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a b s t r a c t 

A better understanding of early brain changes that precede loss of independence in diseases like Alzheimer’s dis- 
ease (AD) is critical for development of disease-modifying therapies. Quantitative MRI, such as T2 relaxometry, 
can identify microstructural changes relevant to early stages of pathology. Recent evidence suggests heterogene- 
ity of T2 may be a more informative MRI measure of early pathology than absolute T2. Here we test whether T2 
markers of brain integrity precede the volume changes we know are present in established AD and whether such 
changes are most marked in medial temporal lobe (MTL) subfields known to be most affected early in AD. We 
show that T2 heterogeneity was greater in people with mild cognitive impairment (MCI; n = 49) compared to 
healthy older controls ( n = 99) in all MTL subfields, but this increase was greatest in MTL cortices, and smallest 
in dentate gyrus. This reflects the spatio-temporal progression of neurodegeneration in AD. T2 heterogeneity in 
CA1-3 and entorhinal cortex and volume of entorhinal cortex showed some ability to predict cognitive decline, 
where absolute T2 could not, however further studies are required to verify this result. Increases in T2 hetero- 
geneity in MTL cortices may reflect localised pathological change and may present as one of the earliest detectible 
brain changes prior to atrophy. Finally, we describe a mechanism by which memory, as measured by accuracy 
and reaction time on a paired associate learning task, deteriorates with age. Age-related memory deficits were 
explained in part by lower subfield volumes, which in turn were directly associated with greater T2 heterogene- 
ity. We propose that tissue with high T2 heterogeneity represents extant tissue at risk of permanent damage but 
with the potential for therapeutic rescue. This has implications for early detection of neurodegenerative diseases 
and the study of brain-behaviour relationships. 
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. Introduction 

Accurate early diagnosis of Alzheimer’s disease (AD) is likely a neces-
ity for development of disease-modifying therapies ( Cummings et al.,
014 ; Alzheimer’s Association, 2015 ). Manifestation of cognitive symp-
oms, although required for clinical diagnosis, is a relatively late stage
n the pathological process ( Jack et al., 2010 ). Thus, clinical interven-
ions after the appearance of cognitive deficits may be too late to restore
rain health. A better understanding of the brain changes that precede
oss of daily independence will help design early markers. 
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Structural and quantitative MRI show promise in their ability to iden-
ify changes in the brain that indicate early Alzheimer’s pathology. Iden-
ifying which people with mild cognitive impairment (MCI) will progress
o AD dementia has been shown to be possible by measuring the vol-
me of subfields within the medial temporal lobe (MTL) ( Chételat et al.,
008 ; de Flores et al., 2015a , 2015b ; deToledo-Morrell et al., 2004 ;
postolova et al., 2006 , 2010 ). In these groups, large changes in vol-
me tend to indicate significant, and likely irreversible, atrophy. Smaller
cale microstructural changes that occur prior to volume loss could help
o identify patients in which such a treatment can still rescue damaged

rain tissue. 
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Recently, we demonstrated that the distribution width of T2 relax-
tion time (T2 heterogeneity) in the hippocampus predicted cognitive
ecline over a year in a group of people with MCI ( Wearn et al., 2020a ).
e propose that T2 distribution widens because of different patholog-

cal hallmarks having opposing effects on T2, causing increased ap-
arent heterogeneity without any change in absolute T2 (distribution
idpoint). For example, non-haem iron, oligomers and plaques of 𝛽-

myloid (A 𝛽), and neurofibrillary tangles (NFTs) which build up around
he MTL in early Alzheimer’s disease ( Braak and Braak, 1991 , 1995 ;
elkoe and Hardy, 2016 ; Smith et al., 2010 ) all cause T2 to decrease
 Meadowcroft et al., 2015 ; House et al., 2008 ). In contrast, tissue alter-
tions preceding necrosis cause cell membrane breakdown and oedema
hich increase the motility of water within a given region, subsequently

ausing T2 to increase ( Laakso et al., 1996 ; Symms et al., 2004 ). Gliosis,
nother hallmark of brain injury that commonly follows neurodegenera-
ion is also indicated by increased T2 relaxation time ( Briellmann et al.,
002 ; Ingelsson et al., 2004 ; Lee et al., 2013 ). These opposing factors ne-
essitate examination of the heterogeneity of T2, rather than midpoint,
or more accurate identification of microstructural impairment. This, we
ropose, is a reason for the lack of clear consensus from previous stud-
es of T2 in AD, which exclusively look at absolute T2 (see Tang et al.,
018 for a review). 

Our previous research focused on T2 changes in the hippocampus
s a whole ( Wearn et al., 2020a ). However, the hippocampus is not a
niform structure, rather, it comprises cytoarchitectonic subfields with
istinct cellular structure, connectivity, functionality, and disease sus-
eptibility ( Duvernoy et al., 2013 ). NFTs first build up in the transen-
orhinal region of the MTL ( Braak and Braak, 1995 ), which roughly cor-
esponds to Brodmann area 35 (BA35), but also includes some of the
ateral portion of entorhinal cortex (EC) ( Xie et al., 2018 ). They then
pread through EC, then to CA1, subiculum, other CA regions and fi-
ally dentate gyrus (DG) ( Braak and Braak, 1995 , 1991 ; Fukutani et al.,
995 , 2000 ). Many of these changes occur even before symptom onset
 Braak and Braak, 1991 ; Jack et al., 2003 ; Fukutani et al., 1995 ), high-
ighting their potential as prodromal markers. Reflective of histopathol-
gy, hippocampal volume loss due to AD is widespread across the hip-
ocampus but is generally non-uniform across subfields, with most atro-
hy seen in CA1 ( Adler et al., 2018 ; La Joie et al., 2013 ; Mueller et al.,
010 ; Wolk et al., 2017 ; Kerchner et al., 2012 ; Sarazin et al., 2010 ;
risoni et al., 2008 , 2006 ). Volume loss is less severe in the hippocam-
us of people with MCI, often restricted to CA1 and, in many cases,
he subiculum ( Pluta et al., 2012 ; Mueller et al., 2010 ; Tang et al.,
014 ), with some evidence for a relative sparing of the stratum radia-
um/lacunosum/moleculare ( Su et al., 2018 ). This atrophy pattern has
ven been shown in people who subjectively report cognitive decline
ut who have normal cognition as measured by standard cognitive tests
 Perrotin et al., 2015 ). For a review see de Flores et al. (2015b) . 

Literature on quantitative T2 in MTL subfields in the context of AD is
imited to very few ex vivo studies ( Huesgen et al., 1993 ; Antharam et al.,
012 ). As with the rest of the literature, these papers are focused on ab-
olute T2. Antharam et al. (2012) do note that the distribution width
f T2 within the main hippocampal subfields (CA4-DG and CA1–3) is
ider in slices from AD patients than age-matched controls. However,

hey do not perform detailed analyses of the differences of distribu-
ion width between subfields. In a publication of pilot data from our
roup, Knight et al. (2019) concluded that T2 heterogeneity in MTL
ubfields can improve accuracy in distinguishing between healthy con-
rols, those with MCI and Alzheimer’s disease patients. We know of no
ther studies that have explored quantitative T2 in subfields of the MTL
n vivo . 

The analyses in this paper are presented in two parts. In the first part,
e test whether differences in T2 heterogeneity between subfields could
istinguish healthy ageing from MCI – important when considering T2
s a clinic tool to guide prognosis in MCI. We also analyse absolute T2
distribution midpoint) to verify that it is heterogeneity and not absolute
alues that shift. Hypotheses: 
2 
1 The effect size of T2 heterogeneity increase in MCI (compared to
healthy controls) will differ by subfield, reflective of the spatio-
temporal progression of neurodegeneration in AD. Accordingly, we
expect to see greatest T2 heterogeneity in MTL cortical regions
(BA35 and EC), followed by CA and SUB regions, and the least
amount of heterogeneity in DG. 

2 T2 heterogeneity in MTL subfields will better predict cognitive de-
cline than in whole hippocampus in people with mild cognitive im-
pairment. 

In the second part, we use path analysis to examine the likely tem-
oral sequence of neuroanatomical and behavioural changes in ageing.
hese are important to understand so that we track the right process at
he right disease stage. Hypotheses: 

1 Greater T2 heterogeneity indicates early damage that will lead to
macroscopic structural change, and therefore will statistically medi-
ate the relationship between age and volume of MTL subfields. 

2 Subfield volume is indicative of macroscopic structural change, and
therefore will mediate the relationship between T2 heterogeneity
and cognitive performance. 

. Material and methods 

The following methods are adapted from those presented by
earn et al. (2020a) . 
The analyses in this paper combine data from two prospective lon-

itudinal studies similar in cohort demographics and study design. No
articipants took part in both studies. Both studies are detailed in the
ollowing section. Where data collected are not identical between co-
orts, we have normalised equivalent metrics within cohort and com-
ined data after normalisation. 

.1. Participants 

Participants fulfilling the Petersen criteria ( Albert et al., 2011 ) for
iagnosis of MCI were recruited to both studies (Study 1: n = 30, Study
: n = 29). Healthy older people (HC), with no history of memory prob-
ems or significant neurological disorders were recruited as controls to
ach study (Study 1: n = 61; Study 2: n = 56). All healthy controls had
ontreal Cognitive Assessment (MoCA) ≥ 26 (study 1) or Addenbrookes
ognitive Examination 3 (ACE-III) ≥ 88 (study 2). 7 participants origi-
ally recruited as healthy controls in study 1 were found to have MoCA
cores of < 26, so were reclassified as MCI (given the high sensitivity
nd specificity of the MoCA for detecting MCI at this threshold; 90%
nd 100%, respectively ( Nasreddine et al., 2005 )). 

Subjects for both studies were recruited from local GP surgeries and
emory clinics in the Bristol area (having received MCI diagnoses or

eported memory problems), Join Dementia Research, Avon and Wilt-
hire Mental Health Partnership’s Everyone Included system, an in-
ouse database of volunteers, replies to poster adverts or through word
f mouth. All patients provided informed written consent prior to testing
s according to the Declaration of Helsinki. Ethical approval was given
y Frenchay NHS Research Ethics Committee. 

The current analyses included all participants who had both volume-
ry and T2 relaxometry data for hippocampal subfields, study 1 n = 91
50 HC, 30 MCI), study 2 n = 66 (49 HC, 19 MCI). See Supplementary
ables 1 and 2 for demographic details of each study. A total of 20 MCI
articipants were followed-up after one-year (10 from each study), rep-
esenting a relatively high dropout rate from the MCI cohort. 

.2. Cognitive testing 

Cognitive function was tested at baseline and follow-up using the
oCA in study 1 and the ACE-III in study 2. 

Participants in both studies carried out the paired associates learning
PAL) task of the CANTAB toolbox which has shown high sensitivity to
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ognitive impairment and daily functioning in dementia ( Égerházi et al.,
007 ). 

.3. Imaging parameters 

Scans for both studies were acquired on a Siemens Magnetom Skyra
T system equipped with a parallel transmit body coil and a 32-channel
ead receiver array coil. The two studies used similar, but slightly dif-
erent scanning protocols. 

.3.1. Study 1 

This protocol has been previously described by Knight et al. (2019) .
he imaging protocol included a 3D T1-weighted whole-brain mag-
etisation prepared rapid acquisition gradient-echo (MPRAGE) and 2D
ulti-contrast multi-spin-echo (CPMG). 

MPRAGE: Coronal, whole-brain, repetition time (TR) 2200 ms, Echo
ime (TE) 2.42 ms, Inversion time (TI) 900 ms, flip angle 9°, acquired
esolution 0.68 × 0.68 × 1.60 mm, acquired matrix size 152 × 320 × 144,
econstructed resolution 0.34 × 0.34 × 1.60 mm (after two-fold inter-
olation in-plane by zero-filling in k-space), reconstructed matrix size
40 × 640 × 144, GRAPPA factor 2. Acquisition time: 5:25 min. 

CPMG: Coronal, TR 4500 ms, TE 12 ms, number of echoes 10, echo
pacing 12 ms, acquired resolution 0.68 × 0.68 × 1.7 mm inclusive of
5% slice gap, acquired matrix size 152 × 320, 34 slices, interleaved
lice order, reconstructed resolution 0.34 × 0.34 × 1.7 mm (after two-
old interpolation in-plane by zero-filling in k -space, and inclusive of
5% slice gap), reconstructed matrix size 540 × 640, 34 slices, GRAPPA
actor 2. Acquisition time: 11:07 min. 

.3.2. Study 2 

This protocol has been previously described by Wearn et al. (2020a) .
The imaging protocol included a 3D T1-weighted whole-brain

PRAGE and 2D multi-contrast turbo spin-echo (TSE). 
MPRAGE: Sagittal, whole-brain, TR 2200 ms, TE 2.28 ms, TI

00 ms, flip angle 9°, FOV 220 × 220 × 179 mm, acquired resolution
.86 × 0.86 × 0.86 mm, acquired matrix size 256 × 256 × 208. Acqui-
ition time: 5:07 min. 

Multi-contrast TSE: Coronal, TR 7500 ms, number of echoes: 3, TEs
f 9.1, 72 & 136 ms, acquired resolution 0.69 × 0.69 × 1.5 mm, recon-
tructed resolution 0.34 × 0.34 × 1.5 mm (after 2-fold interpolation in-
lane by zero-filling in k -space, and inclusive of 15% slice gap), GRAPPA
actor 2, FOV 220 × 220 × 34, acquired matrix size 270 × 320 × 58. Ac-
uisition time: 5:09 min. 

CPMG and TSE scans were not ‘whole-brain’, their coverage only
xtending approx. 1 cm beyond anterior and posterior ends of the hip-
ocampus. These scans were tilted such that the hippocampal body lay
erpendicular to the slice acquisition plane. 

The two distinct methods of measuring quantitative T2 (CPMG vs
SE) will give inherently different values for T2 midpoint and hetero-
eneity between studies (See supplementary information). Relationships
o variables such as age and cognitive score should be similar, given they
re sensitive to the same tissue properties. 

.4. Imaging analyses 

All analyses were performed at CRICBristol in a Linux cluster envi-
onment. All analyses were carried out in single-subject native space. 

CPMG and TSE scans were brain-extracted using FSL’s bet2 on the
rst echo in the series ( Smith, 2002 ). All extracted images were vi-
ually inspected for quality and rerun with different fractional inten-
ity thresholds or gradient parameters where necessary. Fractional in-
ensity threshold was typically set between 0.2 and 0.3. MPRAGE im-
ges were brain-extracted using vbm8bet (in-house script) and bias-field-
orrected using FSL FAST ( Zhang et al., 2001 ). T2 maps were created in
ATLAB from multi-echo sequences by fitting logarithmic-space mono-

xponential decay functions to each voxel series (overall summary of
3 
2 calculation is shown in Knight et al. (2019) ). The first echo of CPMG
as always excluded. A sum-of-echoes image was created in order to
ave one structural image representing the entire multi-echo sequence.
his image was used for segmentation. 

The hippocampus was automatically masked using the Automatic
egmentation of Hippocampal Subfields (ASHS) software package
 Yushkevich et al., 2015 ) (version: rev103, dated 12/06/2014; UPENN
emory centre atlas dated 16/04/2014). This atlas contains a demo-

raphically similar template set to the present studies (healthy older
dults and people with MCI). ASHS has demonstrated high accuracy
hilst minimising subjective rater bias, without the need for group
linding (Example output shown in Fig. 1 ). CA1, CA2 and CA3 were
ooled to create a total “CA ” mask, given the small size of CA2 and
A3. The outermost 1 voxel layer of each subfield was eroded before T2
istograms were calculated, in order to minimise the effects of partial
oluming and extraneous brain areas confounding T2 histogram analy-
es (shown in Fig. 1 ). Pilot data ( Knight et al., 2019 ) show that using this
ethod, extreme T2 values are not located around the outside border

f the subfields, which would indicate strong partial voluming effects.
roded subfield masks were overlaid onto T2 maps, giving a value of T2
or each voxel within each subfield. Depending on subfield shape, 20–
0% of voxels are removed using this method, leaving sufficient num-
ers from which to estimate distribution statistics. 

.5. Modelling T2 heterogeneity 

T2 distribution histograms were modelled as loglogistic distributions
ithin each subfield, as this was found to be the best fitting overall
odel in the whole hippocampus ( Wearn et al., 2020a ). Log-logistic
istribution is defined as: 

 ( 𝑥𝜇, 𝜎) = 

1 
𝜎

1 
𝑥 

exp ( z ) 
[1 + exp ( z ) ] 2 

, 𝑤ℎ𝑒𝑟𝑒 𝑧 = 

log ( 𝑥 ) − 𝜇

𝜎

here 𝜇 and 𝜎 denote the log-median value (midpoint) and distribu-
ion shape (heterogeneity), respectively. These descriptors of log-logistic
istribution are analogous to median and median absolute deviation
n a normal distribution. The models are described in more detail by
earn et al. (2020a) . 

.6. Statistical analysis 

Volumes, T2 parameters and general cognitive scores (MoCA / ACE-
II) were pooled between studies after being converted into Z-scores for
ach study separately, with the left DG of healthy controls of each study
s a reference point. In doing this, group, subfield, and hemisphere dif-
erences were maintained within each population. 

We used a mixed model analysis, using the ‘ fitlme’ MATLAB func-
ion, to assess differences in T2 parameters between groups (HC, MCI),
ubfields (DG, CA, SUB, EC, BA35), hemispheres (left, right) and the ef-
ect of age. Full factorial models were created (assessing intercept and
ll possible interactions of aforementioned variables) with random ef-
ects of subject, subject ∗ subfield interaction, and subject ∗ hemisphere in-
eraction. Each random effect significantly improved the model fit (as
easured by AIC), without overparameterizing the model (confirmed by

hecking the hessian matrix and AIC). Age of the entire cohort was con-
erted to a Z -score before being entered into the model. Models were
reated using Restricted Maximum Likelihood Estimation. Degrees of
reedom were calculated using Satterthwaite approximation. A separate
odel was created for each of T2 midpoint (T2 𝜇) and T2 heterogene-

ty (T2 𝜎). Because of the inclusion of age in the models, all results are
ppropriately corrected for the effect of age. 

Between-group post hoc comparisons were assessed using
ndependent-samples t -tests. Cohen’s d values for each comparison
re reported as a measure of effect size. Post hoc effects of age in each
ubfield are assessed using linear regression. 

Ability of volume and T2 in MTL subfields to predict cognitive de-
line (as measured by MoCA / ACE-III) was assessed using stepwise
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Fig. 1. Coronal slices of MTL in two example participants with high and low T2 heterogeneity. 
Each row shows (left-right) T2 maps, unmasked T2-weighted structural images (summed-over-echoes), ASHS masks, and masks eroded to reduce influence of partial 
voluming. Top two rows show images from an individual with low T2 heterogeneity (Healthy control, age 66). Bottom two rows show images from an individual 
with high T2 heterogeneity (MCI, age 84). Slices from hippocampal head and body are shown for each participant. In ‘High T2 heterogeneity’ T2 maps, a higher 
prevalence of bright and dark spots are visible, in comparison to the ‘Low T2 heterogeneity’ T2 maps. DG = Dentate Gyrus, CA = Cornu Ammonis 1–3, SUB = Subiculum, 
EC = Entorhinal Cortex, BA = Brodmann Area. Misc and BA36 were excluded from all analyses. [COLOUR FIGURE]. 
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as described above. We therefore normalised each structural measure to 
inear regression with forward selection. Forward stepwise regression
orks by first adding the variable (subfield) which best improves model
t (if any), then continuing to add variables which further significantly

mprove model fit. The criteria for adding more variables was a signifi-
ant F statistic at the p < .05 level. We entered follow-up cognition as the
ependant variable and baseline cognition and age as fixed covariates: 

Follow - up Cognition = 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽𝑎𝑔𝑒 ( Age ) 
+ 𝛽𝐵𝐿𝐶𝑜𝑔 ( BaselineCognition ) + 

[
𝛽𝐶𝐴 ( CA ) + 𝛽𝐷𝐺 ( DG ) 

+ 𝛽𝑆𝑈𝐵 ( SUB ) + 𝛽𝐸𝐶 ( 𝐸𝐶 ) + 𝛽𝐵𝐴 35 ( 𝐵𝐴 35 ) + 𝛽𝐻𝑖𝑝𝑝 ( 𝐻𝑖𝑝𝑝 ) 
]
+ error 

Parameters in square brackets represent those entered in a stepwise
ashion. ‘Hipp’ represents total hippocampus. This analysis was per-
ormed for the MCI cohort only given the greater variability within
his group. Z-scores for this analysis were calculated relative to each
tudy’s MCI population only. This method of predicting follow-up cog-
ition whilst correcting for baseline cognition represents a more precise
nd less biased way of assessing cognitive change over time, compared
o using change scores, as described by Vickers and Altman (2001) . 

We assessed the relationship between age, subfield T2 heterogeneity,
ubfield volume (corrected for intracranial volume (ICV)) and memory
4 
sing path analysis. Memory was assessed using two measures of perfor-
ance on the PAL task – total accuracy and mean reaction time across

ll trials. We took a semi-supervised approach when defining the model
aths. The direction of the arrows was predetermined by theory; T2 het-
rogeneity is caused by microstructural changes that precede significant
trophy. In this regard, volumes were not allowed to predict T2. Memory
cores were not allowed to predict structural variables, and, for obvious
easons, no variable was allowed to predict age. All direct effects in
his direction were modelled and compared. Initially the model was run
ith both PAL scores in a single model, feeding into a single latent vari-
ble representing overall PAL score. However, we observed poor factor
oadings of each score onto the latent variable ( < 0.60), so ran two sep-
rate models instead each with a single PAL outcome measure. Error
erms were added to all variables except age and covariances and mod-
fication indices were calculated between all terms. All error term pairs
ithin a structural measure (T2 𝜎 or volume) that had significant modi-
cation indices were allowed to covary, substantially improving overall
odel fit. In other words, subfields were allowed to covary within (but
ever between) each MRI modality. We observed poor model fit when
ata was entered as Z- scores normalised to left DG of HCs of each study
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Table 1 

Participants demographics 
Cognitive score was calculated using MoCA (study 1) and ACE-III (study 2). Because of 
the different measures used between studies, each score was first normalised to each 
study’s respective HC group, before being pooled here. Asterisks represent unpaired t - 
tests between groups ( ∗ p < .05, ∗ ∗ ∗ p < .0001). YOE = Years of Education, HC = Healthy 
Control, MCI = Mild Cognitive Impairment. 

HC MCI Total 

N (male: female) 99 (47:52) 49 (27:22) 148 (74:74) 

Age (years) 69.2 ± 8.55 72.2 ± 9.03 70.2 ± 8.79 

YOE 15.8 ± 3.13 ∗ 14.2 ± 2.81 15.3 ± 3.11 

Cognitive score (normalised to HC) .000 ± 1.00 ∗ ∗ ∗ − 3.75 ± 2.42 − 1.25 ± 2.39 
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nly the respective HC population, such that the mean ± standard devi-
tion for each structural measure within any given subfield was 0 ± 1.
n other words, differences between subfields were not considered by
he model. This improved model fit to acceptable levels and should be
onsidered in interpretation of the data. 

We ran partial correlations to explore the relationship between abso-
ute volume (uncorrected for intracranial volume) and T2 heterogene-
ty, correcting for age in healthy controls. The results of this analysis are
resented in supplementary Table 8. Finally, we compared SNR between
C and MCI groups, the results of which are presented in Section 5 of

upplementary material. 
All reported p-values are two-tailed. Where possible we have used

omprehensive models, to minimise the need for multiple compari-
on corrections. False discovery rate (FDR) correction ( Benjamini and
ochberg, 1995 ) was applied to individual paths and indirect paths

n the path analysis, in line with guidance from Cribbie (2007) . Data
andling and storage was carried out using MathWorks MATLAB 2015a
with statistics and machine learning toolbox) and Microsoft Excel 2016.
ixed models were created and assessed in MathWorks MATLAB 2018a.
ther statistical analyses were performed in IBM SPSS Statistics 24.
raphs were produced using GraphPad Prism v8. 

. Results 

.1. Participant demographics 

Demographic information for the cohort is displayed in Table 1 . Our
ealthy control and MCI groups are closely matched for age and years
f education. Details of cohorts in study 1 and study 2 are separately
isplayed in supplementary Tables 1 and 2. 

.2. Part 1: T2 changes in MCI 

.2.1. T2 heterogeneity 

In addition to the overall effects of group ( F (1, 144) = 15.2, p = .0001)
nd subfield ( F (4, 576) = 238, p < .0001; explored further in supplemen-
ary information) and in line with hypothesis 1, the mixed model anal-
sis revealed a significant group ∗ subfield interaction ( F (4, 576) = 2.92,
 = .020). This effect did not vary according to hemisphere so a two-way
NOVA on pooled hemispheres was conducted with predicted values

rom the mixed model analysis, with pairwise group comparisons for
ach subfield ( Fig. 2 ). This test revealed a significantly greater T2 het-
rogeneity in the MCI group in all subfields but with varying effect sizes
DG: t = 3.46, p corr = 0.004, Cohen’s d = 0.62; CA: t = 3.55, p corr = 0.003,
ohen’s d = 0.63; SUB: t = 5.07, p corr < 0.0001, Cohen’s d = 0.92; EC:
 = 5.88, p corr < 0.0001, Cohen’s d = 1.07; BA35: t = 5.22, p corr < 0.0001,
ohen’s d = 0.95, all adjusted using Bonferroni correction for multiple
omparisons). 

We also found a significant main effect of age ( F (1, 144) = 33.2,
 < .0001) and an interaction between subfield and age ( F (4, 576) = 5.16,
 = .0004). Older people had significantly increased T2 heterogene-
ty in all subfields. In increasing order of strength of association,
5 
he associations were as follows: SUB ( R 

2 = 0.146, F (1, 146) = 25.0,
 corr < 0.0001), DG ( R 

2 = 0.159, F (1, 146) = 27.6, p corr < 0.0001), CA
 R 

2 = 0.163, F(1, 146) = 28.5, p corr < 0.0001), EC ( R 

2 = 0.168, F (1,
46) = 29.6, p corr < 0.0001) and BA35 ( R 

2 = 0.206, F (1, 146) = 37.9,
 corr < 0.0001). 

Finally, we observed no interactions between group and age
 F (1, 144) = 1.27, p = .261) or group and hemisphere ( F (1, 144) = 0.135,
 = .714) nor were there any three- or four-way interactions for T2 het-
rogeneity. 

.2.2. Absolute T2 

For comparison, we also explored subfield-specific changes in ab-
olute T2. We observed an overall difference between HC and MCI
roups on absolute T2 ( F (1, 144) = 5.33, p = .022), and a substantial
verall difference in absolute T2 between subfields ( F (4, 576) = 1220,
 < .0001; explored further in supplementary information). We found a
roup ∗ subfield interaction ( F (4, 576) = 9.21, p < .0001) driven by a spe-
ific low T2 𝜇 in the subiculum and EC of the MCI group (SUB: t = 8.45,
 corr < 0.0001, Cohen’s d = 1.47; EC: t = 4.73, p corr < 0.0001, Cohen’s
 = 0.82). In no other subfield was there any difference between groups.

We observed a significant main effect of age on absolute T2 ( F (1,
44) = 4.86, p = .029), and a significant interaction between subfield and
ge ( F (4, 576) = 7.23, p < .0001). However, in no subfield was there
ny statistically significant association between age and absolute T2 (all
ubfields: p > .080). 

We observed no interactions between group and age ( F (1,
44) = 0.029, p = .865) or group and hemisphere ( F (1, 144) = 2.99,
 = .086) nor were there any three- or four-way interactions for absolute
2. 

.3. Predicting cognitive change over time 

In order to identify whether MTL subfields could predict cognitive
ecline, we ran three stepwise linear regressions to predict cognitive
core of people with MCI after one year. One model was run for each
RI modality: volume, T2 heterogeneity, absolute T2, whilst always

ccounting for baseline cognitive score and age. Age and baseline cog-
ition alone were unable to significantly predict follow-up cognitive
core ( R 

2 = 0.092, F (2, 19) = 0.859, p = .441; AIC = 29.9). In other words,
ge alone was unable to predict the degree of cognitive change over the
ear. 

Of all three modalities, only T2 heterogeneity and volume showed
ny ability to predict cognitive change over time. Greater T2 het-
rogeneity in CA was as a significant predictor of cognitive decline
 𝛽CA = − 0.605, p = .025) ( Fig. 3 ). However, the overall model was not sta-
istically significant ( R 

2 = 0.344, F (3, 19) = 2.79, p = .074, AIC = 25.4), indi-
ating relatively weak predictive power. T2 heterogeneity in entorhinal
ortex possessed similar predictive power to CA ( 𝛽EC = − 0.567, p = .031)
 Fig. 3 ), but was not added to the model as it did not describe enough
dditional variance on top of that described by CA. No additional sub-
elds sufficiently increased the model fit to qualify for entry into the
odel, or were significant alternative predictors. 
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Fig. 2. Subfield comparisons for T2 heterogeneity and absolute T2. 
Violin plots showing group & subfield differences (pooled across hemispheres & corrected for age) for absolute T2 and heterogeneity marginal means. HC = healthy 
older control; MCI = mild cognitive impairment. Stars represent p -values from post hoc two-way ANOVA tests to compare subfield groupwise differences. ∗ ∗ p < .01; 
∗ ∗ ∗ p < .001; ∗ ∗ ∗ ∗ p < .0001. [COLOUR FIGURE]. 

Fig. 3. Subfield structure predicting cognitive decline in people with MCI. 
Partial residual (PR) plots of significant predictors from stepwise linear regression models. Graph shows linear regression lines (solid lines) ± 95% confidence intervals 
(dotted lines). Significant predictors were only created for T2 heterogeneity and Volume models. Volumes were corrected for intracranial volume. [COLOUR FIGURE]. 
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Similarly, EC volume was entered as sole predictor of greater cogni-
ive decline in the volume model ( 𝛽EC = 0.595, p = .030). However the full
odel was not statistically significant ( R 

2 = 0.329, F (3,19) = 2.62, p = .087,
IC = 25.8), indicating a weak association between subfield volume and
ognitive change. Absolute T2 was unable to predict cognitive decline
ver the year, with no subfields being entered into this model. 

.4. Part 2: sequential relationships across brain structure and behaviour 

We used path analysis to explore predicted relationships between
ge, T2 heterogeneity, subfield volume (relative to intracranial volume)
nd cognition. We took a semi-supervised approach when defining the
odel paths. The direction of the arrows was predetermined on the the-

retical basis that T2 heterogeneity is likely caused by microstructural
hanges that precede significant atrophy. Memory scores were outcome
ariables, so were not allowed to predict structural variables, and no
ariable was allowed to predict age. All direct effects in this direction
ere modelled and compared. Two separate models were created, one

or each of the PAL output measures (See Methods). After applying co-
ariance structures to error terms between subfields, model fit was good
ith various fit parameters falling within an acceptable range ( 𝜒2 = 30.9,
f = 20, p = .056; C /DF = 1.55; GFI = 0.951, AGFI = 0.811; CFI = 0.986;
min 

6 
MSEA = 0.076 ± 90% CI [ < 0.001–0.126]; p close = 0.199). Model fit was
dentical between the two models. Covariance matrices can be found in
upplementary information (Supplementary Tables 4 & 5). 

The final path analysis models ( Fig. 4 ) reveal the following relation-
hips, for which statistics are shown in Table 2 and Supplementary Table
. Age is a significant positive predictor of T2 heterogeneity in all MTL
ubfields. In turn, T2 heterogeneity within each subfield is a significant
egative predictor of subfield volume, although for DG and BA35, this
ffect is weaker and does not survive correction for multiple compar-
sons. The only significant direct effects of age on subfield volume are
een with DG and CA (where greater age predicts smaller volumes), how-
ver, significant indirect effects are seen between age and subfield vol-
me within all subfields ( Table 2 ). T2 heterogeneity therefore strongly,
lbeit partially, mediates the relationship between age and volume. 

No significant direct effects that survived multiple comparisons were
bserved between T2 heterogeneity and either PAL score ( Fig. 4 ). How-
ver, a direct negative effect of CA volume on PAL mean reaction time
as observed, as well as a direct positive effect of BA35 volume on PAL
ccuracy. The indirect relationship between T2 heterogeneity in CA and
AL reaction time via volume is statistically significant, indicating a role
f volume as a mediator between T2 heterogeneity and cognition. How-
ver, the same pathway for BA35 does not survive correction for mul-
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Fig. 4. Path analysis showing the relationship between Age, T2 heterogeneity, volume and memory in MTL subfields in healthy older controls. 
Bold arrows represent statistically significant relationships ( p < .05), with standardised B values indicated in overlaid boxes. Paths that do not survive FDR correction 
for multiple comparisons are faded and marked with † . Two models were run, each assessing one outcome measure of the PAL task. Black lines represent paths shared 
between the models. Unique paths to each model are shown in red (PAL reaction time as dependant variable) and blue (PAL Total Accuracy as dependant variable). 
Curves lines represent error term covariances defined in the model. All subfield volumes were normalised to ICV prior to entering into the model. Full statistics are 
shown in Supplementary Table 3. [COLOUR FIGURE] (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.). 

Table 2 

Summary statistics of key indirect paths. 
All paths remain statistically significant after FDR correction for multiple com- 
parisons (corrected p -value threshold = 0.011). 

Indirect path Standardised estimate P -value 

Age → T2 heterogeneity → Volume 

DG − 0.063 ∗ .005 

CA − 0.074 ∗ .003 

SUB − 0.062 ∗ .008 

EC − 0.072 ∗ .008 

BA35 − 0.076 † .022 

T2 heterogeneity → Volume → PAL 

PAL 

Accuracy 

DG .046 † .020 

CA − 0.042 .123 

SUB − 0.029 .129 

EC .013 .576 

BA35 − 0.054 † .025 

PAL 

Re- 

ac- 

tion 

Time 

DG − 0.038 .141 

CA .123 ∗ .003 

SUB − 0.033 .169 

EC − 0.011 .486 

BA35 .018 .237 

Age → T2 heterogeneity → Volume → PAL 

PAL 

Accuracy 

DG .015 † .014 

CA − 0.014 .100 

SUB − 0.009 .094 

EC .004 .539 

BA35 − 0.022 † .018 

Total path (all subfields) − 0.005 .153 

PAL 

Re- 

ac- 

tion 

Time 

DG − 0.012 .110 

CA .041 ∗ .003 

SUB − 0.010 .121 

EC − 0.004 .435 

BA35 .007 .199 

Total path (all subfields) .005 .174 
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iple comparisons ( Table 2 ). Variation in BA35 volume therefore seems
o predict PAL accuracy independently of T2 heterogeneity and age. 
7 
Finally, outside of MTL subfield structure and microstructure, we
lso observe direct effects of age on PAL scores, with greater age pre-
icting poorer scores on both measures ( Table 2 ). 

This all serves to show a pathway of the effect of age on cognition,
rst through its increasing of T2 heterogeneity in subfields, which in
urn reduces the volume of each subfield, which then, in a subfield-
pecific manner, reduces cognitive functionality. The full indirect path-
ay from age, through T2 heterogeneity, to volume and finally to PAL

core is statistically significant for the pathway through CA for predict-
ng PAL reaction time ( Table 2 ), however the pathway through DG and
A35 for predicting PAL accuracy does not survive correction for multi-
le comparisons. Outside any MTL subfield paths, there remains a direct
ffect of age on PAL score, whereby greater age predicts poorer per-
ormance (lower accuracy, longer reaction times), suggesting that age
ffects PAL performance through non-hippocampal as well as hippocam-
al pathways. 

We ran the models again on the MCI group data to explore any dif-
erences in path structure to the HC models. The main changes in this
odel were the lack of a relationship between T2 heterogeneity and vol-
me in most subfields (SUB, EC, BA35), and the loss of any relationship
etween PAL scores and both age and subfield structure measures. We
lso ran a model with the volumes allowed to predict T2 heterogeneity.
his reverse path analysis shows that T2 𝜎 does not have the same me-
iatory effect on volume that volume has on T2 𝜎 and has poorer model
t parameters. Model path diagrams can be seen in supplementary in-

ormation (supplementary Figs. 1 & 2 and supplementary Tables 4 &
). 

. Discussion 

Here we have shown that T2 heterogeneity in the MTL increases with
ognitive impairment in a subfield-dependant manner in line with pro-
ression patterns of Alzheimer’s pathology. T2 heterogeneity in CA1-3
nd volume of entorhinal cortex showed some ability to predict cogni-
ive decline, where absolute T2 could not, however further studies are
equired to verify this result. Furthermore, we describe a mechanism by
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hich cognitive ability deteriorates with age through direct effects on
2 heterogeneity, which lead to the changes in volume which in turn

ead to cognitive decline. These findings are discussed in detail below. 

.1. Subfield-specific differences in T2 heterogeneity in MCI and with age 

T2 heterogeneity was greater in MCI across all subfields of the MTL,
owever the magnitude of this effect differed between subfields. The
mallest increase was seen in DG, and the largest in EC and BA35. This
s in line with literature on the timing of deposition of NFTs throughout
he course of AD ( Braak and Braak, 1991 , 1995 ), whereby the transen-
orhinal region (comprising BA35 and lateral EC) is affected first, and
G pathology is only detectible later on. DG is also one of the last
TL regions to exhibit volume loss ( Daugherty et al., 2015 ). This ac-

ordance between the pattern of T2 heterogeneity differences and AD
europathological progression supports T2 heterogeneity as a means to
etect pathologically relevant change before the onset of dementia. 

This is in contrast to absolute T2, which is only different between
ealthy controls and people with MCI in subiculum and entorhinal cor-
ex (where it is decreased in MCI). The effect may be explained by an
ncrease in iron and compact amyloid plaques, which have been seen
o be increased in SUB and CA1 regions compared to DG and CA3 in
 mouse model of AD ( Reilly et al., 2003 ). Even though we cannot di-
ectly show the prevalence of AD pathology in our MCI sample, these
esults are in line with this group being at higher risk for displaying AD
athology. 

Our findings support our proposal ( Knight et al., 2019 ; Wearn et al.,
020a ) that T2 heterogeneity defines hippocampal integrity at the sub-
eld level better than absolute T2. In further support of this model, two
tudies of absolute T2 in hippocampal subfields in vitro ( Huesgen et al.,
993 ; Antharam et al., 2012 ) note a lack of any consistent pattern be-
ween healthy control and Alzheimer’s slices in any subfield. 

.2. Clinical utility of T2 heterogeneity in MTL subfields 

T2 heterogeneity in CA and EC and volume of EC showed some abil-
ty to predict cognitive decline, where absolute T2 could not, however
urther studies are required to verify this result as the overall models
ere not statistically significant. Measuring T2 heterogeneity in CA or
C may provide a novel way of identifying those who have MCI due to
ncipient Alzheimer’s disease as opposed to other causes, though further
esting is required to confirm to what degree this measure is specific to
etecting Alzheimer’s over other pathologies. 

It is important to note that other subfields were unable to improve
odel fit as a likely result of shared variance being explained by each

ubfield. In other words, we cannot conclude that the predictive power
rovided by CA was ‘significantly greater’ than that provided by other
ubfields. Rather, other subfields did not provide a significant amount
f additional information on top of that provided by heterogeneity in
A. Indeed, T2 heterogeneity in EC had similar, statistically significant
redictive power, just behind that of CA. 

EC structure has repeatedly been shown to better predict conversion
o Alzheimer’s disease than hippocampal structure (most often measured
y volume or thickness, reviewed by Zhou et al. (2016) ). However, it
s interesting to note that EC performs better as a predictor than BA35,
espite BA35 supposedly being an earlier NFT deposition site in AD.
ne reason could be that the transentorhinal cortex spans both EC and
A35 regions, and that subsequent microstructural changes are more
idespread across EC compared to BA35 in MCI, supported by histolog-

cal data ( Braak and Del Tredici, 2015 ). 
The use of T2 heterogeneity is highly translatable to clinical settings.

RI is standard practice in improving the accuracy of a diagnosis of AD.
he MRI scan necessary to calculate quantitative T2 can be completed
ithin a few additional minutes of a standard clinical MRI (a multi-

cho T2 sequence of sufficient resolution is all that is required). The
8 
ame high-resolution scan can be used to automatically segment sub-
elds of the MTL e.g. using ASHS ( Yushkevich et al., 2015 ). Although
he use of MRI in people with dementia can sometimes be tricky due
xacerbated feelings of claustrophobia and confusion, this MRI protocol
ould be most useful in prodromal stages of the disease, before signif-

cant MTL volume loss and symptom severity, minimizing these com-
lications. A cheaper theoretical screening test with high sensitivity for
etecting pathology such as has been shown with tests of accelerated
orgetting on word list tasks ( Wearn et al., 2020b ; Weston et al., 2018 )
r a blood test ( Toombs and Zetterberg, 2020 ) may identify individuals
ho should qualify for an MRI scan sensitive to very early pathological
allmarks. 

Our method of measuring heterogeneity of an MRI signal is arguably
 form of texture analysis, a technique for detecting microstructural
hanges on MRI whose clinical applications are increasingly a topic of
nterest (for a review see Cai et al. (2020) ). Zhao et al. (2020) high-
ight the use of ‘radiomic biomarkers’ (a method of texture analysis) as
 robust method of predicting longitudinal change, and genetic risk for
lzheimer’s disease. Similarly, Sørensen et al. (2017) find that various
easures of hippocampal structure including volume and texture can

ccurately discriminate healthy older people from those with MCI and
lzheimer’s disease. To our knowledge, no study has attempted texture
nalysis using quantitative T2, or in MTL subfields, making this study
he first of its kind. This appears to be an emerging field with increasing
otential for scientific interest and clinical application. 

Although we have focussed on T2 changes due to Alzheimer’s
athology, T2 heterogeneity is a novel measure which could be ap-
lied to any neurological disease characterised by microstructural
hanges, including other dementias, acute stroke (as demonstrated by
orton et al. (2017) ), epilepsy or schizophrenia. Future research could
tilise T2 heterogeneity to easily probe microstructural abnormalities.
his study builds on our past analyses of T2 heterogeneity by highlight-

ng how it can reveal structural changes on an even finer scale, indicat-
ng its usefulness in disorders where brain damage is highly localised. 

.3. Subfield-specific contributions to memory 

We aimed to better understand the relationship between T2 hetero-
eneity, volume, age and cognitive ability in cognitively healthy older
eople. To summarise, our path analysis revealed the following pattern
f relationships. T2 heterogeneity mediates the negative relationship
etween age and volume. Volume in turn mediates the negative rela-
ionship between T2 heterogeneity and memory (PAL reaction time), in
 subfield-specific manner. In line with hypotheses 3 and 4, increased T2
eterogeneity therefore seems to represent a state of structural damage
hich may give rise to the volumetric changes which have the most pro-

ound impact on memory and cognition. Interestingly, we do still find
 direct association between age and volume in CA and DG, indicating
nly partial mediation by T2 heterogeneity in these regions. This sug-
ests that there are other age-mediated volumetric changes which are
ot accurately reflected by changes in T2 heterogeneity. 

Our results reveal potential subfield-specific associations with mem-
ry scores unlike previous similar models that have looked at whole
ippocampus only ( Rodrigue et al., 2012 ). Longer reaction times were
ssociated with subtle damage to (higher T2 heterogeneity in) the CA
egion, whereas poor accuracy was associated with low BA35 integrity.
hese findings, although subject to confirmation in independent cohorts,

ndicate a point of interest for future studies to examine hippocampal
ubfield specificity to behavioural measures, and to further explore to
hat degree individual subfield structural changes may indicate early

igns of pathology. 
The same model assessed in our MCI population revealed a substan-

ially different picture. Although the relationship between age and T2
eterogeneity was still very much present, T2 heterogeneity was not
uch a clear mediator of the age-volume relationship. Furthermore, no
ssociations were observed with either cognitive measure. Our sam-
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le size in this group was much smaller, so we hesitate to draw firm
onclusions from this analysis, however this may indicate a disjoint be-
ween hippocampal structure and cognitive performance in this group,
ndicating that other brain networks, such as those involving thalamus
 Aggleton, 2014 ; Aggleton et al., 2016 ), become critical to maintain cog-
itive functioning in mild cognitive impairment. 

.4. Limitations 

The main limitation is the lack of biomarker status availability for
eople with MCI in this study (assessed either from Positron Emission
omography or CSF analysis). Therefore, we cannot be certain as to the
xact proportion of those who have incipient dementia. We suspect that
2 heterogeneity in entorhinal cortex would identify those who do have

ncipient Alzheimer’s disease, as EC is one of the earliest sites of patho-
ogical change. This is supported by the ability of EC T2 heterogeneity
n predicting cognitive decline. However, co-pathologies are almost cer-
ainly present in the overall cohort which may include other dementias
r undiagnosed microbleeds. 

Additionally, both studies utilised different scanning sequences for
ssessing quantitative T2, giving inherently different absolute T2 values.
or this reason, we were careful to normalise results from each cohort
efore combining them. Although a potential confounding factor, we
ave noted in our previous study that effects of T2 heterogeneity do not
ppear to be specific to a sequence ( Wearn et al., 2020a ). Rather, we
rovide evidence that the different sequences are sensitive to the same
hysiological changes. This supports the translatability of this measure
o clinical settings, where available sequences for measuring quantita-
ive T2 may vary between sites. 

We also note a potential selection bias in our 1-year follow-up analy-
is, as we experienced a relatively high dropout rate of our MCI cohort.
lthough reasons for not returning were never formally quantified, this
as occasionally due to the participant feeling unable to attend the sec-
nd session due to significant cognitive and/or functional decline. Those
ho declined the most may therefore be simply missed out of the cur-

ent analyses. We expect the result of this bias to minimise the ability
f our MRI variables to predict decline, so it is testament to the clinical
otential of T2 heterogeneity that it can still predict cognitive decline
n this cohort. 

We acknowledge that our masking procedure of hippocampal sub-
elds (automated using ASHS) has only been verified for measuring
hape and volume, not T2 heterogeneity. Measures could feasibly be bi-
sed due to the inclusion of extraneous brain regions or subject to error
rom surrounding regions through partial voluming. We have minimised
he risk of these factors by eroding each subfield mask by its outermost
oxel. Furthermore, we find no evidence of a relationship between ab-
olute subfield volume and T2 heterogeneity, indicating that the two
easures are distinct, and not confounded by one another (supplemen-

ary information Section 4 ). 
Finally, with our present analyses we cannot make conclusions as to

he specificity of these changes to hippocampal subfields, as opposed
o other brain regions not implicated in early Alzheimer’s disease. This
as not possible in this study as the acquisition area of each of the
ulti-echo T2 scans did not span the whole brain, and so selection of

n appropriate control region was limited. Future studies should aim to
xplore T2 dynamics in other brain regions. 

. Conclusions 

The analyses presented in this paper comprise the first detailed ex-
loration of quantitative T2 across subfields of the medial temporal lobe
n older people with and without cognitive impairment. We support
revious evidence that absolute T2 is not a sensitive marker of early
athology, rather, heterogeneity of T2 is much more sensitive to early
athological change. We demonstrate that T2 heterogeneity differs be-
ween subfields in a manner which reflects the order of NFT deposition
9 
n prodromal AD. We provide evidence that although T2 heterogene-
ty increases with age in all subfields, the degree to which this occurs
s subfield-dependant and is strongest in MTL cortical regions (EC and
A35). In contrast, we do not see systematic evidence of a relationship
etween age and absolute T2. Using path analysis, we describe a path-
ay through which cognition is significantly affected by age through
irect effects on T2 heterogeneity in cognitively healthy older people,
hich in turn has direct effects on volume which lead to changes in

ognition, supporting the idea that T2 changes precede and lead to vol-
metric changes. Finally, we provide evidence that increased T2 het-
rogeneity in CA1-3 and entorhinal cortex may indicate future cognitive
ecline in people with MCI, whereas measures of absolute T2 are unable
o predict such decline. 
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