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SM1. Parameter values. The scaling in the boundary conditions on Γε should
be interpreted in terms of the experimental values for nutrient uptake rates by root
hairs for different plant types. Considering the nondimensionalization of dimensional
Michaelis-Menten boundary condition
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=

ε

aε

rhR
2Fh

Khl2D

ũ
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where rh denotes the dimensional hair radius, l denotes the dimensional inter-hair
distance and α̃ = (rhR

2Fh)/(Khl
2D). Considering the range of phosphate uptake

parameters Fh and Kh as reviewed in [SM1], and D = 10−5 cm2 s−1 [SM2], as well
as R = 1 cm, l = 0.01 cm and rh ∼ 10−4 cm, we conclude that α̃ = 10 for wheat,
while α̃ = 1 arises when modelling sulphur and magnesium uptake by maize [SM3].

SM2. Derivation of macroscopic equations for nonlinear boundary con-
ditions on root hair surfaces.

SM2.1. Case ε ln (1/aε) = O(1). Following the same procedure as in Sec-
tion 3.2.1 of the main text, we obtain the same equations as in (3.29), but with
different boundary conditions for uI2, uI3, and uI4, namely

(SM2.1)
Du∇zuI2 · n̂ = −κg(uI0) on ∂B1, Du∇zuI3 · n̂ = −κg′(uI0)uI1 on ∂B1,

Du∇zuI4 · n̂ = −κ
[
g′(uI0)uI2 +

1

2
g′′(uI0)(uI1)2

]
on ∂B1.

Hence the corresponding solutions are

uIj (t, x, z) = uIj (t, x), j = 0, 1, uI2(t, x, z) = (κ/Du)g(uI0) ln (‖z‖) + U I2 (t, x),

uI3(t, x, z) = (κ/Du)g′(uI0)uI1 ln (‖z‖) + U I3 (t, x),

uI4(t, x, z) = (κ/Du)
[
g′(uI0)U I2 (t, x) +

1

2
g′′(uI0)(uI1)2

]
ln (‖z‖) + U I4 (t, x).

Then by matching inner approximation uI2 and outer approximation uO2 we obtain for
uO2 equation (3.32) with g(uI0) instead of uI0 and for uO0 equation (3.33) with g(uI0)
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instead of uI0. We also obtain the same matching condition (3.45). Hence we obtain
an effective equation

(SM2.2) ∂tu0 = ∇x · (Du∇xu0)− 2πκ g(u0)χΩL
in Ω, t > 0,

Case ε2 ln (1/aε) = O(1). Applying the formal asymptotic expansion ansatz
(3.25) in multiscale problem (2.1)–(2.3), (2.6), (2.7) again yields (3.53), equipped
here with the modified boundary condition(
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2
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]

on ΩL × ∂B1.

In the case of inner solutions, for uI0 and uI1 we have the same equations and boundary
conditions as in (3.29) and for uI2, uI3, and uI4 we obtain the same equations as in (3.29)
but with different boundary conditions

(SM2.3)

Du∇zuI2 · n̂ = −κg(uI0) on ∂B1,
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]
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Hence the inner approximation reads

(SM2.4)
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Then in terms of outer variables y the inner approximation uIε has the form
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κ
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)
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In the same way as in Subsection 3.2.2, for the outer approximation we obtain

uOε (t, x) = uO0 (t, x) + εuO1 (t, x) + ε2
(
UO2 (t, x) + 2π(κ/Du)g(uI0(t, x))ψ(y)

)
+ · · · .

Then the matching condition for inner and outer solutions for zero order terms implies

(SM2.5) uO0 (t, x) = uI0(t, x) + λ(κ/Du)g(uI0(t, x)),

and the macroscopic equation for u0(t, x) = uO0 (t, x) reads

(SM2.6) ∂tu0 = ∇x · (Du∇xu0)− 2πκ g(h(u0))χΩL
in Ω, t > 0,

where h = h(u0) is the solution of u0 = h+ λ (κ/Du)g(h).
Adopting the Michaelis-Menten boundary condition (2.4), condition (SM2.5) can

be rewritten as a quadratic equation

(SM2.7) (uI0)2 + uI0
(
λ(κ/Du) + 1− uO0

)
− uO0 = 0,
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with unique non-negative solution

uI0 =
1

2

[√
(uO0 − λ(κ/Du)− 1)2 + 4uO0 + uO0 − λ

κ

Du
− 1

]
,

and the effective equation (SM2.6) thus becomes (3.64).

?

Fig. SM1: Isosurfaces of nutrient concentration support the intuition that with the
chosen boundary conditions, the (steady-state) solution has the same behavior in
every periodicity cell (aε = 0.01, ε = 0.5). The arrow points in the direction of
increasing x3 (i.e. away from the root surface located at x3 = 0).
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