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Abstract
Efflux pumps are a mechanism of intrinsic and evolved resistance in bacteria. If an
efflux pump can expel an antibiotic so that its concentration within the cell is below a
killing threshold the bacteria are resistant to the antibiotic. Efflux pumps may be spe-
cific or they may pump various different substances. This is why many efflux pumps
confermulti drug resistance (MDR). In particular over expression of theAcrAB−TolC
efflux pump system confers MDR in both Salmonella and Escherichia coli. We con-
sider the complex gene regulation network that controls expression of genes central to
controlling the efflux associated genes acrAB and acrEF in Salmonella. We present
the first mathematical model of this gene regulatory network in the form of a system
of ordinary differential equations. Using a time dependent asymptotic analysis, we
examine in detail the behaviour of the efflux system on various different timescales.
Asymptotic approximations of the steady states provide an analytical comparison of
targets for efflux inhibition.
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1 Introduction

1.1 Antimicrobial resistance

Antibiotics are used to treat bacterial infections, by interfering with the growth or
other essential mechanisms for survival of the bacteria. These essential mechanisms
can include maintaining the structure of the cell envelope, protein production and
DNA replication (Sköld 2011). The use of antibiotics has been prevalent since the
introduction of sulphonamides, the first antibiotics used in clinics, in the early 1930s
(Miller and Bohnhoff 1950). However, the widespread use of antibiotics has exerted
selection pressures on bacteria, causing mutant antibiotic resistant strains to evolve.
There are currently 17 classes of antibiotics, but for each of these a mechanism for
resistance has emerged (Davies and Davies 2010). Whilst the development of new
antibiotics is a possibility for treating these resistant bacteria, the discovery of new
antibiotics has slowed within the twenty first century, with the possibility of a post
antibiotic era in the coming years (Alanis 2005). Thus, there is a huge need to look
into alternative and novel treatments to treat bacterial infections.

In February 2017, the World Health Organisation (WHO) released a priority list of
antibiotic resistant bacteria in need of treatment strategies. Enterobacterales resistant
to carbapenem and cephalosporinwere classified as critical for the development of new
antibiotics. This is a large group ofGram-negative bacteria, which includes Salmonella
spp. and Escherichia coli. Additionally, fluoroquinolone-resistant Salmonella spp.
was deemed high priority. Salmonella spp. is a genus of rod shaped Gram-negative
pathogenic bacteria that is one of the main causes of intestinal infections from food,
most commonly from poultry products. In most cases of infection, antibiotics are
not needed, however for salmonellosis in immunosuppressed patients, invasive non-
typhoidal Salmonella infections (iNTS) and S. Typhi antibiotics are necessary (Feasey
et al. 2012; Rowe et al. 1997). S. Typhi, which causes Typhoid fever, can transmit from
human to human by the fecal to oral route, and hence bad sanitation is a leading cause
of transmission (Ryan et al. 2004). Multi drug resistant (MDR) strains of S. Typhi
have developed, most prominently in South Asia and Africa. High mortality rates are
highly prominent in developing countries in these regions, due to poor sanitation and
the high prevalence of immunodeficiency diseases (Rowe et al. 1997).

1.2 Efflux pumps

Efflux pumps are a mechanism of intrinsic and evolved resistance in bacteria. They
are transport proteins found in the cell membrane that expel substances into the exter-
nal surrounding environment. If an efflux pump can expel an antibiotic so that its
concentration within the cell is below a killing threshold the bacteria are resistant to
the antibiotic. Efflux pumps can be specific or they may pump various different sub-
stances and compounds and conferMDR.ManyMDRbacteria exhibit over-expression
of efflux pumps (Blair et al. 2014b). Over-expression is often caused by mutations in
local gene repressors and changes to transcriptional regulators that affect the produc-
tion of proteins associated with efflux (Webber and Piddock 2003).
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Fig. 1 The AcrAB-TolC system common in E. coli and Salmonella. Drug is exported from within the
cell via proton motive force, powered by hydrogen ions / protons (H+), travelling into the cell along its
concentration gradient

Many efflux pumps that exhibit MDR are part of the Resistance Nodulation Divi-
sion family (RND) and made of three proteins together spanning the inner and outer
membranes, meaning they can expel a substance from the cell to the outside. In par-
ticular, a member of this family is the AcrAB-TolC system which is common in
Enterobacterales. We exhibit this system in Fig. 1. The AcrAB-TolC system is tripar-
tite, composing of the transporter protein AcrB, the periplasmic adaptor protein AcrA
and an outer membrane protein TolC. The energy to efflux drugs and other substances
through the AcrAB-TolC system is provided by protonmotive force (PMF) that moves
hydrogen ions from the bacterial periplasm to the cytoplasm. This movement causes
an electrochemical gradient that drives transport of the drug through the efflux pump,
expelling the drug or other toxic substances from the bacteria (Piddock 2006).
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Fig. 2 Processes of gene regulation and protein synthesis. We exhibit here a gene in the DNA (double
helix) being transcribed to mRNA (single strand); the mRNA is then translated to create a protein (circle
chain). Here both mRNA and protein undergo degradation. We also exhibit by the dashed lines the potential
activation or inhibition from a protein within the system (rounded square chain) on the transcription and
translation processes. We note that we only display here pre translational regulation. However, post trans-
lational regulation acting upon proteins, for example breaking down of proteins via enzymes also occurs

1.3 Gene regulatory networks

In response to environmental stimuli, bacteria are able to control expression of certain
genes via gene regulatory networks (GRNs). This includes altering the expression of
efflux pump genes in response to an antibiotic or other substance toxic to bacteria.
When a gene is expressed, the processes of transcription (mRNA synthesis from a
DNA template) and translation (protein synthesis from mRNA by ribosomes) occur.
In bacteria, translation in most cases takes place as soon as transcription of mRNA
occurs. This is due to the lack of a nuclear membrane in bacteria and the high insta-
bility and degradation of mRNA molecules. In addition, one strand of mRNA can be
translated multiple times before it is degraded. For these reasons, bacteria can quickly
adapt to changes in environmental stimuli. Certain genes, however, are not expressed
constitutively as they may be part of a regulatory network that controls activation
and/or repression of the gene’s transcription via regulatory proteins. We exhibit these
processes in Fig. 2.

All bacteria have complicated networks of genes controlling gene expression,which
enables them to change their behaviour depending on which genes are expressed and
in what quantities (Wilson et al. 2002). Gram-negative bacteria express several efflux
pumps in their cell membranes. The AcrAB-TolC pump provides intrinsic resistance
to various antibiotics. Overexpression of this efflux pump confers MDR. However,
regulation of efflux pump expression is complicated and it is, therefore, important to
understand the processes governing it. We use mathematical modelling techniques to
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represent the gene regulatory network governing AcrAB expression with a system
of ordinary differential equations (ODEs). This will further our understanding of the
regulation of these genes and hence the AcrAB-TolC system, enabling us to look into
potential mechanisms to inhibit efflux and hence counter MDR.

1.4 Mathematical models of efflux pumps and gene regulatory networks

While mathematical models of efflux pumpmechanisms exist, to our knowledge there
are no published mathematical models of the GRNs governing efflux regulation in
bacteria.

In terms of general efflux pump models, Nagano and Nikaido (2009) present a
model of antibiotic efflux in E. coli, based on the AcrAB-TolC efflux pump system.
This model includes the enzyme β-lactamase located in the periplasm, which breaks
down β-lactam antibiotics such as penicillin. They assume substances expelled by
efflux undergo Michaelis-Menten kinetics, with diffusion into the cell given by Fick’s
law. By using parameter fitting techniques, they are able to estimate various binding
coefficients for certain antibiotics with AcrB. Lim and Nikaido (2010) continue this
work, extending the study to find binding coefficients for various different penicillins.

TheAcrAB-TolC efflux pump system and genes that govern the system’s expression
have been the topic of other mathematical models. Rossi et al. (2018) experimentally
manipulated the degradation of MarA (a known activator of acrAB expression) in E.
coli, to see the resulting effects on downstream genes. A generic mathematical model
was formulated consisting of three genes: an activator and two downstream genes.
This model showed that activators with a long half life had an advantage by increas-
ing the coordination of the downstream genes. The analytical results were replicated
experimentally withmarA and downstream genes inaA and acrAB. Langevin andDun-
lop (2018) produced a mathematical model governing the stress tolerance of E. coli
and the cost of expressing the AcrAB-TolC efflux pump system. They competed acrB
knockout strains against strains with active acrB expression, measuring the population
size of each strain over time with different environmental stress conditions. A mathe-
matical model on the biomass and substrate availability was formulated that displayed
a strong alignment to experimental data. Both of these models give great insights into
the expression of selected genes. In this study, we incorporate the interplay of the
larger network that governs acrAB expression.

Efflux pumps are also modelled in eukaryotic cells, for example efflux pumps asso-
ciated with MDR in cancer patients. Michelson and Slate (Michelson and Slate 1992,
1994) present a model of the p-glycoprotein pump. This pump is energy dependent,
meaning it relies on the process of dephosphorylation of adenosine triphosphate (ATP)
to adenosine diphosphate (ADP) to function. After modelling the transport of drug
through this efflux pump, they included the presence of an inhibitor that prevents the
drug from binding to the pump, modelling situations of competitive inhibition, and
non-competitive inhibition. Yi et al. (1999) develop a single cell model that encom-
passes drug delivery and efflux simultaneously to look into MDR of cancer cells. In
this model efflux is modelled through active transport using Michaelis-Menten equa-
tions, building from Michelson and Slate. Diao et al. (2016) produce a model of a
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yeast efflux pump found in Saccharomyces cerevisiae. They model the negative feed-
back loop of a regulator, efflux pump and inducer (a substrate of the efflux pump).
Charlebois et al. (2014) also produce a model of the efflux pump in Saccharomyces
cerevisiae. Here a more complex model is produced, consisting of three genes that are
part of a drug resistance network involved with efflux pump expression.

There are various methods used to model GRNs, see (Karlebach and Shamir 2008)
for a review. Glass and Kauffman (1973) were the first to present a Boolean model
of GRNs. Here, they propose modelling genes as switches of expression where they
can be active (1) or inactive (0). Weaver et al. (1999) present a linear model of GRNs,
in which each gene’s expression level depends on a summation of the levels of its
regulators. Nachman et al. (2004) increase the level of detail in their model of GRNs
by delving deeper into transcription, including transcriptional factors that could bind
to the promoter site of a gene.More closely related to this study, in Jabbari et al. (2010)
and Jabbari et al. (2015), models of the GRNs that govern quorum sensing in Staphy-
lococcus aureus and toxin production in C. difficile are presented. In these studies,
due to a lack of available data for parameterisation, the models are nondimension-
alised and time-dependent asymptotic analyses are performed using the relative sizes
of the nondimensional parameters. The analyses provide insights into the behaviours
of the systems on various different timescales. By modelling the GRN behind efflux
pump expression, we can gain insight into the most influential aspects of the network.
After formulating our model, we will perform an asymptotic analysis. From this, we
consider various targets for inhibiting efflux pump expression and hence combating
MDR.

2 Model formulation

2.1 Dimensional model

To formulate our model of the GRN governing acrAB expression, we must first delve
into the processes governing the GRN. We exhibit a detailed schematic of the GRN in
Fig. 3. We note that in this network, we also include the homologue of acrAB, acrEF.
Experimentally, this efflux pump gene expression has been shown to become more
prevalent when there is less production of AcrAB or the acrAB genes are deleted,
inactivated, or when the protein is produced, but nonfuctional (Wang-Kan et al. 2017).

To consider asmuch of the regulatory network around efflux as possible, we assume
that the cells are subject to stress, e.g. antibiotic or oxidative stress. This enables us to
bring in the transcriptional activators (TAs) RamA, SoxS, MarA and/or Rob, which
can all regulate the expression of acrAB and tolC genes. Each of these activators is
produced in response to a specific stress. Under stress, de-repression of the relevant TA
occurs and the TA binds to a shared binding site on the promoter region of acrAB, acti-
vating its expression. Post transcription of acrAB, the RNA binding protein CsrA acts
as a stabiliser of translation of acrABmRNA into AcrAB protein. acrAB expression is
also inhibited by the local repressor protein AcrR, whilst the homologue efflux pump
acrEF expression is inhibited by its own local repressor protein EnvR (also called
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Fig. 3 A schematic diagram exhibiting the regulation of acrAB expression.In the rectangles we have the
genes involved in this network, the shapes first linked out from these genes are the proteins produced by
them (we omit most mRNA stages for simplicity). The two shapes not linked to the genes are the enzyme
Lon Protease and the translation activator CsrA. Solid lines capture the behaviour of both the wild-type
and RamR variant, while the dashed line is relevant only for the wild-type. The dotted line shows potential
inhibition of aacrR expression

AcrS). We note that the protein EnvR is also capable of inhibiting acrAB expression
at the same binding site as AcrR.

Of the TAs introduced above, RamA is the primary TA of efflux. RamA is itself
subject to regulation: it is degraded post-translationally by the enzyme Lon protease to
ensure its levels are returned to basal levels in the absence of stress (Ricci et al. 2014),
and transcription of ramA is subject to repression byRamR and positive autoregulation
by RamA itself. We also consider a specific strain of S. Typhimurium (SL1344) that
displaysMDRas a consequence of a ramR::aphmutation in the ramR gene, resulting in
production of a non-functionalRamRprotein that is unable to repress ramA expression,
thus indirectly causing over-expression of acrAB genes and multi drug resistance.

Mathematically, SoxS, MarA and/or Rob would have equivalent representations,
each triggered by a different stress. For simplicity, therefore, we only include one
variable to represent these and refer to it as the secondary TA. The genes that govern
expression of these proteins also have their own repressors that are involved in the
network (for example SoxR, and MarR), however as we are assuming that these genes
are expressed constitutively (when the bacteria are under stress), we do not include
the repressor genes in our model for simplicity.

It has been shown experimentally that with decreased acrAB expression, greater
expression of the homologue efflux pump gene acrEF occurs (Blair et al. 2014a). This
may be through known mechanisms in the network, for example through the repres-
sor envR. However, since these mechanisms have not yet been fully elucidated, we
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capture this behaviour in the model by a simple direct link between AcrAB levels and
expression of acrEF, noting that this is an area where extra detail can be incorporated
in future work.We also note that RamA proteinmay bind at the acrR gene which could
potentially disrupt the levels of AcrR, either by direct inhibition of transcription, or
by preventing activators from binding.

We note here that antibiotic concentration itself could have an effect on the GRN:
one would expect that the presence of antibiotic would trigger upregulation of efflux
activator and/or downregulation of efflux repressors. However, we here consider the
dynamics of the GRN in isolation to focus on the interplay of genes and proteins within
the network when subject to a constant stress. These additional feedback effects are
the subject of future work.

The equations resulting from these processes are

dRm

dt
= k1 − δm Rm, (1)

d Am

dt
= k2

KR A

(A + KA1)(R + KR)
+ k′

2 − δm Am, (2)

dCm

dt
= k3

KA2

A + KA2

− δmCm, (3)

dBm

dt
= k4

KE2KC (KS A + KA1 S)

(KC E + KE2KC + KE2C)(KA1KS + KA1 S + KS A)
− δmBm, (4)

dSm
dt

= k5 − δmSm, (5)

dEm

dt
= k6 − δmEm, (6)

dFm
dt

= k7
KE1

KE1 + E
− δmFm, (7)

dR

dt
= μ(m1Rm − δp R), (8)

d A

dt
= m2Am − δp A − δL A, (9)

dC

dt
= m3Cm − δpC, (10)

dB

dt
= m4Bm

TC
TC + KTC

− δp B, (11)

dS

dt
= m5Sm − δpS, (12)

dE

dt
= m6Em − δpE, (13)

dF

dt
= m7Fm

KB

B + KB
− δpF . (14)

We note that all of the differential equations have linear terms regarding degra-
dation, which we group as the same rate for mRNAs and proteins respectively (δm
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Table 1 Variables used in our
ODE models along with their
respective units

Variables Concentration of Units

Rm ramR mRNA nM

R RamR nM

Am ramA mRNA nM

A RamA nM

Cm acrR mRNA nM

C AcrR nM

Bm acrAB mRNA nM

B AcrAB nM

Sm secondary TA mRNA nM

S Secondary TA nM

Em envR mRNA nM

E EnvR nM

Fm acrEF mRNA nM

F AcrEF nM

and δp). RamA, SoxS and MarA are the only proteins that we know of that undergo
enzyme degradation in the GRN, all degraded by Lon Protease. The secondary TA
Rob however does not experience this degradation (Duval and Lister 2013). Since we
have grouped together SoxS, MarA and Rob together as secondary TAs, we opt not to
include this additional enzyme degradation, instead only including enzyme degrada-
tion for RamA in Eq. (9). In the case of transcription and translation however, the terms
are not so straightforward. In Eqs. (3), (7), (11) and (14), we have one protein either
activating or repressing transcription or translation. The nonlinear term in Eq. (2),
reflects two proteins binding at different sites (one activating and one repressing tran-
scription). Furthermore, Eq. (4) reflects two proteins competing for one site (activating
transcription) activating transcription and two proteins competing for a different site
(repressing transcription). In Eq. (2), we also include a lower basal rate of transcription
of ramA mRNA. We include this to prevent low or zero transcription of mRNA when
there is little RamA protein in the system. Finally, we incorporate the RamR variant
via a mutant coefficient (μ) in Eq. (8). By setting this value to zero, we can replicate
the case of mutated RamR as this results in no translation of ramRmRNA. Conversely
by setting this value to one we have full translation, but also degradation of RamR
protein.

We denote the variables and parameters used in this model in Tables 1 and 2
respectively. Due to a lack of relevant experimental data, it is not currently possible
to estimate absolute parameter values. Instead, we nondimensionalise the model and
exploit our biological insight to estimate the relative nondimensional parameter values.
In doing so, we can use an asymptotic analysis to compare the wild-type and mutant
cases to provide useful insights to counter efflux overexpression and hence MDR in
Salmonella.
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Table 2 A table of parameters used in our model and their respective units

Parameter Description Units

k1 Transcription rate of ramR mRNA nMs−1

m1 Translation rate of RamR s−1

k2 Transcription rate of ramA mRNA nMs−1

m2 Translation rate of RamA s−1

k3 Transcription rate of acrR mRNA nMs−1

m3 Translation rate of AcrR s−1

k4 Transcription rate of acrAB mRNA nMs−1

m4 Translation rate of AcrAB s−1

k5 Transcription rate of secondary TA mRNA nMs−1

m5 Translation rate of secondary TA s−1

k6 Transcription rate of envR mRNA nMs−1

m6 Translation rate of EnvR s−1

k7 Transcription rate of acrEF mRNA nMs−1

m7 Translation rate of AcrEF s−1

k′
2 Lower transcriptional rate of RamA nMs−1

δm Degradation rate of mRNA s−1

δp Degradation rate of proteins s−1

δL Degradation caused by Lon Protease s−1

KR Dissociation constant of RamR nM

KA1 Dissociation constant of RamA with ramA and acrAB nM

KA2 Dissociation constant of RamA with acrR nM

KC Dissociation constant of AcrR nM

KE1 Dissociation constant of EnvR with acrEF nM

KE2 Dissociation constant of EnvR with acrAB nM

KS Dissociation constant of secondary TA nM

KTC Dissociation constant of CsrA nM

KB Chemical signals constant of AcrAB nM

TC CsrA nM

μ Mutation coefficient N/A

2.2 Nondimensional model

We nondimensionalise the model using the following variable scalings

Rm = k1
δm

R∗
m, Sm = k5

δm
S∗
m, A =KAA

∗, E =KE2E
∗,

Am = k2
δm

A∗
m, Em = k6

δm
E∗
m, C =KCC

∗, F =k7m7

δ2m
F∗,
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Cm = k3
δm

C∗
m, Fm = k7

δm
F∗
m, B = k4

δm
B∗, t = 1

δm
T ,

Bm = k4
δm

B∗
m, R =KRR

∗, S =KSS
∗, (15)

here the asterisks denote nondimensional variables. We have chosen these scalings
in order to simplify our system of equations and create nondimensional parameters
over which we have insight into their relative sizes. We note that these have the added
effect of simplifying the somewhat complex transcription and translation terms. The
nondimensionalised parameter groupings that then emerge are as follows

Δ = δp

δm
, θ = k2m2

δ2mKA
, σ = k5m5

δ2mKS
, β = m4TC

δm
(
TC + KTC

) ,

ρ = k1m1

δ2mKR
, υ = δL

δm
, η =KE1

KE2

, ξ = k6m6

δ2mKE2

,

α =k′
2

k2
, γ = k3m3

δ2mKC
, λ =KA1

KA2

, ω = k4
δmKB

.

Weassume that allmRNAsandproteins are initially present at a lowconcentration to
monitor how the systemupregulates. Thus,we choose lowvalue generic dimensionless
initial conditions as follows

R∗
m(0) = A∗

m(0) = C∗
m(0) = B∗

m(0) = S∗
m(0) = E∗

m(0) = F∗
m(0) = 0.01,

R∗(0) = A∗(0) = C∗(0) = B∗(0) = S∗(0) = E∗(0) = F∗(0) = 0.01. (16)

From here on we will refer to these initial conditions with the following notation. For
any gene X , we will refer to the mRNA initial condition as Xm0 and the protein initial
condition as X0.

2.3 Parameter grouping sizes

By using information about the size of certain parameters compared to others, we can
estimate relative parameter sizes within the nondimensional groupings. We start by
choosing a parameter grouping that we know to be small (and denote it having the
value ε):

α = k′
2

k2
= ε. (17)

The groupingα is the ratio of a lowbasal rate of transcription to the higher transcription
rate of ramA mRNA. We now assign each other parameter grouping an order of
magnitude relative to (17). We assume that

Δ = δp

δm
= O(ε), (18)
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i.e. mRNA degradation occurs at a much faster rate than the degradation of proteins.
We do not know all of the exact degradation rates for the mRNAs and proteins of
genes within the network. However, in a similar gram-negative bacteria E. coli it was
observed that 80% of 4,288 mRNAs had half-lives between 3 and 8 min (Bernstein
et al. 2002), whereas for proteins, the vast majority have half-lives of between 5 and
20 hours (Maurizi 1992). In Salmonella, on a study of 870 proteins, the calculated
median half-life was 99.30 min (Wang et al. 2016). For individual proteins within the
GRN, it has been shown for RamA that in a mutant strain with no Lon Protease, there
was very little observable degradation within 10 min, indicating that the protein is
highly stable (Ricci et al. 2014). Finally, in E. coli it has also been observed that AcrA
and AcrB lasted for approximately six days (Chai et al. 2016).

At O(ε
1
2 ) we have the following parameter groupings

υ = δL

δm
, σ = k5m5

δ2mKS
, ξ = k6m6

δ2mKE2

. (19)

Having υ = O(ε
1
2 ) follows from (18), as the rate of degradation of RamA by Lon

protease (δL ) is larger than the natural rate of protein degradation (δp) (Ricci et al.
2014). Thus, we expect this grouping to be a larger order of magnitude than Δ. For
σ , as the secondary TAs are all underlying activators, we expect that the dissociation
constant is relatively large, (furthermore by setting this grouping to this size we obtain
the most realistic behaviour). Finally, for ξ the transcription and translation rates for
EnvR should be small as this is a repressor of the homologue efflux pump system
AcrEF, and thus we expect this grouping to be the same size as σ which governs
similar underlying genes.
Finally, we have the parameter groupings that we choose to be O(1). Firstly,

λ =KA1

KA2

, η =KE1

KE2

, ω = k4
δmKB

. (20)

For λ, the dissociation constants that make up this grouping correspond to the same
proteins, but binding to different binding sites. With no evidence to the contrary, we
make the assumption that the constants are roughly equal. For η, there is contradictory
evidence in the literature over whether EnvR preferentially binds acrAB, acrEF or
both equally (Hirakawa et al. 2008; Hay et al. 2017). As a result, we also assume these
dissociation constants are roughly equal and explore variations to this choice in the
parameter sensitivity section. As for ω, we know very little about the chemical signals
that cause activation of AcrEF, and hence we keep this as O(1) for simplicity. The
rest of the O(1) parameter groupings are as follows

θ = k2m2

δ2mKA
, ρ = k1m1

δ2mKR
, γ = k3m3

δ2mKC
, β = m4TC

δm
(
TC + KTC

) . (21)

The groupings in (21) correspond to the expression of RamA,RamR,AcrR andAcrAB
respectively. These four proteins constitute the primary TAs and the central pathway
for the GRN, and thus it is not unreasonable to assume that expression of their genes
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Table 3 Nondimensionalised
parameter groupings and their
orders of magnitude

Nondimensional parameter Size

α, Δ O(ε)

υ, σ , ξ O(ε
1
2 )

ρ, θ , γ , β, η, λ, ω O(1)

is relatively high and the respective dissociation constants are likely to be smaller. It
has also been shown experimentally in a wild-type Salmonella strain, that expression
of ramA and acrAB was higher than soxS, marA and acrEF (Whitehead et al. 2011).
Therefore, we expect these groupings to be the largest in order. Testing more subtle
differences in size did not bring significant variations to the behaviour of the model.
In Table 3, we summarise all of the above parameter grouping sizes. The parameters
below are therefore scaled as follows

Δ =εΔ′, σ =ε
1
2 σ ′, μ =ε

1
2 μ′, α =εα′, ξ =ε1/2ξ ′, (22)

where the parameters with primes are taken to be O(1). Substituting these into our
nondimensional model, dropping primes and asterisks, we obtain the following system
of equations, where all parameters are O(1):

dRm

dT
= 1 − Rm, (23)

d Am

dT
= A

(A + 1) (R + 1)
+ εα − Am, (24)

dCm

dT
= λ

A + λ
− Cm, (25)

dBm

dT
= A + S

(1 + S + A) (1 + E + C)
− Bm, (26)

dSm
dT

= 1 − Sm, (27)

dEm

dT
= 1 − Em, (28)

dFm

dT
= η

η + E
− Fm, (29)

dR

dT
= μρ Rm − μεΔ R, (30)

d A

dT
= θ Am − ε1/2υ A − εΔ A, (31)

dC

dT
= γ Cm − εΔC, (32)

dB

dT
= β Bm − εΔ B, (33)
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Fig. 4 Numerical simulations of the nondimensionalised model (23)–(36) with down regulated initial con-
ditions of 0.01 for all variables. We use ε = 0.01 and all other parameters are unity. Here STA refers to the
secondary TA

dS

dT
= ε1/2σ Sm − εΔ S, (34)

dE

dT
= ε1/2ξ Em − εΔ E, (35)

dF

dT
= Fm

ωB + 1
− εΔ F, (36)

with initial conditions (16). We will follow some numerical simulations of the model
with a time-dependent asymptotic analysis in order to extract the dominant behaviours
over time. Throughout our simulations, we take ε = 0.01, and all other parameters as
unity.

3 Numerical simulation

We exhibit a numerical simulation of (16) and (23)–(36) in Fig. 4 showing both the
wild-type and RamR variant cases. For both cases, we see the rapid production of
mRNA (a)-(g), reaching steady state very quickly for most variables. The efflux genes’
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mRNAs (d) and (g) reach steady state more slowly due to being affected by regulatory
protein concentrations. All proteins (h)-(n) reach steady state at a later timescale than
themRNA. These simulations enable us to exhibit the vast differences betweenmutant
and wild-type strains, caused by the mutation to RamR protein (h). This mutation
causes overexpression of ramA mRNA (b) and protein (i) which in turn causes lower
concentrations of acrR mRNA (c) and protein (j). These concentrations combined
result in a higher concentration of acrAB mRNA (d) and protein (k), which itself
causes lower expression of AcrEF (n). We note that the steady state concentration of
AcrAB is significantly higher in the mutant case than the wild-type case.

4 Time dependent asymptotic analysis

We now exploit asymptotic analyses to break down the full solution into smaller
timescales to investigate how the system evolves over time. For an insight into various
asymptotic techniques andmethods, someused in this section, see (Kevorkian andCole
2013). Variable scalings on each timescale are obtained by first finding the long-term
behaviour of each variable on the previous timescale. Once this long-term or near blow
up behaviour is found, we can identify the scalings based on how each variable behaves
compared to our time variable T . For example if a nondimensionalised variable G
behaves on the previous timescale as follows

G ∼ T as T → ∞,

then to move to the next timescale we must scale G in the same way that we do for
T . Throughout the next sections, we will draw comparisons between the numerical
solutions and asymptotic approximations. In all figures asymptotic approximations
will be shown in circles,whereas the numerical simulationswill be shownas solid lines.
We take ε = 0.01 unless otherwise stated. We also do not include all timescales in the
following analysis, choosing only those that exhibit significant changes in behaviour.
For a full breakdown of timescales, see (Youlden 2018).

4.1 Asymptotic analysis of the wild-type dynamics

We begin with the wild-type case where RamR protein is not mutated (i.e μ = 1).
We denote the variable scalings for each timescale in Table 4. Here the scalings are
given in relation to the original nondimensionalised variables in (15). Throughout the
simulations in this section, we take ε = 0.01, and all other parameters as unity unless
otherwise stated. We do not plot every variable on each timescale, instead choosing to
plot the variables involved with new terms entering the leading order balance.
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Â

ε
1 4
C̄
m

ε
1 2
C̄

ε
B̂
m

ε
B̂

ε
1 4
S̄ m

ε
Ŝ
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4.1.1 Timescale 1: mRNA transcription

On this initial timescale all scalings must be scaled to O(ε) to reflect their initial
conditions. Our system of equations rescaled for the first timescale is

d R̂m

dT̂
= 1 − ε R̂m,

d Âm

dT̂
= ε Â

(ε Â + 1)(ε R̂ + 1)
+ εα − ε Âm,

dĈm

dT̂
= λ

ε Â + λ
− εĈm,

d B̂m

dT̂
= ε Â + ε Ŝ

(1 + ε Ŝ + ε Â)(1 + ε Ê + εĈ)
− ε B̂m,

d Ŝm

dT̂
= 1 − ε Ŝm,

d Êm

dT̂
= 1 − ε Êm,

d F̂m

dT̂
= η

η + ε Ê
− ε F̂m,

d R̂

dT̂
= μρ ε R̂m − ε2μΔR̂,

d Â

dT̂
= θ ε Âm − ε

3
2 υ Â − ε2Δ Â,

dĈ

dT̂
= γ εĈm − ε2ΔĈ,

d B̂

dT̂
= β ε B̂m − ε2ΔB̂,

d Ŝ

dT̂
= ε3/2σ Ŝm − ε2ΔŜ,

d Ê

dT̂
= ε3/2ξ Êm − ε2ΔÊ,

d F̂

dT̂
= ε F̂m

εω B̂ + 1
− ε2ΔF̂ .

By finding the leading order balance of this system, we can reduce the system
while maintaining the dominant behaviour on this timescale. Solving the reduced
model subject to the initial conditions gives the following asymptotic approximations
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Fig. 5 Asymptotic approximations on timescale 1 (ε = 0.01). On this timescale, time is O(ε), so we expect
the asymptotics to be accurate around T = ε

on this timescale

R̂m = T̂ + Rm0, R̂ = R0, Âm = Am0, Â = A0,

Ĉm = T̂ + Cm0, Ĉ = C0, B̂m = Bm0, B̂ = B0,

Ŝm = T̂ + Sm0, Ŝ = S0, Êm = T̂ + Em0, Ê = E0,

F̂m = T̂ + Fm0, F̂ = F0. (37)

We plot the asymptotic approximations of those variables that evolve on this
timescale against the numerical solutions in Fig. 5. As expected, we see the transcrip-
tion of various gene’s mRNA occurring first with protein levels remaining at their
initial value. The transcription of ramA and acrABmRNA are currently not active due
to there being insufficient levels of activator protein bound to their promoter sites to
achieve any level of transcription at leading order.

4.1.2 Timescale 3: protein translation

We omit details of timescale 2 (where protein translation begins for a small number
of transcribed mRNAs) for brevity. On this third timescale protein translation occurs
at leading order for all proteins for which transcription of their corresponding mRNA
occurred on timescale 1. The system of equations rescaled for the third timescale is

d R̄m

dT̄
= 1 − ε

1
4 R̄m,

d Âm

dT̄
= ε

1
4 Â

(ε Â + 1)(ε
1
2 R̄ + 1)

+ ε
1
4 α − ε

1
4 Âm,

dC̄m

dT̄
= λ

ε Â + λ
− ε

1
4 C̄m,
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d B̂m

dT̄
= ε

1
4 Â + ε

1
4 Ŝ

(1 + ε Ŝ + ε Â)(1 + ε Ê + ε
1
2 C̄)

− ε
1
4 B̂m,

d S̄m
dT̄

= 1 − ε
1
4 S̄m,

d Ēm

dT̄
= 1 − ε

1
4 Ēm,

d F̄m

dT̄
= η

η + ε Ê
− ε

1
4 F̄m,

d R̄

dT̄
= μρ R̄m − ε

5
4 μΔR̄,

d Â

dT̄
= ε

1
4 θ Âm − ε

3
4 υ Â − ε

5
4 Δ Â,

dC̄

dT̄
= γ C̄m − ε

5
4 ΔC̄,

d B̂

dT̄
= ε

1
4 β B̂m − ε

5
4 ΔB̂,

d Ŝ

dT̄
= σ S̄m − ε

5
4 ΔŜ,

d Ê

dT̄
= ξ Ēm − ε

5
4 ΔÊ,

d F̄

dT̄
= F̄m

εω B̂ + 1
− ε

5
4 ΔF̄ .

Taking the leading order balance, solving and matching to the long-term dominant
behaviour on the previous timescale gives the following asymptotic approximations

R̄m = T̄ , R̄ = μρ

2
T̄ 2, Âm = Am0, Â = A0,

C̄m = T̄ , C̄ = γ

2
T̄ 2, B̂m = Bm0, B̂ = B0,

S̄m = T̄ , Ŝ = σ

2
T̄ 2 + S0, Ēm = T̄ , Ê = ξ

2
T̄ 2 + E0,

F̄m = T̄ , F̄ = 1

2
T̄ 2. (38)

Weplot asymptotic approximations of protein variables that evolve on this timescale
against the numerical solutions in Fig. 6. On this timescale, we see the translation of all
mRNAs that were previously transcribed on the earlier timescales. This makes logical
sense as we expect rapid translation in response to changes at the transcriptional level.
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Fig. 6 Asymptotic approximations on timescale 3 (ε = 0.01). On this timescale, time is O(ε
1
4 ), so we

expect the asymptotics to be accurate around T = ε
1
4 ≈ 0.3162

4.1.3 Timescale 5: AcrAB translation

We omit timescale 4 (where only acrAB mRNA transcription takes place) for brevity.
On this fifth timescale the translation term for AcrAB appears in the leading order
balance, thus our system of equations rescaled for the fifth timescale is

dR′
m

dT ′ = 1 − ε
1
8 R′

m,

d Âm

dT ′ = ε
1
8 Â

(ε Â + 1)(ε
1
4 R′ + 1)

+ ε
1
8 α − ε

1
8 Âm,

dC ′
m

dT ′ = λ

ε Â + λ
− ε

1
8C ′

m,

dB ′
m

dT ′ = ε
1
4 Â + S′

(1 + ε
3
4 S′ + ε Â)(1 + ε

3
4 E ′ + ε

1
4C ′)

− ε
1
8 B ′

m,

dS′
m

dT ′ = 1 − ε
1
8 S′

m,

dE ′
m

dT ′ = 1 − ε
1
8 E ′

m,

dF ′
m

dT ′ = η

η + ε
3
4 E ′

− ε
1
8 F ′

m,

dR′

dT ′ = μρ R′
m − ε

9
8 μΔ R′,

d Â

dT ′ = ε
1
8 θ Âm − ε

5
8 υ Â − ε

9
8 Δ Â,
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Fig. 7 Asymptotic approximations on timescale 5 (ε = 0.01). On this timescale, time is O(ε
1
8 ), so we

expect the asymptotics to be accurate around T = ε
1
8 ≈ 0.5623. We could eliminate the disparity by

matching to more than the blow up behaviour on the previous timescale, however for simplicity in solutions
for the latter timescales, we have opted not to do so

dC ′

dT ′ = γ C ′
m − ε

9
8 ΔC ′,

d B̂

dT ′ = β B ′
m − ε

9
8 Δ B̂,

dS′

dT ′ = σ S′
m − ε

9
8 Δ S′,

dE ′

dT ′ = ξ E ′
m − ε

9
8 Δ E ′,

dF ′

dT ′ = F ′
m

εω B̂ + 1
− ε

9
8 ΔF ′.

We solve the leading order balance and matching to the long-term dominant
behaviour on the previous timescale gives the following asymptotic approximations

R′
m = T ′, R′ = μρ

2
T ′2, Âm = Am0, Â = A0,

C ′
m = T ′, C ′ = γ

2
T ′2, B ′

m = σ

6
T ′3, B̂ = βσ

24
T ′4 + B0,

S′
m = T ′, S′ = σ

2
T ′2, E ′

m = T ′, E ′ = ξ

2
T ′2,

F ′
m = T ′, F ′ = 1

2
T ′2. (39)

The asymptotic approximations for acrAB are plotted against the full solution in
Fig. 7. In this timescale, we have translation of AcrAB at the leading order, we note
that this is being driven here by the secondary TA. Here we exhibit both mRNA and
protein to exhibit the new dominant behaviour emerging in both timescales 4 and 5.We
note there is disparity between the approximations and numerics. We could eliminate
this by matching to additional orders of behaviour on the previous timescale, however
for simplicity in solutions for the latter timescales, we have opted not to do so.
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4.1.4 Timescale 6: mRNA degradation and full protein translation

For this timescale, mRNAdegradation and expression of ramA enters the leading order
balance, our system of equations rescaled for the sixth timescale is

dR†
m

dT † = 1 − R†
m,

d Âm

dT † = Â

(ε Â + 1)(R† + 1)
+ α − Âm,

dC†
m

dT † = λ

ε Â + λ
− C†

m,

dB†
m

dT † = ε
1
2 Â + S†

(1 + ε
1
2 S† + ε Â)(1 + ε

1
2 E† + C†)

− B†
m,

dS†m
dT † = 1 − S†m,

dE†
m

dT † = 1 − E†
m,

dF†
m

dT † = η

η + ε
1
2 E†

− F†
m,

dR†

dT † = μρ R†
m − εμΔ R†,

d Â

dT † = θ Âm − ε
1
2 υ Â − εΔ Â,

dC†

dT † = γ C†
m − εΔC†,

dB†

dT † = β B†
m − εΔ B†,

dS†

dT † = σ S†m − εΔ S†,

dE†

dT † = ξ E†
m − εΔ E†,

dF†

dT † = F†
m

ε
1
2 ωB† + 1

− εΔF†.

Solving the leading order balance and matching to the long-term dominant
behaviour on the previous timescale gives the following asymptotic approximations

R†
m = 1 − e−T †

, R† = μρ
(
T † − e−T † − 1

)
, C†

m = 1 − e−T †
,
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B†
m = σT †

γ T † + 1
, C† = γ

(
T † − e−T † − 1

)
, B† = βσ

γ

(

1 − ln
(
T †γ + 1

)

γ

)

,

S†m = 1 − e−T †
, S† = σ

(
T † − e−T † − 1

)
, E†

m = 1 − e−T †
,

F†
m = 1 − e−T †

, E† = ξ
(
T † − e−T † − 1

)
, F† = T † − e−T † − 1, (40)

while the behaviour for both ramA mRNA ( Âm) and RamA protein ( Â) depends on

the relationship between the parameters μ,θ and ρ. If
θ

μρ
	= 1 we have

Âm = (μρA0 − θ (α + A0))
(
T †μρ + 1

) θ
μρ + (

T †μρ + 1
)
θ α

(μρ − θ)(μρT † + 1)
, (41)

Â = (μρA0 − θ (α + A0))
(
T †μρ + 1

) θ
μρ + (

T †μρ + 1
)
θ α

μρ − θ
. (42)

In this case we have different long term blow up behaviour depending on whether
θ

μρ
< 1 or

θ

μρ
> 1, detailed below. For the case where

θ

μρ
= 1 we have

Âm = α ln
(
T † + 1

)
+ A0 + α, Â =

(
α ln

(
T † + 1

)
+ A0

) (
T † + 1

)
, (43)

here we have taken the case where θ = 1, μ = 1, ρ = 1 for simplicity of displaying
the solutions.

We can see that we have three cases of long-term behaviour for both ramA mRNA
( Âm) and RamA protein ( Â), we exhibit the relation between this long-term behaviour
and our parameter groupings as follows

Âm ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CA for
θ

μρ
< 1,

ln(T †) for
θ

μρ
= 1,

T †
θ

μρ
−1

for
θ

μρ
> 1,

(44)

Â ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T †, for
θ

μρ
< 1,

T † ln(T †) for
θ

μρ
= 1,

T †
θ

μρ for
θ

μρ
> 1,

(45)

where hereCA is a constant. We note that the parameter θ relates to RamA production,
whilst ρ relates to RamR production. Since RamR is a repressor of ramA expression,

we might expect its rate of production to dominate, thus we note that the case
θ

μρ
< 1
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Fig. 8 Asymptotic approximations on timescale 6 (ε = 0.01). On this timescale, time is O(1), so we expect
the asymptotics to be accurate around T = 1. Note we depict the simulations over a longer period of time
than earlier timescales

is the most biologically plausible and use the resulting behaviour to move to the
next timescale. For all future numerical simulations, we set θ = 0.5 to satisfy this
inequality.

We plot these asymptotic approximations against the full solution in Fig. 8. This
is the first timescale where the ramA gene is expressed at leading order, this is due
to there being little RamA protein in the system to activate its own expression. We
note we have transcription of ramA mRNA and translation of RamR coming into
this timescale. In addition to this we have degradation terms for all mRNAs, this is
causing the mRNAs to level off and reach steady state. In addition to this, the local
repressor of acrAB (AcrR) is bound to the operator site of acrAB which is in effect
limiting the transcription of this gene. For acrABmRNAwe have a slight mismatch of
the approximation to the solution, we could prevent this by matching to lower orders
of behaviour on the previous timescale. However, we have chosen not to do this for
simplicity of solutions on this and further timescales.

4.1.5 Timescale 7: degradation of RamA, inhibition of acrAB and acrEF

For this timescale, we have a change of the terms involved in transcription of acrAB
and acrEF, with new terms emerging at leading order.We also haveRamAdegradation
entering the leading order balance. Our system of equations rescaled for the seventh
timescale is

ε
1
2
dR†

m

dT ‡ = 1 − R†
m,

ε
d Âm

dT ‡ = A‡

(ε
1
2 A‡ + 1)(ε− 1

2 R‡ + 1)
+ ε

1
2 α − ε

1
2 Âm,

ε
1
2
dC†

m

dT ‡ = λ

ε
1
2 A‡ + λ

− C†
m,

ε
dB†

m

dT ‡ = ε
1
2 A‡ + S‡

(1 + S‡ + ε
1
2 A‡)(1 + E‡ + ε− 1

2C‡)
− ε

1
2 B†

m,
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ε
1
2
dS†m
dT ‡ = 1 − S†m,

ε
1
2
dE†

m

dT ‡ = 1 − E†
m,

ε
1
2
dF†

m

dT ‡ = η

η + E‡ − F†
m,

dR‡

dT ‡ = μρ R†
m − ε

1
2 μΔ R‡,

d A‡

dT ‡ = θ Âm − υ A‡ − ε
1
2 ΔA‡,

dC‡

dT ‡ = γ C†
m − ε

1
2 ΔC‡,

dB‡

dT ‡ = β B‡
m − ε

1
2 Δ B‡,

dS‡

dT ‡ = σ S†m − ε
1
2 Δ S‡,

dE‡

dT ‡ = ξ E†
m − ε

1
2 Δ E‡,

dF‡

dT ‡ = F†
m

ωB‡ + 1
− ε

1
2 ΔF‡.

Matching the solutions of the leading order balance to the long-term dominant
behaviour on the previous timescale gives the following asymptotic approximations

R†
m = 1, R‡ = μρT ‡, Âm = αυμρT ‡

υμρT ‡ − θ
, A‡ = θαμρT ‡

υμρT ‡ − θ
,

C†
m = 1, C‡ = γ T ‡, B†

m = σ

γ (σT ‡ + 1)
, S†m = 1,

S‡ = σT ‡, E†
m = 1, E‡ = ξT ‡, F†

m = η

η + ξT ‡ ,

B‡ = β

γ
ln(σT ‡ + 1), F‡ = ηγ

βωξ
ln(βω ln(ξT ‡ + η) + γ ). (46)

We plot asymptotic approximations of those variables that evolve on this timescale
against the numerical solutions in Fig. 9. On this timescale, we have repressor proteins
dominating the transcription terms for acrAB and acrEF. With lower levels of tran-
scription, degradation dominates and the concentrations of the mRNAs lower.We note
that in this wild-type case RamA production occurs late compared to other proteins
(starting on the previous timescale) and is quickly degraded to achieve only low levels
in comparison to other proteins in the system. On this timescale, all other mRNAs
have reached steady state and AcrAB and AcrEF grow logarithmically.
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Fig. 9 Asymptotic approximations on timescale 6 (ε = 0.01). On this timescale, time is O(ε
− 1

2 ), so we

expect the asymptotics to be accurate around T = ε
− 1

2 = 10. Note we depict the simulations over a longer
period of time than earlier timescales

4.1.6 Timescale 9: final timescale, protein degradation

We omit the eighth timescale (which scales away from the logarithmic behaviour of
the efflux pump genes) for brevity. On this timescale degradation for all proteins that
were not already at steady state emerge in the leading order balance. Thus using these
scalings, our system of equations rescaled for the ninth and final timescale is

ε
dR†

m

dT+ = 1 − R†
m,

ε
3
2
d Âm

dT+ = A‡

(ε
1
2 A‡ + 1)(ε−1R+ + 1)

+ ε
1
2 α − ε

1
2 Âm,

ε
dC†

m

dT+ = λ

A+ + λ
− C†

m,

ε2
dB+

m

dT+ = A+ + ε− 1
2 S+

(1 + ε− 1
2 S+ + A+)(1 + ε− 1

2 E+ + ε−1C+)
− εB+

m ,

ε
dS†m
dT+ = 1 − S†m,

ε
dE†

m

dT+ = 1 − E†
m,

ε
3
2
dF+

m

dT+ = η

η + ε− 1
2 E+

− ε
1
2 F+

m ,

dR+

dT+ = μρ R†
m − μΔ R+,
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ε
1
2
d A‡

dT+ = θ Âm − υ A‡ − ε
1
2 ΔA‡,

dC+

dT+ = γ C†
m − ΔC+,

dB�

dT+ = βφ B+
m − Δ B�,

dS+

dT+ = σ S†m − Δ S+,

dE+

dT+ = ξ E†
m − Δ E+,

dF�

dT+ = φδF+
m

(ωB� + φ)
− ΔF�.

Here, the terms φ = ln(1/ε)−1 and δ = ln(ln(1/ε))−1 have emerged from loga-
rithmic behaviour on previous timescales. With the value of ε = 0.01, these terms are
effectively O(1), so we include them in the leading order balance. Matching to the
long-term dominant behaviour on the previous timescale gives the following asymp-
totic approximations

R†
m = 1, R+ = μρ

Δ
(1 − e−ΔT+

), Âm = α,

A‡ = θα

υ
, C†

m = 1, C+ = γ

Δ
(1 − e−ΔT+

),

S†m = 1, S+ = σ

Δ
(1 − e−ΔT+

), E†
m = 1,

E+ = ξ

Δ
(1 − e−ΔT+

), B+
m = Δ

γ (1 − e−ΔT+
)
, F+

m = ηΔ

ξ(1 − e−ΔT+
)
,

B� = φβ

γ
(1 + ln(γ (eΔT+ − 1))e−ΔT+

), F� = δηγ

ξ(βω + γ )
(1 + γ

βω
e−ΔT+

).

(47)

We plot asymptotic approximations of those variables that evolve on this timescale
against the numerical solutions in Fig. 10. On this final timescale, we see all proteins
reaching a steady state as their degradation terms appear at leading order. We note that
the approximated steady states match closely to the numerics, thus we should be able
to draw strong conclusions by performing steady state analysis on the approximations,
shown in Sect. 4.3. This concludes the wild-type asymptotic analysis. In summation,
we have broken down the system into nine timescales. For each of these timescales
we have obtained full analytical solutions.

4.2 Asymptotic analysis of themutant dynamics

In this section we take the case where RamR protein is mutated (i.eμ = 0).We denote
the scalings we must take in order to reach each timescale in Table 5. Throughout the
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Fig. 10 Asymptotic approximations on timescale 6 (ε = 0.01). On this timescale, time is O(ε−1), so we
expect the asymptotics to be accurate around and beyond T = ε−1. Note we depict the simulations over a
larger period of time than earlier timescales

simulations in this section, we take ε = 0.01, and all other parameters as unity unless
otherwise stated.Weomit the first five timescales in the below for brevity as they follow
closely from the same timescales in the wild-type asymptotics without translation of
RamR protein.

4.2.1 Timescale 6: mRNA degradation and full protein translation

On this timescale, mRNA degradation and expression of ramA appear at leading
order. Our system of equations rescaled for the sixth timescale is

dR†
m

dT † = 1 − R†
m,

d Âm

dT † = Â

(ε Â + 1)(ε R̂ + 1)
+ α − Âm,

dC†
m

dT † = λ

ε Â + λ
− C†

m,

dB†
m

dT † = ε
1
2 Â + S†

(1 + ε
1
2 S† + ε Â)(1 + ε

1
2 E† + C†)

− B†
m,

dS†m
dT † = 1 − S†m,

dE†
m

dT † = 1 − E†
m,

dF†
m

dT † = η

η + ε
1
2 E†

− F†
m,
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ε
d R̂

dT † = 0,

d Â

dT † = θ Âm − ε
1
2 υ Â − εΔ Â,

dC†

dT † = γ C†
m − εΔC†,

dB†

dT † = β B†
m − εΔ B†,

dS†

dT † = σ S†m − εΔ S†,

dE†

dT † = ξ E†
m − εΔ E†,

dF†

dT † = F†
m

ε
1
2 ωB† + 1

− εΔF†.

Solving the system of leading order equations and matching to the long term
dominant behaviour on the previous timescale gives the following asymptotic approx-
imations

R†
m = 1 − e−T †

, R̂ = R0, C†
m = 1 − e−T †

,

C† = γ
(
T † − e−T † − 1

)
, B†

m = σT †

γ T † + 1
, S†m = 1 − e−T †

,

B† = βσ

γ

⎛

⎝1 −
ln

(
T †γ + 1

)

γ

⎞

⎠ , S† = σ
(
T † − e−T † − 1

)
, E†

m = 1 − e−T †
,

E† = ξ
(
T † − e−T † − 1

)
, F† = T † − e−T † − 1, F†

m = 1 − e−T †
,

Âm =
(√

1 + 4 θα + √
1 + 4 θ A0 + 2 A0θ + α + A0

)
e
(−1+√

1+4 θ)T †
2

2
√
1 + 4 θ

− α,

Â =
(
(α + A0)

√
1 + 4 θ + (2 θ + 1) A0 + α

)
e
(−1+√

1+4 θ)T †
2

2
√
1 + 4 θ

. (48)

We plot asymptotic approximations of those variables that evolve on this timescale
against the numerical solutions in Fig. 11. In this timescale, we have most of the
mRNAs’ asymptotic approximations reaching near steady state as their degradation
takes effect. The only mRNA not reaching steady state is ramA mRNA, which is
exhibiting exponential growth. There is the same exponential growth for RamA pro-
tein, both of these growth behaviours are caused by the positive feedback loop with
the ramA gene upon itself. In contrast to the wild-type system, without any presence
of RamR protein to repress this feedback loop, we see rapidly increasing expression
of ramA.
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Fig. 11 Asymptotic approximations on timescale 6 (ε = 0.01) for the mutant case (m = 0). On this
timescale, time is O(1), so we expect the asymptotics to be accurate around T = 1

4.2.2 Timescale 7: activation of acrAB by RamA

For this timescale, we require the following values φ = ln(1/ε)−1 and κ = 1
2 (−1 +√

1 + 4θ), resulting from the logarithmic and exponential behaviour on the previous
timescale respectively. Activation of acrAB mRNA transcription via RamA protein
now appears and our system of equations rescaled for the seventh timescale is

dR†
m

dT ‡ = 1 − R†
m,

d A‡
m

dT ‡ = A‡

(ε
1
2 A‡ + 1)(ε R̂ + 1)

+ ε
1
2 α − A‡

m,

dC†
m

dT ‡ = λ

ε
1
2 A‡ + λ

− C†
m,

dB†
m

dT ‡ = A‡ + φ−1S‡

(1 + ε
1
2 φ−1S‡ + ε

1
2 A‡)(1 + ε

1
2 φ−1E‡ + φ−1C‡)

− B†
m,

dS†m
dT ‡ = 1 − S†m,

dE†
m

dT ‡ = 1 − E†
m,

dF†
m

dT ‡ = η

η + ε
1
2 φ−1E‡

− F†
m,

ε
d R̂

dT ‡ = 0,

d A‡

dT ‡ = θ A‡
m − ε

1
2 υ A‡ − εΔA‡,

φ−1 dC
‡

dT ‡ = γ C†
m − εφ−1ΔC‡,
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Fig. 12 Asymptotic approximations on timescale 7 (ε = 0.01). On this timescale, time is O(1 + 1
2κ φ−1),

so we expect the asymptotics to be accurate around T = 1 + 1
2κ φ−1 ≈ 4.7257

φ−1 dB
‡

dT ‡ = β B†
m − εφ−1Δ B‡,

φ−1 dS
‡

dT ‡ = σ S†m − εφ−1Δ S‡,

φ−1 dE
‡

dT ‡ = ξ E†
m − εφ−1Δ E‡,

φ−1 dF
‡

dT ‡ = F†
m

ε
1
2 φ−1ωB‡ + 1

− εφ−1ΔF‡.

We solve the leading order system of ODEs and match to the long term dominant
behaviour on the previous timescale, giving us the following asymptotic approxima-
tions

R†
m = 1 − e−T ‡

, R̂ = R0, C†
m = 1 − e−T ‡

C‡ = φγ
(
T ‡ − e−T ‡ − 1

)
, B†

m = A0eθT ‡ + φ−1σT ‡

φ−1γ T ‡ + 1
, S†m = 1 − e−T ‡

,

S‡ = φσ
(
T ‡ − e−T ‡ − 1

)
, E†

m = 1 − e−T ‡
, F†

m = 1 − e−T ‡
,

E‡ = φξ
(
T ‡ − e−T ‡ − 1

)
, F‡ = φ(T ‡ − e−T ‡ − 1),

A‡
m =

(
A0

√
1 + 4 θ + 2 Am0θ + A0

) (−1 + √
1 + 4 θ

)
e
(−1+√

1+4 θ)T ‡
2

4θ
√
1 + 4 θ

,

A‡ =
(
A0

√
1 + 4 θ + 2 Am0θ + A0

)
e
(−1+√

1+4 θ)T ‡
2

2
√
1 + 4 θ

,

B‡ = β φ A0

γ
e− θ

γ Ei

(
1, θ T + θ

γ

)
+ β φ σ T

γ
− β φ σ ln (T γ φ θ + φ θ)

γ 2 . (49)

We plot asymptotic approximations of those variables that evolve on this timescale
against the numerical solutions in Fig. 12. In this timescale we still have exponential
growth of ramAmRNAandRamAprotein caused by the positive feedback of the ramA
gene. This growth has resulted in activation of acrABmRNAwhich now exhibits long
term exponential growth. This is being translated to AcrAB protein which now also
exhibits long term exponential growth.
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4.2.3 Timescale 8: ramAmRNA reaching steady state

For this timescale, the limitation of ramA activating its own expression enters the
leading order balance, our system of equations rescaled for the eighth timescale is

dR†
m

dT � = 1 − R†
m,

d A�
m

dT � = A�

(A� + 1)(ε R̂ + 1)
+ εα − A�

m,

dC†
m

dT � = λ

A� + λ
− C†

m,

φ
dB�

m

dT � = A� + ε
1
2 φ−2S�

(1 + ε
1
2 φ−2S� + A�)(1 + ε

1
2 φ−2E� + φ−2C�)

− φB�
m,

dS†m
dT � = 1 − S†m,

dE†
m

dT � = 1 − E†
m,

dF†
m

dT � = η

η + ε
1
2 φ−2E�

− F†
m,

ε
d R̂

dT � = 0,

d A�

dT � = θ A�
m − ε

1
2 υ A� − εΔA�,

φ−2 dC
�

dT � = γ C†
m − εφ−2ΔC�,

dB�

dT � = φβ B�
m − εΔ B�,

φ−2 dS
�

dT � = σ S†m − εφ−2Δ S�,

φ−2 dE
�

dT � = ξ E†
m − εφ−2Δ E�,

φ−2 dF
�

dT � = F†
m

ωB� + 1
− εφ−2ΔF�.

Finding the leading order balance, solving and matching to the long term dominant
behaviour on the previous timescale gives the following asymptotic approximations.

R†
m = 1 − e−T �

, R̂ = R0, C†
m = 1 − e−T �

,

C� = φ2γ λ ln
(
θ T � + λ

)

θ
, F†

m = 1 − e−T �
, S†m = 1 − e−T �

,

123



31 Page 34 of 48 G. H. Youlden et al.

0 10 20 30
0

0.5

1

0 10 20 30
0

0.05

0.1

0 10 20 30
0

5

10

15

20

0 10 20 30
0

0.5

1

1.5

2

Fig. 13 Asymptotic approximations on timescale 8 (ε = 0.01). On this timescale, time is O(1 + 1
κ φ−1),

so we expect the asymptotics to be accurate around T = 1 + 1
κ φ−1 ≈ 8.4513

S� = φ2σ
(
T � − e−T � − 1

)
, E†

m = 1 − e−T �
, E� = φ2ξ

(
T � − e−T � − 1

)
,

A�
m =

W

((
A0

√
1+4θ+2Am0θ+A0

)
eθT�

2
√
1+4θ

)

W

((
A0

√
1+4θ+2Am0θ+A0

)
eθT�

2
√
1+4θ

)
+ 1

,

A� = W

((
A0

√
1 + 4θ + 2Am0θ + A0

)
eθT �

2
√
1 + 4θ

)

,

B�
m = φ−1θT �

(1 + θT �)(1 + γ λ ln(θ T �+λ)
θ

)
,

B� = β

γ
e− θ

γ λ Ei

(
1, ln(θT + λ) + θ

γ λ

)
− β

γ
ln (γ λ ln(θT + λ) + θ) ,

F� = φ2

βω

(
γ

2θ
ln2(θT � + λ) + 1

λ
ln(θT � + λ)

)
. (50)

We plot asymptotic approximations of those variables that evolve on this timescale
against the numerical solutions in Fig. 13. In this timescale the ramA gene’s posi-
tive feedback has been limited, causing at long term the gene’s mRNA to approach
steady state and the gene’s protein to have linear growth. This change of behaviour of
RamA from exponential growth causes acrABmRNA and protein to no longer display
exponential behaviour.

4.2.4 Timescale 9: degradation of RamA protein, inhibition of acrAB and acrEF

For this timescale, degradation of RamA protein caused by Lon Protease enters the
leading order balance as well as EnvR repression of acrEF, our system of equations
rescaled for the ninth timescale is

ε
1
2
dR†

m

dT+ = 1 − R†
m,

ε
1
2
d A�

m

dT+ = ε− 1
2 A+

(ε− 1
2 A+ + 1)(ε R̂ + 1)

+ εα − A�
m,

ε
dC+

m

dT+ = λ

ε− 1
2 A+ + λ

− ε
1
2C+

m ,
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ε
1
2 φ2 dB

+
m

dT+ = ε− 1
2 A+ + φ−2S+

(1 + φ−2S+ + ε− 1
2 A+)(1 + φ−2E+ + φ−3C+)

− φ2B+
m ,

ε
1
2
dS†m
dT+ = 1 − S†m,

ε
1
2
dE†

m

dT+ = 1 − E†
m,

ε
1
2
dF†

m

dT+ = η

η + φ−2E+ − F†
m,

ε
3
2
d R̂

dT+ = 0,

d A+

dT+ = θ A�
m − υ A+ − ε

1
2 ΔA+,

φ−3 dC
+

dT+ = γ C+
m − ε

1
2 φ−3ΔC+,

dB+

dT+ = φβ B+
m − ε

1
2 Δ B+,

φ−2 dS
+

dT+ = σ S†m − ε
1
2 φ−2Δ S+,

φ−2 dE
+

dT+ = ξ E†
m − ε

1
2 φ−2Δ E+,

φ−4 dF
+

dT+ = F†
m

φωB+ + ε
1
2

− ε
1
2 φ−4ΔF+.

Solving the leading order system of ODEs, matching to the long term dominant
behaviour on the previous timescale gives the following asymptotic approximations

A� = θ

υ
(1 − e−υT+

), A�
m = 1, R†

m = 1,

R̂ = R0, C+
m = λυ

θ(1 − e−υT+
)
, C+ = φ3γ λυ

θ
T+,

S†m = 1, S+ = φ2σT+, B+
m = 1

φ2(1 + ξT+ + γ λυ
θ

T+)
,

E†
m = 1, E+ = φ2ξT+, F†

m = η

η + ξT+ ,

B+ = β φ2θ ln
((

φ3γ λ υ + φ3θ ξ
)
T+ + φ3θ

)

φ3γ λ υ + φ3θ ξ
,

F+ = φ4η(γ λυ + θξ)

ωξβθ
ln(φ3 ln(T+ + 1)). (51)

We plot asymptotic approximations of those variables that evolve on this timescale
against the numerical solutions in Fig. 14. In this timescale we have RamA protein

123



31 Page 36 of 48 G. H. Youlden et al.

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

5

10

0 50 100
0

5

10

15

20

0 50 100
0

2

4

6

8

0 50 100
0

5

10

Fig. 14 Figures showing asymptotic approximations using timescale 9 to the full solutions for ε = 0.01.

Here the time scaling is O(ε
− 1

2 (1 + 1
κ φ−1)), so we expect the asymptotics to be accurate around

T = ε
− 1

2 (1 + 1
κ φ−1) ≈ 84.5132. Discrepancies between the asymptotic approximations and numeri-

cal simulations could be reduced by using a smaller epsilon value

reaching steady state from degradation via Lon Protease. With this, we have acrR
mRNA also reaching steady state. With less RamA protein due to degradation, the
repressors dominate expression of acrAB, causing its inhibition. We also have EnvR
protein causing inhibition of acrEF mRNA. This inhibition of mRNAs causes loga-
rithmic behaviour for both AcrAB and AcrEF.

4.2.5 Timescale 10: full protein degradation, with all proteins reaching steady state

For this timescale, we use δ = ln(ln(1/ε))−1, emerging from the logarithmic
behaviour on the previous timescale. On this timescale protein degradation emerges
for the rest of our proteins. Our system of equations rescaled for the tenth timescale is

ε
dR†

m

dT̆
= 1 − R†

m,

ε
d A�

m

dT̆
= ε− 1

2 A+

(ε− 1
2 A+ + 1)(ε R̂ + 1)

+ εα − A�
m,

ε
3
2
dC+

m

dT̆
= λ

ε− 1
2 A+ + λ

− ε
1
2C+

m ,

ε
3
2 φ2 d B̆m

dT̆
= ε− 1

2 A+ + ε− 1
2 φ−2 S̆

(1 + ε− 1
2 φ−2 S̆ + ε− 1

2 A+)(1 + ε− 1
2 φ−2 Ĕ + ε− 1

2 φ−3C̆)
− ε

1
2 φ2 B̆m,

ε
dS†m

dT̆
= 1 − S†m,

ε
dE†

m

dT̆
= 1 − E†

m,

ε
3
2
d F̆m

dT̆
= η

η + ε− 1
2 φ−2 Ĕ

− ε
1
2 F̆m,
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ε2
d R̂

dT̆
= 0,

ε
1
2
d A+

dT̆
= θ A�

m − υ A+ − ε
1
2 ΔA+,

φ−3 dC̆

dT̆
= γ C+

m − φ−3ΔC̆,

d B̆

dT̆
= φ2β B̆m − Δ B̆,

φ−2 d S̆

dT̆
= σ S†m − φ−2Δ S̆,

φ−2 d Ĕ

dT̆
= ξ E†

m − φ−2Δ Ĕ,

φ−4δ−1 d F̆

dT̆
= F̆m

φω B̆ + ε
1
2

− φ−4δ−1ΔF̆ .

This system of ODEs can be solved, matching to the long term dominant behaviour
on the previous timescale, giving the following asymptotic approximations.

R†
m = 1, R̂ = R0, A+

m = 1,

A+ = θ

υ
, C̆ = φ3 γ λυ

Δθ
(1 − e−ΔT̆ ), C+

m = λυ

θ
,

B̆m = 1

φ2(
ξ
Δ

+ γ λυ
Δθ

)(1 − e−ΔT̆ )
, B̆ = βθ

γ λυ + θξ
(1 − e−ΔT̆ ), S†m = 1,

S̆ = φ2 σ

Δ
(1 − e−ΔT̆ ), Ĕ = φ2 ξ

Δ
(1 − e−ΔT̆ ), E†

m = 1,

F̆m = η

ξ
Δ

(1 − e−ΔT̆ )
, F̆ = φ4δη (γ λ υ + θξ)

ξωβθ
(1 − e−ΔT̆ ). (52)

We plot asymptotic approximations of those variables that evolve on this timescale
against the numerical solutions in Fig. 15. In this timescale we have all variables
reaching steady state. Due to disparity in the asymptotic approximations of some
variables, we have included the second order terms in the asymptotic approximations
(we could instead use a smaller value for epsilon).

4.3 Steady state analysis

Upon reaching the final timescale, all of our variables attain a steady state. For the full
nondimensionalised model it is not possible to derive a set of analytically solvable
steady states. However, in both wild-type and mutant cases we can achieve achieve
analytical expressions for the asymptotic approximation of the steady states. We know
from our GRN that reducing the concentration of the main efflux pump protein AcrAB
results in increased concentration of the homologue efflux pump protein AcrEF. Thus
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Fig. 15 Asymptotic approximations on timescale 10 (ε = 0.01). On this timescale, time is O(ε−1(1 +
1
κ φ−1)), so we expect the asymptotics to be accurate around T = ε−1(1 + 1

κ φ−1)) ≈ 845.1322

wemust consider both efflux pumpprotein concentrations simultaneously.Weperform
a sensitivity analysis of the sum of the asymptotic approximations of the steady states
of AcrAB (including second order terms) and AcrEF, the proteins that form the efflux
pumpcomplexes (ie this reflects the total efflux “power” of the bacteria).By conducting
this analysis we hope to identify potential targets for efflux inhibition. Here, we use
relative sensitivity in order to draw comparisons on howmuch individually changing a
parameter affects the overall efflux. We define our equation for the relative sensitivity
as

ς = d(B̄ + F̄)

dP
, (53)

where d(B̄ + F̄) represents the change of the efflux pump genes steady state and dP
represents the change of the nondimensional parameter being varied. We have per-
formed numerical investigations into possible equilibria using the software XPPAUT.
This usesMonte Carlo sampling on individual parameters and/or initial conditions and
provides possible equilibria at these states. Whilst this is non-exhaustive, the results
have given us no indication that there is evermore than one plausible (i.e. non-negative)
steady state.

To conduct our sensitivity analysis, we vary all our nondimensional parameters in a
bounded parameter space. For both wild-type and mutant strains, the space is bounded

to the range of ε
1
5 to ε− 1

5 to maintain consistency with the parameter sizes used in
the asymptotic analysis. By using a Latin hypercube method of sampling, we choose
10000 points in the parameter space for each parameter and find the relative sensitivity
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Fig. 16 Boxplots showing the relative sensitivity of nondimensional parameters on the combined asymptotic
approximated steady states of AcrAB and AcrEF. In (a) we denote the sensitivity in the wild-type case
whereas in (b) we denote the mutant case. For (b), mutations to RamR protein results in more parameters
involved in our steady state approximation

for each point. The resulting relative sensitivities are then plotted on box plots in order
for us to view the distribution of sensitivity. We exhibit the results of the sensitivity
analysis in Fig. 16.

We can see from the wild-type case (a), that the parameter to which efflux is most
sensitive is ξ , which also has the largest spread of sensitivity of all parameters in
this case. Our next most sensitive parameter is η, here all points correspond to the
same value as this grouping only affects AcrEF and does so linearly. We note that
our most sensitive parameter groupings ξ and η relate to the binding coefficients of
EnvR to the two efflux pump genes, and the expression of envR respectively. Since
both of these parameters involve envR mRNA or protein, the analysis suggests that
this gene could be a possible target for inhibition of efflux in this case. Our next most
sensitive parameter is ω relating to the link between the concentration of AcrAB and
activation/repression of acrEF the homologue efflux pump gene. Unfortunately as we
do not know the full mechanisms involved causing this link, this does not provide
a realistic target for inhibition. However, this does lead us to believe that with more
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biological knowledge of this link there could be a potential inhibition target worth
pursuing. Finally with similar sensitivities are γ (acrR expression) and β (acrAB
expression). Since the former of these parameters has a relatively low sensitivity
compared to other parameters, the analysis predicts that this may not be a target worth
pursuing. The latter is an expected target, relating to direct expression of one of the
efflux pump genes. It is interesting to note that some parameters in the system (that
do not affect the efflux pump genes directly) provide a greater sensitivity than β, that
is directly related to AcrAB concentration.

In themutant case (b), it comes to note thatwe have double the amount of parameters
that affect the effluxpumpsteady states compared to thewild-type case. This is partially
due to including second order terms, however it is only the parametersΔ and σ that do
not appear at leading order. With only one change in the GRN (to RamR protein), the
change in the amount of parameters demonstrates the unpredictability and sensitive
nature of this network. We note that here, the parameter to which the steady state
of efflux proteins is most sensitive is ξ (envR expression). Additionally we also see
high sensitivity to the parameter η (EnvR binding affinity). This similarity with the
wild-type system further highlights the case for targeting the gene envR for inhibiting
efflux. Our next most sensitive parameter is β (acrAB expression) which differs from
the wild-type case where it was one of the least sensitive parameters. This could be due
to the overexpression of acrAB in this mutant case. The parameters λ (RamA binding
affinity), θ (ramA expression), υ (RamA degradation from Lon Protease), γ (acrR
expression) and ω (AcrAB and acrEF link) all show a degree of sensitivity, meaning
that any of these parameters could prove to be a realistic target to inhibit efflux.
However it is interesting to note that parameters associated with ramA, which is over
expressed in this mutant case, is not the most sensitive target for inhibiting efflux. The
rest of the parameters Δ (degradation of mRNA and proteins) and σ (secondary TA
mRNA expression) have a low sensitivity in this case, which we should expect as these
parameters are only prevalent in the second order terms. Thus the analysis suggests
that these parameters may not be realistic targets for inhibiting efflux.

5 Discussion

Antimicrobial resistance is a topic with ever increasing importance. With the threat
to human health worsening as more bacteria evolve resistance to antibiotics, it is
clear we must urgently seek novel treatment methods in order to combat antibiotic
resistance. By delving into GRNs governing resistance mechanisms, it is possible to
identify certain targets to potentially prevent resistance in bacteria. We believe that
our asymptotic analysis has given us useful insights into the network governing efflux
pump expression. In Fig. 17 we exhibit the leading order processes in timescale order
from our asymptotic analysis for the wild-type case. We detail the order of dominant
processes shown in the schematics. As predicted by the mathematical analysis:

– Genes that are not highly regulated by proteins are expressed, resulting in their
mRNA transcription and protein translation.
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– If produced subject to the relevant stress, the secondaryTAs (SoxS,MarA andRob)
do not significantly increase acrAB expression but the asymptotic analysis reveals
that they may effect the timescale on which expression of acrAB first occurs.

– When produced, RamR inhibits ramA expression, preventing RamA from achiev-
ing activation of acrAB at leading order. AcrR also lowers (but does not shut off
entirely) transcription of acrAB.

– EnvR binds to the promoter site of acrEF repressing its transcription.
– Degradation of all proteins brings the system to a mathematical steady state. The
system would remain at this state with efflux proteins present until the relevant
stress is removed from the cells, at which point the system would revert to a state
of basal efflux.

We note that at steady state, the local repressors of the efflux pumps have been
expressed to a large enough concentration that they are dominant in the leading order
processes and are the only gene products impacting efflux pump expression. We can
see at this point the system is reduced to four genes (acrR, envR, acrAB and acrEF)
affecting efflux pump expression, and thus at steady state for this case we should focus
on these genes as potential inhibition targets.

In Fig. 18 we exhibit the leading order processes in timescale order from our
asymptotic analysis for themutant case.Wenote that the schematics are not on identical
timescales to the wild-type case as the scalings to reach each of the timescales are
different. Here we detail the differences in the order of dominant processes shown
in the schematics compared to the wild-type case. As predicted by the mathematical
analysis:

– In this case, functional RamR is not produced. This allows the positive feedback
loop on ramA expression to dominate at leading order, resulting in high production
of RamA and activation of acrAB expression. Any activation by secondary TAs
(that may occur under the appropriate stress) is overshadowed by RamA and rel-
egated to lower order behaviour. RamA also lowers AcrR levels, yielding higher
expression of acrAB in the analysis.

– RamA is regulated by degradation through the Lon protease, allowing AcrR and
EnvR to dominate mathematically acrAB expression.

– Degradation of all proteins brings the system to a mathematical steady state.

At steady state, as expected this mutant strain also has RamA dominating the
behaviour (in addition to those considered in the wild type strain). The analysis there-
fore identifies ramA, acrR, envR, acrAB and acrEF as the most likely potential targets
for efflux pump inhibition. In regards to the other timescales, this breakdown high-
lights the importance of the positive feedback loop of ramA. With the release of ramA
expression in this mutant case, various different interactions between genes and pro-
teins become dominant. In particular, we see direct and indirect activation of acrAB,
with the latter as a result of its local repressor, acrR, itself being inhibited (by RamA).
It is interesting to note that mathematically the direct activation fromRamA only dom-
inates at leading order prior to steady state andwithout undergoing our time-dependent
analysis we may have not identified this key mechanism in the activation of the efflux
pump genes under this parameter set. Whilst at steady state other genes may prove to
be more likely targets for inhibition (shown in Sect. 4.3), reducing the activation from
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RamA may be enough to minimise early expression of acrAB, enabling the antibi-
otic to kill bacteria before its efflux pumps are overexpressed. For example, an efflux
inhibiting adjuvant targeting RamA may be most successful if administered with or
before antibiotic.

It is also important to note that in the wild-type case we see no leading order
activation processes caused by RamA (though this will be present at lower orders).
Thuswhilst choosing ramA as an inhibition target seems plausible, thismay only revert
the GRN to the wild-type case rather than knocking out efflux expression entirely.

6 Summary

With the ever growing threat of antibiotic resistance,MDR Salmonella have been listed
as a high priority for which new treatment methods are required (WHO 2017). One
of the main defensive mechanisms used by Salmonella is efflux pumps that can expel
multiple different antibiotics from the cytoplasm of the cell. The AcrAB-TolC and
the AcrEF-TolC systems have been identified as major efflux pumps that contribute to
MDR (Blair et al. 2014b). Inhibition of these efflux pump systems is a potentialmethod
to combat antibiotic resistance in bacteria, preventing the bacteria from being able
to expel antibiotics via active transport (Piddock 2006). However, inhibition of these
efflux pumps is a complex process, as the regulation of these efflux pumps are governed
by complex gene regulation networks and inhibition of one efflux pump system can
cause up regulation of another efflux pump system. These GRNs contain multiple
different genes and proteins that interact with each other’s expression, ultimately
leading to the expression of the genes that produce structural efflux pump proteins
when the cell is under stress. The genes within these networks vary in expression
between different strains, with over-expression of efflux pump genes being common
in mutant MDR strains (Webber and Piddock 2003). In this paper we consider two
strains, a wild-type strain and a mutant strain. Both of these strains consist of the same
genes governing efflux pump expression, however the latter has nonfunctional RamR
protein which indirectly causes over-expression of efflux pump genes. Thus in order
for an inhibition adjuvant to antibiotic treatment to be developed, the GRN processes
must first be fully understood. For the inhibition to be effective, it must be able to
repress the efflux pump systems in multiple different strains.

We have used various mathematical modelling techniques in order to greater under-
stand the processes controlling efflux pump expression. We have developed an ODE
model, of which most parameters are not currently available from experimental data.
Thus we have applied asymptotic techniques to reduce the need for specific parameter
values. We first nondimensionalised our model, resulting in nondimensional param-
eter groupings. By using information from the biology of the network, we were able
to estimate sizes for these parameter groupings and focus on relative parameter sizes
rather than absolute parameter values.

This approach enabled us to complete a series of time dependent asymptotic anal-
yses upon the wild-type (under stress) and mutant cases, revealing nine and ten
timescales respectively. We see mRNA transcription being dominant on the early
timescales, with protein translation closely following for those mRNAs. As protein
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levels increase, inhibition of relevant transcription begins, decreasing certain mRNA
concentrations. Finally, degradation comes into effect bringing all variables to steady
state. By doing this process, we have broken down our nondimensional model (which
does not have a full set of analytical solutions) into a step by step model of each
dominant process. Thus, we are left with simplified models of our system, only taking
into effect the dominant behaviours that control the GRN.

By performing this asymptotic analysis, we have also achieved asymptotic approx-
imations to the steady states of the system, which were not analytically solvable in our
full model. On most timescales we have full analytical solutions for each variable’s
behaviour, enabling us to see the full breakdown of how each variable acts and how
step by step the system evolves over time. By performing parameter variations upon
the steady state values, we have been able to identify certain parameter groupings
that have the most effect on the expression of efflux genes in both the wild-type and
mutant case. For both cases, it was shown that both η and ξ relating to the binding
affinity of EnvR to the two efflux pump genes and envR expression exhibited some
of the strongest sensitivities. Thus showing evidence for the gene envR to be a poten-
tial inhibition target. This is biologically plausible as envR is the local repressor of
the efflux gene acrEF but also can repress the gene acrAB. As this gene affects both
pumps directly, by targeting envR we may be able to maximise inhibition of both
efflux pumps. Notably, however, the processes of EnvR repression on the efflux pump
genes were only dominant on the later timescales. On early timescales these repression
processes did not appear at leading order. This may show the limitations of envR as
an inhibition target, with the gene more likely to affect the long term behaviour only.
In addition, more work needs to be done to consider the exact mechanisms by which
EnvR interacts with the efflux genes, and we leave this for future work. Most other
parameters exhibited a reasonable relative sensitivity, providing evidence that multiple
genes could provide realistic inhibitory targets. Perhaps more importantly however,
was the sensitivity of ω relating to the link between the concentration of AcrAB and
the activation / repression of acrEF. Notably, this link appeared as a dominant process
in both strains on the latter timescales. Whilst we do not currently know the full bio-
logical details of this link, the sensitivity of this parameter grouping suggests that it
could provide a possible efflux inhibition target. This provides a strong case to delve
into and further understand the mechanisms linking the various efflux pumps, as they
could provide the key to inhibiting efflux.

Whilst delving into the steady state analysis has provided plentiful insights into
efflux inhibition targets at the system’s long term behaviour, it is important to note
that this does not fully encompass the system’s earlier behaviour. By summarising the
asymptotic analysis showing the dominant behaviour on all timescales, we are able to
exhibit a step by step breakdown of the system. With this summary, we were easier
able to distinguish the differences of behaviour between the wild-type and mutant
cases. In particular we noted the importance of ramA in the mutant case, with direct
and indirect activation of acrAB through RamA. Whilst at steady state the indirect
activation (via AcrR) is still prevalent, at leading order in the mathematical analysis
the direct activation is not and appears to be an important factor in early activation of
acrAB expression. This has given us reasonable grounds to consider ramA as a potential
inhibition target, targeting acrAB expression directly at early time, and indirectly at
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long time. Although this gene may not be one of the most sensitive targets at long
term behaviour, the step by step breakdown shows that the early interactions of the
gene are of huge significance. Thus by targeting ramA, we may provide a method
for inhibiting early efflux expression enough so that an antibiotic can kill the bacteria
before its efflux pumps become fully active. The analysis has therefore also revealed
the possible importance of effective timing of efflux inhibition and how this may vary
between targets.

There are plenty of future steps that we could takewith this model, themost obvious
being including the dynamics of an antibiotic inducer. Whilst our current model gives
us insight into how the genes interplay starting from a down-regulated state, it does not
consider how an antibiotic concentration could itself affect the network. It is likely that
in addition to antibiotic being expelled via the expressed efflux pumps, the presence
of antibiotic will affect expression of certain areas of the network, hence creating a
feedback loop. Other areas to explore are including stochastic events in the model.
This could be incorporated within multiple processes in the model, for example: gene
expression, degradation and binding dynamics. Finally, we could upscale the model
to explore the effects of efflux expression on population growth and survival. This
could be dependent on different environmental stressors and conditions. We believe
that this work has provided useful insights into this GRN.With the hypotheses we have
generated on potential inhibitory targets and pathways, this should provide evidence
for further investigation of certain areas of the network and also to inspire potential
therapies to be tested experimentally in order to combat efflux related MDR.
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