,
b ~ . . .

(4.22) (1-+ g7 (—i)) 5 = Ab— B(ko) (21 + @3laf?) b+ Lo,

where A = @ (ko)e20+B.0" (ko) (10 + v1)* /2 and v = €2y2. We note that &, is real when k, =
0, but in general ®; is complex. Using the definition of 77 as in (3.6), and also the relationship
between g, 7, and the emergent frequency, w,, of the dynamic pattern, the amplitude equations
can be written in the form

80, . 1 7 Y 9 9 Y, %
(4.23) %3 (1 - Tawc> (Aa — (ko) (P1lal? + ®4[bf*) a + b ) ;

b 1 i ~ *|7.12 2 T o«
(4.24) == (1 + Ta%) (Ab— (ko) (@1[bf2 + P4laf) b+ Ja ) .

We now look for spatially homogeneous solutions of (4.23)-(4.24), so take A = @(ko)e2d +
B.w" (ko)v?/2 which is also now real-valued. Writing a = pa€'®e and b = ppe'® we find that
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Figure 8: Planforms of the stable leading order solution demonstrating pattern diversity and
orthogonal response. Choosing h = 0 (so that existence and stability of solutions does not
depend on v9) we see that as ve is increased from 0 to ko the pattern changes from vertical
stripes to rectangles (when 7 > ~.) or oblique patterns (when v < 7.) to horizontal stripes
which are orthogonal to the forcing. This corresponds to varying k, from ko (with a response
in the direction of forcing) to 0 (with a response orthogonal to the direction of forcing). Note
that if we choose h differently then for some values of vs these leading order solution patterns
do not exist. Other parameter values are o = 0.5, €26 = 0.3, v2 = [0,0.05,0.25,0.75, 1]k,
v =10.1,0.4,0.65,1.1]. Planforms are plotted for z,y € [0, 107].

593 the phases and amplitudes satisfy

Opa 1 _ ;
501 (4.25) 8’; =3 (Apa — @(ko)pa (0% + ®ap?) + %pb Cos(w))
§ Loy .
595 T o (5101) sin(y) + w(kO)(blpa) 5
op, 1 _ )
596 (4.26) % =3 (Apb — @ (ko)py (D} + Pap?) + %pa cos(¢)>
- T, g -G i 3
591 2ot <2l)a sin (1)) w(k’O)q’le) )
. op 1 [y Po Pa) 2 9y iar
o) G = (Foost) (2 - %) — ) - )@ - @)
r)/ 3 pb pa 1 -~ 17
599 s sin(v)) (pa + Pb) iw(ko)CD (p2 — p?),
9 1 o) ,
600 (4.28) T <2A n %cos(ﬂ)) <Zb n ;) — ko) (0% + p)(@] + @))
Yo Pb a 1 i
601 — —sin(y) | — — — —w(ko)P7(p, +
o Tain(w) (22 < 24) - Salh)el (s + ).
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where ¥ = ¢4 + ¢p, 0 = ¢g — ¢ and @7, ®¢ denote the real and imaginary parts of ®;
respectively.

Looking for solutions with constant and equal amplitudes p, = pp = po we see that ¢ is
constant when it takes the values ¥ = mm for m = 0,1. Then

B Tawe (2A + (—=1)m7)
(4.29) po= \/ 20(ko) (Tawe (P + ©4) + @)’

and we observe that

(99 1 m S r i
o = oo (A4 (C1)™y = 2(ko) (@1 + P4 — TaweP]) )
1 m i
(4.30) = %nw. A+ (=1)™y) (1 + 7—3“’2) 3.

Therefore  is constant when ® = 0 corresponding to periodic standing wave solutions, and
otherwise 0 is a linear function of time, corresponding to amplitude modulated standing waves.
Assuming that T,w. (®] + ®4) + @} > 0, the solution with m = 0 exists when v > —2A and
the solution with m = 1 exists for v < 2A. Linear stability analysis shows that the solution
with ¥ = mm is stable when

(—1)™~ > max {07 —2A 1w (P — fI>4)’ —2A(Taw(®] — Dy) + <I>’1) }
274w DY + P Towe(3P] + ®4) + 397

We note that ®} = 0 only when h = 0 so that 32 = 0 and in this case ®; = 2®}. Therefore,

in the case where ®} = 0, the solution with 1) = mm is stable for (—1)"™y > 2A.

We can also find stable solutions of (4.25)—(4.28) with unequal constant amplitudes. Sup-
pose that 1 takes the constant values mn for m = 0,1. Then from (4.27) we observe that
either p, = pp or

(=1)™y _
21 (ko) (Tawe Pt — ®F + Dy)

PaPb =

m-

In the latter case, substitution into (4.25) multiplied by p, reveals that the constant amplitudes
have values p, = p+, pp = px where (ps)? are the two roots of

TaWe

Such solutions exist when the roots are real and positive. When ®% = 0 the solutions have
constant # = 2¢, — mm and therefore the solutions are periodic travelling waves. They exist
when A®] > 0 and for |y| < |A| and can also be shown to be stable in this parameter range
(see Figure 9(a)). When ®! # 0 the solutions have 6(t) = 2¢,(t) — mm and correspond to
resonant amplitude modulated travelling waves. Numerical investigation with XPPAUT [9]
for the parameter choices as in Figure 9 indicates that the solutions are stable wherever they
exist. The stability region covers the range of values of forcing strength « where the modulated
standing waves are unstable and there are also regions of bistability of the modulated standing
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and travelling waves. These solutions are indicated in Figure 9(b) in red (m = 0) and magenta
(m =1). We also find stable modulated travelling waves with constant p, # pp and constant
1 # 0 as indicated in green in Figure 9(b). Figure 9 summarises the solution branches and
their stability for @) = 0 and ®} # 0 respectively where other parameter values are as given
in the caption. This indicates that travelling waves dominate for weak forcing, and there is
an exchange of stability to standing waves for stronger forcing ~.

(a) 0.06
pa
0.04

Travelling

B “
s
S

0.02

Figure 9: Bifurcation diagrams for resonant stripe pattern solutions for the forced neural field
equation (3.12) in one spatial dimension with adaptation (g # 0) under variation of the forcing
strength . In (a) we take the threshold for the firing rate h = 0 which gives ®{ = 0 and
therefore we observe periodic standing waves (blue) and travelling waves (red). Dashed lines
indicate unstable solutions while solid lines indicate stable waves. In (b) we choose |h| = 0.05
and therefore ® # 0 and we observe modulated (quasiperiodic) standing (blue) and various
travelling (red, magenta and green) waves. Other parameter values for both diagrams are
o =0.5,7,=1,g=75. These give . = 3, w(ko) = 2/3 and @"(ky) = —16/27 and here we
take €26 = 0.3 and vy = 0.1 so that A = (ko) + B (ko)v? /2 = 43/225.

The significant outcome of this investigation is that when adaptation is included, there
are stable 2:1 resonant solutions which travel. Investigating the fully two-dimensional model
with adaptation numerically reveals the same qualitative behaviour. Moreover, when the
unforced system supports traveling waves, resonant rectangular patterns remain stationary
but oblique patterns travel in an orthogonal direction, namely along the axis for which the
continuous translational symmetry is not broken by the forcing. Thus, if spatial forcing is by
a striped pattern along the x-direction then the tissue response could be a striped pattern in
the orthogonal y-direction. Moreover, the presence of adaptation would allow for a dynamic
instability so that this could propagate as a plane wave. Although the theory above has
only been developed with spatially periodic forcing over the whole space, it has uncovered a
mechanism for the generation of orthogonal responses that we expect to hold in the presence
of more structured forcing. We explore this further in the next section and provide support
for this claim using direct numerical simulations of forcing on the half-space relevant to the
psychophysical experiments of Billock and Tsou [3].

5. Simulations and psychophysics. We now turn to the perception of patterns of activity
in V1. One of the main structures of the visual cortex is that of retinotopy, a neurophysiological

This manuscript is for review purposes only.



657
658
659
660
661

UNDERSTANDING SENSORY INDUCED HALLUCINATIONS 25

gﬂ“lu |

Figure 10: Simulation results from a neural field model with spatially periodic striped forcing
on the half-space. (a) Horizontal stripes forcing the left half-space give rise to stationary
vertical stripes on the right. (b) Vertical stripes forcing the left half-space give rise to travelling
horizontal stripes on the right. (c¢) Horizontal stripes forcing the right half-space give rise
to stationary vertical stripes on the left. (d) Vertical stripes forcing the right half-space
give rise to travelling horizontal stripes on the left. An application of the inverse retino-
cortical map to (a), ..., (d) generates patterns consistent with (a), ..., (d) shown in Fig. 2.
Parameter values are o = 0.8, u = 2, h = 0.05, v = 0.5 and for b) and d) 7, = 10, g = 0.14.
The domain sizes are a) [—16.53,16.53] x [—15.71,15.71], b) [—31.42, 31.42] x [—3.10, 3.10], c)
[—22.73,22.73] x [—22.00,22.00] and d) [-31.42,31.42] x [—2.07,2.07] with periodic boundary
conditions. Movies available in Supplementary Materials.

projection of the retina to the visual cortex. The log-polar mapping [28] is perhaps the most
common representation of the mapping of points from the retina to the visual cortex and
see Fig. 2. The action of the retino-cortical map turns a circle of radius r in the visual field
into a vertical stripe at # = In(r) in the cortex, and also turns a ray emanating from the
origin with an angle 6 into a horizontal stripe at y = . Simply put, if a point on the visual
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field is described by (r,#) in polar coordinates, the corresponding point in V1 has Cartesian
coordinates (x,y) = (In(r), ). Thus to answer how a pattern would be perceived we need only
apply the inverse (conformal) log-polar mapping. The analytical work in previous sections has
established that an orthogonal response to global spatially periodic forcing can be robustly
supported in a standard neural field model. If the conditions for a resonant response are
met, then a visual stimulus in the form of a set of concentric rings may give rise to a percept
of a set of radial arms (one for each ring). Similarly, a visual stimulus in the form of a
set of radial arms may give rise to a percept of a set of concentric rings. This is consistent
with the observations of Billock and Tsou described in §2, albeit these are more accurately
described by drive on the cortical half-space (since the stimuli do not cover the whole visual
field). To complement our results for forcing on the whole cortical space we now turn to direct
numerical simulations. By forcing with striped patterns on the cortical half-space we recover
all of the features reported in Fig. 2, once the inverse retino-cortical map is applied. We
show the corresponding plots for cortical activity in Fig. 10. The presence of the adaptation
current allows the formation of travelling striped patterns, and these correspond to rotating
waves in the retinal space with blinking versions associated to standing waves. Although the
psychophysical experiments of Billock and Tsou involve a component of temporal flicker we
have found that it is not strictly necessary to include this within the model to generate results
consistent with their observations. Nonetheless, direct numerical simulations with flicker do
show that the phenomenon is robust to this inclusion. We posit that in the psychophysical
experiments the background flicker helps put the primary visual cortex in a state conducive
to a 2:1 resonance, whereas in our model we tune intrinsic parameters to reach this condition.

Brief details of the numerical methods used to implement the model are presented in
appendix C

6. Discussion. In this paper we have shown that the psychophysical observations of Bil-
lock and Tsou [3] can be explained with a parsimonious neural field model that does not
require any exotic extension compared to standard approaches. It was originally suggested
in [3, Supporting Information| that a neural field with some form of anisotropic coupling
would be necessary to explain the observed spatial opponency between rings and radial arms.
Rather we find, perhaps non-intuitively, that the pattern forming properties of a spatially
forced isotropic model with a 2:1 resonance provide a sufficient mechanism for the observed
phenonomena. Importantly, when the unforced model is poised near a Turing instability, we
have shown that there are reasonably large windows of parameter space that allow for such
a resonance between a spatial Turing pattern and a spatially periodic pattern of forcing. To
establish this we have made use of perturbation arguments valid only for weak forcing. None-
theless, this amplitude equation approach has proven especially useful for gaining insight into
the main control parameters that can encourage an orthogonal response to the forcing of a
two-dimensional neural field with a simple periodic stripe pattern. A key parameter in this
regard is the deviation between kg, the spatial frequency excited by the Turing instability, and
k¢/2, where ky is the spatial frequency of the forcing. An orthogonal response is promoted as
this deviation becomes closer to kg. As well as using mathematical arguments, strictly only
valid for global periodic forcing, we have used direct numerical simulations to show that the
model responds similarly when patterns are presented only on the half-space (which is more
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consistent with the psychophysical experiments). Moreover, we have shown that some form of
negative feedback or adaptation is useful for promoting travelling Turing patterns, which (via
the inverse retino-cortical map) generate rotating percepts. These would also be expected
in a more refined two-population neural field model without adaptation that distinguishes
between excitatory and inhibitory sub-populations [10, 31]. We have opted for the study of
an effective single population model with adaptation solely to keep the mathematical analysis
manageable.

Here we have focused on the analysis of simple spatially repetitive and time-independent
stimuli. Even simple variants of such patterns, such as the FEnigma, created by pop-artist Isia
Leviant [16], consisting of concentric annuli on top of a pattern of radial spokes, can lead to
very striking illusory motion percepts. In future work we plan to consider input patterns with
more spatial structure and explore the conditions for the emergence of global illusory percepts
from local interactions, such as the Barber pole, Café wall, Fraser spiral, and Ehrenstein
illusion in which local orientation differences lead to the appearance of the global rotation
of contours (see [14] for further examples). Moreover, given that periodic and quasi-crystal
patterns in physical (Faraday) systems can be excited by periodic temporal forcing [25] this
motivates a further study of associated behaviour in neural models. It is known that full-
field flickering visual stimulation in humans can produce geometric hallucinations in the form
of radial or spiral arms (and conversely that brain rhythms at the flicker frequency can be
enhanced with the presentation of static radial or spiral arms) [23]. Indeed, flicker induced
hallucinations have previously been studied from a theoretical perspective in neural fields
with time periodic forcing by Rule et al. [26], and it would be very natural to extend the
work here to include models of spatio-temporal sensory drive, and in particular to further
understand visual hallucinations induced by flicker constrained to a thin annulus centred on
the fovea [24]. Another natural extension is to extend very recent work on undriven neural
fields that shows how quasi-crystal patterns can arise via a Turing instability [12] to further
include spatio-temporal forcing.
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Appendix A. Useful projections for section 3.2.

(A1) (etkox £u3> =0,
0A

A2 thor ) = ——
(4-2) fetoe, 2y = 92,
(A3) <€Zk0m 2,8211} & U1UQ> = 2B2w(k‘0)d0A|A|2
(A.4) (0% B @ ul) = 3B3w (ko) A|AJ%,
(A.5) (™% Sw @ up) = 0w (ko)A,

ikox xx 17T 62A
(A.6) (etkoz gﬁCW ® Oyy 1) = §6CW (k:o)a—xz,
(A7) (0% ByW® @ Oy u?) =0,
(A.8) (o BT @ Dyug) = (1 — nz)“ B (kg )a_e 2079, A*6, 5 = 0,
(A.9) (€07 ~ouy cos kya) = e A* s, = A* —ReXg, o,
(A.10) (0% yjug coskya) = (1 — d,9) (fy;) [(dy 4+ d_)A+ 6p1d_A*e 2]

—\ 2
=(1=10pn2) (721> [(dy +d_)A+ 6p1d_A*e 2]

Note further that

(A.11) W*(k)=— /_oo da ™y () = —z@ d:z: e () = —i@w(k‘).
Similarly W**(k) = —@" (k). Also note that as @(ko) is a maximum its derivative is zero, so

that W (ko) = 0.

Appendix B. Derivation of amplitude equations for planar model with adaptation.

Here we give details of the calculation of the amplitude equations (4.6)—(4.9) from the
hierarchy of equations (4.2)—(4.4). We define an inner product of two functions which are
spatially periodic with basic region Q = [0, 27/k,] x [0, 27/k,] and 27/w. periodic in time as

w 27 Jwe
B.1 Uv :C/ /U* r,t)V(r,t) dr dt.
(B.1) OVy=goq ) U EOVED

The hierarchy consists of equations of the form Lyuq = go(u1,. .., uq) for the linear operator
Ly = E — 1+ Bew ® —gnx. The adjoint of this operator is E; = at — 1+ Bew ® —gn_x
where n_(t) = n(—t). For all u € kerﬁz, then (u,gq) = (u, Lyta) = <££u,ua> =0. It is
straightforward to establish that ker EL = ker £, so that the set of solvability conditions are
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(etilthazthyyLect) ) = 0. We note that

(B.2) (e (Rerthyytect) £oyg) =0, (elhemthuvteet) gy @ uf) =0,
(B.3) (eilkemthyyteet) 3 (W @0, + WY ® dy)ur) = 0,

A 0 n # 2
B4 gikarthyytwet) o coskpx) = , ,
(B.4) ( T1u1 f ) %Aze—mle n=2

and hence the solvability condition is automatically satisfied for all n # 2 and for n = 2 we
must set y; = 0. We write 1 = (1—0,,2)7;. We find a particular solution us by assuming that
it has the form of u? + (1 — &,,2)7,u1 cos(ksx), substituting into (4.3) and balancing terms.
For our balanced kernel where w(0) = 0 we find that

up = 1 A%e%(kzx+kyy+wct) +A§ezi(kzx—kyy+wct) + (A§)2672i(kmx+kyy7wct)
+(AZ)2G—2i(kxa:—kyy—wct)> nya (AlAZeZi(kxa:—l-wct) 4 A;)Aze—%(kxm—wct))
+ G (A Age2ilhenthyy) | A2A4e2i(kzx—kyy)> 4 i (ArAg + ApAg) ik
s (ArAf + Ag A7) €00 G (g AjePilFurt) 1 4, Age=2ihuy—act))
71 (1= 6p2) [C+ ( Ayeilketkpathyyrwet) 4 A, oil(kathp)o—hyytwet) | gto=il(kethy)athyy—wet)
n Aze_i((kz""kf)f’?_kyy—wct))

T (o (Alei((kz—kf):v—l-kyy-i-wct) + Ageillke=kp)z—kyy+wet) +A§e_i((kz_kf)x+kyy—wct)

(B.5)
i AZe—z‘((kI—km—kyy—wct))} tec.,
where
' ' Qiwe + 1 — B (2ko) + gni(2iwe)’ 2 2iwe + 1 — Betd(2ky) + g7i(2iwe)’
2321 (2ko) 20821 (2k )
B.7 — o~ ) == A~ M
(B.7) G 1 — Bew(2kp) + g G 1 — B.w(2ky) + g
2B2w(2ky) 2B2w (2ky)
B.8 = — 5 == B —~ ~ A )
(B.8) % 1—B.w(2ky) +g e 2iwe + 1 — B (2ky) + g17(2iw,)
1
B.9 _ _ k= Sk k)2 + R2
(B-9) Gt iwe + 1 — Bew (ks) + g7 (iwe) * \/( 1)+ Ry
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We now use this in the solvability conditions for & = 3 where we find the following projections;

(B.10) (eilharthyytwet) poys) =0,
0A

i(kzxt+kyytwet) 1
(B.11) (el g ,Orup) = 5
(B.12) (ekazthyytwet) 51y @ uy) = 6@(ko)Ar,
(B.13) (e kazthyytwet) 981 @ uyug) = 2B82W(ko) [(Ca + G5) Ao As Af + CilA1]PAq

+ (G + G5)|Aa|* Ay + (3] A3 A1 + (Ca+ Co)|Adl*Ad]
(B.14) (ellkatthyyrwet) oy @ o3)
= 3B3{L}(k‘0) [2A2A3AZ + (|A1|2 + 2‘A2|2 + 2’A3|2 + 2|A4|2)A1] ,

i(kyx We BC T ’BC ™ 82A1
(B.15) (eikamthyytuwet) S @ Oyun) =~ 0" (ko) s R

i(kzx w T -~ 82A1
(B.16) (eilkzthyytewet) g Wy @ o yuy) = —ﬂc(w’(ko))zaxaT =0,

i(kzz+k wet Bc 6c ~ Al
(B.17) (¢! kazthyytwet) '3 — WY ® Oryur) = 5 @" (ko) 72
(B18) <e7, ke x4kyy+wct)  BaWE ® 8XU%> =0,
(B.19) (¢lharthyytect) g W @ 9 ug) = 0,
(B20) (Tt gt 9 = g (i)
(B.21) (eihamthyytwet) = (1 — 5, 9)ug cos(kyx))

2
= (?) (1= 0n2) [(C + ¢ )AL+ ¢ Afe™%6,,1],

(B.22) (e kazthyytwet) oy cos(ksx)) = %AZe*Q"””(Sn’g

Here, we note that

(B.23) Tf(A):—/OOO tn(t)e Mdt = dd)\ /OO n(t)e Mdt = dd)\n(A) ﬁ

—2ivix

We also have the scaling v1 = ecy so e = e 21X, The projections give the evolution of

the amplitude A; as

L 0A - .
(14 g7 (iwe)) 071 = (ko) | 0A1 — D ®;|A; A1 — B5ArA3A;

j=1
ﬂc ~ 8214 82A ) * —2icy
5 ©" (ko) ( 8)(21 + 8T21 2 Aje%0xs,
(B24) (é) (571’2) [(C+ + C_)Al + C_AZQ*%QX&TLJ] s
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where
(B.25) O = 2021 — 303, Po=—-202(C2+(5) — 6063, P3=—202(3 — 603,
(B.26) Py = —2B2(Ca+C6) — 6833, P5=—202(Cs + (5) — 633,

and we note that 77/ (—iw.) = (7 (iw.))*. Similarly, by considering the projections

(eilker=hyytwet) ) = (gilherthyy—wet) ) and (eikar—kyy—wel) .\ we find the corresponding evo-
lution equations for the amplitudes Ao, A3 and Ay respectively. Note that away from the
bifurcation the solution will have a (temporal) frequency w = w. + £ where £ is a frequency
detuning parameter which we can assume is order 2. Recall also that we also have the spatial
frequency detuning parameter vy = k; — ky/n. When we rescale back to the original length

and timescales we also let a; = eAje"CIXeigft, j=1,2,3,4where {; =& = —€fand &3 =&, = €.
Upon rescaling

OA. e—ivlz o . e—ivlze—ifjt Ha.: ‘
(B.27) e a g (we) = ( B Zgj‘”) |

The parameter £ can be removed from the amplitude equations by noting that the factor
outside the bracket in (B.27) is also a factor on the right hand side of the rescaled amplitude
equation and by making a transformation a; — ajeifft. The transformation removes the
imaginary term inside the bracket and is equivalent to changing the carrier wave frequency to
w = we + &. The resulting amplitude equations are (4.6)—(4.9).

Appendix C. Numerical methods.

The numerical simulation of the full model (2.1)-(2.2) were performed in the plane by
discretising in space on a regular square mesh, and solving the resultant set of ordinary
differential equations using MATLAB. A pseudo-spectral evaluation of the convolution w® f(u)
was performed using a Fast Fourier Transform (FFT), followed by an inverse FFT on a
large square computational domain. The Fourier transform of w ® f takes the product form
w X f, and this provides substantial computational speed-up over quadrature-based numerical
methods for calculating w ® f(u). We set a grid of N = 28 equally spaced points along each
spatial dimension, and used MATLAB’s in-built ode45 algorithm to evolve the system forward
in time.

REFERENCES

[1] S. AMARI, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics,
27 (1977), pp. 77-87.

[2] M. BALASUBRAMANIAN, J. POLIMENI, AND E. L. SCHWARTZ, The VI1-V2-V8 complex: Quasiconformal
dipole maps in primate striate and extra-striate cortex, Neural Networks, 15 (2002), pp. 1157-1163.

[3] V. A. BiLLock AND B. H. Tsou, Neural interactions between flicker-induced self-organized visual halluci-
nations and physical stimuli, Proceedings of the National Academy of Sciences, 104 (2007), pp. 8490—
8495.

[4] P. C. BRESSLOFF, J. D. CowaN, M. GOLUBITSKY, P. J. THOMAS, AND M. WIENER, Geometric visual
hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Philosophical
Transactions of the Royal Society London B, 40 (2001), pp. 299-330.

[5] B. R. CoNnwAYy, A. KITAOKA, A. YAzZDANBAKHSH, C. C. PACK, AND M. S. LIVINGSTONE, Neural basis
for a powerful static motion illusion, Journal of Neuroscience, 25 (2005), pp. 5651-5656.

This manuscript is for review purposes only.



849
850
851
852
853
855
856
857
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

R. NICKS, A. COCKS, D. AVITABILE, A. JOHNSTON AND S. COOMBES

CooMBES, P. BEIM GRABEN, R. POTTHAST, AND J. WRIGHT, eds., Neural Fields: Theory and
Applications, Springer, 2014.

. CURTU AND B. ERMENTROUT, Pattern formation in a network of excitatory and inhibitory cells with

adaptation, SIAM J. Applied Dynamical Systems, 3 (2004), pp. 191-231.

B. ERMENTROUT, Neural networks as spatio-temporal pattern-forming systems, Reports on Progress
in Physics, 61 (1998), pp. 353—-430.

B. ERMENTROUT, Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for
researchers and students, SIAM Books, Philadelphia, 2002.

. B. ERMENTROUT AND J. D. COWAN, A mathematical theory of visual hallucination patterns, Biological

Cybernetics, 34 (1979), pp. 137-150.

. M. GAMBAUDO, Perturbation of a Hopf bifurcation by an external time-periodic forcing, Journal of

Differential Equations, 57 (1985), pp. 172-199.

. GOKGQE, D. AVITABILE, AND S. COOMBES, Quasicrystal patterns in a neural field model, Physical

Review Research, 2 (2020), p. 013234.

. JOHNSTON, A spatial property of the retino-cortical mapping, Spatial Vision, 1 (1986), pp. 319-331.
. KiTAOKA, Akiyoshi’s illusion pages, http://www.ritsumei.ac.jp/~akitaoka/index-e.html.
. KLUVER, Mescal and Mechanisms of Hallucinations, University of Chicago Press, Chicago, 1966.

I. LEVIANT, Illusory Motion within Still Pictures: The L-Effect, Leonardo, 15 (1982), pp. 222-223.

A.

< < @ ® U

o

L. LiN, A. HAGBERG, E. MERON, AND H. L. SWINNEY, Resonance tongues and patterns in periodically
forced reaction-diffusion systems, Physical Review E, 69 (2004), p. 066217.

M. MACKAY, Moving visual images produced by regular stationary patterns, Nature, 180 (1957),
pp. 849-850.

MANOR, A. HAGBERG, AND E. MERON, Wave-number locking in spatially forced pattern-forming
systems, EPL (Europhysics Letters), 83 (2008), p. 10005.

. MANOR, A. HAGBERG, AND E. MERON, Wavenumber locking and pattern formation in spatially forced

systems, New Journal of Physics, 11 (2009), p. 63016.
MaAu, A. HAGBERG, AND E. MERON, Spatial Periodic Forcing Can Displace Patterns It Is Intended
to Control, Physical Review Letters, 034102 (2012), pp. 1-5.

. Mau, L. HAmM, A. HAGBERG, AND E. MERON, Competing resonances in spatially forced pattern-

forming systems, Physical Review E, 83 (2013), pp. 1-9.

. MAURO, A. RAFFONE, AND R. VANRULLEN, A bidirectional link between brain oscillations and geo-

metric patterns, Journal of Neuroscience, 35 (2015), pp. 7921-7926.

. PEARSON, R. CHIOU, S. ROGERS, M. WICKEN, S. HEITMANN, AND B. ERMENTROUT, Sensory dy-

namics of visual hallucinations in the normal population, eLife, 5 (2016), p. e17072.

. M. RUCKLIDGE AND M. SILBER, Quasipatterns in parametrically forced systems, Physical Review E,

75 (2007), p. 055203.

. RULE, M. STOFFREGEN, AND B. ERMENTROUT, A model for the origin and properties of flicker-

induced geometric phosphenes, PLOS Computational Biology, 7 (2011), pp. 1-14.

. SCHWARTZ, Spatial mapping in the primate sensory projection: analytic structure and relevance to

projection, Biological Cybernetics, 25 (1977), pp. 181-194.

. L. ScHwWARTZ, Computational anatomy and functional architecture of striate cortex: A spatial mapping

approach to perceptual coding, Vision Research, 20 (1980), pp. 645-669.

. SOKOLIUK AND R. VANRULLEN, The flickering wheel illusion: when o rhythms make a static wheel

flicker, Journal of Neuroscience, 33 (2013), pp. 13498-13504.

. Tass, Cortical pattern formation during visual hallucinations, Journal of Biological Physics, 21 (1995),

pp. 177-210.

. Tass, Oscillatory cortical activity during visual hallucinations, Journal of Biological Physics, 23 (1997),

pp. 21-66.

This manuscript is for review purposes only.


http://www.ritsumei.ac.jp/~akitaoka/index-e.html

	Introduction
	Psychophysics and a model
	Turing instability and resonances
	Patterning in the absence of drive
	Resonant patterns in the presence of drive
	Existence of resonant stripe solutions


	Weakly nonlinear analysis
	Spatial patterns without adaptation
	Waves with adaptation

	Simulations and psychophysics
	Discussion
	Appendix A. Useful projections for section 3.2
	Appendix B. Derivation of amplitude equations for planar model with adaptation
	Appendix C. Numerical methods

