SUPPLEMENTARY MATERIALS: MULTISCALE ANALYSIS OF
NUTRIENT UPTAKE BY PLANT ROOTS WITH SPARSE
DISTRIBUTION OF ROOT HAIRS: NONSTANDARD SCALING *
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SM1. Parameter values. The scaling in the boundary conditions on I'* should
be interpreted in terms of the experimental values for nutrient uptake rates by root
hairs for different plant types. Considering the nondimensionalization of dimensional
Michaelis-Menten boundary condition
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via z = RZ, t = R*t/D, u = K, gives
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where r;, denotes the dimensional hair radius, ! denotes the dimensional inter-hair
distance and & = (r,R?F},)/(KxI2D). Considering the range of phosphate uptake
parameters Fj, and K}, as reviewed in [SM1], and D = 107° cm? s=! [SM2], as well
as R=1cm, | = 0.0l cm and r, ~ 10~* cm, we conclude that & = 10 for wheat,
while & = 1 arises when modelling sulphur and magnesium uptake by maize [SM3].

SM2. Derivation of macroscopic equations for nonlinear boundary con-
ditions on root hair surfaces.

SM2.1. Case e¢In(1/a.) = O(1). Following the same procedure as in Sec-
tion 3.2.1 of the main text, we obtain the same equations as in (3.29), but with
different boundary conditions for ud, u, and ul, namely

D, V.ub-h=—rg(ul) ondBy, D,V.ul f=—krg (ub)ul ondB,
(SM2.1) 1
D, V.uj - h = —k[g (uf)ub + ig”(ué)(u{)Q] on 0B.

Hence the corresponding solutions are

uj(t, @, 2) = uj(t,z), j=0,1, wuj(t,z,2)= (k/Du)g(uf) n(lz]) + Uz (t ),

ug(t, @, 2) = (k/Du)g' (ug)ui In (||2]]) + U3 (t, 2),
uj(t, @, 2) = (/D) [g' (ug)Us (t, ) + %9”(%)(%)2] In (J[ll) + U{ (£, ).

Then by matching inner approximation u and outer approximation u$ we obtain for

u§ equation (3.32) with g(u}) instead of ul and for u$ equation (3.33) with g(ul)

*Submitted to the editors DATE.
Funding: Jakub Koéry and John King acknowledge funding from FUTUREROOTS Project

(project ID: 294729) between European Research Council and The University of Nottingham.

fSchool of Mathematical Sciences & Centre for Plant Integrative Biology, School of Biosciences,
University of Nottingham, Nottingham NG7 2QL, United Kingdom (john.king@nottingham.ac.uk).

¥ School of Mathematics & Statistics, University of Glasgow, University Place, Glasgow G12 8QQ,
United Kingdom (jakub.koery@glasgow.ac.uk).

§School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AL,
United Kingdom (m.ptashnyk@hw.ac.uk).

SM1


mailto:john.king@nottingham.ac.uk
mailto:jakub.koery@glasgow.ac.uk
mailto:m.ptashnyk@hw.ac.uk

SM2 J. KING, J. KORY, AND M. PTASHNYK

instead of u{. We also obtain the same matching condition (3.45). Hence we obtain
an effective equation

(SM2.2) Oug = Vg - (DyVaeug) — 276 g(ug) X, inQ, t>0,

Case £2In(1/a.) = O(1). Applying the formal asymptotic expansion ansatz
(3.25) in multiscale problem (2.1)—(2.3), (2.6), (2.7) again yields (3.53), equipped
here with the modified boundary condition

N VA + D,V (ug+cug +--- = —ekeMg(u +eup 4+
uVz uVax 0 g(uo 1
1
= —creM [9(uo) + g’ (wo)ur + €% (uo)uz + 5259”(u0)u? +-++] on Qg xdB.
In the case of inner solutions, for u and u! we have the same equations and boundary

conditions as in (3.29) and for u, ul, and u] we obtain the same equations as in (3.29)
but with different boundary conditions

D,V ul - = —rg(ul) on 0B,

(SM2.3) Dy V.ub -1 = —kg (uh)uf on 8By,
1

D,V uf - h = —k[g (u)uj + ig”(ué)(u{)Q] on OB;.

Hence the inner approximation reads
ul(t,x) = ug(t, @) + euj(t,x) + €Uy (t,2) + €% (k/Du)g(ug) In (||2]))
(SM2.4) + 2% (6/Du)g'(uf) uf n (I12) + U3 (8, )]

+ e[ -6/ U + 50" ) ) I 121D + U 1) + -

Then in terms of outer variables y the inner approximation u!l has the form

K K
K K 1
+e2[U3 + 39(U5)1H(||y|\) + )\D*(Q'(U(I))Uzl + 59”(“6)@{)2)] T

In the same way as in Subsection 3.2.2, for the outer approximation we obtain

u? (t,2) = uf (t, ) + uf (¢, 2) + 2 (U (t, ) + 2m(/ Du)g b (t, 2) ¥ () ) + -
Then the matching condition for inner and outer solutions for zero order terms implies
(SM2.5) uS (1, 7) = ub(t, @) + A(k/Du)gul(t, ),
and the macroscopic equation for ug(t,z) = uf (¢, z) reads
(SM2.6) Oruo = Vi - (DyVaug) — 2wk g(h(ug))xq, inQ, t>0,

where h = h(uo) is the solution of ug = h + X (k/Dy)g(h).
Adopting the Michaelis-Menten boundary condition (2.4), condition (SM2.5) can
be rewritten as a quadratic equation

(SM2.7) (uh)? + ud (N(K/Dy) +1 = uf) —uf =0,



SUPPLEMENTARY MATERIALS: NONSTANDARD SCALING SM3

with unique non-negative solution

1
ul = 5[\/(uoo = A(8/Da) = 12+ 4uf +uf — 25—~ 1],
u

and the effective equation (SM2.6) thus becomes (3.64).
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Fig. SM1: Isosurfaces of nutrient concentration support the intuition that with the
chosen boundary conditions, the (steady-state) solution has the same behavior in
every periodicity cell (a. = 0.01, ¢ = 0.5). The arrow points in the direction of
increasing x3 (i.e. away from the root surface located at x3 = 0).
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