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Abstract— This work presents an iterative learning control
(ILC) algorithm to enhance the feedforward control (FFC) for
robotic manipulators. The proposed ILC algorithm enables the
cooperation between the ILC, inverse dynamics, and a PD
feedback control (FBC) module. The entire control scheme
is elaborated to guarantee the control accuracy of the first
implementation; to improve the control performance of the
manipulator progressively with successive iterations; and to
compensate both repetitive and non-repetitive disturbances, as
well as various uncertainties. The convergence of the proposed
ILC algorithm is analysed using a well established Lyapunov-
like composite energy function (CEF). A trajectory tracking test
is carried out by a seven-degree-of-freedom (7-DoF) robotic
manipulator to demonstrate the effectiveness and efficiency
of the proposed control scheme. By implementing the ILC
algorithm, the maximum tracking error and its percentage
respect to the motion range are improved from 5.78◦ to 1.09◦,
and 21.09% to 3.99%, respectively, within three iterations.

I. INTRODUCTION
The involvement of internet of things (IoT) and internet

of services (IoS) in the fourth industrial revolution (Industry
4.0) facilitates the development of the smart manufacturing,
which has contributed to the widespread use of the robotic
manipulators. At the same time, the smart manufacturing
programme also puts forward new requirements and chal-
lenges on robotic manipulators, particularly in the area of
precision control [1], [2]. Although the robotic manipu-
lators provide extra flexibility and possibility of human-
robot collaboration in manufacturing process, its absolute
accuracy becomes a major factor that preventing its adoption
in high precision industries, e.g. aerospace manufacturing.
Improving the control accuracy of the robotic manipulators
is challenging due to both internal and external uncertainties
in the operation scenarios such as automated inspection,
composite fabrication, additive manufacturing, etc. As a
result, introducing advanced control scheme into manipulator
controller becomes a generic and essential need for improv-
ing the robot manipulation precision.

The conventional controller of robotic manipulators has
two streams: feedforward control (FFC) and feedback con-
trol (FBC), depending on whether the current measurement
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signal is used. The FFC provides computed joint input from
the desired robot motion in real time, and the FBC gives joint
input compensation by taking advantage of both the desired
and the measured motion.

In the literature, due to the ability in handling system
uncertainties and external disturbances, most of the existing
works focus on the design and improvement of the FBC mod-
ule in the control of robotic manipulators. For instance, many
advanced FBC schemes, such as model predictive control [3],
adaptive fuzzy control [4], and neural network based control
[5], have been adopted to improve the control precision.
However, the FBC approaches encounter difficulties due to
disturbances and modelling errors (e.g. the hysteresis effects
[6]), which motivates us to explore the ability of the FFC and
thus improve the control performance of the whole system.

In robotic manipulators, the traditional FFC usually adopts
the pure inverse dynamics, in which the control performance
highly depends on the accuracy of the inverse dynamics.
While in practice the accurate inverse dynamics is difficult to
be obtained. To overcome this inherent disadvantage in the
traditional FFC, various advanced control approaches have
been investigated to compensate the inaccuracy in system
model and thus to improve the performance of the FFC.
For example, a fuzzy adaptation algorithm is developed in
[7] to compensate the uncertainties existing in dynamics. In
[8], the authors present an adaptive compensation method
to handle the dynamic friction of the system. However, it
should be noted that the above mentioned control methods
generally require an intensive tuning process to improve the
control performance. They also ignore the system repetition
and do not possess the ability of learning from the past
control experience. Inspired by these observations, several
learning-based control approaches have been recently pro-
posed, e.g. reinforcement learning [9] and neural networks
[10], by considering the repetitive operation manners. These
approaches have shown their superiority in handling the sys-
tem uncertainties for robotics. While the main disadvantages
of these methods lie in the time-consuming training process
and the unavoidable nonsmoothness in control signals, which
motivates the present work.

As an intelligent control approach, iterative learning con-
trol (ILC) has been proven to be effective to deal with high-
precision control problems. By considering the system repe-
tition, ILC is able to learn from the past control experience
and thus improve the current control performance, despite
the presence of various system uncertainties. From control
theory point of view, ILC is actually a partial model-free
control method, which may achieve a high-accuracy control



performance by just utilising the system input and output
information without requiring the precise system dynamics.
Owing to these impressive characteristics, ILC has been
intensively implemented in various practical applications
in robotics [11]–[13]. Moreover, with the learning ability,
ILC is capable of compensating repetitive disturbances and
suppressing fast hysteresis effects [14]. Recently, targeting at
the FFC of industrial manipulators, several works have been
reported to show the superiority of ILC. For instance, an ILC
approach combined with a H∞ FBC is proposed in [15] to
improve the control performance of nanopositioning system.
In [16], the authors establish an ILC scheme in combination
with low-gain FBC to improve tracking accuracy for robotic
manipulators. A norm-optimal ILC scheme for articulated
soft manipulators is presented in [17] to improve the tracking
control performance. It is worth to note that in most of
the above mentioned works, the ILC schemes are designed
directly to replace the role of the pure inverse dynamics in
the traditional controllers, which however did not fully take
the advantage of the available system dynamics. Motivated
by this observation, it is of practical importance to develop
new controllers which fully utilise the available system
knowledge as well as the learning ability.

In the present work, a novel learning-based controller is
developed for the tracking control of robotic manipulators.
It consists of three parts including a FBC module, an inverse
dynamics module, as well as an ILC strategy. In the proposed
control approach, the ILC algorithm is used to enhance
FFC performance achieved by the inverse dynamics through
compensating the inaccuracies in the system model, while
the FBC is adopted to nullify the effect of non-repeatable
external disturbances. In contrast to existing works, the main
contributions of this work can be summarised as follows:

1) A novel learning-based controller is developed to enable
the coordinating work of the inverse dynamics, the FBC
and the ILC strategy. By fully utilising the system
knowledge and the system repetition, the proposed
controller possesses the ability to achieve high-precision
tracking tasks despite the presence of various system
uncertainties and external disturbances.

2) In contrast to the existing works [15]–[19] where the
ILC is utilised to replace the inverse dynamics directly,
the proposed ILC scheme is designed to work in parallel
with the inverse dynamics to fully use the available
system information. Hence, it is able to enhance the
control performance of the FFC by nullifying the effect
of the system uncertainties.

3) The rigorous convergence analysis of the proposed con-
trol scheme is conducted by establishing a Lyapunov-
like composite energy function (CEF). It has been
shown explicitly that the cooperation between the ILC
and FBC is capable of reducing the peak error and
improving the tracking accuracy significantly as the
iteration number increases.

4) The effectiveness of the proposed control scheme is
verified through both simulations and experiments. In

the later one, the proposed learning-based controller
is implemented on a seven-degree-of-freedom (7-DoF)
robotic manipulator. In contrast to the demonstrated
results in [3], where only three joints of the manipu-
lator are used, we consider all the seven joints of the
demonstrated manipulator.

The rest of the paper is organised as follows. The robotic
system, consisting of the kinematics and dynamics, is pre-
sented in Section II. In Section III, the control scheme
is proposed with rigorous convergence analysis using a
well established CEF. In Section IV, an experiment test
on a 7-DoF robotic manipulator is carried out to show the
effectiveness and efficiency of the proposed control scheme.
Section V concludes the present work and future directions.
Throughout the present work, let’s denote N and R the set of
natural and real numbers, respectively. For a given matrix H ,
HT denotes the transformation of H , and H � 0 represents
that H is positive definite.

II. SYSTEM DESCRIPTION

A. System Overview

The robotic manipulator utilised in this work is the KUKA
LBR IIWA 14 R820 robot (named as the IIWA robot in the
rest of the work), as shown in Fig. 1, which is mounted
on a mobile platform with both levelling feet and wheels.
The IIWA robot consists of n = 7 revolute (R-) joints
providing 7-DoF manipulation at the end-effector and in
each R-joint, a torque sensor and an angular position encoder
are equipped after the corresponding gearbox. The kinematic
sketch is illustrated in Fig. 1 and the corresponding Denavit-
Hartenberg (D-H) parameters are listed in TABLE I.

In this work, the CoppeliaSim® is selected for both simu-
lation and real robot control purpose, due to its supporting of
simultaneous incorporation with both programming environ-
ment (i.e. MATLAB® in this work) and hardware control.

Fig. 1: Overview of the IIWA robot and the corresponding
kinematic sketch with D-H coordinate system.



B. Dynamic Modelling

Consider the following n DoF dynamics of the robotic
manipulator

M(qk(t))q̈k(t)+C(qk(t), q̇k(t))q̇k(t)+G(qk(t))=τk(t), (1)

where t ∈ R denotes the time instant and k ∈ N+ denotes
the number of iteration. qk(t), q̇k(t), q̈k(t) ∈ Rn are the
joint position, velocity and acceleration vectors, respectively,
at time t of the kth iteration. τk(t) is the vector of joint
torques, which is the system control input. M(qk(t)) ∈
Rn×n is the inertia matrix, which is symmetric, bounded
and positive definite, C(qk(t), q̇k(t))q̇k(t) ∈ Rn represents
the Coriolis and centrifugal forces, G(qk(t)) ∈ Rn represents
the gravitational and frictional forces. For the dynamics (1),
the following properties always hold:
P1 M(q) = MT (q) � 0 for any q ∈ Rn, and there exist

constants µ1 > 0 and µ2 > 0 such that 0 � µ1In �
M(q) � µ2In, where In denotes the identity matrix of
dimension n.

P2 The matrix ( 1
2Ṁ(qk(t)) − C(qk(t), q̇k(t))) is skew

symmetric and satisfying

xT(
1

2
Ṁ(qk(t))−C(qk(t), q̇k(t)))x=0,∀x∈Rn. (2)

Assume that qd(t) is the desired trajectory, to facilitate the
controller design and subsequent convergence analysis, the
following two assumptions are imposed to the system:
A1 qd(t) is first and second order continuously differen-

tiable for all t ∈ [0, T ], and qd(t), q̇d(t), q̈d(t) are
bounded for all t ∈ [0, T ].

A2 The initial conditions qk(0) = qd(0) and q̇k(0) = q̇d(0)
are satisfied for all k ∈ N.

III. CONTROLLER DESIGN

In the present work, to improve the control performance of
the robotic manipulator, a novel learning-based controller is
proposed to realise the high-precision tracking task with the
presence of system uncertainties and external disturbances.
In the proposed control algorithm, as illustrated in Fig. 2,
the torque input τk to the robotic manipulator consists of
three components including the learning controller τ ILCk (t),
the inverse-dynamics-based controller τ IDk (t) and the FBC
τFBk (t), namely,

τk(t) = τ ILCk (t) + τ IDk (t) + τFBk (t), (3)

TABLE I: D-H parameters of the IIWA robot

Joint i ai(m) αi(
◦) di(m) θ∗i (

◦)

1 0 0 0.36 0 ∈ [-170, 170]
2 0 -90 0 20 ∈ [-120, 120]
3 0 90 0.42 0 ∈ [-170, 170]
4 0 90 0 -90 ∈ [-120, 120]
5 0 -90 0.40 0 ∈ [-170, 170]
6 0 -90 0 60 ∈ [-120, 120]
7 0 90 0.187 0 ∈ [-175, 175]

∗ The initial setting of θi are demonstrated in Fig. 1 with its
corresponding joint motion range.

with

τ IDk (t)=M(qd(t))q̈d(t)+C(qd(t), q̇d(t))q̇d(t)+G(qd(t)), (4)

τFBk (t)= Kpek(t) +Kdėk(t), (5)

τ ILCk (t)= τ ILCk−1 (t) + γτFBk−1(t), (6)

where qd(t) is the desired trajectory, q̇d(t) and q̈d(t) represent
the desired joint velocity and acceleration, Kp � 0 and
Kd � 0 are the diagonal control gain matrices to be designed,
ek(t) := qd(t)−qk(t) represents the tracking error at the kth
iteration, γ > 0 ∈ R is the learning gain to be determined.
Moreover, without loss of generality, the initial value of the
the proposed learning controller is assumed to be τ ILC0 = 0.

Remark 1: Note that the inverse dynamics will give the
same result with the same reference signal (i.e. qd(t)). Hence,
τ IDk (t) is identical for every k and thus will not affect the
performance of the ILC and the FBC. While the coordination
of the inverse dynamics and the PD controller can guarantee
the control precision of the first iteration.

Remark 2: It is worth to note that usually when imple-
menting the FBC and the ILC algorithm together, they would
mutually influence each other since the accumulation of the
noise caused by derivative action through the iterations, as
shown in [20]. In the present work, to reduce the interaction
effect, the ILC controller is designed in the structure of (6),
where the ILC input is corrected by the FBC signal at the
previous iteration.

With the proposed controller (3)-(6), we have the result as
shown below.

Theorem 1: Consider the robotic manipulator (1) satisfy
the A1 - A2, the control laws (3) - (6) ensure the convergence
of the tracking error as the iteration number approaches to
infinity, namely,

lim
k→∞

ek(t) = 0, lim
k→∞

ėk(t) = 0, (7)

hold for all t ∈ [0, T ].
In the following, the time variable t will be omitted for

clarity if no confusion caused. To pave the way for conver-
gence analysis, the following notations are firstly defined:

τ̄d := M(qk)M−1(qd)τd, (8)

ξk := ėk +K−1d Kpek, (9)

where τd is the desired control input. Obviously, according
to P1 and A1 - A2, it is not difficult to obtain that

lim
k→∞

qk = qd =⇒ lim
k→∞

τ̄d = τd, (10)

lim
k→∞

ξk = 0 =⇒ lim
k→∞

ek = 0. (11)

Therefore, we may focus on the convergence of ξk and then
obtain the convergence of ek. The convergence analysis is
based on the Lyapunov-like theory with the well-designed
CEF presented as follows

Jk(t) :=

∫ t

0

e−λι(τ̃ ILCk )T (τ̃ ILCk )dι, (12)
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Fig. 2: The proposed control scheme consisting of the ILC, inverse dynamics and FBC.

where λ ∈ R is a positive constant and

τ̃ ILCk := τ̄d − τ IDk − τ ILCk . (13)

Proof of Theorem 1. The proof consists of two parts. The
first part demonstrates the boundedness and non-increasing
property of the Jk(t) with respect to k. The second part
shows the convergence of ξk and thus the convergence of
the tracking errors.

Part I. From the definition in (5), (6) and (9), we have
the difference of the CEF at a time instant t ∈ [0, T ] of two
consequent iterations is

∆Jk=Jk − Jk−1 =

∫ t

0

e−λι(|τ̃ ILCk |2−|τ̃ ILCk−1 |2)dι

=

∫ t

0

e−λι(|γKdξk−1|2)dι

− 2

∫ t

0

e−λι(γKdξk−1)T (τ̃ ILCk−1 )dι.

(14)

Differentiating ξk−1 followed by a multiplication with the
inertia matrix M(qk), results in the following relationship:

M(qk−1)ξ̇k−1 =M(qk−1)ëk−1+M(qk−1)K−1d Kpėk−1

= τ̃ ILCk−1 −τ̃FBk−1 −C(qk−1, q̇k−1)ξk−1+ηk−1,
(15)

where

τ̃k := τ̄d − τk, (16)

f(qk, q̇k) := −M−1(qk)(C(qk, q̇k)q̇k +G(qk)) (17)

f̃(qk, q̇k) := f(qd, q̇d)− f(qk, q̇k), (18)

and

ηk−1 =C(qk−1, q̇k−1)ξk−1 +M(qk−1)f̃(qk−1, q̇k−1)

+M(qk−1)K−1d Kpėk−1.
(19)

Substitute (15) into (14), following several manipulations,
we can obtain that

∆Jk =− e−λt(γKdξk−1)T (M(qk−1)ξk−1)

− λ
∫ t

0

e−λι(γKdξk−1)T (M(qk−1)ξk−1)dι

− 2

∫ t

0

e−λι(γKdξk−1)T (Kdξk−1)dι

+

∫ t

0

e−λι(γKdξk−1)T (γKdξk−1 + 2ηk−1)dι.

(20)

From the definition (9) and (19), it is possible to show that
there exist two constants c1 > 0 and c2 > 0 [21] such that

|ηk−1| ≤ c1|ξk−1|+ c2|ξk−1|2. (21)

The property P1 shows that there exists a constant µ > 0 ∈ R
such that for any bounded qk−1,

0 � µIn � KT
dM(qk−1). (22)

Using the inequalities (21) and (22) for (20) gives

∆Jk≤−µγe−λt|ξk−1|2−(λ+2)γ

∫ t

0

e−λι|ξk−1|2dι

+γ

∫ t

0

e−λιh(|ξk−1|)|ξk−1|2dι,

(23)

where h(|ξk−1|) = |Kd|(γ|Kd|+2c1+2c2|ξk−1|). Since there
exists a positive constant c3 > 0 such that 0 < h(|ξk−1|) <
c3, we have

∆Jk≤−(λ+2−c3)γ

∫ t

0

e−λι|ξk−1|2dι−µγe−λt|ξk−1|2. (24)

It follows that if λ is selected such that λ+ 2− c3 > 0, then

∆Jk ≤ −µγe−λt|ξk−1|2 ≤ 0, (25)

which shows the non-increasing property of the CEF Jk.
Part II. Computing the cumulative sum for (25) gives that

k∑
i=1

∆Ji(t) ≤ −µγ
k∑
i=1

e−λt|ξi−1(t)|2, (26)

which implies

Jk(t) ≤ J−1(t)− µγ
k∑
i=1

e−λt|ξi−1(t)|2, (27)

Since J−1 is bounded and Jk is positive, we have for t ∈
[0, T ],

lim
k→∞

|ξi−1(t)| = 0, (28)

which implies the convergence (7).



IV. EXPERIMENTAL VALIDATION

A. Trajectory and Data Acquisition

To validate the proposed control scheme in Section III ,
a small scale ellipse trajectory in the XY-plane is selected
for tracking control, as it requires synchronised actuation of
all the 7 joints. The ellipse trajectory contains 9665 samples
in total and the duration is 9.8 s. Inverse kinematics of the
IIWA robot is utilised to compute the desired joint position,
then a low pass filter is used to generate the corresponding
joint velocity and acceleration. The joint position, velocity
and input torque range responding to the ellipse path are
listed in TABLE II.

To implement the proposed control algorithm, the
MATLAB® is deployed to compute the torque input, which is
subsequently delivered to the virtual robot in CoppeliaSim®.
Once the simulation results convince of the safety and
effectiveness of the controller, the control signal can be then
transferred to the real IIWA robot through the UDP socket.
Meanwhile, the joint positions of the IIWA robot are acquired
through its integrated joint sensors.

In the purpose of demonstrating the effectiveness of the
ILC algorithm, comparison in the trajectory tracking between
the initial implementation (Case I) and the third iteration
(Case II) are considered. Note that at the initial implementa-
tion, only inverse dynamics and the FBC are involved in the
system, i.e. τ ILC0 = 0. The repetitive disturbances, i.e. the
kinematic uncertainty and initial joint offset, are considered
during the experimental test. Furthermore, the environmental
disturbance, i.e. platform with wheel configuration, is con-
sidered as non-repetitive disturbance.

B. Test results

Based on the aforementioned setup, the trajectory tracking
tests are conducted in both simulation and real experiment.
The joint positions measured during the the experimental
test are presented in Fig. 3, where the black solid line shows
the desired joint positions along time t, the blue dotted line
represents the joint positions under the control of the inverse
dynamics and the FBC (i.e. Case I), and the red dashed line
shows the joint performance after three iterations with the
ILC algorithm (i.e. Case II). The corresponding joint error
value and its percentage respect to the motion range are
listed in TABLE III in the form of average (minimum to
maximum).

TABLE II: Joint position, velocity and torque ranges

Joint q(◦) q̇(◦/s) τ(Nm)

1 [0.00, 9.42] [-4.49, 5.23] [-0.16, 0.31]
2 [6.91, 34.30] [-10.44, 12.30] [-37.17, -19.40]
3 [-2.21, 2.50] [-2.40, 0.76] [-0.36, 0.13]
4 [-106.36, -68.91] [-14.52, 17.53] [13.12, 14.09]
5 [-0.11, 0.75] [-0.22, 0.42] [-0.32, -0.22]
6 [71.70, 81.77] [-4.49, 5.23] [0.00, 0.06]
7 [-0.61, 11.74] [-5.60, 3.88] [-0.01, 0.01]

Fig. 3: Joint tracking trajectories represented by the black
solid line for the desired, the blue dotted line for the Case
I, and the red dashed line for the Case II.

As shown in Fig. 3, it can be noted that the initial
offsets of joints 2, 4, and 6 have been set as 10◦, 30◦ and
15◦, respectively, which were utilised as system repetitive
uncertainty. Moreover, as mentioned in Section II, the mobile
platform for the IIWA robot equips with both levelling feet
and wheels, and the later option is chosen for providing the
nonrepetitive disturbance. As the consequence of the uncer-
tainty and disturbance, oscillations are obviously observed in
Case I, which results in a maximum tracking error of 5.78◦

in joint 2 and 5.14◦ in joint 4, respectively. While in Case
II, the maximum tracking errors are reduced to 1.09◦ and
1.53◦ in joints 2 and 4, respectively.

Furthermore, it is worthy noting that in TABLE III, the
maximum tracking error percentage in joint 2 is 21.09%,
this may caused by the unwell designed PD gain parame-
ters. While the involvement of the ILC algorithm provides
efficient compensation in the control input, which improves
the maximum tracking error percentage to 3.99% in only
three iterations.

In the case of small joint motion range, e.g. joints 3
and 5, although the ILC algorithm does not provide im-
pressive improvement in the control performance, there is
no chattering phenomenon observed neither. This indicates
that the proposed structure of the ILC algorithm can work
coordinately with the FBC as discussed in Remark 2.



TABLE III: Joint tracking errors in terms of value and percentage respect to motion range in the form of avg (min, max)

Joint Range (◦)
Case I Case II

Value (◦) Percentage (%) Value (◦) Percentage (%)

1 9.42 0.13 (0.00, 0.29) 1.36 (0.00, 3.06) 0.14 (0.01, 0.26) 1.44 (0.05, 2.77)

2 27.39 3.57 (1.45, 5.78) 13.02 (5.29, 21.09) 0.66 (0.00, 1.09) 2.39 (0.00, 3.99)

3 4.71 0.11 (0.00, 0.21) 2.39 (0.00, 4.50) 0.11 (0.00, 0.22) 2.27 (0.03, 4.75)

4 37.45 2.05 (0.00, 5.14) 5.47 (0.00, 13.73) 0.90 (0.00, 1.53) 2.39 (0.00, 4.09)

5 0.86 0.12 (0.00, 0.25) 13.45 (0.00, 28.78) 0.11 (0.00, 0.25) 12.18 (0.52, 28.82)

6 10.08 0.53 (0.00, 0.93) 5.22 (0.00, 9.27) 0.16 (0.00, 0.37) 1.62 (0.00, 3.68)

7 12.35 0.14 (0.00, 0.30) 1.17 (0.02, 2.40) 0.15 (0.00, 0.31) 1.24 (0.03, 2.51)

Average - 0.95 (0.21, 1.84) 6.01 (0.76 , 11.83) 0.32 (0.00, 0.58) 3.37 (0.09, 7.23)

V. CONCLUSIONS

In this work, an ILC algorithm is proposed to enhance the
FFC performance for the robotic manipulators by working
coordinately with the inverse dynamics module and the FBC
module. Through this control scheme, both repetitive and
non-repetitive disturbances, as well as various uncertainties
can be suppressed. Meanwhile, both the FBC and ILC
algorithm contribute to the system convergence as presented
in the Lyapunov-like analysis.

To validate the proposed ILC algorithm, an ellipse tra-
jectory tracking experiment has been implemented by a 7-
DoF IIWA robot, in which all the 7 joints are actuated
synchronously. The resulting maximum tracking error and
percentage to the range have been improved from 5.78◦

to 1.09◦, and 21.09% to 3.99%, respectively, in only three
iterations. It is indicated that the proposed ILC algorithm
is capable of compensating the environmental disturbances
and system uncertainties, enhancing the system control per-
formance, and working coordinately with the FBC module.
Therefore, through learning from the previous system be-
haviour, the proposed control scheme can improve the control
accuracy with successive iterations and finally achieve high-
precision tracking performance.

To further explore the effectiveness and efficiency of
the proposed learning based control scheme, more complex
experiment scenarios and advanced FBC algorithm will be
considered in the future work. The system could also be
extended in the presence of dynamic payload and physical
constraints.
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