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Abstract. Explorations of visual hallucinations, and in particular those of Billock and Tsou [Neural interactions5
between flicker-induced self-organized visual hallucinations and physical stimuli. Proceedings of the6
National Academy of Sciences, 104(20):8490-8495, 2007], show that annular rings with a background7
flicker can induce visual hallucinations in humans that take the form of radial fan shapes. The well-8
known retino-cortical map tells us that the corresponding patterns of neural activity in the primary9
visual cortex for rings and arms in the retina are orthogonal stripe patterns. The implication is that10
cortical forcing by spatially periodic input can excite orthogonal modes of neural activity. Here we11
show that a simple scalar neural field model of primary visual cortex with state-dependent spatial12
forcing is capable of modelling this phenomenon. Moreover, we show that this occurs most robustly13
when the spatial forcing has a 2:1 resonance with modes that would otherwise be excited by a14
Turing instability. By utilising a weakly nonlinear multiple-scales analysis we determine the relevant15
amplitude equations for uncovering the parameter regimes which favour the excitation of patterns16
orthogonal to sensory drive. In combination with direct numerical simulations we use this approach17
to shed further light on the original psychophysical observations of Billock and Tsou.18
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1. Introduction. The story of spontaneous pattern formation in models of visual cortex22

is one that has attracted much attention since it was developed in the 1970s by Ermentrout23

and Cowan to explain drug induced geometric visual hallucinations [10]. These often take the24

form of lattice (a.k.a. honeycomb, grating, or chessboard), cobweb-like, tunnel (a.k.a. funnel,25

cone or vessel), and spiral patterns, as described in the experiments of Klüver [15] in which26

participants were given mescaline. When transformed from the retinocentric coordinates of27

the eye to the coordinates of the primary visual cortex (V1), these so-called Klüver form con-28

stants manifest as simple geometric planforms such as rolls, hexagons, squares, etc. [27]. It29

was the great insight of Ermentrout and Cowan that some of these could be generated via a30

Turing instability in a simple neural field model of V1. Neural fields are essentially continuum31

descriptions of cortical neural activity described by integro-differential equations. They are32

specified by a set of non-local spatial interaction kernels and nonlinear firing rate functions33

to describe the coarse grained activity of interacting excitatory and inhibitory neuronal pop-34

ulations, and for a recent review see [6]. Despite the difference in their mathematical form to35

many other pattern forming systems that arise in the modelling of physical systems, and in36

particular partial differential equations of reaction-diffusion type, they can be analysed using37

many of the same techniques. For example, a weakly nonlinear analysis can be used to derive38
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the amplitude equations for patterns emerging beyond the point of a Turing instability [30, 8].39

More recently an extension of the original work by Ermentrout and Cowan has been developed40

by Bressloff et al. [4] to describe the dynamics of orientation selective cells. This more bio-41

logically realistic neural field model includes anisotropic lateral connections that only connect42

distal elements with the same orientation preference along the direction of their (common)43

orientation preference. Interestingly this model can generate representatives of all the Klüver44

form constants. Nonetheless both this and the original model of Ermentrout and Cowan have45

a focus on spontaneous pattern formation that is induced by changes of parameters intrinsic46

to the models, rather than by external drive. However, it is particularly important to address47

this when trying to understand the mechanisms of sensory induced illusions and hallucinations48

in response to the presentation of either static or dynamic visual input. An example of the49

former is the flickering wheel illusion whereby a static wheel stimulus, with 30 – 40 spokes,50

is experienced as flickering when viewed in the visual periphery [29]. A perhaps more well51

known sensory induced percept is that of illusory rotational motion experienced when looking52

at the rotating snakes image [5] (and for an example visit [14]). Interestingly, since the work53

of MacKay in the 1950s it is well known that relatively simple patterns of regular stimuli, such54

as radial lines or concentric rings, are enough to induce illusory motion at right angles to those55

of the stimulus pattern [18]. Many of these phenomenon are amenable to further study using56

the tools of psychophysics. A case in point, and the focus of the theoretical study presented57

here, are the visual hallucinations reported in the work of Billock and Tsou [3]. These authors58

tried to induce certain geometric hallucinations by biasing them with an appropriate visual59

stimuli from a flickering monitor. For example, a set of centrally presented concentric rings60

was expected to induce a hallucination of circle in the surround. Instead, and to their surprise,61

they found that fan-shaped patterns were perceived in the surround (and a complementary62

pattern of concentric ring circles in the surround for radial patterns in the centre). The retino-63

cortical map, mentioned above, tells us that the corresponding patterns of neural activity in64

the primary visual cortex for rings and arms in the retina are orthogonal stripe patterns.65

The implication of the psychophysical experiments of Billock and Tsou is that cortical forcing66

by spatially periodic input can excite orthogonal modes of neural activity. Thus, a natural67

question arises as to whether there is a minimal model of visual cortex with external drive68

capable of supporting this observed orthogonal response and does it require a departure from69

existing neural field models. In short the answer is that standard neural field models with70

a state-dependent drive are sufficient. Although the orthogonal response property may seem71

somewhat surprising from an experimental perspective, relatively recent theoretical studies of72

the spatially forced Swift-Hohenberg equation have shown that under certain mild conditions73

orthogonal responses are robust [20]. Here we adapt and develop the techniques originally74

developed for analysing spatially forced partial differential equation models to nonlocal neural75

fields, and use these to uncover the parameter windows that robustly reproduce orthogonal76

responses to spatially periodic forcing. In doing so we highlight the potential mechanisms77

that can underpin the original psychophysical observations of Billock and Tsou.78

In §2 we describe in more detail the psychophysical experiments of Billock and Tsou as79

well as introduce a simple neural field model with state-dependent drive that will subsequently80

be shown to be a minimal model for their observations. The key mechanism for the success of81

the model is the combination of a Turing instability and a 2:1 resonance arising between the82
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spatial scale of the periodic forcing and that of the emergent Turing pattern. An important83

parameter of the model is then the spatial frequency mismatch between these two scales. The84

Turing and resonance effects are analysed in §3. In §4 we develop a weakly nonlinear analysis,85

valid for weak forcing in the neighbourhood of a Turing instability, and derive equations86

governing the amplitude of emergent planforms. These in turn are analysed using bifurcation87

theory to uncover appropriate parameter choices (in the strength of forcing, the frequency88

mismatch, and shape of the nonlinear firing rate) to generate an orthogonal response. This89

theoretical work is complemented in §5 with direct numerical simulations, for both globally90

periodic and spatially structured patterns of drive, to both confirm our analysis and make a91

more concrete connection with psychophysical observations. Finally in §6 we discuss the main92

results of our paper and highlight areas for future work.93

2. Psychophysics and a model. Surprisingly little is known about the interactions be-94

tween sensory driven and self organised cortical activity. Billock and Tsou have worked to95

address this deficit by probing the link between natural visual perception and the geometric96

hallucinations that can be induced by the presentation of certain regular spatio-temporal pat-97

terns. In a set of human psychophysical experiments using a flickering monitor (at 10-15 Hz98

in a dark room where the stimuli was 1/10th to 1/3rd of the flickered area) they found the99

surprising result that biasing stimuli could provoke an orthogonal response. For example, if100

the area around a small fan shape is flickered, subjects report seeing illusory circular patterns.101

This is considered an orthogonal response since the corresponding patterns of activity in V1102

are stripes of activity oriented at right angles to each other. This latter result stems from the103

well known retino-cortical map that maps radial arms in the visual field to horizontal stripes104

of activity in V1, and concentric rings to vertical stripes (with respect to a ventral-dorsal105

axis). To a first approximation this map (away from the fovea) is often approximated by a106

quasi-conformal dipole map [2] that would map spiral arms in retinal coordinates to oblique107

stripes in cortical coordinates, as illustrated in Fig. 1. The cortical map can also be thought108

of as a spherical map in the eye stretched along the optical axis and viewed from the side [13].109

One might say that if the image of a circle opposed by a radial arm is considered on the retina110

then it is locally orthogonal, whereas if the corresponding cortical activity is considered then111

it is globally orthogonal. Billock and Tsou also reported similar orthogonal responses in three112

other scenarios: i) if the area around a circular pattern is flickered, an illusory rotating fan113

shape is perceived (and if the circles are flickering too, the rotating fan shape extends through114

the physical circles), ii) if a biasing pattern of peripheral radial arms is presented then central115

(tightly packed) rings are perceived, and iii) a rotating petal-like pattern often appears in116

the flickering central area in response to a peripheral set of biasing concentric rings. These117

types of hallucinatory percepts are all illustrated in Fig. 2. In all cases of perceived rotation118

(typically between 0.75 and 1.3 revolutions per second) the direction of rotation is arbitrary119

and subject to reversal.120

A major conclusion of Billock and Tsou is that the pattern of sensory induced hallucina-121

tions in their psychophysical experiments reflects the same cortical properties, including local122

connectivity and lateral inhibition within a retinotopic map in V1, that shape routine visual123

processing. Given the success of neural field models in describing drug-induced (spontaneous)124

hallucinations in V1, it is thus natural to see if they are also capable of explaining the op-125
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Figure 1: An illustration of the retino-cortical map that takes points of stimuli on the retina
to points in V1 (left and right primary visual cortex), showing how radial arms, rings, and
spirals on the retina transform to oriented stripes on V1.

ponency in these flicker-induced visual phenomena. To this end we now consider a minimal126

model of V1 with the inclusion of a forcing term to mimic sensory input to the system.127

Here we consider a simple neural field model for the evolution of synaptic activity in an128

effective single population with adaptation. The different effects of excitatory and inhibitory129

interactions are encoded in a single kernel whose sign indicates whether an interaction is ex-130

citatory (positive) or inhibitory (negative). We do this for mathematical convenience though131

stress that the approach developed for model analysis is equally applicable to treating popula-132

tions of interacting excitatory and inhibitory neuronal populations separately. The inclusion133

of adaptation means that the model is more realistic, in the sense that this gives a phe-134

nomenological description of metabolic processes that lead to fatigue. It also provides a well135

known route to dynamic instabilities leading to the formation of travelling waves. The latter136

are expected to be a key requirement for illusory motion. We shall also work with a kernel137
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Figure 2: An illustration of the biasing stimuli (black) and hallucinatory percepts (grey)
as reported by Billock and Tsou and redrawn from [3]. (a) If the area around a small fan
shape is flickered, subjects report seeing illusory circular patterns, (b) if the area around a
circular pattern is flickered, an illusory rotating fan shape is perceived, (c) if a biasing pattern
of peripheral radial arms is presented then central rings are perceived, and (d) a rotating
petal-like pattern often appears in the flickering central area in response to a peripheral set
of biasing concentric rings. The arrows indicate perceived rotation.

that describes a tissue with short-range excitation and long-range inhibition, which is well138

known for its pattern forming properties [1, 8]. Given the phenomenological nature of neural139

field models we adopt a similar approach for the modelling of visual input to V1. From a140

biological perspective cells in V1 would be driven by synaptic currents, and these in turn141

would be mediated by conductance changes arising from afferent inputs. These currents have142

a simple ohmic form that multiplies the voltage of the post-synaptic neuron with that of the143

conductance change. Thus the input signal is mixed with the state of the neuron. We shall144

be careful to carry over this important effect into our phenomenological model of drive.145

Introducing the vector field (u, a) we write our neural field model with drive in the succinct146
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form147

∂u

∂t
= −u+ w ⊗ f(u)− ga+ γuI,(2.1)148

τa
∂a

∂t
= u− a.(2.2)149

150

Here u is a scalar field representing neural activity and a is a scalar field representing a151

negative feedback adaptation variable. The symbol ⊗ denotes a spatial convolution, and f is152

a nonlinear firing rate (typically sigmoidal in shape). The kernel w is chosen to encode the153

spatial interactions between points in the tissue (taken to be translationally and rotationally154

invariant). The parameter g ≥ 0 represents the strength of the adaptive feedback and τa > 0155

sets the relative time-scale. The external input is described by I and we allow for a simple156

form of mixing by including a multiplication with the state u. The strength of forcing is157

described by γ ∈ R. We could, of course, have placed the forcing I inside the firing rate f .158

However, a nonlinear Taylor expansion would expose multiplicative terms, and to keep the159

analysis in this paper as uncomplicated as possible we prefer instead the choice made, though160

emphasise that the analysis to follow is easily adapted to this case (albeit at the expense161

of slightly more complicated calculations). The model described by (2.1) and (2.2) can be162

posed in a variety of spatial domains. In this paper we shall focus on a planar system so that163

(u, a, I) = (u(r, t), a(r, t), I(r, t)) with r = (x, y) ∈ R2 and t > 0, so that164

(2.3) [w ⊗ f(u)] (r, t) =

∫
R2

dr′w(r− r′)f(u(r′, t)).165

Here the kernel function w depends only upon distance so that w(r) = w(r), where r = |r|.166

For concreteness we will work with the rotationally symmetric Wizard hat function (although167

the theory we develop is ambivalent to the particular choice of Mexican-hat style function):168

(2.4) w(r) = Ae−r/σ − e−r, A > 1, σ < 1.169

Moreover, for later convenience and without undue restriction, we impose the balance condi-170

tion
∫
R2 drw(|r|) = 0, which is achieved when A = σ−2. The firing rate function is chosen as171

a sigmoid with a threshold h and steepness parameter µ:172

(2.5) f(u) =
1

1 + e−µ(u−h)
.173

Finally the model is completed with the choice of drive I(r, t). Since we are primarily inter-174

ested in the mechanisms that underly an orthogonal response we shall develop theory for the175

case that this is a simple spatial pattern of stripes in the x-direction with a spatial forcing176

wavenumber kf and write I(r, t) = cos(kfx). Our interest is in the development of striped177

patterns in neural activity along the y-direction.178

3. Turing instability and resonances. The use of a Turing instability analysis to under-179

stand pattern formation in neural fields is exemplified by the work of Ermentrout and Cowan180

[10]. In their original work the emphasis was on spontaneous pattern formation in the ab-181

sence of external input, and they highlighted that a mixture of short-range excitation and182
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long-range inhibition was key for the emergence of global patterning. Perhaps surprisingly,183

the study of forced neural fields has received relatively little attention in the mathematical184

literature, one exception being the work of Rule et al. [26] which considers spatially homo-185

geneous, time periodic forcing and shows (using symmetric bifurcation theory) that stripes186

occur at high frequency forcing (2:1 resonance) and hexagons at low. In the current work we187

consider spatially inhomogeneous forcing, namely forcing with stripes. To gain insight into the188

effects of spatial forcing it is timely to adapt recent results developed for the Swift-Hohenberg189

equation [20]. Here we first review the spontaneous patterning behaviour of the neural field190

model without drive and then show how resonant patterns can emerge when spatially periodic191

drive is introduced.192

3.1. Patterning in the absence of drive. First consider the case with no drive, namely193

with γ = 0 and write the model (2.1)-(2.2) in the integro-differential form194

(3.1)
∂u

∂t
= −u+ w ⊗ f(u)− gη ∗ u.195

Here we have exploited the linearity of (2.2) to integrate the equations of motion for a (as-196

suming vanishing initial data) and introduced the temporal convolution197

(3.2) [η ∗ u] (r, t) =

∫ t

−∞
dt′ η(t− t′)u(r, t′), η(t) =

1

τa
e−t/τaH(t),198

where H is a Heaviside step function.199

It is convenient to introduce the Fourier transform of w as ŵ in the form200

(3.3) ŵ(k) =

∫
R2

drw(r)e−ik·r, k ∈ R2,201

and the Laplace transform of η as η̃ in the form202

(3.4) η̃(λ) =

∫ ∞
0

dt η(t)e−λt, λ ∈ C.203

For a rotationally symmetric kernel we also have that ŵ(k) = ŵ(k), where k = |k|. For the204

choice (2.4) we have the explicit result that205

(3.5) ŵ(k) = 2π

[
A

σ(σ−2 + k2)3/2
− 1

(1 + k2)3/2

]
,206

and for η̃ we have that207

(3.6) η̃(λ) =
1

1 + λτa
.208

The homogeneous steady state (u(r, t), a(r, t)) = (u0, a0) of the neural field model is then209

given by a0 = u0 with u0 = ŵ(0)f(u0)/(1 + gη̃(0)). For a balanced kernel ŵ(0) = 0 and we210

have that (u0, a0) = (0, 0) for all model parameter choices (when γ = 0). Linearising around211
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the homogeneous steady state by writing u(r, t) = u0 + εδu(r, t), for some small amplitude212

|ε| � 1, and expanding to first order gives the evolution for the perturbations as213

(3.7)
∂

∂t
δu = −δu+ f ′(u0)w ⊗ δu− gη ∗ δu.214

We note that for the choice (2.5) we have f ′(u) = µf(u)(1 − f(u)). Equation (3.7) has215

separable solutions of the form δu(r, t) = eλteik·r where the dispersion relation between λ and216

|k| can be written implicitly in the form E(λ, k) = 0 with217

(3.8) E(λ, k) = 1 + λ+ gη̃(λ)− f ′(u0)ŵ(k).218

To obtain the above we have used the result that w ⊗ eik·r = ŵ(k)eik·r and η ∗ eλt = η̃(λ)eλt.219

For g = 0 (no adaptation) then the spectrum is given explicitly by220

(3.9) λ = −1 + f ′(u0)ŵ(k).221

Since w is translationally invariant then ŵ is real and we see that in this case λ ∈ R. A static222

Turing instability (to a purely spatially periodic time-independent pattern) is then possible,223

with the bifurcation condition being ŵ(k0) = 1/f ′(u0). Here k0 > 0 is the point at which224

ŵ(k) has a local maxima (namely ŵ(k0) = max ŵ(k)). Note that any direction on a circle225

of wavevectors of magnitude |k| = k0 can be excited. When g > 0 it is possible that λ can226

become complex. After decomposing λ = ν + iω, and then equating real and imaginary parts227

of (3.8) it can be shown that the spectrum lies on the curve given by228

(3.10) τ2
a (ν2 + ω2) + 2τaν = τag − 1,229

and to the left of the line,230

(3.11) ν =
−(1 + τa − τaf ′(u0)ŵ(k0))

2τa
.231

Thus for g > 0 a Turing instability to a dynamic (time-dependent) pattern (ω 6= 0) will232

occur when ŵ(k0) = (1 + τa)/(τaf
′(u0)) for τag > 1 and g > f ′(u0)ŵ(k0) − 1 (and the233

latter condition excludes the possibility of a static bifurcation). The emergent frequency of234

oscillation is ωc =
√
τag − 1/τa. We note that the conditions for static and dynamic Turing235

instabilities given here agree those in [7] since the model equations only differ in the placement236

of the nonlinear firing rate.237

3.2. Resonant patterns in the presence of drive. The periodic forcing of pattern form-238

ing system can lead to novel behaviours as well as frequency or wavenumber locking. The239

mathematical study of periodic temporal forcing is more well developed than its spatial struc-240

tured counterpart, and it is well known that this can lead to n:1 resonances in both ordinary241

differential systems with a Hopf bifurcation [11] and partial differential equations [17]. The242

mathematical study of spatially forced pattern forming systems is relatively underdeveloped243

compared to that of temporal forcing, with an exception being the work of Manor et al. [19].244

In this and follow up work [20, 21, 22], these authors consider idealised pattern forming sys-245

tems of Swift-Hohenberg type poised near Turing instability to a pattern with a wavenumber246
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k0 with weak spatial periodic spatial forcing at wavenumber kf . They show that if kf is close247

to 2k0 then stable resonant stripes can be formed. Importantly, they also establish that if248

the mismatch between kf and k0 is high, then a locked pattern can still develop albeit with249

a wavevector component perpendicular to the forcing direction. Given that this is one of the250

major properties of the psychophysical experiments of Billock and Tsou that we are seeking251

to understand, it is natural to see if the corresponding phenomenon can arise in a neural field252

model. To first probe whether resonances arise naturally in a neural field model with forcing253

we note that this question does not require a treatment in two spatial dimensions. Given that254

resonances can be explored in a one dimensional setting we consider here the neural field model255

(3.1) posed on the real line (rather than the plane). This is useful not only for simplifying256

calculations, but also for setting the scene for the analysis of the fully two-dimensional model257

that we shall present next in §4. Although the psychophysical experiments of Billock and258

Tsou involve temporal flicker we will show below that it is not strictly necessary to include259

this to generate opponent patterns.260

In the presence of spatially periodic drive the model equation is261

(3.12)
∂u

∂t
= −u+ w ⊗ f(u)− gη ∗ u+ γu cos(kfx).262

We consider a scalar field u = u(x, t), with x ∈ R and t > 0, governed by (3.12) with γ 6= 0.263

For simplicity we drop the treatment of adaptation for now and set g = 0. From now on264

we will assume that the forcing wavenumber kf is approximately a multiple of k0, so that265

kf ≈ nk0, n ∈ Z and introduce a mismatch parameter v266

(3.13) v = k0 − kf/n.267

The value of n can be used to describe an n:1 resonance. If the system is poised at a static268

Turing instability to a pattern with wavenumber k0 and the forcing is weak (|γ| � 1) then269

it is natural to consider a multiple-scales analysis to understand the response properties of270

the driven system. We assume that the small detuning can be scaled as v = εc for a small271

parameter ε. We then define new scaled variables χ = εx and τ = ε2t and consider power272

series expansions for u and γ as273

u = u0 + εu1 + ε2u2 + ε3u3 + . . . ,(3.14)274

γ = εγ1 + ε2γ2 + ε3γ3 + . . . ,(3.15)275276

with, as yet, unknown functions uα = uα(x, t, χ, τ), α = 1, 2, 3, . . .. Further, we substitute the277

firing rate function f by its Taylor series expansion f(u) = f(u0) +β1(u−u0) +β2(u−u0)2 +278

β3(u − u0)3 + . . . , where β2 = f ′′(u0)/2, β3 = f ′′′(u0)/6, and we treat β1 as a bifurcation279

parameter and write β1 = βc + ε2δ where βc = f ′(u0) subject to βc = 1/ŵ(k0) (the static280

Turing bifurcation condition). A further Taylor series expansion of the functions uα as281

uα(y, s, εy, ε2s) = uα(y, s, χ+ ε(y − x), ε2s)282

' uα(y, s, χ, τ) + ε(y − x)
∂

∂χ
uα(y, s, χ, τ) + ε2

1

2
(y − x)2 ∂

2

∂χ2
uα(y, s, χ, τ) +O(ε3)(3.16)283

284
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facilitates an evaluation of the spatial convolution in (3.12). Balancing terms at powers of ε285

in (3.12) yields a hierarchy of equations as286

u0 =M0(f(u0)),(3.17)287

u1 =M0(βcu1) + γ1u0 cos(kfx),(3.18)288

u2 =M0(βcu2 + β2u
2
1) +M1(βcu1) + (γ1u1 + γ2u0) cos(kfx),(3.19)289

∂u1

∂τ
+ u3 =M0(βcu3 + δu1 + 2β2u1u2 + β3u

3
1) +M1(βcu2 + β2u

2
1)(3.20)290

+M2(βcu1) + (γ1u2 + γ2u1 + γ3u0) cos(kfx),291292

where the linear operators Mα are given by M0 = w⊗, M1 = W x⊗∂χ, and M2 = 1
2W

xx⊗∂χχ.293

Here we have introduced the new kernels W x(x) = −w(|x|) ·x and W xx(x) = w(|x|) ·x2. One294

can see that each equation in the hierarchy above contains terms of the asymptotic expansion295

of u only of the same order or lower. This means that we can start from the first equation296

and systematically solve for uα. In fact, if we set L = −1+βcw⊗ the system (3.18)-(3.20) has297

the general form Luα = gα(u1, u2, . . . , uα−1) and the right-hand side gα will always contain298

known quantities. The first equation (3.17) in the hierarchy fixes the steady state u0. By299

choosing a balanced kernel we have u0 = 0. Note that in one dimension the balance condition300 ∫∞
−∞w(|x|)dx = 0 for the kernel (2.4) is achieved when A = σ−1. In this case we also have301

(3.21) ŵ(k) = 2

∫ ∞
0

w(x)e−ikxdx = 2

[
1

1 + σ2k2
− 1

1 + k2

]
.302

The second equation (3.18) is linear with solutions u1 = A(χ, τ)eik0x + c.c. (where k0 is303

the critical wavenumber at the static bifurcation). Hence the null space of L is spanned304

by e±ik0x. A dynamical equation for the complex amplitude A(χ, τ) can be obtained by305

deriving solvability conditions for the higher-order equations, a method known as the Fredholm306

alternative.307

We define the inner product of two periodic functions (with periodicity 2π/k0) as308

(3.22) 〈U, V 〉 =
k0

2π

∫ 2π
k0

0
U∗(x)V (x)dx.309

For all u ∈ kerL† then 〈u, gα〉 = 〈u,Luα〉 = 〈L†u, uα〉 = 0 where L† is the adjoint of L. It is310

easy to establish that L is self-adjoint so that the set of solvability conditions are 〈e±ik0x, gα〉 =311

0. To evaluate the solvability condition at α = 2 we note the useful results312

〈eik0x,Lu2〉 = 0, 〈eik0x, β2w ⊗ u2
1〉 = 0, 〈eik0x, βcW x ⊗ ∂χu1〉 = 0,(3.23)313

〈eik0x, γ1u1 cos kfx〉 =

{
0 n 6= 2
γ1
2 A
∗e−2ivx n = 2

.314

315

Hence to avoid secular terms we must set γ1 = 0 for the 2:1 resonance (with the solvability316

condition automatically guaranteed for all α 6= 2). We write γ1 = (1 − δn,2)γ1. A particular317

solution of u2 can be found by assuming that it is a linear combination of terms involving318
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ei(±kf±k0) and terms present in u2
1. Substitution into (3.19) and balancing terms gives, for our319

balanced kernel (ŵ(0) = 0),320

u2 = d0A
2e2ik0x + (1− δn,2)

γ1

2

[
d+Aei(kf+k0)x + d−A

∗ei(kf−k0)x
]

+ c.c.,(3.24)321
322

where323

d0 =
β2ŵ(2k0)

1− βcŵ(2k0)
, d± =

1

1− βcŵ(kf ± k0)
.(3.25)324

325

A similar analysis of the solvability condition at α = 3, and using the results in appendix326

A, gives the evolution of the amplitude A as327

328

(3.26)
∂A

∂τ
= δŵ(k0)A+ [2β2ŵ(k0)d0 + 3β3ŵ(k0)]A|A|2 − 1

2
βcŵ

′′(k0)
∂2A

∂χ2
329

+
γ2

2
A∗e−2icχδn,2 + (1− δn,2)

(
γ1

2

)2 [
(d+ + d−)A+A∗d−e−2icχδn,1

]
.330

331

If we now introduce the amplitude variable a = εeicχA then to leading order the solution for332

u is of the form333

(3.27) u− u0 ' aeikfx/n + c.c. .334

After rescaling back to the original time and space variables the amplitude a evolves according335

to336

337

(3.28) βc
∂a

∂t
= ε2δa− Φ|a|2a+

1

2
ŵ′′(k0)[βc(v + i∂x)]2a+ δn,2

ε2γ2

2
βca
∗

338

+ (1− δn,2)βc

(
εγ1

2

)2

[(d+ + d−)a+ a∗d−δn,1] .339
340

where Φ = −3β3 − 2β2d0. Thus, from the solution form of (3.27), constant solutions of341

the amplitude equation (3.28) generate n:1 resonant stationary stripe patterns. We next342

investigate the existence of such solutions for different values of n.343

3.2.1. Existence of resonant stripe solutions. We consider the cases n 6= 2 and n = 2344

separately. For n 6= 2, equation (3.28) becomes,345

(3.29) βc
∂a

∂t
= ε2δa− Φ|a|2a+

1

2
ŵ′′(k0)[βc(v + i∂x)]2a+ βc

(γ
2

)2
[(d+ + d−)a+ a∗d−δn,1] ,346

where γ = εγ1. This has constant (resonant stripe) solutions of the form,347

(3.30) a = ρneiφ, ρn =

√
4ε2δ + 2ŵ′′(k0)(βcv)2 + βcγ2[d+ + d−(1 + δn,1)]

4Φ
.348
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For n = 1 the constant argument φ ∈ {0, π}, but for the higher order resonances the argument349

is undetermined by the amplitude equations to cubic order. In the case that Φ > 0 we find350

that the resonant stripe solutions exist for351

(3.31) γ >

√
−2ŵ′′(k0)(βcv)2 − 4ε2δ

βc[d+ + d−(1 + δn,1)]
.352

For n = 2, equation (3.28) becomes,353

(3.32) βc
∂a

∂t
= ε2δa− Φ|a|2a+

1

2
ŵ′′(k0)[βc(v + i∂x)]2a+

γ

2
βca
∗,354

where γ = ε2γ2. This has constant solutions of the form a = ρ2eiφ where,355

(3.33) ρ2 =

√
2ε2δ + ŵ′′(k0)(βcv)2 + (−1)mγβc

2Φ
, φ =

mπ

2
, m ∈ Z.356

The solutions with m odd are unstable so we do not consider these further. Assuming that m357

is even and also that Φ > 0, the resonant stripe solutions exist for358

(3.34) γ > −ŵ′′(k0)βcv
2 − 2ε2

δ

βc
.359

The tongue shaped existence ranges for n:1 resonant stripe patterns for n = 1, . . . 4 are360

shown in Figure 3. The parameter values are such that Φ > 0. We take ε2δ > 0 so that we361

are beyond the pattern forming instability. Notice that in this case the existence regions have362

finite width, even at γ = 0 so the unforced system also supports bands of stripe solutions363

beyond the pattern forming instability. The 2:1 resonance tongue is noticeably wider than364

those for other resonances and we also note that narrow bands of the tongues for the n:1365

resonance patterns exists around kf/k0 = 2 for all values of n 6= 2. This is due to the fact366

that the tongue for n = 2 has a different form to those for other values of n. For n = 2, the367

forcing strength coefficient γ appears linearly in the amplitude equation and therefore forcing368

has a stronger effect in this case than when n 6= 2 where γ appears squared. This difference369

in the power to which γ is raised in the amplitude equation occurs as a direct result of the370

forcing function I(r, t) being applied to a linear term in u in (2.1). If for instance we were to371

add forcing via a cubic order term in u we would expect to see a prominent 4:1 resonance.372
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Figure 3: Existence tongues for resonant stripe patterns in a one-dimensional neural field
model (without adaptation) with spatially periodic forcing. The kernel is chosen as in (2.4)
with σ = 0.8. Other parameters are h = 0 and ε2δ = 10−4. The tongue with a 2:1 resonance
is dominant.

4. Weakly nonlinear analysis. We now carry out a weakly nonlinear analysis of the fully373

two-dimensional model including adaptation which allows us to derive amplitude equations374

for the emergent patterns in the neighbourhood of a Turing instability. The resulting four375

(complex valued) amplitude equations can be reduced to a four-dimensional system in two376

ways. We consider in section 4.1 the two-dimensional model without adaptation (g = 0) and377

use bifurcation theory to investigate the spatial patterns which are supported. We focus on378

discovering the parameter choices which give an orthogonal response to the spatially periodic379

forcing. In section 4.2 we make a reduction to one spatial dimension with adaptation and380

investigate the effects of forcing on travelling waves.381

At the Turing instability all wavevectors k = (kx, ky) of magnitude |k| = k0 are excited.382

We investigate solutions which are locked to the forcing wavevector kf = (kf , 0). Here, n:1383

resonant solutions have384

kx =
kf
n

+ v1 = k0 − v2385

(see Figure 4) where the mismatch parameters v1, v2 satisfy |v1 +kf/n| ≤ k0 and equivalently386

0 ≤ v2 ≤ 2k0. The spatial structure of the two-dimensional patterns that form are, to leading387

order, a superposition of the modes exp(ikxx ± ikyy), which can lead to rectangular (equal388

amplitude) and oblique (unequal amplitude) patterns. These are n:1 resonant patterns that389

respond to the spatial forcing by locking the wavevector components in the forcing direction390

kx = kf/n and creating a wavevector component in the orthogonal direction, ky, to com-391

pensate for the unfavourable forcing wave number, so that ky =
√
k2

0 − k2
x to achieve the392
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14 R. NICKS, A. COCKS, D. AVITABILE, A. JOHNSTON AND S. COOMBES

total wavenumber k0. Note that if we fix v1 = 0 as in [20] then dependence of existence and393

stability of solutions patterns on the mismatch v2 occurs through kx and ky. While we will394

see that this suffices when considering patterns in two spatial dimensions, in section 4.2 we395

make a reduction to one spatial dimension by setting ky = 0. In this case we have v2 = 0 so396

that kx = k0 and we must have v1 = k0 − kf/n 6= 0 so that kx depends on the mismatch v1.397

In order to enable this reduction, we retain the mismatch parameter v1 in the computation398

of amplitude equations for emergent patterns in the fully two-dimensional model including399

adaptation.400

Figure 4: The circle indicates the ring of fastest growing wavenumbers with critical value
|k| = k0, for k = (kx, ky). The forcing wavevector is kf = (kf , 0). We take kx = kf/n+ v1 =
k0 − v2 for mismatch parameters v1 and v2, with n ∈ Z. The wavevector component ky
satisfies k2

y = k2
0 − k2

x to achieve the total wavenumber k0. The unforced system can support
a spatially periodic Turing pattern with |k| = k0. With the introduction of forcing there are
wide regions in parameter space that support a resonance with n = 2 leading to the formation
of rectangular and oblique solutions.

For the weakly nonlinear analysis we define new coordinates χ = εx, Υ = εy, τ = ε2t for a401

small parameter ε and consider power series expansions for u and γ as in (3.14)–(3.15) with as402

yet unknown functions uα = uα(x, y, t, χ,Υ, τ), α = 1, 2, 3, . . .. We again use the Taylor series403

expansion for the firing rate function f(u) = f(u0)+β1(u−u0)+β2(u−u0)2+β3(u−u0)3+. . . ,404

where β2 = f ′′(u0)/2, β3 = f ′′′(u0)/6, and we treat β1 as a bifurcation parameter and write405

β1 = βc + ε2δ where now βc = f ′(u0) subject to406

(4.1) βc =


1 + g

ŵ(k0)
at a static Turing bifurcation,

τa + 1

τaŵ(k0)
at a dynamic Turing instability.

407
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We must now also consider further Taylor expansions of the functions uα to allow for the408

evaluation of the spatial and temporal convolutions in (3.12):409

uα(x′, y′, t′, εx′, εy′, ε2t′) = uα(x′, y′, t′, χ+ ε(x′ − x),Υ + ε(y′ − y), ε2t′)410

' uα(x′, y′, t′, χ,Υ, τ) + ε(x′ − x)
∂

∂χ
uα(x′, y′, t′, χ,Υ, τ) + ε(y′ − y)

∂

∂Υ
uα(x′, y′, t′, χ,Υ, τ)411

+
1

2
ε2
[
(x′ − x)2 ∂

2

∂χ2
uα(x′, y′, t′, χ,Υ, τ) + 2(x′ − x)(y′ − y)

∂2

∂χ∂Υ
uα(x′, y′, t′, χ,Υ, τ)412

+(y′ − y)2 ∂2

∂Υ2
uα(x′, y′, t′, χ,Υ, τ)

]
+O(ε3),413

uα(x′, y′, t′, εx′, εy′, ε2t′) = uα(x′, y′, t′, εx′, εy′, τ + ε2(t′ − t))414

' uα(x′, y′, t′, χ,Υ, τ) + ε2(t′ − t) ∂
∂τ
uα(x′, y′, t′, χ,Υ, τ) +O(ε4).415

416

Balancing the O(1) terms in (3.12) fixes the steady state u0 = 0 since we choose a balanced417

kernel as in (2.4) with A = σ−2. Balancing terms at higher powers of ε in (3.12) yields a418

hierarchy of equations as419

Lgu1 = 0,(4.2)420

Lgu2 = −M0(β2u
2
1)−M1(βcu1)− γ1u1 cos(kfx),(4.3)421

Lgu3 =
∂u1

∂τ
−M0(δu1 + 2β2u1u2 + β3u

3
1)−M1(βcu2 + β2u

2
1)(4.4)422

−M2(βcu1) +N1(gu1)− (γ1u2 + γ2u1) cos(kfx),423424

where we define the linear operators Lg = − ∂
∂t − 1 + βcw ⊗ −gη∗, M0 = w⊗, M1 = W x ⊗425

∂χ + W y ⊗ ∂Υ, M2 = 1
2 [W xx ⊗ ∂χχ + 2W xy ⊗ ∂χΥ +W yy ⊗ ∂ΥΥ] and N1 = ηt ∗ ∂τ . Here we426

have introduced new spatial kernels W x(r) = −w(|r|)x and W xy(r) = w(|r|)xy analogously427

to the scalar case in section 3.2. We also introduce the new temporal kernel ηt(t) = −tη(t).428

The null space of the linear operator Lg is spanned by
{

e±i(kxx±kyy±ωct)
}

where k2
x + k2

y = k2
0,429

ωc =
√
τag − 1/τa, and therefore (4.2) has solution430

u1(x, y, t, χ,Υ, τ) =A1(χ,Υ, τ)ei(kxx+kyy+ωct) +A2(χ,Υ, τ)ei(kxx−kyy+ωct)(4.5)431

+A3(χ,Υ, τ)ei(kxx+kyy−ωct) +A4(χ,Υ, τ)ei(kxx−kyy−ωct) + c.c.432433

Using the Fredholm alternative we find a particular solution to (4.3) and use a solvability434

condition for (4.4) to derive amplitude equations for the evolution of the complex amplitudes435

Aj(χ,Υ, τ), j = 1, 2, 3, 4. Details of these calculations can be found in Appendix B and the436

resulting amplitude equations, rescaled back to the original time and space variables are437

(1 + gη̃′(iωc))
∂a1

∂t
= −ŵ(k0)

((
Φ1|a1|2 + Φ2|a2|2 + Φ3|a3|2 + Φ4|a4|2

)
a1 + Φ5a2a3a

∗
4

)
438

+ ŵ(k0)ε2δa1 +
βc
2
ŵ′′(k0)

(
(i∂x + v1)2 − ∂yy

)
a1 +

ε2γ2

2
a∗4δn,2(4.6)439

+

(
εγ1

2

)2

(1− δn,2) [(ζ+ + ζ−)a1 + ζ−a
∗
4δn,1] ,440

441
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442

(1 + gη̃′(iωc))
∂a2

∂t
= −ŵ(k0)

((
Φ2|a1|2 + Φ1|a2|2 + Φ4|a3|2 + Φ3|a4|2

)
a2 + Φ5a1a4a

∗
3

)
443

+ ŵ(k0)ε2δa2 +
βc
2
ŵ′′(k0)

(
(i∂x + v1)2 − ∂yy

)
a2 +

ε2γ2

2
a∗3δn,2(4.7)444

+

(
εγ1

2

)2

(1− δn,2) [(ζ+ + ζ−)a2 + ζ−a
∗
3δn,1] ,445

446

447

(1 + gη̃′(−iωc))
∂a3

∂t
= −ŵ(k0)

((
Φ∗3|a1|2 + Φ∗4|a2|2 + Φ∗1|a3|2 + Φ∗2|a4|2

)
a3 + Φ∗5a1a4a

∗
2

)
448

+ ŵ(k0)ε2δa3 +
βc
2
ŵ′′(k0)

(
(i∂x + v1)2 − ∂yy

)
a3 +

ε2γ2

2
a∗2δn,2(4.8)449

+

(
εγ1

2

)2

(1− δn,2)
[
(ζ∗+ + ζ∗−)a3 + ζ∗−a

∗
2δn,1

]
,450

451

452

(1 + gη̃′(−iωc))
∂a4

∂t
= −ŵ(k0)

((
Φ∗4|a1|2 + Φ∗3|a2|2 + Φ∗2|a3|2 + Φ∗1|a4|2

)
a4 + Φ∗5a2a3a

∗
1

)
453

+ ŵ(k0)ε2δa4 +
βc
2
ŵ′′(k0)

(
(i∂x + v1)2 − ∂yy

)
a4 +

ε2γ2

2
a∗1δn,2(4.9)454

+

(
εγ1

2

)2

(1− δn,2)
[
(ζ∗+ + ζ∗−)a4 + ζ∗−a

∗
1δn,1

]
,455

456

where Φ1, . . . ,Φ5 are as in (B.25). These four complex-valued coupled nonlinear ODEs de-457

scribe the evolution of the amplitudes aj(x, y, t), j = 1, 2, 3, 4 in the solution u of (3.12) which458

to leading order is given by459

(4.10) u(x, y, t) = eikfx/n
(
a1ei(kyy+ωt) + a2ei(−kyy+ωt) + a3ei(kyy−ωt) + a4ei(−kyy−ωt)

)
+ c.c.460

where ω = ωc + ξ is the (temporal) frequency of the solution away from bifurcation and ξ is461

an order ε2 temporal frequency detuning parameter which does not appear in the amplitude462

equations (see Appendix B). Constant solutions of the amplitude equations (4.6)–(4.9) for a463

given value of n correspond to n:1 resonant patterns which exist beyond the Turing instability.464

We have a particular interest in resonant patterns under the one-dimensional forcing in the465

x direction which have a wavevector component in the orthogonal direction. This orthogonal466

response is seen in the Swift–Hohenberg equation for the 2:1 resonance [20] where stable467

rectangles and oblique patterns are observed. We therefore also choose to focus on the 2:1468

resonance. In section 4.1 we consider two-dimensional spatial patterns near a static instability469

in the model without adaptation (g = 0), while in section 4.2 we consider the model with470

adaptation where the unforced system supports travelling waves beyond the dynamic Turing471

instability. (Note that for the study of dynamic patterns we make a reduction to one spatial472

dimension to simplify calculations.)473
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4.1. Spatial patterns without adaptation. First consider the 2:1 resonance in the case474

where there is no adaptation so that there is a static Turing instability at βc = 1/ŵ(k0). We475

set g = 0 and ωc = 0 in (4.6)–(4.9) and also we let a2 = a3 = 0 as these terms are no longer476

needed in u1 given by (4.5) when ωc = 0 (since the null space of L is spanned by the terms477

with coefficients A1 and A4 in (4.5)). We also choose to set v1 = 0 so that kx = kf/2 = k0−v2478

and dependence on the mismatch between kf and k0 enters the amplitude equations through479

kx and ky, noting that Φ4 depends on these parameters. We then have the following amplitude480

equations for a1 = a and a4 = b:481

βc
∂a

∂t
= ε2δa− Φ1|a|2a− Φ4|b|2a−

β2
c

2
ŵ′′(k0) (∂xx + ∂yy) a+

γβc
2
b∗,(4.11)482

βc
∂b

∂t
= ε2δb− Φ1|b|2b− Φ4|a|2b−

β2
c

2
ŵ′′(k0) (∂xx + ∂yy) b+

γβc
2
a∗,(4.12)483

484

where γ = ε2γ2 and we note that the coefficients Φ1 and Φ4 are real. These equations485

have a similar structure to those for two-dimensional patterns in the spatially forced Swift–486

Hohenberg equation [20]. We now look for spatially homogeneous solutions of (4.11)–(4.12).487

Writing a = ρae
iφa and b = ρbe

iφb we find that the phases and amplitudes satisfy488

βc
∂ρa
∂t

= ε2δρa − Φ1ρ
3
a − Φ4ρaρ

2
b +

γβc
2
ρb cos(ψ),(4.13)489

βc
∂ρb
∂t

= ε2δρb − Φ1ρ
3
b − Φ4ρ

2
aρb +

γβc
2
ρa cos(ψ),(4.14)490

∂ψ

∂t
= −γ

2

(
ρb
ρa

+
ρa
ρb

)
sin(ψ),(4.15)491

∂θ

∂t
= −γ

2

(
ρb
ρa
− ρa
ρb

)
sin(ψ),(4.16)492

493

where ψ = φa+φb and θ = φa−φb. Notice that θ is determined once ρa, ρb and ψ are known.494

Looking for constant solutions we find that ψ = mπ, m = 0, 1, however such solutions with495

ψ = π can be shown to be unstable and therefore we do not consider these further. With496

ψ = 0, we see from (4.16) that phases φa and φb = −φa are constant and that constant497

non-zero amplitudes ρa, ρb satisfy498

ε2δρa − Φ1ρ
3
a − Φ4ρaρ

2
b +

γβc
2
ρb = 0, ε2δρb − Φ1ρ

3
b − Φ4ρ

2
aρb +

γβc
2
ρa = 0.(4.17)499

500

Equations (4.17) admit the solution ρa = ρb = ρ0 where501

ρ0 =

√
2ε2δ + γβc
2(Φ1 + Φ4)

.502

These are constant rectangular patterns503

u(x, y, t) = ρ0eikfx/2
(

ei(kyy+φa) + e−i(kyy+φa)
)

+ c.c.504

= 4ρ0 cos(kfx/2) cos(kyy + φa),(4.18)505506
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where ky =
√
k2

0 − k2
x, kx = kf/2 = k0 − v2. The undetermined phase φa arises due to507

the continuous translational symmetry in the y-direction which is not broken by the forcing.508

These solutions exist for 0 < v2 < 2k0 (to ensure that ky ∈ R) and where also 2ε2δ + γβc and509

Φ1 + Φ4 have the same sign, noting that Φ4 = Φ4(v2).510

Equations (4.17) also admit the constant solution ρa = ρ±, ρb = ρ∓ where511

ρ2
± =

ε2δ

2Φ1
±

√(
ε2δ

2Φ1

)2

−
(

γβc
2(Φ1 − Φ4)

)2

.512

These are constant oblique patterns513

u(x, y, t) = eikfx/2
(
ρ±ei(kyy+φa) + ρ∓e−i(kyy+φa)

)
+ c.c.514

= 2ρ± cos(kfx/2 + kyy + φa) + 2ρ∓ cos(kfx/2− kyy − φa),(4.19)515516

where φa is again undetermined and ky =
√
k2

0 − k2
x, kx = kf/2 = k0 − v2. These solutions517

exist for 0 < v2 < 2k0 (to ensure that ky ∈ R) and where also518

ε2δ

2Φ1
> 0 and |γ| < ε2δ

βcΦ1
|Φ1 − Φ4| .519

The values of v2 and γ for which resonant rectangle and oblique patterns exist depend on the520

values of σ (the spatial scale of interaction) and h (the firing rate threshold). The existence521

regions for a range of values of h for σ = 0.5 are illustrated in Figure 5. Regions where rectangle522

patterns exist are shaded blue, while red shading indicates existence of oblique patterns under523

the additional assumption that ε2δ/Φ1 > 0. For h = 0 we observe similar existence regions524

for these patterned states as observed in [20] for the Swift-Hohenberg equation under periodic525

spatial forcing. For nonzero choices of h we observe more complex existence regions. We note526

that the existence regions for −h are identical to those for h. This is due to the fact that527

f ′(u0) is an even function of h. The values of β2 and β3 depend on µ where µ is fixed once528

h and σ are specified. Since for given a given value of h, µ satisfies βc = 1/ŵ(k0) = f ′(u0),529

then −h gives the same values of µ as h.530

We can also consider the linear stability of the two-dimensional constant resonance pat-531

terns to uniform perturbations. Making perturbations ∆ρa and ∆ρb to the constant solution532

ρa, ρb and linearising we find that the perturbations satisfy533

(4.20)
∂

∂t

(
∆ρa
∆ρb

)
=

1

βc

(
ε2δ − 3Φ1ρ

2
a − Φ4ρ

2
b −2Φ4ρaρb + γβc

2

−2Φ4ρaρb + γβc
2 ε2δ − 3Φ1ρ

2
b − Φ4ρ

2
a

)(
∆ρa
∆ρb

)
.534

The Jacobian, J , in (4.20) has eigenvalues535

λ± =
Tr(J)

2
± 1

2

√
(Tr(J))2 − 4Det(J).536

The zero state (ρa = ρb = 0) has eigenvalues (ε2δ/βc) ± γ/2 and is therefore stable for537

2ε2δ ± γβc < 0 since βc > 0. Rectangular patterns have ρa = ρb = ρ0 and eigenvalues538

λ+ = −2

(
ε2δ

βc
+
γ

2

)
, λ− =

−2(Φ1 − Φ4)ε2δ − 2Φ1γβc
βc(Φ1 + Φ4)

.539
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(a) h = 0 (b) |h| = 0.15

(c) |h| = 0.3 (d) |h| = 0.5

Figure 5: Existence regions for patterned states in a two-dimensional neural field model
with spatially periodic forcing (and without adaptation). Blue shaded regions indicate where
stationary rectangle patterns exist and red shading indicates existence of oblique patterns.
The kernel is chosen as in (2.4) with σ = 0.5 and the firing rate is given by (2.5) with (a)
h = 0, (b) |h| = 0.15, (c) |h| = 0.3, (d) |h| = 0.5. Other parameters are ε2δ = 0.3 for (a)–(c)
and ε2δ = −0.3 for (d). Note that existence of oblique patterns also requires that ε2δ/Φ1 > 0.
Here γc = −2ε2δ/βc.

Therefore rectangles are stable when 2ε2δ + γβc > 0 (and we need Φ1 + Φ4 > 0 so that the540

solutions exist here) and also (Φ1−Φ4)ε2δ+ Φ1γβc > 0. For oblique patterns, where ρa 6= ρb,541

we note from (4.17) that the constant solutions satisfy542

ε2δ = Φ1(ρ2
a + ρ2

b) and γβc = −2ρaρb(Φ1 − Φ4),543

and therefore the Jacobian matrix J in (4.20) has544

Tr(J) = −(Φ1 + Φ4)
ε2δ

βcΦ1
, Det(J) = −2

(
ε2δ

βcΦ1

)2

Φ1(Φ1 − Φ4) +

(
3Φ1 − Φ4

Φ1 − Φ4

)2 (γ
2

)2
.545

The oblique patterns are stable when Tr(J) < 0 and Det(J) > 0. The first of these conditions546

is satisfied when the patterns exist and Φ1 + Φ4 > 0. Note then that all stable constant547
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resonant two-dimensional patterns exist within the upper blue shaded regions in Figure 5a–548

5d. Stability regions in the (v2, γ) plane are indicated for rectangle and oblique patterns549

in Figure 6 for ε2δ = 0.3 and |h| = 0.15. Stability results for |h| = 0.15 are illustrated in550

the bifurcation diagrams in Figure 7. There is a change in stability between rectangles and551

obliques at γ = γc = (Φ4 − Φ1)ε2δ/(Φ1βc) for fixed ε2δ or at (ε2δ)c = γΦ1βc/(Φ4 − Φ1) for552

fixed γ. The stable two-dimensional leading order pattern for values of v2 increasing from 0553

to k0 (corresponding to kx decreasing from k0 to 0) and a range of values of forcing strength554

γ are shown in Figure 8. Here we choose h = 0 so that stable two-dimensional leading order555

patterns exist for all values of v2. As v2 is increased from 0 to k0 the pattern changes from556

vertical stripes to rectangles (when γ > γc) or oblique patterns (when γ < γc) to horizontal557

stripes which are orthogonal to the forcing. At v2 = k0/4 the rectangular patterns are square558

and the oblique patterns are precisely diagonal. Direct numerical simulations confirm that559

using the mismatch parameter v2 to control the forcing can indeed lead to stripe patterns560

along the x-direction changing to stripe patterns along the y-direction. Thus, a simple neural561

field model can support an orthogonal response to patterned input.562

The two-dimensional resonant patterns exist and are stable for a range of values of the563

detuning v2 and these lie in 1, 3 or 5 bands whose widths depend on the value of the firing564

rate threshold h. The width of these bands does not depend on γ and hence the resonant565

patterns exist even in the limit of weak forcing γ → 0. We also note in particular that a band566

of stable resonant orthogonal response patterns exists around v2 = k0 for all |h| < hc where567

hc ≈ 0.4196 for σ = 0.5.568

(a) Rectangles (b) Obliques

Figure 6: Stability tongues for constant two-dimensional 2:1 resonant solution patterns for
the forced neural field equation (3.12) with no adaptation (g = 0). The left (right) diagram
show the existence and stability tongues for rectangles (obliques). Darker shading indicates
where the pattern is stable. Here σ = 0.5, |h| = 0.15, ε2δ = 0.3 and γc = −2ε2δ/βc.

4.2. Waves with adaptation. We now consider the 2:1 resonance patterns that exist in569

the model with adaptation ((3.12) with g 6= 0). Here, beyond the dynamic Turing instability570

at βc = (τa + 1)/(τaŵ(k0)), the unforced system (γ = 0) supports travelling waves. Due to571

the high dimension of the system of amplitude equations for the two-dimensional model with572
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Figure 7: Bifurcation diagrams for constant two-dimensional pattern solutions for the forced
neural field equation (3.12) with no adaptation (g = 0). Solid lines indicate stable states
while dotted lines indicate unstable solutions. In both diagrams parameter values are σ = 0.5,
|h| = 0.15 and v2 = 0.75k0. In diagram (a) we fix forcing strength γ = 1 and range over values
of ε2δ. Here the Turing bifurcation occurs at ε2δc = −γβc/2 and the bifurcation of rectangles
to stable obliques occurs at ε2δp = γβcΦ1/(Φ4 − Φ1). In diagram (b) we hold the distance
from Turing instability, ε2δ = 0.3, and range over values of γ with the bifurcation between
patterned states at γp = (Φ4 − Φ1)ε2δ/(βcΦ1).

adaptation (4.6)–(4.9), to make analytical progress in establishing existence and stability of573

resonant dynamical patterns under one-dimensional spatial forcing, we reduce to one spatial574

dimension by taking ky = 0 and v2 = 0 in (4.6)–(4.9) so that kx = k0 = kf/n + v1. We575

continue to focus on the 2:1 resonance so we take n = 2. We also let a2 = a3 = 0 as these576

terms are no longer needed in u1 given by (4.5) when ky = 0 (since the null space of Lg is577

spanned by the terms with coefficients A1 and A4 in (4.5)). We also now use the kernel (2.4)578

with A = σ−1 which is balanced in one spatial dimension and has Fourier transform (3.21).579

We then have the following amplitude equations for a1 = a and a4 = b:580

(1 + gη̃′(iωc))
∂a

∂t
= Λa− ŵ(k0)

(
Φ1|a|2 + Φ4|b|2

)
a+

γ

2
b∗,(4.21)581

(1 + gη̃′(−iωc))
∂b

∂t
= Λb− ŵ(k0)

(
Φ∗1|b|2 + Φ∗4|a|2

)
b+

γ

2
a∗,(4.22)582

583

where Λ = ŵ(k0)ε2δ+βcŵ
′′(k0) (i∂x + v1)2 /2 and γ = ε2γ2. We note that Φ4 is real when ky =584

0, but in general Φ1 is complex. Using the definition of η̃ as in (3.6), and also the relationship585

between g, τa and the emergent frequency, ωc, of the dynamic pattern, the amplitude equations586

can be written in the form587

∂a

∂t
=

1

2

(
1− i

τaωc

)(
Λa− ŵ(k0)

(
Φ1|a|2 + Φ4|b|2

)
a+

γ

2
b∗
)
,(4.23)588

∂b

∂t
=

1

2

(
1 +

i

τaωc

)(
Λb− ŵ(k0)

(
Φ∗1|b|2 + Φ4|a|2

)
b+

γ

2
a∗
)
.(4.24)589

590

We now look for spatially homogeneous solutions of (4.23)–(4.24), so take Λ = ŵ(k0)ε2δ +591

βcŵ
′′(k0)v2

1/2 which is also now real-valued. Writing a = ρae
iφa and b = ρbe

iφb we find that592
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Figure 8: Planforms of the stable leading order solution demonstrating pattern diversity and
orthogonal response. Choosing h = 0 (so that existence and stability of solutions does not
depend on v2) we see that as v2 is increased from 0 to k0 the pattern changes from vertical
stripes to rectangles (when γ > γc) or oblique patterns (when γ < γc) to horizontal stripes
which are orthogonal to the forcing. This corresponds to varying kx from k0 (with a response
in the direction of forcing) to 0 (with a response orthogonal to the direction of forcing). Note
that if we choose h differently then for some values of v2 these leading order solution patterns
do not exist. Other parameter values are σ = 0.5, ε2δ = 0.3, v2 = [0, 0.05, 0.25, 0.75, 1]k0,
γ = [0.1, 0.4, 0.65, 1.1]. Planforms are plotted for x, y ∈ [0, 10π].

the phases and amplitudes satisfy593

∂ρa
∂t

=
1

2

(
Λρa − ŵ(k0)ρa

(
Φr

1ρ
2
a + Φ4ρ

2
b

)
+
γ

2
ρb cos(ψ)

)
(4.25)594

− 1

2τaωc

(γ
2
ρb sin(ψ) + ŵ(k0)Φi

1ρ
3
a

)
,595

∂ρb
∂t

=
1

2

(
Λρb − ŵ(k0)ρb

(
Φr

1ρ
2
b + Φ4ρ

2
a

)
+
γ

2
ρa cos(ψ)

)
(4.26)596

+
1

2τaωc

(γ
2
ρa sin(ψ)− ŵ(k0)Φi

1ρ
3
b

)
,597

∂ψ

∂t
= − 1

2τaωc

(
γ

2
cos(ψ)

(
ρb
ρa
− ρa
ρb

)
− ŵ(k0)(ρ2

a − ρ2
b)(Φ

r
1 − Φ4)

)
(4.27)598

− γ

4
sin(ψ)

(
ρb
ρa

+
ρa
ρb

)
− 1

2
ŵ(k0)Φi

1(ρ2
a − ρ2

b),599

∂θ

∂t
= − 1

2τaωc

(
2Λ +

γ

2
cos(ψ)

(
ρb
ρa

+
ρa
ρb

)
− ŵ(k0)(ρ2

a + ρ2
b)(Φ

r
1 + Φ4)

)
(4.28)600

− γ

4
sin(ψ)

(
ρb
ρa
− ρa
ρb

)
− 1

2
ŵ(k0)Φi

1(ρ2
a + ρ2

b),601
602
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where ψ = φa + φb, θ = φa − φb and Φr
1, Φi

1 denote the real and imaginary parts of Φ1603

respectively.604

Looking for solutions with constant and equal amplitudes ρa = ρb = ρ0 we see that ψ is605

constant when it takes the values ψ = mπ for m = 0, 1. Then606

(4.29) ρ0 =

√
τaωc (2Λ + (−1)mγ)

2ŵ(k0)(τaωc (Φr
1 + Φ4) + Φi

1)
,607

and we observe that608

∂θ

∂t
= − 1

2τaωc

(
2Λ + (−1)mγ − 2ŵ(k0)

(
Φr

1 + Φ4 − τaωcΦi
1

)
ρ2

0

)
609

= − 1

2τaωc
(2Λ + (−1)mγ)

(
1 + τ2

aω
2
c

)
Φi

1.(4.30)610
611

Therefore θ is constant when Φi
1 = 0 corresponding to periodic standing wave solutions, and612

otherwise θ is a linear function of time, corresponding to amplitude modulated standing waves.613

Assuming that τaωc (Φr
1 + Φ4) + Φi

1 > 0, the solution with m = 0 exists when γ > −2Λ and614

the solution with m = 1 exists for γ < 2Λ. Linear stability analysis shows that the solution615

with ψ = mπ is stable when616

(−1)mγ > max

{
0,
−2Λτaωc(Φ

r
1 − Φ4)

2τaωcΦr
1 + Φi

1

,
−2Λ(τaω(Φr

1 − Φ4) + Φi
1)

τaωc(3Φr
1 + Φ4) + 3Φi

1

}
.617

We note that Φi
1 = 0 only when h = 0 so that β2 = 0 and in this case Φ4 = 2Φr

1. Therefore,618

in the case where Φi
1 = 0, the solution with ψ = mπ is stable for (−1)mγ > 2Λ.619

We can also find stable solutions of (4.25)–(4.28) with unequal constant amplitudes. Sup-620

pose that ψ takes the constant values mπ for m = 0, 1. Then from (4.27) we observe that621

either ρa = ρb or622

ρaρb =
(−1)mγ

2ŵ(k0)(τaωcΦi
1 − Φr

1 + Φ4)
:= Pm.623

In the latter case, substitution into (4.25) multiplied by ρa reveals that the constant amplitudes624

have values ρa = ρ±, ρb = ρ∓ where (ρ±)2 are the two roots of625

ŵ(k0)Φr
1ρ

4 −
(

Λ− ŵ(k0)Φi
1Pm

τaωc

)
ρ2 − Pm

(
(−1)mγ

2
− ŵ(k0)Φ4Pm

)
= 0.626

Such solutions exist when the roots are real and positive. When Φi
1 = 0 the solutions have627

constant θ = 2φa −mπ and therefore the solutions are periodic travelling waves. They exist628

when ΛΦr
1 > 0 and for |γ| < |Λ| and can also be shown to be stable in this parameter range629

(see Figure 9(a)). When Φi
1 6= 0 the solutions have θ(t) = 2φa(t) − mπ and correspond to630

resonant amplitude modulated travelling waves. Numerical investigation with XPPAUT [9]631

for the parameter choices as in Figure 9 indicates that the solutions are stable wherever they632

exist. The stability region covers the range of values of forcing strength γ where the modulated633

standing waves are unstable and there are also regions of bistability of the modulated standing634
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and travelling waves. These solutions are indicated in Figure 9(b) in red (m = 0) and magenta635

(m = 1). We also find stable modulated travelling waves with constant ρa 6= ρb and constant636

ψ 6= 0 as indicated in green in Figure 9(b). Figure 9 summarises the solution branches and637

their stability for Φi
1 = 0 and Φi

1 6= 0 respectively where other parameter values are as given638

in the caption. This indicates that travelling waves dominate for weak forcing, and there is639

an exchange of stability to standing waves for stronger forcing γ.

Figure 9: Bifurcation diagrams for resonant stripe pattern solutions for the forced neural field
equation (3.12) in one spatial dimension with adaptation (g 6= 0) under variation of the forcing
strength γ. In (a) we take the threshold for the firing rate h = 0 which gives Φi

1 = 0 and
therefore we observe periodic standing waves (blue) and travelling waves (red). Dashed lines
indicate unstable solutions while solid lines indicate stable waves. In (b) we choose |h| = 0.05
and therefore Φi

1 6= 0 and we observe modulated (quasiperiodic) standing (blue) and various
travelling (red, magenta and green) waves. Other parameter values for both diagrams are
σ = 0.5, τa = 1, g = 5. These give βc = 3, ŵ(k0) = 2/3 and ŵ′′(k0) = −16/27 and here we
take ε2δ = 0.3 and v1 = 0.1 so that Λ = ŵ(k0)ε2δ + βcŵ

′′(k0)v2
1/2 = 43/225.

640

The significant outcome of this investigation is that when adaptation is included, there641

are stable 2:1 resonant solutions which travel. Investigating the fully two-dimensional model642

with adaptation numerically reveals the same qualitative behaviour. Moreover, when the643

unforced system supports traveling waves, resonant rectangular patterns remain stationary644

but oblique patterns travel in an orthogonal direction, namely along the axis for which the645

continuous translational symmetry is not broken by the forcing. Thus, if spatial forcing is by646

a striped pattern along the x-direction then the tissue response could be a striped pattern in647

the orthogonal y-direction. Moreover, the presence of adaptation would allow for a dynamic648

instability so that this could propagate as a plane wave. Although the theory above has649

only been developed with spatially periodic forcing over the whole space, it has uncovered a650

mechanism for the generation of orthogonal responses that we expect to hold in the presence651

of more structured forcing. We explore this further in the next section and provide support652

for this claim using direct numerical simulations of forcing on the half-space relevant to the653

psychophysical experiments of Billock and Tsou [3].654

5. Simulations and psychophysics. We now turn to the perception of patterns of activity655

in V1. One of the main structures of the visual cortex is that of retinotopy, a neurophysiological656
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Figure 10: Simulation results from a neural field model with spatially periodic striped forcing
on the half-space. (a) Horizontal stripes forcing the left half-space give rise to stationary
vertical stripes on the right. (b) Vertical stripes forcing the left half-space give rise to travelling
horizontal stripes on the right. (c) Horizontal stripes forcing the right half-space give rise
to stationary vertical stripes on the left. (d) Vertical stripes forcing the right half-space
give rise to travelling horizontal stripes on the left. An application of the inverse retino-
cortical map to (a), . . . , (d) generates patterns consistent with (a), . . . , (d) shown in Fig. 2.
Parameter values are σ = 0.8, µ = 2, h = 0.05, γ = 0.5 and for b) and d) τa = 10, g = 0.14.
The domain sizes are a) [−16.53, 16.53]× [−15.71, 15.71], b) [−31.42, 31.42]× [−3.10, 3.10], c)
[−22.73, 22.73]× [−22.00, 22.00] and d) [−31.42, 31.42]× [−2.07, 2.07] with periodic boundary
conditions. Movies available in Supplementary Materials.

projection of the retina to the visual cortex. The log-polar mapping [28] is perhaps the most657

common representation of the mapping of points from the retina to the visual cortex and658

see Fig. 2. The action of the retino-cortical map turns a circle of radius r in the visual field659

into a vertical stripe at x = ln(r) in the cortex, and also turns a ray emanating from the660

origin with an angle θ into a horizontal stripe at y = θ. Simply put, if a point on the visual661
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field is described by (r, θ) in polar coordinates, the corresponding point in V1 has Cartesian662

coordinates (x, y) = (ln(r), θ). Thus to answer how a pattern would be perceived we need only663

apply the inverse (conformal) log-polar mapping. The analytical work in previous sections has664

established that an orthogonal response to global spatially periodic forcing can be robustly665

supported in a standard neural field model. If the conditions for a resonant response are666

met, then a visual stimulus in the form of a set of concentric rings may give rise to a percept667

of a set of radial arms (one for each ring). Similarly, a visual stimulus in the form of a668

set of radial arms may give rise to a percept of a set of concentric rings. This is consistent669

with the observations of Billock and Tsou described in §2, albeit these are more accurately670

described by drive on the cortical half-space (since the stimuli do not cover the whole visual671

field). To complement our results for forcing on the whole cortical space we now turn to direct672

numerical simulations. By forcing with striped patterns on the cortical half-space we recover673

all of the features reported in Fig. 2, once the inverse retino-cortical map is applied. We674

show the corresponding plots for cortical activity in Fig. 10. The presence of the adaptation675

current allows the formation of travelling striped patterns, and these correspond to rotating676

waves in the retinal space with blinking versions associated to standing waves. Although the677

psychophysical experiments of Billock and Tsou involve a component of temporal flicker we678

have found that it is not strictly necessary to include this within the model to generate results679

consistent with their observations. Nonetheless, direct numerical simulations with flicker do680

show that the phenomenon is robust to this inclusion. We posit that in the psychophysical681

experiments the background flicker helps put the primary visual cortex in a state conducive682

to a 2:1 resonance, whereas in our model we tune intrinsic parameters to reach this condition.683

Brief details of the numerical methods used to implement the model are presented in684

appendix C685

6. Discussion. In this paper we have shown that the psychophysical observations of Bil-686

lock and Tsou [3] can be explained with a parsimonious neural field model that does not687

require any exotic extension compared to standard approaches. It was originally suggested688

in [3, Supporting Information] that a neural field with some form of anisotropic coupling689

would be necessary to explain the observed spatial opponency between rings and radial arms.690

Rather we find, perhaps non-intuitively, that the pattern forming properties of a spatially691

forced isotropic model with a 2:1 resonance provide a sufficient mechanism for the observed692

phenonomena. Importantly, when the unforced model is poised near a Turing instability, we693

have shown that there are reasonably large windows of parameter space that allow for such694

a resonance between a spatial Turing pattern and a spatially periodic pattern of forcing. To695

establish this we have made use of perturbation arguments valid only for weak forcing. None-696

theless, this amplitude equation approach has proven especially useful for gaining insight into697

the main control parameters that can encourage an orthogonal response to the forcing of a698

two-dimensional neural field with a simple periodic stripe pattern. A key parameter in this699

regard is the deviation between k0, the spatial frequency excited by the Turing instability, and700

kf/2, where kf is the spatial frequency of the forcing. An orthogonal response is promoted as701

this deviation becomes closer to k0. As well as using mathematical arguments, strictly only702

valid for global periodic forcing, we have used direct numerical simulations to show that the703

model responds similarly when patterns are presented only on the half-space (which is more704
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consistent with the psychophysical experiments). Moreover, we have shown that some form of705

negative feedback or adaptation is useful for promoting travelling Turing patterns, which (via706

the inverse retino-cortical map) generate rotating percepts. These would also be expected707

in a more refined two-population neural field model without adaptation that distinguishes708

between excitatory and inhibitory sub-populations [10, 31]. We have opted for the study of709

an effective single population model with adaptation solely to keep the mathematical analysis710

manageable.711

Here we have focused on the analysis of simple spatially repetitive and time-independent712

stimuli. Even simple variants of such patterns, such as the Enigma, created by pop-artist Isia713

Leviant [16], consisting of concentric annuli on top of a pattern of radial spokes, can lead to714

very striking illusory motion percepts. In future work we plan to consider input patterns with715

more spatial structure and explore the conditions for the emergence of global illusory percepts716

from local interactions, such as the Barber pole, Café wall, Fraser spiral, and Ehrenstein717

illusion in which local orientation differences lead to the appearance of the global rotation718

of contours (see [14] for further examples). Moreover, given that periodic and quasi-crystal719

patterns in physical (Faraday) systems can be excited by periodic temporal forcing [25] this720

motivates a further study of associated behaviour in neural models. It is known that full-721

field flickering visual stimulation in humans can produce geometric hallucinations in the form722

of radial or spiral arms (and conversely that brain rhythms at the flicker frequency can be723

enhanced with the presentation of static radial or spiral arms) [23]. Indeed, flicker induced724

hallucinations have previously been studied from a theoretical perspective in neural fields725

with time periodic forcing by Rule et al. [26], and it would be very natural to extend the726

work here to include models of spatio-temporal sensory drive, and in particular to further727

understand visual hallucinations induced by flicker constrained to a thin annulus centred on728

the fovea [24]. Another natural extension is to extend very recent work on undriven neural729

fields that shows how quasi-crystal patterns can arise via a Turing instability [12] to further730

include spatio-temporal forcing.731
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Appendix A. Useful projections for section 3.2.732

〈eik0x,Lu3〉 = 0,(A.1)733

〈eik0x, ∂u
∂τ
〉 =

∂A

∂τ
,(A.2)734

〈eik0x, 2β2w ⊗ u1u2〉 = 2β2ŵ(k0)d0A|A|2,(A.3)735

〈eik0x, β3w ⊗ u3
1〉 = 3β3ŵ(k0)A|A|2,(A.4)736

〈eik0x, δw ⊗ u1〉 = δŵ(k0)A,(A.5)737

〈eik0x, 1

2
βcW

xx ⊗ ∂χχu1〉 =
1

2
βcŴ

xx(k0)
∂2A

∂χ2
,(A.6)738

〈eik0x, β2W
x ⊗ ∂χu2

1〉 = 0,(A.7)739

〈eik0x, βcW x ⊗ ∂χu2〉 = (1− δn,2)
γ1

2
βcŴ

x(k0)α−e−2ivx∂χA
∗δn,2 = 0,(A.8)740

〈eik0x, γ2u1 cos kfx〉 =
γ2

2
A∗e−2ivxδn,2 =

γ2

2
A∗e−2icχδn,2,(A.9)741

〈eik0x, γ1u2 cos kfx〉 = (1− δn,2)

(
γ1

2

)2 [
(d+ + d−)A+ δn,1d−A

∗e−2ivx
]

(A.10)742

= (1− δn,2)

(
γ1

2

)2 [
(d+ + d−)A+ δn,1d−A

∗e−2icχ
]
.743

744

Note further that745

(A.11) Ŵ x(k) = −
∫ ∞
−∞

dx e−ikxw(x)x = −i d

dk

∫ ∞
−∞

dx e−ikxw(x) = −i d

dk
ŵ(k).746

Similarly Ŵ xx(k) = −ŵ′′(k). Also note that as ŵ(k0) is a maximum its derivative is zero, so747

that Ŵ x(k0) = 0.748

Appendix B. Derivation of amplitude equations for planar model with adaptation.749

Here we give details of the calculation of the amplitude equations (4.6)–(4.9) from the750

hierarchy of equations (4.2)–(4.4). We define an inner product of two functions which are751

spatially periodic with basic region Ω = [0, 2π/kx]× [0, 2π/ky] and 2π/ωc periodic in time as752

(B.1) 〈U, V 〉 =
ωc

2π|Ω|

∫ 2π/ωc

0

∫
Ω
U∗(r, t)V (r, t) dr dt.753

The hierarchy consists of equations of the form Lguα = gα(u1, . . . , uα) for the linear operator754

Lg = − ∂
∂t − 1 + βcw ⊗ −gη∗. The adjoint of this operator is L†g = ∂

∂t − 1 + βcw ⊗ −gη−∗755

where η−(t) = η(−t). For all u ∈ kerL†g then 〈u, gα〉 = 〈u,Lguα〉 = 〈L†gu, uα〉 = 0. It is756

straightforward to establish that kerL†g = kerLg so that the set of solvability conditions are757
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〈e±i(kxx±kyy±ωct), gα〉 = 0. We note that758

〈ei(kxx+kyy+ωct),Lgu2〉 = 0, 〈ei(kxx+kyy+ωct), β2w ⊗ u2
1〉 = 0,(B.2)759

〈ei(kxx+kyy+ωct), βc(W
x ⊗ ∂χ +W y ⊗ ∂Υ)u1〉 = 0,(B.3)760

〈ei(kxx+kyy+ωct), γ1u1 cos kfx〉 =

{
0 n 6= 2
γ1
2 A
∗
4e−2iv1x n = 2

,(B.4)761

762

and hence the solvability condition is automatically satisfied for all n 6= 2 and for n = 2 we763

must set γ1 = 0. We write γ1 = (1−δn,2)γ1. We find a particular solution u2 by assuming that764

it has the form of u2
1 + (1 − δn,2)γ1u1 cos(kfx), substituting into (4.3) and balancing terms.765

For our balanced kernel where ŵ(0) = 0 we find that766

u2 = ζ1

(
A2

1e2i(kxx+kyy+ωct) +A2
2e2i(kxx−kyy+ωct) + (A∗3)2e−2i(kxx+kyy−ωct)767

+(A∗4)2e−2i(kxx−kyy−ωct)
)

+ ζ2

(
A1A2e2i(kxx+ωct) +A∗3A

∗
4e−2i(kxx−ωct)

)
768

+ ζ3

(
A1A3e2i(kxx+kyy) +A2A4e2i(kxx−kyy)

)
+ ζ4 (A1A4 +A2A3) e2ikxx769

+ ζ5 (A1A
∗
2 +A3A

∗
4) e2ikyy + ζ6

(
A1A

∗
4e2i(kyy+ωct) +A2A

∗
3e−2i(kyy−ωct)

)
770

γ1

2
(1− δn,2)

[
ζ+

(
A1ei((kx+kf )x+kyy+ωct) +A2ei((kx+kf )x−kyy+ωct) +A∗3e−i((kx+kf )x+kyy−ωct)771

+A∗4e−i((kx+kf )x−kyy−ωct)
)

772

+ ζ−

(
A1ei((kx−kf )x+kyy+ωct) +A2ei((kx−kf )x−kyy+ωct) +A∗3e−i((kx−kf )x+kyy−ωct)773

+A∗4e−i((kx−kf )x−kyy−ωct)
)]

+ c.c.,

(B.5)

774
775

where776

ζ1 =
β2ŵ(2k0)

2iωc + 1− βcŵ(2k0) + gη̃(2iωc)
, ζ2 =

2β2ŵ(2kx)

2iωc + 1− βcŵ(2kx) + gη̃(2iωc)
,(B.6)777

ζ3 =
2β2ŵ(2k0)

1− βcŵ(2k0) + g
, ζ4 =

2β2ŵ(2kx)

1− βcŵ(2kx) + g
,(B.7)778

ζ5 =
2β2ŵ(2ky)

1− βcŵ(2ky) + g
, ζ6 =

2β2ŵ(2ky)

2iωc + 1− βcŵ(2ky) + gη̃(2iωc)
,(B.8)779

ζ± =
1

iωc + 1− βcŵ (k±) + gη̃ (iωc)
, k± =

√
(kx ± kf )2 + k2

y.(B.9)780
781
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We now use this in the solvability conditions for α = 3 where we find the following projections;782

〈ei(kxx+kyy+ωct),Lgu3〉 = 0,(B.10)783

〈ei(kxx+kyy+ωct), ∂τu1〉 =
∂A1

∂τ
,(B.11)784

〈ei(kxx+kyy+ωct), δw ⊗ u1〉 = δŵ(k0)A1,(B.12)785

〈ei(kxx+kyy+ωct), 2β2w ⊗ u1u2〉 = 2β2ŵ(k0)
[
(ζ4 + ζ5)A2A3A

∗
4 + ζ1|A1|2A1(B.13)786

+ (ζ2 + ζ5)|A2|2A1 + ζ3|A3|2A1 + (ζ4 + ζ6)|A4|2A1

]
,787

〈ei(kxx+kyy+ωct), β3w ⊗ u3
1〉(B.14)788

= 3β3ŵ(k0)
[
2A2A3A

∗
4 + (|A1|2 + 2|A2|2 + 2|A3|2 + 2|A4|2)A1

]
,789

〈ei(kxx+kyy+ωct),
βc
2
W xx ⊗ ∂χχu1〉 = −βc

2
ŵ′′(k0)

∂2A1

∂χ2
,(B.15)790

〈ei(kxx+kyy+ωct), βcW
xy ⊗ ∂χΥu1〉 = −βc(ŵ′(k0))2 ∂

2A1

∂χ∂Υ
= 0,(B.16)791

〈ei(kxx+kyy+ωct),
βc
2
W yy ⊗ ∂ΥΥu1〉 = −βc

2
ŵ′′(k0)

∂2A1

∂Υ2
,(B.17)792

〈ei(kxx+kyy+ωct), β2W
x ⊗ ∂χu2

1〉 = 0,(B.18)793

〈ei(kxx+kyy+ωct), βcW
x ⊗ ∂χu2〉 = 0,(B.19)794

〈ei(kxx+kyy+ωct), gηt ∗ ∂τu1〉 = gη̃′(iωc)
∂A1

∂τ
,(B.20)795

〈ei(kxx+kyy+ωct), γ1(1− δn,2)u2 cos(kfx)〉(B.21)796

=

(
γ1

2

)2

(1− δn,2)
[
(ζ+ + ζ−)A1 + ζ−A

∗
4e−2iv1xδn,1

]
,797

〈ei(kxx+kyy+ωct), γ2u1 cos(kfx)〉 =
γ2

2
A∗4e−2iv1xδn,2.(B.22)798

799

Here, we note that800

(B.23) η̃t(λ) = −
∫ ∞

0
tη(t)e−λtdt =

d

dλ

∫ ∞
0

η(t)e−λtdt =
d

dλ
η̃(λ) =

−τa
(1 + λτa)2

.801

We also have the scaling v1 = εc1 so e−2iv1x = e−2ic1χ. The projections give the evolution of802

the amplitude A1 as803

(
1 + gη̃′(iωc)

) ∂A1

∂τ
= ŵ(k0)

δA1 −
4∑
j=1

Φj |Aj |2A1 − Φ5A2A3A
∗
4

804

− βc
2
ŵ′′(k0)

(
∂2A1

∂χ2
+
∂2A1

∂Υ2

)
+
γ2

2
A∗4e−2ic1χδn,2805

+

(
γ1

2

)2

(1− δn,2)
[
(ζ+ + ζ−)A1 + ζ−A

∗
4e−2ic1χδn,1

]
,(B.24)806

807
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where808

Φ1 = −2β2ζ1 − 3β3, Φ2 = −2β2(ζ2 + ζ5)− 6β3, Φ3 = −2β2ζ3 − 6β3,(B.25)809

Φ4 = −2β2(ζ4 + ζ6)− 6β3, Φ5 = −2β2(ζ4 + ζ5)− 6β3,(B.26)810811

and we note that η̃′(−iωc) = (η̃′(iωc))
∗. Similarly, by considering the projections812

〈ei(kxx−kyy+ωct), ·〉, 〈ei(kxx+kyy−ωct), ·〉 and 〈ei(kxx−kyy−ωct), ·〉 we find the corresponding evo-813

lution equations for the amplitudes A2, A3 and A4 respectively. Note that away from the814

bifurcation the solution will have a (temporal) frequency ω = ωc + ξ where ξ is a frequency815

detuning parameter which we can assume is order ε2. Recall also that we also have the spatial816

frequency detuning parameter v1 = kx − kf/n. When we rescale back to the original length817

and timescales we also let aj = εAje
ic1χeiξjt, j = 1, 2, 3, 4 where ξ1 = ξ2 = −ξ and ξ3 = ξ4 = ξ.818

Upon rescaling819

(B.27)
∂Aj
∂τ
→ e−iv1x

ε3
∂

∂t

(
aje
−iξjt

)
=

e−iv1xe−iξjt

ε3

(
∂aj
∂t
− iξjaj

)
.820

The parameter ξ can be removed from the amplitude equations by noting that the factor821

outside the bracket in (B.27) is also a factor on the right hand side of the rescaled amplitude822

equation and by making a transformation aj → aje
iξjt. The transformation removes the823

imaginary term inside the bracket and is equivalent to changing the carrier wave frequency to824

ω = ωc + ξ. The resulting amplitude equations are (4.6)–(4.9).825

Appendix C. Numerical methods.826

The numerical simulation of the full model (2.1)-(2.2) were performed in the plane by827

discretising in space on a regular square mesh, and solving the resultant set of ordinary828

differential equations using Matlab. A pseudo-spectral evaluation of the convolution w⊗f(u)829

was performed using a Fast Fourier Transform (FFT), followed by an inverse FFT on a830

large square computational domain. The Fourier transform of w ⊗ f takes the product form831

ŵ× f̂ , and this provides substantial computational speed-up over quadrature-based numerical832

methods for calculating w ⊗ f(u). We set a grid of N = 28 equally spaced points along each833

spatial dimension, and used Matlab’s in-built ode45 algorithm to evolve the system forward834

in time.835
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