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Spectral Green’s-function method in driven open quantum dynamics
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A method based on spectral Green’s functions is presented for the simulation of driven open quantum
dynamics that can be described by the Lindblad master equation in Liouville density operator space. The method
extends the Hilbert space formalism and provides simple algebraic connections between the driven and nondriven
dynamics in the spectral frequency domain. The formalism shows remarkable analogies to the use of Green’s
functions in quantum field theory, such as the elementary excitation energies and the Dyson self-energy equation.
To demonstrate its potential, we apply the method to a coherently driven dissipative ensemble of two-level
systems comprising a single “active” subsystem interacting with N “passive” subsystems—a generic model with
important applications in quantum optics and dynamic nuclear polarization. The method dramatically reduces
the computational cost compared with simulations based on solving the full master equation, thus making it
possible to study and optimize many-body correlated states up to the physically realistic limit of an arbitrarily
large N .
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I. INTRODUCTION

Open quantum dynamics takes into account the environ-
ment (outer degrees of freedom) and so more accurately
describes real physical phenomena compared with closed
quantum dynamics based entirely on the energy operator (in-
ner Hamiltonian). The environment tends to quench coherent
states and to purge quantum information by free thermal de-
cay. On the other hand, it can cause irreversible dynamics
that makes it possible to create and keep coherent states by
continuously driving the system out of its thermal equilibrium
[1–3]. This makes driven open systems a fundamental object
of quantum theory.

The mathematical description of the dynamics of open
quantum systems is nonunitary and generally complex. This
especially refers to correlated many-body systems that ex-
hibit collective phenomena depending on their environment.
In many cases, the Lindblad master equation approach can
be used that retains the positivity of the density operator
and introduces the environmental effects through Markovian
quantum jump operators that enter the dissipator in a simple
algebraic way [1–6]. However, the Liouville space containing
the trajectories of the density operator describing the evolution
of a many-body open quantum system grows exponentially
with the number of constituents and the dynamics is sensitive
to a large number of physical parameters. Hence efficient
mathematical tools are necessary to perform adequate approx-
imations and state space restrictions in order to gain insight
into the underlying physics.

For the description of collective phenomena in large-scale
closed quantum systems at thermal equilibrium, a method
involving the use of Green’s functions was developed that

statistical physics adopted from quantum field theory [7–9].
This method is based on the approximate calculation of
correlations between dynamic operators that leads to self-
consistent equations for the observables. Subsequently, this
method was extended to nonequilibrium closed and non-
Markovian open quantum systems describing various trans-
port phenomena where, besides the standard time-domain
formalism, it was transformed to an inhomogeneous spectral
problem in Hilbert space [10–14].

Here we propose an extension of the nonequilibrium spec-
tral approach to the important class of driven Markovian open
quantum dynamics in the Liouville space of the density op-
erator. To this end, we show that the Green’s function for an
inhomogeneous spectral problem can be formulated in terms
of both Hamiltonian and dissipative parts of the Lindblad
master equation. The steady state of the driven system is then
obtained by a simple algebraic transform of the nondriven
thermal equilibrium. Remarkably, there is a close analogy be-
tween our proposed spectral formalism and the use of Green’s
functions in quantum field theory, including the elementary
excitation energies and the Dyson self-energy equation. For
a demonstration, we apply the method to a coherently driven
dissipative ensemble of correlated two-level systems, a basic
model used in quantum optics and dynamic nuclear polar-
ization. We show that because the computational cost of the
method is significantly cheaper in comparison with the di-
rect master equation simulation, it is possible to study and
optimize the many-body correlated states in the realistically
large-scale limit. This enhances possibilities in simulations
of many-body driven open quantum dynamics, including the
spectral response to the driving and the fast search for the
optimal parameter regions.
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II. SPECTRAL GREEN’S FUNCTIONS FOR THE
LINDBLAD MASTER EQUATION

The dynamics of open quantum systems is described in
terms of the Lindblad master equation [4,5],

ρ̇ = Mρ, M = −i[H, ·] + D, (1)

where ρ is the density operator, H is the Hamiltonian describ-
ing the (internal) energy of the system, and D is the dissipator
that represents the effect of the (external) environment. The
latter uses Markovian jumps represented by (dimensionless)
operators Xj and system-environment exchange rates γ j ,

D =
∑

γ jL(Xj ), L(X )ρ = XρX † − 1

2
{X †X, ρ}. (2)

The dissipator tends to return the system to the state that is in
thermal equilibrium with the environment, while the Hamil-
tonian contains terms that drive the system out of thermal
equilibrium, Dρth = 0, [H, ρth] �= 0. Equation (1) describes
a driven open quantum dynamics in the Liouville space of the
density operator.

The master equation preserves the unit trace, Trρ = 1. The
superoperator M transfers all operators to traceless opera-
tors and hence reduces the dimension of the Liouville space.
As a consequence, M is degenerate with a nontrivial zero
eigenspace. This eigenspace contains a nonthermal steady
state that is eventually established in the driven system,

t → +∞, eMtρth → ρ, Mρ = 0, Trρ = 1. (3)

In the fully dissipative case, the zero eigenspace is one dimen-
sional; Eq. (3) uniquely defines the steady state for all initial
conditions. In this case, the only traceless solution to Eq. (3)
is trivial,

Mρ = 0, Trρ = 0 −→ ρ = 0. (4)

Suppose the Hamiltonian can be represented in the form

H = P + H0 + ζH1, [H0,1, ρth] = 0, [P, ρth] �= 0, (5)

where ζ is a real scalar parameter, the Hermitian operators
H0,1 are nondriving, and the Hermitian operator P contains
the driving terms of the Hamiltonian. We will assume that the
operator H1 is dimensionless and H0, P, and ζ are measured
in frequency units. By extracting the thermal equilibrium
part ρ = ρth + ρ̄, Trρ̄ = 0 and introducing the superoperators
F0 = −i[H0, ·] + D, P = i[P, ·], H1 = i[H1, ·], the homoge-
neous Eq. (3) is rewritten as an inhomogeneous generalized
spectral problem,

(F0 − P − ζH1)ρ̄ = Pρth, (6)

where ζ plays the role of a spectral parameter and the solution
ρ̄ belongs to the subspace of traceless operators.

Assuming the validity of Eq. (4) for any real value of ζ , the
superoperator F0 − P − ζH1 is nondegenerate and hence in-
vertible. Then the unique solution to Eq. (6) is ρ̄ = G(ζ )Pρth,
where the superoperator G(ζ ) must satisfy the equation

(F0 − P − ζH1)G(ζ ) = 1, (7)

with the unit superoperator in the right-hand side. The super-
operator G(ζ ) is independent of the thermal equilibrium, acts
in the subspace of traceless operators, and plays the role of the

Green’s function of the inhomogeneous spectral problem (6).
We call the superoperator G(ζ ) the driven spectral Green’s
function for Eqs. (1) and (5). By virtue of the previous equa-
tions, the steady state is written as

ρ = [1 + X (ζ )]ρth, X (ζ ) = G(ζ )P . (8)

Equation (7) can be rewritten in the form

[1 − G0P]G(ζ ) = G0(ζ ), (9)

where the superoperator G0(ζ ) must satisfy the equation

(F0 − ζH1)G0(ζ ) = 1. (10)

Indeed, multiplying both sides of Eq. (9) by the invertible
superoperator F0 − ζH1, we obtain Eq. (7). Equation (10)
uniquely defines the superoperator G0(ζ ) that is independent
of the driving part P of the Hamiltonian. We will call the
superoperator G0(ζ ) the nondriven spectral Green’s function.
Using Eq. (9), the solution to Eq. (6) becomes ρ̄ = X (ζ )ρth =
[1 − G0(ζ )P]−1G0(ζ )Pρth. Applying the universal operator
relation 1 + (1 − Y )−1Y = (1 − Y )−1, we obtain then for the
steady state,

[1 − X0(ζ )]ρ = ρth, X0(ζ ) = G0(ζ )P . (11)

The dual Eqs. (8) and (11) provide compact formulas for the
steady state ρ of the master Eq. (1) as a linear transformation
of the thermal equilibrium ρth defined by the product of the
driving superoperator P and the driven and nondriven spectral
Green’s functions G, G0 determined by Eqs. (7) and (10) and
connected via Eq. (9).

The superoperator F0 − P − ζH1 of Eq. (7) linearly de-
pends on ζ , hence the driven Green’s function G(ζ ) is
rationally extendable into the complex plane of ζ ,

G(ζ ) = G (0) +
m∑

r=1

(ζ − ζr )−1G (r). (12)

Here the poles ζ = ζr and the residues G (r) are given by
(suitably normalized) solutions to the homogeneous driven
spectral problem (F0 − P − ζrH1)G (r) = 0. The superopera-
tor F0 − P − ζH1 is real and nondegenerate for real ζ , so the
poles have nonzero imaginary parts and exist in complex con-
jugate pairs. By Eq. (8), the superoperator X (ζ ) and the steady
state have rational expansions with the same poles. Similarly,
the nondriven Green’s function has poles and residues defined
by the nondriven Eq. (10).

Equations (7) and (10) can be considered to be a Liouville
space extension of the spectral Green’s function formalism
in Hilbert space [10–12]. There are noteworthy analogies to
quantum field theory. The real parts of the poles ζ = ζr of the
superoperator G(ζ ) in Eq. (12) play the roles of the elementary
excitation energies. Equation (9) is a copy of the Dyson equa-
tion with the superoperators G0, G, and P playing the roles of
the bare and dressed propagators and the self-energy [7–9].

The advantage of the method introduced in this section
is that the use of Eqs. (7) and (8) is generally much less
computationally costly than calculating the steady state as the
dynamic limit or an element of the zero eigenspace by Eq. (3).
Indeed, the former requires only an operator inversion, while
the latter needs either calculation of an operator exponent or
an operator diagonalization. In addition, the knowledge of the
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poles and residues of the rational structure (12) and Eq. (8)
can be used to evaluate the steady state once for all values of
the spectral parameter, thus justifying the importance of the
method for spectroscopy. At the poles ζ = ζr , the superop-
erator X (ζ ) becomes infinite. Hence, the real values of the
spectral parameter closest to the poles, ζ ∼ Re ζr , define the
spectral peaks, i.e., the physical regions where the maximal
response of the system to the driving should be expected.
The imaginary parts Im ζr give the Lorentzian widths of the
spectral peaks. Furthermore, Eqs. (8) and (11) imply that the
superoperators 1 + X (ζ ) and 1 − X0(ζ ) are inverse to each
other, and so X (ζ ) and X0(ζ ) commute for all ζ and are di-
agonalized in the same basis. Equation (11) admits the formal
expansion (convergent for X0 close to nilpotent)

ρ = [
1 + X0(ζ ) + X 2

0 (ζ ) + · · · ]ρth, (13)

providing the zero, linear, quadratic, etc. responses of the
steady state to the driving. It follows from Eq. (13) that
the poles of the nondriven Green’s function are also poles
of the driven Green’s function. Equation (11) implies that
the latter has extra poles defined by the scalar equation
det [1 − X0(ζ )] = 0 extracting those values of ζ where the
superoperator X0(ζ ) has a nontrivial fixed point (an eigenop-
erator with the unit eigenvalue) X0(ζ )ρ = ρ.

The spectral Green’s functions we introduced in the fre-
quency domain are closely related to the time-domain Green’s
functions [7–9]. In fact, in the case where the superoperators
F0, H1 commute, [F0,H1] = 0 (that is the case most impor-
tant for applications), the nondriven spectral Green’s function
G0(ζ ) can be written as a generalized Fourier transform,

G0(ζ ) = −
∫ +∞

−∞
Ḡ0(t )e−ζH1t dt, (14)

where Ḡ0(t ) is the Green’s function of the inhomogeneous
nondriven dynamical problem for ζ = 0,

ρ̇ = F0ρ + f . (15)

Indeed, for any bounded inhomogeneity f , the bounded solu-
tion to Eq. (15) is written as

ρ(t ) =
∫ +∞

−∞
Ḡ0(t − t ′) f (t ′) dt ′,

Ḡ0(t ) = eF0t , t � 0; Ḡ0(t ) = 0, t < 0.

We then have

−
∫ +∞

−∞
Ḡ0(t )e−ζH1t dt = −

∫ +∞

0
e(F0−ζH1 )t dt

= (F0 − ζH1)−1 = G0(ζ ).

This implies that the magnitude −G0(ζ )ρ̄(0) describes the
generalized spectrum of the free thermal decay of the traceless
part of an initial state ρ(0). The superoperator Ḡ0(t − t ′) of
Eq. (14) plays the role of the retarded Green’s function that
describes the free irreversible decay of correlations between
the initial state and the thermal equilibrium.

The polynomial resolution (“renormalization”) of the per-
turbation series of Eq. (13) as well as the important links of the
spectral Green’s functions to the projection methods [15–18]
are given in Appendix A.

III. APPLICATION TO ENSEMBLE OF TWO-LEVEL
SYSTEMS

We now illustrate the method of spectral Green’s functions
by its application to a driven dissipative ensemble of corre-
lated two-level quantum systems—the generic model system
to study collective phenomena in quantum optics, magnetism,
and quantum information [19–21].

The model Hamiltonian that we initially consider is built
of one irradiated subsystem (called “active”) described by
the spin-1/2 angular momentum S and N nonirradiated sub-
systems (that we call “passive”) characterized by spin-1/2
angular momenta I(k), 1 � k � N . In the rotating wave ap-
proximation, we have (in frequency units)

H = ω1Sx + �Sz + ωI Iz + HIS,

HIS = 1

2

N∑
k=1

[
AkI (k)

+ + A∗
k I (k)

−
]
Sz. (16)

It is assumed that the active and passive level separation
frequencies satisfy the condition ωS � ωI and the effective
irradiation acts along the x axis orthogonal to the quantiza-
tion z axis and has the strength ω1 and frequency ω0 � ωI .
Then, � = ωS − ω0 characterizes the offset of the irradiation
frequency from the level separation frequency of the active
subsystem, while the level separation frequency ωI of the
passive subsystems remains unchanged. The term HIS de-
scribes the interactions of the passive subsystems with the
active subsystem that take into account single-quantum pas-
sive spin coherences I (k)

± = I (k)
x + iI (k)

y and the active-passive
interaction strengths Ak . This term is the only coherent term
of the dipole-dipole interactions that commutes with Sz and is
preserved in the rotating wave approximation. By a suitable
rotation of the transverse spin components, I (k)

± → I (k)
± e±iφk ,

we can always achieve that the interaction strengths Ak coin-
cide with their absolute values. We can then write

2HIS = A(V+ + V−)Sz, A =
∑

k

|Ak|/N,

V± =
∑

k

akI (k)
± , ak = |Ak|/A, (17)

where A is the average absolute value of the active-passive
interaction strengths and the factors ak � 0 characterize the
contributions of the passive subsystems to the active-passive
interactions.

To describe the dissipation, we assume that the spin inter-
action strengths |Ak| 	 ωI,S are much smaller than the level
separation frequencies. Then the thermal equilibrium is well
described by the Boltzmann distribution of the energies along
the quantization axis,

ρth = Z−1 exp [−β(ωSSz + ωI Iz )]

=
(

1

2
− pSSz

) N∏
k=1

(
1

2
− pI I

(k)
z

)
,

pS = tanh
βωS

2
, pI = tanh

βωI

2
, β = h̄/kT .

In the case where the active subsystem is “cold” and the pas-
sive subsystems are “hot” with respect to the thermal energy,
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h̄ωI 	 kT 	 h̄ωS , the thermal equilibrium is approximated
as ρth = 2−N (1/2 − Sz ) where the active subsystem is in the
ground state pS ∼ 1, while the passive subsystems have all
equally populated levels pI ∼ 0. The typical Lindblad dissi-
pator preserves the thermal equilibrium and has the form

D = DS + DI , DS = 	1L(S−) + 2	2L(Sz ),

DI = γ1

2
[L(V+) + L(V−)] + 2γ2L(Iz ). (18)

Here, 	1, 	2, γ1, γ2 > 0 are the effective active and passive
longitudinal and transverse relaxation rates, and V± are di-
mensionless jump operators given by Eq. (17). We also take
into account the passive transverse relaxation in the simplest
collective average form.

The chosen model has two important applications. In quan-
tum optics, it describes an optically irradiated system of unlike
two-level atoms, where the active subsystem represents the
pumped (solid atomic or molecular) gain medium, while the
passive ensemble plays the role of the population inverted
amplifier [22,23]. In high-field solid-state dynamic nuclear
polarization, it describes a microwave irradiated electron-
nuclear paramagnetic system, where the active subsystem is
formed by a microwave irradiated unpaired electron spin (of
a free radical or paramagnetic ion), while the passive subsys-
tems belong to nuclear spins in the proximity of the electron
[24,25]. The driving is caused by a time-periodic (optical or
microwave) excitation and the rotating wave approximation
is applied. It is assumed that the passive dissipation is dom-
inated by the collective relaxation mechanisms [23,26–28].
It is important for our study that in both cases, the passive
longitudinal relaxation is relatively slow, so that the following
condition is well satisfied:

γ1 	 	 = γ2 + 	1

2
+ 	2. (19)

In optics, this is because ωI 	 ωS and so γ1 ∼ (ωI/ωS )3	1,
as follows from the spontaneous emission theory [22,23]. In
dynamic nuclear polarization, Eq. (19) is satisfied in the high-
field low-temperature limit where γ1 ∼ (A/ωI )2(1 − p2

S )	1,
in accordance with the theory of nuclear relaxation by para-
magnetic impurities [27,28]. Hence, condition (19) holds
independently of the transverse relaxation rates γ2, 	2.

Our next step is to consider the “solid effect” resonance,
where the active frequency offset is comparable to the pas-
sive frequency, � ∼ ωI . In this case, the active spin flips
are “synchronized” with the passive spin flops. Using the
adiabatic elimination method [15,17], the Hamiltonian (17) is
transformed to a two-spin flip-flop Hamiltonian,

Heff = ζSz + 
(V+S− + V−S+), 
 = ω1A

4ωI
. (20)

Here, ζ is the resonance offset ζ = � − ωI . The dissipator
(18) remains unchanged. Similarly, the case � ∼ −ωI leads
to an effective two-spin flip-flip Hamiltonian [15,17].

The master equation with the Hamiltonian and dissipative
parts defined by Eqs. (20) and (18) preserves the subspace �0

of zero-quantum coherences, [Iz + Sz,�0] = 0. Since ρth ∈
�0, the driven dynamics and the steady state are closed
in �0. The dim �0 = [2(N + 1)]!/[(N + 1)!]2 exponentially

grows with N . The typical volume of computer memory limits
the feasibly fast spectral simulation within the full master
equation to N < 10, which is far from a physically realistic
assumption. Remarkably, the method we introduced in the
previous section enables one to extend the feasible number
of the passive subsystems up to the physically realistic limit
of an arbitrarily large N .

In the notations of the previous section,

H0 = 0, H1 = Sz,

P = 
(P+ + P−), P± = V∓S±. (21)

The density operator admits the decomposition

ρ = ρ (0) + ρ (1), ρ (1) = ρ−S+ + ρ+S−,

ρ (0) = ρ0(1/2 − Sz ) + 2ρzSz, (22)

with ρ0,z,± containing only the passive spin components. We
have ρ (0,1) ∈ �(0,1), ρth ∈ �(0) where the subspaces �(0,1)

built of zero-quantum and single-quantum coherences of the
active subsystem satisfy the conditions of the projection
method described in Appendix A. Equations (A3) and (A4)
imply that the projections ρ (0,1) of the steady state are found
independently from the equations[

1 − X 2
0 (ζ )

]
ρ (0) = ρth, ρ (1) = X0(ζ )ρ (0). (23)

Applying, to both sides of the first of Eqs. (23), the superop-
erator F0 − ζH1, and using Eq. (10) we see that the first of
Eqs. (23) is equivalent to the equation

[F0 − ζH1 − PG0(ζ )P]ρ (0) = 0, Trρ (0) = 1. (24)

For any operator ρ (0) ∈ �(0), we obtain

[F0 − ζH1]ρ (0) = D(1)ρ (0) ∈ �(0),

P±, ρ (0) = ρ ′
∓S± ∈ �(1),

with ρ ′
± containing only passive spin components and D(1)

denoting the longitudinal part of the dissipator in Eq. (18).
Indeed, ρ (0) commutes with both H0, H1 and S±Sz = ∓S±/2.
For any operators ρ±, we have

[F0 − ζH1](ρ∓S±) = [
D(1)

I ∓ iζ − 	
]
ρ∓S± ∈ �(1),

where D(1)
I is the longitudinal part of the passive dissipator in

Eq. (18) and 	 is defined in Eq. (19). The latter implies that
the passive longitudinal relaxation makes a negligible contri-
bution to the dynamics in the subspace �(1). As a result, by
virtue of Eq. (10) that defines the nondriven Green’s function,

G0(ζ )(ρ∓S±) = [F0 − ζH1]−1(ρ∓S±)

= −(	 ± iζ )−1ρ∓S±.

Since [P±, ρ∓S±] = 0, we obtain

PG0(ζ )Pρ (0) = 
2

(
[P−, [P+, ρ (0)]]

	 + iζ
+ [P+, [P−, ρ (0)]]

	 − iζ

)

= − 
2

	2+ζ 2

(
2	L(P+ + P−)ρ (0)−iζ [P0, ρ

(0)]
)
,

P0 = [P+, P−].
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Equation (24) can be rewritten then as

− i[H̄0, ρ
(0)] + D0ρ

(0) = 0, Trρ (0) = 1,

H̄0 = f ωP0

1 + f 2
, D0 = γ −1

1 D(1) + 2ωL(P+ + P−)

1 + f 2
,

ω = 
2/γ1	, f = ζ/	. (25)

It is seen that the right-hand sides of Eqs. (25) are fully
determined by the dimensionless magnitudes ak that partici-
pate in the expressions for V± and P± in Eqs. (17) and (21)
and by three dimensionless physical parameters: the effective
spectral parameter f , the effective irradiation strength ω, and
the ratio γ = 	1/γ1 of the longitudinal relaxation rates of the
passive and active subsystems. Note, also, that L(P+ + P−) =
L(P+) + L(P−).

It follows from Eq. (25) that in the limit of a small driving
ω → 0 or large values of the spectral parameter f → ±∞, the
effect of the driving is quenched, so the thermal equilibrium is
preserved. In terms of the decomposition defined by Eqs. (22),
we have

ρz = 0, ρ0 = 2−N ,

and no polarization of the passive ensemble is created. In the
physically reasonable limit γ = 	1/γ1 → ∞, large driving
values ω → ∞, and small values of the spectral parameter
f → 0, the steady state is approximated by the operator that
annihilates the active longitudinal dissipation and commutes
with both P±. In terms of Eqs. (22), this gives

ρz = 0, ρ0 =
∏

k

(
1

2
− I (k)

z

)
,

which corresponds to the fully polarized (population inverted)
state of the passive ensemble,

〈Iz〉 = Tr

(
ρ0

∑
k

I (k)
z

)
= −N/2. (26)

The intermediate values of the spectral parameter generate an
“absorption line” 〈Iz〉(ζ ) that is zero at ζ → ∞ and has a peak
of the maximal polarization (26) at ζ = 0.

The shape and the width of the absorption line can be
estimated in the “mean-field” approximation obtained by set-
ting the magnitudes ak in Eq. (17) to all be equal, ak = 1.
In Eqs. (21) and (25), we then obtain V± = I±, the passive
subsystems become identical, and the dynamics is fully de-
fined by the components of the total passive spin. This case is
simplified by representation of the passive ensemble by a sin-
gle angular momentum I with the spin quantum number I =
N/2 similar to the Dicke model [26,29–32]. The correspond-
ing occupation numbers are defined as n = (n+ − n−)/2 =
−I, −I + 1, . . . , I , where n± are the numbers of the passive
subsystems respectively in the excited and ground state. In this
ansatz [33],

Iz =
I∑

n=−I

n|n〉〈n|, I+ =
I∑

n=−I

√
λn |n〉〈n − 1|,

I− = I†
+, λn = (I − n + 1)(I + n). (27)

The operators P0 and ρ0, ρz are diagonal in the basis gener-
ated by the occupation numbers, so the contribution of the
Hamiltonian part of Eq. (25) becomes zero. For any diagonal
operator ρ̃ = ∑

n ρ̃n|n〉〈n|, we obtain, by virtue of Eq. (27),

L(I+)ρ̃ =
∑

n

λn+1ρ̃n(|n + 1〉〈n + 1| − |n〉〈n|),

L(I−)ρ̃ =
∑

n

λnρ̃n(|n − 1〉〈n − 1| − |n〉〈n|).

In terms of Eq. (22) and the new notations, Eq. (25) is
equivalent to the system

[ρ0, I+] = η(I+ρz + ρzI+ − ρ0I+), Trρ0 = 1,

2γ ρz = [L(I−) + L(I+)]ρz + I−[I+, ρ0],

γ = 	1

γ1
, η = η0

1 + ζ 2/	2
, η0 = 4
2

γ1	
. (28)

From the point of view of applications, the limit of large active
or small passive longitudinal relaxation γ → ∞ is particu-
larly important. In this limit, Eq. (28) enables the analytical
solution valid for any N (in the basis generated by the occu-
pation numbers, denoting η̄ = 1 + η),

ρz = 0, ρ0 = ηη̄I

η̄N+1 − 1

I∑
n=−I

η̄−n|n〉〈n|. (29)

The second of Eqs. (23) then gives

ρ+ = i


	 − iζ

ηη̄I

η̄N+1 − 1

I∑
n=−I

√
λn η̄−n|n〉〈n − 1|,

ρ− = ρ
†
+, λn = (I − n + 1)(I + n). (30)

The spectral character of the steady state is determined by
the poles of the driven Green’s function that annihilate the
denominators in Eqs. (29) and (30),

ζr : 	 ± iζ = 0, η̄N+1 − 1 = 0 (η �= 0).

We have

η̄ = exp

(
2imπ

N + 1

)
, m = 1, 2, . . . , N.

This gives N + 1 pairs of poles that are exactly calculated as
(m = 1, . . . , N)

ζ0 = ±i	, ζm = ±i	

√
1 + η0

2
− i

η0

2
cot

πm

N + 1
. (31)

The first pair ζ0 is the poles of the nondriven Green’s function.
Equation (29) can be used to estimate two important

steady-state characteristics of the driven open quantum sys-
tem, i.e., the polarization and self-correlation of the total z
component of the passive spin,

〈Iz〉 = Tr (ρ0Iz ),
〈
I2
z

〉 = Tr
(
ρ0I2

z

)
.

By virtue of Eq. (29), proceeding to continuous integral ap-
proximations, we obtain the expressions valid for arbitrarily
large values of N ,

2〈Iz〉/N = λ−1 − coth λ, λ = I ln η̄,

4
〈
I2
z

〉
/N2 = 1 + 2λ−2 − 2λ−1coth λ. (32)
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FIG. 1. (a) Normalized polarization (blue) and self-correlation
(red) of the total passive spin z component as a function of the
spectral parameter ζ for N = 103 and η0 = 0.4, 	 = 105 rad/s.
(b) Poles of the “absorption line” on the complex plane for the
same parameters as in (a). (c) Total polarization ξ〈Iz〉 of the passive
ensemble at ζ = 0 as a function of the relative concentration ξ of
the active subsystems for different numbers N for (all in rad/s)
	2 = 106ξ 2, 
 = 10, γ1 = 10−2, γ2 = 103. (d) Polarization of the
active subsystem (black) and normalized polarization of the passive
ensemble (blue) in the limit η0 → ∞ as a function of the relative
relaxation parameter γ for ζ = 0, N = 106.

Numerical results by Eqs. (32) for a set of system pa-
rameters are plotted in Fig. 1(a). It is evident that at
ζ ∼ 0, the passive ensemble is almost fully polarized (pop-
ulation inverted) with 〈Iz〉 ∼ −N/2 that is accompanied with
the creation of correlations between the passive subsystems.
According to Eqs. (31), the poles of the driven Green’s func-
tion are distributed on the complex plane symmetrically and
densely around the origin ζ = 0 [see Fig. 1(b)], leading to a
single “absorption line” composed of 2N Lorentzian peaks at
ζ = Re ζm with widths |Im ζm|. It follows from this analysis
that for large values of η0, the spectral width grows linearly
with 
, exactly as for a single passive subsystem N = 1, while
it grows nonlinearly as ∼√

N with the number of passive
subsystems. Indeed, for large N , we have max |ζm| = |ζ1| ∼
	

√
η0(N + 1)/2π .

To illustrate the applicability of the method to optimization
problems, consider now an ensemble of many active sub-
systems, each “serving” N passive subsystems. Physically,
the active transverse relaxation rate 	2 that influences the
passive polarization is caused by active spin-spin interactions
and grows quadratically with the spatial concentration c of
active subsystems. We can write 	2 = 	0

2ξ
2, where ξ = c0/c

is the dimensionless relative concentration with respect to
some reference concentration c0, and 	0

2 is the rate for c = c0.
For 	2 � γ2 + 	1/2, the simulation by the first of Eqs. (32)

implies that the total peak polarization of the passive ensemble
ξ 〈Iz〉 at ζ = 0 has an active concentration optimum whose
location and peak value both increase with N ; see Fig. 1(c).

Equations (28) enable us to also analyze the effect of the
relative longitudinal relaxation described by the parameter
γ . It follows from these equations that the active and pas-
sive polarizations are connected as 〈Sz〉 + 〈Iz〉/γ + 1/2 = 0.
Restricting to the limit η0 → ∞, Eqs. (28) are resolved by
a simple recurrence in the basis generated by the occupation
numbers. As a result, for large N , the peak ζ = 0 dependence
of the active and passive polarizations on the relative relax-
ation parameter γ is well described as

〈Sz〉 = 0, 〈Iz〉 = −γ /2, γ < N,

〈Sz〉 = (γ /N − 1)/2, 〈Iz〉 = −N/2, γ > N. (33)

For N � 1, the value γ /N = 1 can be treated then as the
critical value for the second-order (continuous) phase transi-
tion between regimes dependent on and independent of the
longitudinal relaxation: for γ < N , the active subsystem is
fully saturated, while for γ > N , the passive ensemble is
fully polarized; see Fig. 1(d). This links our model to phase
transitions predicted in the Dicke model [31,32].

The details of the derivation of Eqs. (32) and (33) are
given in Appendix B. There we also briefly discuss the general
situation where the relaxation is dominated by individual spin
mechanisms giving links to the kinetic Monte Carlo algorithm
[1,17,18].

IV. CONCLUSION

We have proposed a method of simulation of driven Marko-
vian open quantum dynamics based on Green’s functions in a
spectral frequency domain. We demonstrated that the method
is computationally highly efficient and opens up further ways
in the simulation, spectroscopy, and optimization of many-
body quantum dynamics in the realistically large-scale limit.
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APPENDIX A: “RENORMALIZATION”
OF PERTURBATION SERIES AND LINKS

TO PROJECTION METHODS

Since the superoperator X0(ζ ) satisfies its own characteris-
tic equation, π0(X0(ζ )) = 0, Eq. (11) of the main text has the
exact solution, polynomial in X0(ζ ),

ρ = π̄ (X0(ζ ))ρth, π̄ (x) = π0(1) − π0(x)

π0(1)(1 − x)
, (A1)

where π0(x) is the characteristic polynomial of X0(ζ ). Indeed,
we have

(1 − X0)ρ = (1 − X0)π̄ (X0)ρth

= [1 − π0(X0)/π0(1)]ρth = ρth.

We have X0 = G0P , where P is proportional to the commu-
tation superoperator with the driving P. Hence, all operators
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commuting with P belong to the zero subspace V0 of the super-
operator X0. It means that the latter is degenerate, having the
zero eigenvalue of multiplicity m = dimV0 � N0, where N0 is
the dimension of the Hilbert space of the quantum problem.
Indeed, all operators diagonal in the basis where P is diagonal
belong to V0. The characteristic polynomial of X0 then has the
form

π0(x) = xmπ ′(x),

where π ′(x) is a polynomial with nonzero roots. Equation
(A1), then, implies

π̄ (x) = 1 + x + · · · + xm−1 + xmπ̄ ′(x),

where π̄ ′(x) is a polynomial. It means that Eq. (A1) describes
a renormalization of the major coefficients of the generally
divergent infinite perturbation series of Eq. (13) of the main
text in such a way that the series is truncated to an always
convergent polynomial expression.

Suppose (that is typically the case) that the Liouville space
� = �(0) + �(1) is decomposed into two components that are
invariant in the nondriven system and coupled by the driving,

(F0 − ζH1)�(0,1) ⊂ �(0,1), P�(0,1) ⊂ �(1,0),

with ρth ∈ �(0). We obtain, for the dynamics of the density
operator projections ρ (0,1) ∈ �(0,1),

ρ̇ (0) = A(0)ρ (0) − Pρ (1), ρ̇ (1) = A(1)ρ (1) − Pρ (0),

where A(0,1) are the restrictions of the nondriven superopera-
tor to the subspaces �(0,1),

A(s) = (F0 − ζH1)|�(s) , s = 0, 1.

If the nondriven dynamics in the subspace �(1) is much faster
than its exchange with the subspace �(0),

|eigA(1)| 	 ‖P‖, (A2)

then the subspace �(1) can be adiabatically eliminated. The
dynamics in the subspace �(1) is well approximated by the
quasiequilibrium,

ρ (1) = (A(1) )−1Pρ (0) = G0(ζ )Pρ (0).

The dynamics of the projection to the subspace �(0) is well
described then by the equation [17,18]

ρ̇ (0) = [
A(0) − PG0(ζ )P

]
ρ (0)

= A(0)
[
1 − X 2

0 (ζ )
]
ρ (0). (A3)

The steady-state equation (1 − X0(ζ ))ρ = ρth implies that the
steady-state projections ρ (0,1) satisfy the equations[

1 − X 2
0 (ζ )

]
ρ (0) = ρth, ρ (1) = X0(ζ )ρ (0), (A4)

regardless of whether or not the adiabaticity condition (A2) is
fulfilled.

APPENDIX B: MATHEMATICS OF MODEL EXAMPLE

Equations (32) of the main text describing the polarization
and self-correlation of the total z component of the passive

spin are obtain by proceeding from the discrete set of the occu-
pation numbers to the continuous interval x = n/I ∈ [−1, 1]
and replacing discrete summations over n by integrals with
respect to x using the smallness of the discrete step 1/I in the
interval [−1, 1] [26]. For example,

〈Iz〉 = Tr (ρ0Iz ) = c
I∑

n=−I

nη̄−n = cI2
∫ 1

−1
xe−λx dx

= 2I2

λ2
(sinh λ − λ cosh λ), λ = I ln η̄,

c =
(

I∑
n=−1

η̄−n

)−1

=
(

I
∫ 1

−1
e−λx dx

)−1

= 2I

λ
sinh λ,

leading to 〈Iz〉 = I (λ−1 − coth λ). Similarly, the second mo-
ment 〈I2

z 〉 is calculated.
To obtain Eqs. (33) of the main text, we denote

ρ0 =
I∑

n=−I

un|n〉〈n|, ρz =
I∑

n=−I

vn|n〉〈n|.

Using Eqs. (27) and (28), we come to the decoupled recur-
rence,

(
2γ + λn

λn+1
+ 1

)
vn =

(
λn

λn+1
+ 1

)
vn−1,

n = −I + 1, . . . , I − 1,(
2γ

N
+ 1

)
vI = vI−1,

un+1 = vn+1 + vn, n = −I, . . . , I − 1,

u−I + u−I+1 + · · · + uI = 1,

(B1)

valid in the limit η → ∞. Solving Eqs. (B1) numerically for
large N , we obtain Fig. 1(d) and Eqs. (33) of the main text.

Note, finally, that Eqs. (25) are of the Lindblad form. They
can be treated by unraveling in Hilbert space using the kinetic
Monte Carlo method [1]. Here only four jump operators V±,
P± are involved in the computation scheme. In the case where
the transverse relaxation of the passive ensemble is dominated
by the individual dephasing mechanism 2γ2

∑
k L(I (k)

z ) with
the strong rate γ2 � γ1, the dynamics remains closed in the
subspace spanned by the z components I (k)

z of the passive
spins. In this subspace the collective Lindblad terms L(V±),
L(P±) are split into sums of individual terms

∑
k L(I (k)

± ),∑
k L(I (k)

∓ S±). In the latter case, the kinetic Monte Carlo
scheme is reduced to sign permutations in a subsequence of
N + 1 symbols. This extends the feasible number of passive
subsystems from N ∼ 10 to N ∼ 103; see Refs. [17,18] for
details.
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