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ABSTRACT 28 

The ability to induce neuroplasticity with non-invasive brain stimulation 29 

techniques offers a unique opportunity to examine the human brain systems 30 

involved in pain modulation. In experimental and clinical settings, the primary 31 

motor cortex (M1) is commonly targeted to alleviate pain, but its mechanism of 32 

action remains unclear. Using dynamic causal modelling (DCM) and Bayesian 33 

model selection (BMS), we tested seven competing hypotheses about how TMS 34 

modulates the directed influences (or effective connectivity) between M1 and 35 

three distinct cortical areas of the medial and lateral pain systems, including the 36 

insular (INS), anterior cingulate cortex (ACC), and parietal operculum (PO). The 37 

dataset included a novel fMRI acquisition collected synchronously with M1 38 

stimulation during rest and while performing a simple hand motor task.  DCM and 39 

BMS showed a clear preference for the fully connected model in which all cortical 40 

areas receive input directly from M1, with facilitation of the connections INSM1, 41 

POM1, and ACCM1, plus increased inhibition of their reciprocal connections. 42 

An additional DCM analysis comparing the reduced models only corresponding 43 

to networks with a sparser connectivity within the full model, showed that M1 44 

input into the INS is the second-best model of plasticity following TMS 45 

manipulations. The results reported here provide a starting point for investigating 46 

whether pathway-specific targeting involving M1INS improves analgesic 47 

response beyond conventional targeting. We eagerly await future empirical data 48 

and models that tests this hypothesis. 49 

 50 
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 51 

NEW & NOTEWORTHY 52 

Transcranial magnetic stimulation of the motor cortex (M1) is a promising 53 

treatment for chronic pain, but its mechanism of action remains unclear. 54 

Competing dynamic causal models of effective connectivity between M1 and 55 

medial and lateral pain systems, suggests direct input into the insular, anterior 56 

cingulate cortex, and parietal operculum. This supports the hypothesis that 57 

analgesia produced from M1 stimulation most likely acts through the activation of 58 

top-down processes associated with intracortical modulation.  59 

INTRODUCTION 60 

Stimulation of the primary motor cortex (M1) by transcranial magnetic stimulation 61 

(TMS) has been shown to alleviate pain  (Lefaucheur et al. 2014; Mylius et al. 62 

2012). The mechanisms by which TMS exerts these analgesic effects is still 63 

unclear. However, there is compelling evidence that TMS can alter cortical 64 

excitability via changes in synaptic plasticity through long-term potentiation (LTP) 65 

and long-term depression (LDP)-like mechanisms (Thickbroom 2007; Ziemann et 66 

al. 2008). These same transduction mechanisms are essential for the 67 

development and maintenance of pain hypersensitivity (Ji et al. 2003; Sandkuhler 68 

2007; Woolf and Salter 2000), thus providing a strong rationale for TMS-based 69 

therapies in the relief of chronic pain (Ridding and Rothwell 2007).  70 
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Relatively little is known about the molecular mechanisms underlying the 71 

induction and expression of cortical plasticity following TMS in humans (Ridding 72 

and Ziemann 2010). Experimental evidence suggests that TMS modulates a 73 

mixture of neuronal populations that use different neurotransmitters, each with a 74 

different sensitivity to the stimulation (Hamada et al. 2013). A large body of 75 

evidence has also demonstrated that TMS has the capacity to modulate large-76 

scale neural network dynamics across multiple spatial and temporal scales 77 

(Dayan et al. 2013; Karabanov et al. 2015; Ozdemir et al. 2020). While this may 78 

be only indirect evidence, it demonstrates that brain networks might be used to 79 

understand how TMS works and to improve therapy by identifying the best 80 

places to stimulate the brain (Fox et al. 2012).  81 

Stimulation of M1 following TMS has been shown to modulate motor brain areas 82 

that can influence susceptibility of the corticomotor network (Bestmann et al. 83 

2003; Cardenas-Morales et al. 2014; Munchau et al. 2002), as well as 84 

functionally connected non-motor areas such as the insular, operculum, cingulate 85 

cortex, auditory gyrus, frontal, and parietal cortex (Bohning et al., 1999, 2000a,b, 86 

Baudewig et al, 2001, Bestmann et al, 2003, Denslow et al., 2005, Jung et al., 87 

2016). We recently demonstrated that short-trains of 1Hz TMS pulses over M1 88 

can induce increased activation in the bilateral insular and opercular cortex (Jung 89 

et al., 2016, 2020). Similarly, Cocchi et al (2015) reported that continuous theta 90 

burst stimulation (cTBS) over the M1 not only activated the insular and 91 

operculum but also increased functional connectivity between the two regions 92 

(Cocchi et al. 2015). These findings suggest that intracortical connections 93 
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between M1 and operculo-insular cortex may be a modifiable pathway for 94 

plasticity following TMS manipulations. 95 

Recent targeted applications of TMS have been guided by differences in intrinsic 96 

functional connectivity (FC) rather than brain anatomy (Weigand et al. 2018). The 97 

combination of TMS with FC mapping is particularly well suited to study changes 98 

in brain networks (Hampson and Hoffman 2010; Paus 2005). Local stimulation to 99 

an accessible network node can propagate (trans-synaptically) to distal but 100 

interconnected nodes with high spatial specificity (Bestmann et al. 2005; Ruff et 101 

al. 2008). This coupling allows for causality to be inferred between the applied 102 

stimulation site and the observed changes in network connectivity (Friston 2011).  103 

Furthermore, prospective mechanistic and interpretative models of brain function 104 

can be used to provide estimates of the effective strength of synaptic 105 

connections and their context-dependent modulation (Polania et al. 2018; Zanto 106 

et al. 2011).  107 

Dynamic causal modelling (DCM) is the most widely used method for inferring 108 

effective connectivity within networks of distributed neuronal responses 109 

(Daunizeau et al. 2011; Friston et al. 2003). This technique has been used in the 110 

analysis of a wide range of neuroimaging (Friston et al. 2003) and 111 

electrophysiology data (David et al. 2006) to test competing hypotheses about 112 

the neuronal states underlying experimental measurements of human brain 113 

activity. DCM is considered most appropriate for explaining brain responses 114 

induced by experimental interventions that cause fast changes in neuronal 115 

excitability and/or connection strength. In this context, the combination of DCM 116 
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and fMRI has been applied to study specific aspects of human pain processing 117 

(Liang et al. 2013; 2011) and descending modulation (Sevel et al. 2015a; Sevel 118 

et al. 2015b). However, its applications into the neurophysiology of non-invasive 119 

brain stimulation techniques for pain control remains limited.  120 

Here we used DCM and Bayesian model selection (BMS) to examine how TMS 121 

modulates the directed influences (or effective connectivity) between M1 and 122 

three distinct cortical areas of the medial and lateral pain systems, including the 123 

insular (INS), anterior cingulate (ACC), and parietal operculum (PO, the 124 

secondary somatosensory cortex). As these structures have specific reciprocal 125 

interconnections (Eickhoff et al. 2010; Ghaziri et al. 2017), we allowed for a fully 126 

connected model and reduced models corresponding to networks with a sparser 127 

connectivity contained within this larger model. This resulted in seven possible 128 

pathways through which M1 stimulation could influence the proposed system: 1) 129 

ACC and PO receive input directly from M1; 2) INS and PO receive input directly 130 

from M1; 3) ACC and INS receive input directly from M1; 4) ACC receives input 131 

directly from M1; 5) PO receives input directly from M1; 6) INS receives input 132 

directly from M1, and 7) ACC, INS, PO collectively receives input directly from 133 

M1 (fully-connected model). The dataset used to test these competing 134 

hypotheses included a novel fMRI acquisition collected synchronously with M1 135 

stimulation during rest and while performing a simple hand motor task (Jung et 136 

al. 2020).  We expected that DCM and BMS would show the plausibility of 137 

alternative neurophysiological explanations for the analgesic effects of M1 138 

stimulation.  139 
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 140 

MATERIALS & METHODS 141 

Ethics statement 142 

This study was approved by the local research ethics committee at the University 143 

of Nottingham and performed in accordance with Declaration of Helsinki. All 144 

participants provided informed written consent prior to the experiment.  145 

Study participants 146 

Twenty-three healthy, right-handed adults (6 males, mean age = 26 ± 3 years, 147 

range 19–32 years) participated in the study. The data was from a previously 148 

published study (Jung et al. 2020) involving M1 stimulation with TMS under 149 

resting conditions. This cohort included a subgroup of participants that also 150 

performed a motor task during M1 stimulation (task group: N=12, 3 males, mean 151 

age 27 ± 3 years, range 20–32 years).  152 

TMS and synchronized TMS/fMRI 153 

A Magstim Rapid2 stimulator (Magstim, UK) was used to generate TMS pulses 154 

through an MR-compatible figure-of-eight coil (70mm). Individual resting motor 155 

threshold (RMT) was measured outside of the scanner before the experiment. 156 

Individual RMTs were measured as follows: TMS pulses were applied to the M1 157 

to identify the optimal site eliciting a muscle twitch in the first dorsal interosseous 158 
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(FDI) muscle and the TMS coil was oriented perpendicular to the central sulcus 159 

at a 45° angle from the mid-sagittal line approximately. Once a site was 160 

identified, the stimulator intensity was systematically varied and the RMT was 161 

defined as the minimum stimulator output that was required to induce an 162 

observable muscle twitch at that site for five out of 10 TMS pulses. During the 163 

scanning, the coil was position over the hotspot of right hand area in the left 164 

hemisphere. Individual TMS intensity was 100% of RMT for the M1 stimulation. 165 

The averaged RMT was 75% in the task M1 stimulation group (range 64–89%) 166 

and 72% in the rest group, the mean (range 59% to 86%).  167 

TMS pulse was synchronized with the fMRI acquisition as described previously 168 

(Jung et al. 2016) (see Figure 1A). The scanner sequence was programmed to 169 

split the acquisition of images in each volume into two separate packages. The 170 

first package was acquired for ~800ms and the second package commenced 171 

collection 200ms after the first package acquisition. A TMS pulse was applied at 172 

850ms and 1,850ms after the acquisition of the first slice in each package during 173 

the TMS phase. 174 

Experimental design and procedures 175 

A block-design fMRI paradigm was used with nine separate blocks (block length 176 

of 30s) (Figure 1B). Each block consisted of an active TMS phase (11s) and 177 

inactive TMS phase (19s). The onset of TMS was randomized within a block. For 178 

the active TMS phase, 11 pulses of 1Hz TMS was delivered over the left motor 179 

cortex during rest and while performing a simple hand motor task. The instruction 180 



 9

to participants was to continuously clench and unclench their hands with a rate 181 

that they were comfortable with (around 0.5~1Hz). The task cues presented on 182 

the screen were “left hand”, “right hand”, “both hands”, and “rest”. The order of 183 

the task conditions was pseudorandomised. For the rest condition, participants 184 

were asked to relax and view a fixation on the screen during the scanning.    185 

MRI acquisition 186 

A 3T Philips Achieva scanner was used to collect data with a 6-channel NOVA 187 

head coil that accommodated the MR-compatible TMS coil. Functional images 188 

were acquired using single-shot echo-planar imaging (EPI) sequence 189 

[TR/TE=2000/35ms, 30 slices=30, resolution=3×3×3 mm3, FA=90°]. Structural 190 

image was obtained using 3D MP-RAGE sequence [TR/TE = 8.278/2.3ms, 191 

resolution=1×1×1mm3, FA=8°) covering the whole head. The TMS-coil was MR-192 

visible for short echo-time (TE<10ms) and was used to verify the position of the 193 

TMS-coil relative to the subject. Target sites for stimulation were defined as the 194 

point on the brain surface perpendicular to the centre of the TMS coil (where the 195 

two rings of the figure-of-eight meet each other). This position was translated into 196 

MNI space (see Figure 1C and Table S1). 197 

Image processing and GLM analysis 198 

All imaging data were preprocessed and analyzed using SPM12 199 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) ( for details see (Jung et al. 200 

2020)). Pre-processing included spatial realignment, co-registration of each 201 
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individual’s mean functional image to their anatomical imaging, spatial 202 

normalization and smoothing using a Gaussian kernel (8 mm, Full-width half-203 

maximal). A general linear model (GLM) was used to compute individual 204 

contrasts. For the task group, a design matrix was defined with four task 205 

conditions (rest, left, right, and both hand clenching) and TMS phases (TMS vs 206 

no-TMS). T-contrasts for each condition and TMS phase were established. In the 207 

random effect analysis, two-factorial ANOVA with the task condition and TMS 208 

(active vs. inactive) was conducted and contrasts were entered into a set of one-209 

sample t-tests for each condition. Head movement parameters were included as 210 

regressors to exclude head movement-related variance. For the rest condition, a 211 

design matrix with TMS phases (active and inactive) was constructed. In the 212 

random effect analysis, the contrast images were entered into one-sample t-tests 213 

(Figure 2A/B). The statistical significance threshold was at p < 0.005 at the voxel 214 

level with false-discovery rate (FDR) correction for a cluster level, p < 0.05, Ks > 215 

50. 216 

Psychophysiological interaction (PPI) 217 

We performed a psychophysiological interaction (PPI) analysis (Friston et al. 218 

1997) of the functional connectivity in M1 (Figure 2C). The M1 ROI was defined 219 

as the left M1 [MNI -33, -24, 63] from the GLM results as a seed region. From 220 

this seed region (8mm sphere), the time courses were de-convolved based on 221 

the model for the canonical hemodynamic response to construct a time series of 222 

neural activity. Interaction terms were calculated separately for the TMS active 223 
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and inactive conditions, as the product between the vector of the condition and 224 

the psychological factor. The PPI terms were also been convolved with the 225 

hemodynamic response function. The preprocessed fMRI data was entered into 226 

the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon 2012) for the PPI 227 

analysis. Data were filtered using a band pass filter (0.01 < f < 2) to decrease the 228 

effect of low-frequency drift. White matter, cerebrospinal fluid, and physiological 229 

noise source reduction were taken as confounds, following the implemented 230 

CompCor strategy (Behzadi et al. 2007). Head motion was taken into account 231 

and rotational and translational motion parameters and their first-order temporal 232 

derivatives were regressed out. The onset and duration of each experimental 233 

condition was supplied to the toolbox. For group-level analysis, individual results 234 

were converted to z-scores with Fisher’s z-transformation. As the PPI is very 235 

stringent (O'Reilly et al. 2012), we used the significance threshold at p < 0.01 236 

uncorrected, Ks > 50.  237 

Dynamic Causal Modelling  238 

Based on the results of PPI, we next used DCM to investigate how TMS 239 

modulates the directed influences (or effective connectivity) between M1 and the 240 

cortical areas defined above. DCM is a method for estimating and making 241 

inferences about coupling among brain regions and provides information about 242 

the underlying cortical pathways and their causal relationships (Friston et al. 243 

2003). DCM estimates task-independent “intrinsic” connectivity, the “modulatory” 244 

changes in the connectivity induced by a specific task (e.g., TMS and hand 245 
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clenching task), and the extrinsic influence of “inputs” on regions (i.e. the driving 246 

input). We constructed DCM models that represented all possible configurations 247 

of the modulatory parameters between M1 and the cortical areas of the medial 248 

and lateral pain systems, including the insular (INS), anterior cingulate (ACC), 249 

and parietal operculum (PO, the secondary somatosensory cortex). As these 250 

structures have specific reciprocal interconnections (Eickhoff et al. 2010; Ghaziri 251 

et al. 2017), we allowed for a fully connected model and reduced models 252 

corresponding to networks with a sparser connectivity contained within this larger 253 

model. This resulted in seven possible pathways through which M1 stimulation 254 

could influence the proposed system: 1) ACC and PO receive input directly from 255 

M1; 2) INS and PO receive input directly from M1; 3) ACC and INS receive input 256 

directly from M1; 4) ACC receives input directly from M1; 5) PO receives input 257 

directly from M1; 6) INS receives input directly from M1, and 7) ACC, INS, PO 258 

collectively receive input directly from M1 (fully-connected model) (Figure 3). The 259 

M1 TMS was entered as a driving input to the models. For the DCM analysis, we 260 

extracted the first eigenvariate (devolved neural activity) from a spherical ROI 261 

(radius = 8mm) centered at the maximally responsive point of the left M1 defined 262 

a priori by the main effect of the motor task in the GLM analysis. The INS [MNI -263 

36, 12, 10], PO [MNI -44, -6, 6], and ACC [MNI -6, -18, 30] were defined a priori 264 

by the PPI analysis. We restricted our model within the left hemisphere as TMS 265 

was applied over the left M1.  266 
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Bayesian model selection 267 

The seven competing models were compared using Bayesian model selection 268 

(BMS) (Penny et al. 2004; Stephan et al. 2009) to determine the model which 269 

provides the best fit between accuracy and generalizability in the given fMRI 270 

data. In the resting condition, TMS phases were modelled as experimental 271 

perturbations for all subjects (N=23). However, in the task subgroup (N=12), both 272 

task conditions (left, right, and both hand clenching) and TMS phases (active and 273 

inactive) were modelled as experimental perturbations of the system. Then 274 

DCMs of the wining model were estimated separately for each participant, 275 

allowing an identification of changes in interregional connectivity induced by the 276 

M1 TMS. The estimated intrinsic and modulatory connections were considered 277 

significant when passing a threshold of p FDR-corrected < 0.05 (one-sample tests). In 278 

order to identify connections specifically modulated by TMS, we compared 279 

modulatory connectivity between the TMS active and inactive conditions 280 

(planned paired tests, p < 0.05).  281 

RESULTS 282 

ROI selection 283 

A detailed description of the fMRI analysis has been published previously (Jung 284 

et al. 2020).  Main effects of the hand clenching motor task and local activation 285 

maxima for the hand somatotopic region within M1 are shown in Figure 2A. The 286 

results showed a significant main effect in the bilateral M1, premotor cortex, and 287 
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supplementary motor area. Conjunction analysis of the M1 stimulation in active 288 

TMS compared to inactive TMS phases is shown in Figure 2B. Stimulation in M1 289 

resulted in significant activation of the insula, inferior frontal gyrus (IFG) and PO. 290 

We hypothesized that the functional connectivity between M1 and three 291 

independent brain areas – insular (INS), anterior cingulate (ACC), and secondary 292 

somatosensory cortex (PO) – may reflect a susceptibility for plasticity following 293 

TMS manipulation. Thus, we performed a psychophysiological interaction (PPI) 294 

analysis (Friston et al. 1997) of the functional connectivity in M1. The PPI 295 

analysis with the M1 seed revealed that active-TMS over the M1 strengthened 296 

connectivity with several brain areas (including the INS, ACC and PO) relative to 297 

the inactive TMS phase (Figure 2C and Table S2). The result confirm that the 298 

functional state and connectivity profile of the three a priori brain areas appears 299 

to reflect the individual’s susceptibility to TMS manipulation.  300 

DCM and BMS: model estimation and selection 301 

The next question was to explore what drives the individual’s connectivity profile. 302 

The results of the BMS with expected and exceedance probabilities using 303 

random effects (RFX) analysis are shown in Figure 4A. Under resting conditions 304 

(resting group, N=23), Model 7 was the model with the highest exceedance 305 

probability thus the winning network model. Using the best model (model 7), we 306 

further compared the modulatory connectivity between active and inactive TMS 307 

conditions between the distinct brain areas (Figure 4B). The paired t-tests 308 

demonstrated that active TMS significantly increased effective connectivity from 309 
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ACCM1 (t = -2.16, p = 0.042), INSM1 (t = -2.21, p = 0.046), and POM1 (t = 310 

-2.22, p = 0.046) in comparison to inactive TMS phase. In contrast, there was a 311 

decrease in effective connectivity from M1INS (t = 2.52, p = 0.020) and 312 

M1ACC (t = 2.19, p = 0.04). The driving inhibitory input to M1 by TMS was also 313 

significant (t= -2.15, p = 0.043).  It should be noted that there was no significant 314 

intrinsic connection between the ROIs. A full list of parameter estimates is 315 

available in Table S3.  316 

We also conducted the same analysis under task conditions (task group, N=12). 317 

The BMS results demonstrated that the winning model was model 7, replicating 318 

the whole group results (Figure 5A). The results of rest condition revealed that 319 

active TMS significantly increased effective connectivity from ACCM1 (Z = -320 

2.51, p = 0.012), INSM1 (Z = -2.19, p = 0.030), and POM1 (Z = -2.20, p = 321 

0.028), whereas decreased effective connectivity from the M1 to ACC (Z = -1.96, 322 

p = 0.05) and to insular (Z = -2.89, p = 0.041) during active TMS (Figure 5B and 323 

Table S4). DCM parameter estimates during each task condition are shown in 324 

Figure 5C. As previously described (Jung et al. 2020), the motor task reduced 325 

the INS and PO activation related to the M1 TMS. We did not find any significant 326 

difference between the active and inactive TMS phase when the left hemisphere 327 

was engaged in the task (right and both hand clenching). However, M1 TMS 328 

evoked a significant decreased connectivity from the INS to M1 during the left 329 

hand clenching only (Z = -2.28, p = 0.023)  (Figure 5C and Table S5). The driving 330 

input, M1 TMS was significant at rest (p = 0.0009), left hand (p = 0.019), right 331 

hand (p = 0.005), and both hand conditions (p = 0.005).   332 
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In an additional DCM analysis, we examined more closely the difference between 333 

the winning model and the second-best model (model 6). The ‘best’ model can 334 

depend critically on which set of models are being compared, and it is possible 335 

that augmenting the comparison set with a single extra model could alter the 336 

ranking of the models (Penny et al. 2010). We performed an additional analysis 337 

comparing the reduced models only (models 1-6) corresponding to networks with 338 

a sparser connectivity within the full model.  We found that Model 6 remains the 339 

dominant reduced model under resting conditions (resting group, N=23) (Figure 340 

6). The paired t-tests demonstrated that active TMS significantly increased 341 

effective connectivity from INSM1 t = -2.11, p = 0.046) and ACCPO (t = -342 

2.25, p = 0.035) in comparison to inactive TMS phase. In contrast, there was a 343 

decrease in effective connectivity from M1INS (t = 2.54, p = 0.019). The driving 344 

inhibitory input to M1 by TMS was also significant (t=-2.394, p = 0.026).  A full list 345 

of parameter estimates is available in Table S6.  346 

We also conducted the same analysis under task conditions (task group, N=12). 347 

The BMS results demonstrated that the winning model was again model 6, 348 

replicating the whole group results (Figure 7A). The results of rest condition 349 

revealed that active TMS significantly increased effective connectivity from 350 

INSM1 (Z = -2.20, p = 0.028) and from ACCPO (Z = -2.47, p = 0.013), 351 

whereas decreased effective connectivity from the M1 to insular (Z = -1.89, p = 352 

0.059) during active TMS (Figure 7B). One-sample Wiscoxon Signed Rank tests 353 

demonstrated significant facilitatory connections from ACCPO, ACCINS, 354 

POINS, and INSM1 as well as a significant inhibitory connection from 355 
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M1INS (ps FDR-corrected < 0.05) (Table S7). DCM parameter estimates during 356 

each task condition are shown in Figure 7C. We did not find any significant 357 

difference between the active and inactive TMS phase when the left hemisphere 358 

was engaged in the task (right and both hand clenching). However, M1 TMS 359 

evoked a significant decreased connectivity from the INS to M1 during the left 360 

hand clenching only (Z = -2.35, p = 0.019) (Figure 7C and Table S8). The driving 361 

input, M1 TMS was significant at rest (p = 0.039), left hand (p = 0.012), and both 362 

hand conditions (p = 0.004).  Altogether, this corroborated the results from the 363 

initial model selection procedure that model 6 represents the second-best model 364 

following the fully connected network. 365 

Supplemental material is available at:  366 

https://figshare.com/search?q=JN_2021_Hodkinson_SupplementalMaterial 367 

 368 

 369 

DISCUSSION 370 

Using DCM and BMS, we tested seven competing hypotheses about how TMS 371 

modulates the directed influences (or effective connectivity) between M1 and 372 

three distinct cortical areas of the medial and lateral pain systems, including the 373 

insular (INS), anterior cingulate (ACC), and parietal operculum (PO). The dataset 374 

included a novel fMRI acquisition collected synchronously with M1 stimulation 375 

during rest and while performing a simple hand motor task (Jung et al. 2020).  376 

DCM and BMS showed a clear preference for the fully connected model in which 377 
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M1 stimulation causally determines activity in the INS, PO, and ACC under 378 

resting conditions. In the following discussion, we consider the potential 379 

mechanisms underlying TMS-induced changes in cortical plasticity and its 380 

relevance to pain control. 381 

The rationale for applying TMS to treat pain is that it can induce long-lasting, and 382 

potentially reversible therapeutic changes in cortical plasticity. Our results 383 

confirmed that TMS stimulation has a rapid effect on cortical excitability, which 384 

extends beyond the local stimulated area. The excitation of the connections 385 

INSM1, POM1, and ACCM1, plus the increased inhibition of their 386 

reciprocal connections, suggests that these structures are tightly and probably 387 

bidirectionally coupled. This supports the hypothesis that analgesia produced 388 

from M1 stimulation most likely acts through the activation of top-down processes 389 

associated with intracortical modulation, and not spinal inhibition via direct 390 

stimulation of the pyramidal tract (Nguyen et al. 2011). Whilst the driving input to 391 

M1 by TMS was shown to be inhibitory, the stimulation of the fibers running 392 

parallel to the cortical surface in the precentral gyrus could lead to both 393 

orthodromic activation of corticofugal pathways as well as antidromic activation of 394 

thalamocortical pathways (Tranchina and Nicholson 1986).  Further studies are 395 

required to dissect these interareal connections at finer levels, and to link TMS 396 

response properties of neurons in these different subregions to specific sensory 397 

modalities. Nevertheless, it could account for the influence on pathways and 398 

structures that are distant from the site of stimulation. 399 
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The reduced models of network connectivity and their observed responses to 400 

TMS have the potential to expand our knowledge of pain control and in 401 

evaluating the therapeutic potential of TMS. We observed that M1 input into the 402 

INS represents the second-best model of plasticity following TMS manipulations. 403 

INS and the adjacent PO are the only cortical brain regions that can trigger a 404 

painful percept when electrically stimulated (Afif et al. 2008; Mazzola et al. 2012; 405 

Ostrowsky et al. 2000). Whilst activation of the postero-superior insula triggers 406 

pain and thermal sensations, inhibition of the same region can potentially induce 407 

analgesia and loss of thermal sensation. For example, ischaemic lesions 408 

restricted to the postero-superior operculo-insular region can impair 409 

discrimination of thermal sensations by increasing the thermal pain threshold 410 

detection (Garcia-Larrea et al. 2010; Greenspan et al. 1999; Veldhuijzen et al. 411 

2010). Interestingly, Lenoir et al. (2018) recently demonstrated a modulatory 412 

effect of continuous theta-burst stimulation (cTBS) over the human operculo-413 

insular cortex using a coil designed for deep TMS. They showed that cTBS 414 

selectively affects the perception of heat pain without any changes to the 415 

perception of cold, warm or vibrotactile stimuli (Lenoir et al. 2018). These findings 416 

speak to the potential advantages of non-invasive stimulation of the INS to 417 

produce analgesia; however, the authors also reported that cTBS delivered over 418 

that structure is associated with a higher risk of triggering a TMS-induced 419 

seizure. We speculate that it may be possible to impart equivalent symptomatic 420 

benefit without the seizure risk through targeting M1 sites that are more 421 
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functionally connected to the INS; however this remains a hypothesis and 422 

requires formal testing. 423 

There are several limitations and interesting questions raised by the current 424 

study that should be addressed. Firstly, it remains unclear how long the 425 

aftereffects from TMS can last, and whether the reversal rate depends on the 426 

duration of TMS stimulation. In the current experiment, we employed repeated 427 

pulses at 1Hz that was similar in duration to conventional rTMS protocols and 428 

resulted in an inhibitory effect on M1 in the healthy subjects. However, 429 

development of clinically relevant dosing parameters related to the cumulative 430 

exposure of TMS needs systematic evaluation. The method of the fMRI data 431 

collection should also be considered, as the current work leverages a unique 432 

dataset in which the TMS pulse was synchronised to be delivered with fMRI 433 

acquisition (Jung et al. 2016). This resource has yielded some of the most 434 

informative results to date showing a rapid effect on cortical excitability. Likewise, 435 

the DCM and BMS analysis provided a powerful tool for testing hypothesis 436 

related to the directional connections most susceptible to TMS manipulation. 437 

Unfortunately, due to the lack of an explicit nociceptive stimulus, the specificity of 438 

the selected brain areas cannot be interpreted as pain responsive, thus any 439 

classification of brain circuitry using such areas should be interpreted with 440 

caution. Finally, it remains unclear which part of the human M1 should be 441 

stimulated, and which downstream regions are important for analgesic efficacy. 442 

The selective reconfiguration of the INS delineated by the DCM analysis may be 443 

a substrate for plasticity following TMS manipulations. The results reported here 444 
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provide a starting point for investigating whether pathway-specific targeting 445 

involving M1INS improves analgesic response beyond conventional targeting. 446 

We eagerly await future empirical data and models that tests this hypothesis. 447 
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Figure 1: Experimental design and procedures. A) Equipment for the 621 

synchronization of TMS/fMRI. B) Block design for resting and task M1 622 

stimulation. (C) Target sites defined using TMS coil position.  623 

 624 

Figure 2. TMS and task interactions. A) GLM results of main effect of motor 625 

task (left hand, right hand, and both hands clenching). (B) Conjunction analysis 626 

(active TMS vs inactive TMS). (C) PPI results of the M1 seed revealed active-627 

TMS strengthened connectivity with several brain areas (including the INS, ACC 628 

and PO) relative to the inactive TMS phase. To better visualize the INS-PO 629 

region we show the results as inflated projections on the PALS-B12 atlas. White 630 

rings represent a priori regions of interest (ROIs) used for the DCM analysis. 631 

 632 

Figure 3.  Comparative DCM network models. (A) Full network model with 633 

direct input by TMS in the primary motor cortex (M1). The intrinsic connections 634 

are indicated by the black lines with arrows, and the arrows indicate the direction 635 

of the connectivity (B) The six reduced networks (model 1-6) were constructed to 636 

represent all possible configurations of the modulatory parameters between M1 637 

and the cortical areas of the medial and lateral pain systems, including the 638 

insular (INS), anterior cingulate (ACC), and parietal operculum (PO, the 639 

secondary somatosensory cortex). These structures also possessed specific 640 

reciprocal interconnections.  641 

 642 
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Figure 4. Model selection and parameter estimation under resting 643 

conditions. (A) The results of Bayesian model selection (BMS) with expected 644 

probability and exceedance probability using random effects (RFX) analysis.  (B) 645 

Estimated parameters of the winning network model (Model 7 is the model with 646 

the highest exceedance probability). The dotted black arrows represent non-647 

significant connectivity. The black arrows represent the modulatory connections 648 

[one-sample t-test, p FDR-corrected<0.05]. The red and blue arrows represent 649 

increased and decreased (facilitatory and inhibitory) connectivity during active 650 

compared to inactive TMS [paired t-test, p<0.05].  651 

 652 

Figure 5. DCM parameter estimation under task conditions. (A) The results 653 

of Bayesian model selection (BMS) with expected probability and exceedance 654 

probability using random effects (RFX) analysis. (B) Estimated parameters of the 655 

winning network model at rest. (C) The estimated parameters for three task 656 

conditions: left hand clenching, right hand clenching, and both hand clenching. 657 

The dotted black arrows represent non-significant connectivity. The black arrows 658 

represent the modulatory connections [one-sample Wilcoxon Signed Ranks test, 659 

p FDR-corrected<0.05]. The red and blue arrows represent increased and decreased 660 

(facilitatory and inhibitory) connectivity during active compared to inactive TMS. 661 

662 



 28

Figure 6. Reduced model selection and parameter estimation under resting 663 

conditions. (A) The results of Bayesian model selection (BMS) with expected 664 

probability and exceedance probability using random effects (RFX) analysis.  (B) 665 

Estimated parameters of the winning network model (Model 6 is the model with 666 

the highest exceedance probability). The dotted black arrows represent non-667 

significant connectivity. The black arrows represent the modulatory connections 668 

[one-sample t-test, p FDR-corrected<0.05]. The red and blue arrows represent 669 

increased and decreased (facilitatory and inhibitory) connectivity during active 670 

compared to inactive TMS [paired t-test, p<0.05].  671 

 672 

Figure 7. Reduced model selection and parameter estimation under task 673 

conditions. (A) The results of Bayesian model selection (BMS) with expected 674 

probability and exceedance probability using random effects (RFX) analysis. (B) 675 

Estimated parameters of the winning network model at rest. (C) The estimated 676 

parameters for three task conditions: left hand clenching, right hand clenching, 677 

and both hand clenching. The dotted black arrows represent non-significant 678 

connectivity. The black arrows represent the modulatory connections [one-679 

sample Wilcoxon Signed Ranks test, p FDR-corrected<0.05]. The red and blue arrows 680 

represent increased and decreased (facilitatory and inhibitory) connectivity during 681 

active compared to inactive TMS. 682 
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